
Storage Cost Comparison

Parity Group Size

40

50

60

70

2 4 6 8

C
os

t (
$)

 x
 1

03

total (k=1,D=104,f=0.75,C_a=100)

total (k=1,D=104,f=0.75,C_a=50)

total (k=1,D=100,f=0.75,C_a=100)

total (k=1,D=100,f=0.75,C_a=50)

Figure 36: Storage Cost Comparison

Amount of Useful Storage

Parity Group Size
50

60

70

80

90

100

2 4 6 8

disk storage (D=100,k=1)

disk storage (D=104,k=1)

disk storage (D=100,k=2)

disk storage (D=104,k=2)

disk storage (D=100,k=3)

disk storage (D=104,k=3)

U
se

fu
l D

is
k

Sp
ac

e
(G

B
)

Figure 37: Comparison of Useful Storage

38

Total Storage Cost

Parity Group Size

20

30

40

50

60

2 4 6 8

C
os

t (
$)

 x
 1

03

total (k=3,D=100,f=0.75,C_a=50)

total (k=3,D=100,f=0.75,C_a=100)

total (k=3,D=100,f=0.45,C_a=50)

total (k=3,D=100,f=0.45,C_a=100)

Figure 35: Total Storage Cost 3

[8] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant

arrays of inexpensive disks (RAID). ACM SIGMOD Conference, pages 109{116,

1988.

[9] Teradata. DBC/1012 database computer system manual release 2.0, 1985.

37

Total Storage Cost

total (k=2,D=100,f=0.75,C_a=50)

total (k=2,D=100,f=0.75,C_a=100)

total (k=2,D=100,f=0.45,C_a=50)

total (k=2,D=100,f=0.45,C_a=100)

Parity Group Size
20

30

40

50

60

2 4 6 8

C
os

t (
$)

 x
 1

03

Figure 34: Total Storage Cost 2

References

[1] Steven Berson, Shahram Ghandeharizadeh, Richard R. Muntz, and Xiangyu

Ju. Staggered striping in multimedia information systems. Submitted to 1994

SIGMOD, 1994.

[2] D. Bitton and J. Gray. Disk shadowing. VLDB, pages 331{338, 1988.

[3] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and

R. Rasmussen. The gamma database machine project. IEEE Transactions

on Knowledge and Data Engineering, March 1990.

[4] S. Ghandeharizadeh and L. Ramos. Continuous retrieval of multimedia data

using parallelism. IEEE Transactions on Knowledge and Data Engineering,

1(2), August 1993.

[5] S. Ghandeharizadeh, L. Ramos, Z. Asad, and W. Qureshi. Object placement

in parallel hypermedia systems. In Proc. of VLDB, 1991.

[6] S. Ghandeharizadeh and C. Shahabi. Management of physical replicas in paral-

lel multimedia information systems. In Proc. of the 1993 Foundations of Data

Organization and Algorithms (FODO) Conference, October 1993.

[7] Richard R. Muntz and John C.S. Lui. Performance analysis of disk arrays under

failure. VLDB Conference, pages 162{173, 1990.

36

Total Storage Cost

Parity Group Size

30

40

50

60

70

2 4 6 8

C
os

t (
$)

 x
 1

03

total (k=1,D=100,f=0.75,C_a=50)

total (k=1,D=100,f=0.75,C_a=100)

total (k=1,D=100,f=0.45,C_a=50)

total (k=1,D=100,f=0.45,C_a=100)

Figure 33: Total Storage Cost 1

group of 2.

In addition to being costly, large parity groups result in poor reliability. Given

a total cost constraint, the money might be better spent on more disks rather than

more memory. For instance, Figure 36 depicts a cost comparison between a system

with 100 disks and a system with 104 disks, all other things being equal. Note that

a system with 104 disks at a parity group of 4 has a lower cost than a system with

100 disks at a parity group of 5, and in addition a higher reliability. Therefore, in

this case spending money on disks rather than memory pays o� in reliability. But,

we should also consider the performance aspect of these two systems, which depends

on available bandwidth and disk storage. Of course, the system with 104 disks has

more bandwidth, but, as illustrated in Figure 37, which depicts the amount of storage

available for actual data it also has more useful disk storage, i.e., it can store more

objects. Therefore, the system with 104 disks should have better reliability and better

performance, than the system with 100 disks, at a lower cost.

35

C

D

= C

f

�

D � S

d � k + 1

where all the parameters are illustrated in Figure 32. Note that the parity group size

k = # fragments / subobject
d = # of subobjects in a parity group

B = total buffer space requirement
F = total disk space requirement
d* = crossover point

C_total = total cost = C_M + C_D

C_b = cost of memory ($/MB) (use 100,50)
C_f = cost of disk space ($/MB) = 1

C_M = total memory cost
C_D = total disk space cost

C_a= difference in costs = C_b/C_f

s = # of subobjects on disks

D = # of disks
S = storage space per disk (use 1GB)
f = fragment size (use 0.75MB, 0.45MB)

Figure 32: Parameters

is de�ned as the number of subobjects per parity group. The bu�er cost is a function

of parity group size, fragment size, and the number of disks in the system; the disk

cost is a function of the total storage space and the parity group size. Hence, the

bu�er cost increases with parity group size, and the disk cost decreases. At �rst the

disk cost dominates, and so the total cost decreases as the parity group size increases.

However, after a certain group size, the bu�er cost begins to dominate, and the total

cost goes back up as the parity group size increases further.

Consider �rst a system with a constant bandwidth requirement of 1, which should

need large parity groups in order to achieve good storage e�ciency. The total cost

for this system is illustrated in Figure 33, where the price of memory and the size of

fragments are varied. Note that only with cheap memory and small fragments would

it be cost e�ective to use very large parity groups; for instance, the minimum cost

for a system with 1 : 100 disk to bu�er cost ratio and 0:75MB fragments is achieved

at a parity group of 3. Similar cost graphs are illustrated in Figures 34 and 35 for

systems with bandwidth requirement of 2 and 3, respectively. Of course, as the

bandwidth requirement is increased, the cost is decreased; furthermore, the minimum

cost is achieved at smaller parity group sizes. For instance, in Figure 33, a system

with 1 : 100 disk to bu�er cost ratio and 0:45MB fragments requires a parity group of

4 to achieve minimum cost, but the same system in Figure 35 only requires a parity

34

e�ciency depends on the cluster size. Since neither of these three schemes requires

bu�er space, it is more informative to consider how disk space and bandwidth e�-

ciency change as a function of cluster size. These graphs are illustrated in Figures

31(a) and 31(b). It is important to keep in mind that as the cluster size increases, the

(a)

% Useful
Disk Storage

Cluster Size
50%

1 2 3 4

100%

75%

5 6 7 8 9

naive

improved-bw

improved-bw-storage

(b)

% Useful BW

Cluster Size
50%

1 2 3 4

100%

75%

5 6 7 8 9

naive

improved-bw

improved-bw-storage

Figure 31: Costs for Simple Striping Schemes

reliability of a system decreases. Hence, performance gains must be balanced against

reliability losses when considering a large parity group size.

The tradeo� between performance and reliability is similar in the context of stag-

gered striping, where we developed two basic types of schemes: 1) bu�ering schemes

and 2) non-bu�ering schemes. Bu�ering schemes deal with large parity groups by

reading and bu�ering small pieces until an entire parity group is collected. The

non-bu�ering schemes read the entire parity group at once, which can result in frag-

mentation problems (see Section 4). We �rst concentrate on bu�ering schemes, and

return to discussing non-bu�ering schemes later in this section.

The following discussion applies to all bu�ering schemes in general. As the parity

group size increases, the amount of storage needed for parity information decreases

and the size of bu�ers needed to support such large parity groups increases. Assuming

that cost is a constraint in our system

5

, it is important to consider the size and cost

of the bu�ers and compare these against the savings in disk space. For the purpose

of illustration we consider a simple system with a constant bandwidth requirement.

The following simple equations can be used to compute the cost of disk and bu�er

storage (for a class of schemes that bu�er data and use several subobjects per parity

group):

C

M

= C

b

� d �D � f

5

Otherwise we could just buy more disks.

33

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X1.0 X1.1 X2.0 X2.1 Y0.0 Y0.1 Y0.2 Y0.3 Z0.0 Z1.0 Z2.0 Z3.0 Z5.0

X3.0 X3.1 X4.0 X4.1 X5.0 X5.1

X6.0 X6.1 X7.0 X7.1 X8.0 X8.1

Y0.0p

Y1.0 Y1.1 Y1.2 Y1.3

Y2.0 Y2.1 Y2.2 Y2.3

Z4.0

Z11.0Z6.0 Z7.0 Z8.0 Z10.0Z9.0

Z12.0 Z13.0 Z14.0 Z15.0 Z17.0Z16.0

X0.0p

X3.0p

X6.0p

Y1.0p

Y2.0p

Z0.0p

Z6.0p

Z12.0p

Figure 30: Variable Group Sizes

additional bu�er space. Most of the schemes presented in this paper managed to take

advantage of the full bandwidth capability of the system at the price of: a) reliability,

i.e., degradation of service and b) complexity of the system, under both the normal

and degraded modes of operation. Of course, none of the schemes managed to take

advantage of the full storage capability of the system, but the general mechanism for

improving storage e�ciency was increasing the parity group size. For most schemes,

this led to a need for bu�er space, and in general, the greater was the disk storage

e�ciency the more main memory bu�er space was required to maintain that level

of e�ciency. As we increase the parity group size, the performance of our system

improves, since less space is used for parity, the more can be used for storing objects.

However the reliability of our system degrades, since larger parity groups are more

susceptible to a second, catastrophic failure. Hence, the tradeo� we must consider

is between performance and reliability. We should also note that a need for bu�er

space a�ects the cost of our system; as we are improving the storage e�ciency, and

hence the cost of the disk subsystem, we might be increasing the bu�ering cost. For

a certain class of schemes presented in Section 4, namely, the \bu�ering" schemes,

increasing the parity group size, decreases the cost of storing the parity information,

but it also increases the amount and hence the cost of bu�er space needed to support

such large parity groups. We will show that after a careful consideration of both disk

and bu�er space costs it is possible to construct a con�guration that will give one the

best combination of reliability and performance for a given total cost constraint.

First, consider simple striping and the three basic schemes presented in that con-

text, namely the naive, the improved-bw, and the improved-bw-storage schemes. The

storage and bandwidth e�ciency of the naive scheme depend on the size of the clus-

ter, the larger the cluster, the greater the storage and bandwidth e�ciency. The

improved-bw utilizes the full bandwidth of a system, but it always uses only half of

the available storage for actual data, independent of the cluster size. The improved-

bw-storage scheme also utilizes the entire bandwidth of a system, and it's storage

32

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X1.0 X1.1 X2.0 X2.1 Y0.0 Y0.1 Y0.2 Y1.0 Y1.1 Y1.2 Z0.0 Z1.0 Z2.0 Z3.0 Z5.0

X3.0 X3.1 X4.0 X4.1 X5.0 X5.1

X6.0 X6.1 X7.0 X7.1 X8.0 X8.1

Y0.0p

Y2.0 Y2.1 Y2.2 Y3.0 Y3.1 Y3.2

Y4.0 Y4.1 Y4.2 Y5.0 Y5.1 Y5.2

Z4.0

Z11.0Z6.0 Z7.0 Z8.0 Z10.0Z9.0

Z12.0 Z13.0 Z14.0 Z15.0 Z17.0Z16.0

X0.0p

X3.0p

X6.0p

Y2.0p

Y4.0p

Z0.0p

Z6.0p

Z12.0p

Figure 28: Constant Group Size { All Fits

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X1.0 X1.1 X2.0 X2.1 Y0.0 Y0.1 Y0.2 Y0.3 Y1.0 Y1.1 Z0.0 Z1.0 Z2.0 Z3.0 Z5.0

X3.0 X3.1 X4.0 X4.1 X5.0 X5.1

Y0.0p

Y1.2 Y1.3 Y2.0 Y2.1 Y2.2 Y2.3

Z4.0

Z11.0Z6.0 Z7.0 Z8.0 Z10.0Z9.0

X0.0p

X3.0p

X6.0p

Y1.2p

Y3.0p

Z0.0p

Z6.0p

Z12.0p

X6.0 X6.1 X7.0 X7.1 X8.0 X8.1 Y3.0 Y3.1 Y3.2 Y3.3 Y4.0 Y4.1 Z12.0 Z13.0 Z14.0 Z15.0 Z17.0Z16.0

X8.0 X8.1 X9.0 X9.1 X10.0 X10.1 Y4.2 Y4.3 Y5.0 Y5.1 Y5.2 Y5.3 Z18.0 Z19.0 Z20.0 Z21.0 Z23.0Z22.0

Z18.0pY4.2pX8.0p

Figure 29: Constant Group Size { Split Subobjects

� complexity of scheduling retrieval and delivery of objects during the normal and

degraded modes of operation

� complexity of data layout

� complexity of the rebuild process

Note that in general, the costs are not independent of each other. For instance, in

certain parity placement schemes (see Section 3.1), a penalty in storage is accompa-

nied by a penalty in bandwidth. Or, as will become evident later in this section, it is

often possible to tradeo� disk storage cost for bu�ering cost, and vice versa.

In order to make comparisons between the various schemes, let us �rst review our

goals, and the steps we took to achieve them. We would like to use parity information

to improve the reliability of our system. The price for storing parity information

overhead is measured in disk bandwidth and/or disk storage and a requirement for

31

Disk
0 1 2 3 4 5 6 7 8

X0.0 X1.0 X2.0 X3.0 X4.0 X5.0

X6.0 X7.0 X8.0 X9.0 X10.0 X11.0

X12.0 X13.0 X14.0 X15.0 X16.0 X17.0

X12.1 X13.1 X14.1 X15.1 X16.1 X17.1

X0.0p

X6.0p

X6.1p

X12.0p

X12.1p

X0.1 X1.1 X2.1 X3.1 X4.1 X5.1

X6.1 X7.1 X8.1 X9.1 X10.1 X11.1

X0.1p

Y0.0 Y1.0 Y2.0 Y3.0 Y4.0 Y5.0

Y6.0 Y7.0 Y8.0 Y9.0 Y10.0 Y11.0

Y12.0 Y13.0 Y14.0 Y15.0 Y16.0 Y17.0

Y12.1 Y13.1 Y14.1 Y15.1 Y16.1 Y17.1

Y0.0p

Y6.0p

Y6.1p

Y12.0p

Y12.1p

Y0.1 Y1.1 Y2.1 Y3.1 Y4.1 Y5.1

Y6.1 Y7.1 Y8.1 Y9.1 Y10.1 Y11.1

Y0.1p

Y0.2 Y1.2 Y2.2 Y3.2 Y4.2 Y5.2

Y0.2p

Y6.2 Y7.2 Y8.2 Y9.2 Y10.2 Y11.2

Y6.2p

Y12.2p

Y12.2 Y13.2 Y14.1 Y15.2 Y16.2 Y17.2

Figure 27: Constant Group Size

redundant information):

� disk storage: an amount of disk storage that must be dedicated to redundancy,

e.g., parity information, which can not be used to store actual data

� bandwidth: an amount of bandwidth that must be dedicated to redundancy,

e.g., for transmitting parity, which can not be used for transmitting actual data

� bu�er space: an amount of memory needed to provide bu�ering for support of a

redundancy scheme, e.g., for storing some portion of a parity group until parity

computation is possible

In addition to the quantitative metrics, we must also consider more qualitative factors,

such as:

30

Time

0
Read

Deliver

X6.0 X7.0 X8.0 X9.0 X10.0 X11.0

X6.1 X7.1 X8.1 X9.1 X10.1 X11.1

X0.1 X1.1 X2.1 X3.1 X4.1 X5.1

X0.0 X1.0 X2.0 X3.0 X4.0 X5.0

1
Read

Deliver X0.0 X0.1

2
Read

Deliver X1.0 X1.1

3
Read

Deliver X2.0 X2.1

4
Read

Deliver X3.0 X3.1

5
Read

Deliver X4.0 X4.1

6
Read

Deliver X5.0 X5.1

7
Read

Deliver

8
Read

Deliver

X6.0 X6.1

X7.0 X7.1

Figure 26: Schedule and Delivery

5 Comparison of Schemes

In this section we compare the multitude of schemes presented in Sections 3 and 4,

using the following metrics as the basis of comparison, and make recommendation as

to which are useful and under what conditions and constraints. As de�ned earlier,

the reliability of a system includes:

� its susceptibility to degradation of service

� the probability of data loss

The costs of providing reliability fall into to one of three categories (we consider the

additional cost for providing reliability, in addition to the cost of a system without

29

Disk
0 1 2 3 4 5 6 7 8

X0.0 X1.0 X2.0 X3.0 X4.0 X5.0

X6.0 X7.0 X8.0 X9.0 X10.0 X11.0

X12.0 X13.0 X14.0 X15.0 X16.0 X17.0 X12.1 X13.1 X14.1 X15.1 X16.1 X17.1

X0.0p

X6.0p X6.1p

X12.0p X12.1p

X0.1 X1.1 X2.1 X3.1 X4.1 X5.1

X6.1 X7.1 X8.1 X9.1 X10.1 X11.1

X0.1p

Figure 25: New Data and Parity Placement

Instead of \reshu�ing" the data, as we did in the previous scheme, we could

still lay it out according to subobjects by packing several subobjects into one parity

group and laying out the entire parity group on consecutive disks. The data and

parity placement for this scheme, with a constant parity group size of 6, is illustrated

in the example of Figure 28. In this example we have three objects,X with subobjects

of size 2, Y with subobjects of size 3, and Z with subobjects of size 1. Each parity

group consists of 6 object fragments plus a parity fragment. Therefore, each parity

group in this example can have either three X subobject, or two Y subobjects, or six

Z subobjects. To schedule any one of the objects, we would need a slot of six disks.

When delivering objects, even in normal mode of operation, we could deliver the

�rst subobject and bu�er the rest. As in the previous schemes, we need to insert idle

periods in order to control bu�er growth; this increasing the complexity of scheduling.

Under failure, we would have to perform the same shift to the right as in a system

that uses the \parity-per-subobject" scheme with a constant bandwidth requirement.

Note that in Figure 28 the subobjects just happened to �t nicely into parity groups

of size 6; this of course does not have to happen. We can deal with this problem in

one of two ways. Either we can insist on a �xed parity group size, in which case we

would have to split subobjects between di�erent parity groups, which is illustrated in

Figure 29, or we can insist on having whole subobjects in each parity group, in which

case we would have to deal with variable size parity groups, which is illustrated in

Figure 30. Either of the two results in fragmentation problems, although perhaps of

di�erent types, and complications in scheduling.

28

X0.1 X1.1 X2.1 X3.1 X4.1 X5.1X0.0 X1.0 X2.0 X3.0 X4.0 X5.0

X6.0 X7.0 X8.0 X9.0 X10.0 X11.0 X6.1 X7.1 X8.1 X9.1 X10.1 X11.1

Time

t
Read

Deliver X0.1X0.0

t+1

t+2

t+3

t+4

t+5

t+6

t+7

Read

Deliver

Read

Deliver

Read

Deliver

Read

Deliver

Read

Deliver

Read

Deliver

Read

Deliver

X1.1X1.0

X2.1X2.0

X3.1X3.0

X4.1X4.0

X5.1X5.0

X6.0 X6.1

X7.0 X7.1

Figure 24: Schedule and Delivery

described in [1]. But, even though it has a very regular \space schedule", it would

not have a �xed \time schedule" in a system with variable bandwidth requirements;

the only requirement is to read during k out of every d time intervals, which makes

the scheduling more complex and could result in another type of a fragmentation

problem, namely a time fragmentation problem.

An alternative to the above scheme is to place data on disks in such a way that we

do not have to stagger over to the next set of disks for d time slots during which we

could read d objects. Again, for an object with bandwidth requirement of k, we only

read during k of the d time slots. Then we stagger over to the next set of disks, and

read the next d objects while delivering the previous d. This is illustrated in Figure

27. In this example, we can read X0�X5 during the �rst d time slots, which takes 2

time slots to read and still has 4 time slots idle, and we can also read Y 0�Y 5 which

takes 3 time slots to read and still has 3 time slots idle. The di�culty, of course, is in

trying to schedule something during those idle time slots, i.e., in this example �nding

objects that reside on the same set of disks as X and Y and require 4 and 3 busy

slots, respectively.

27

Disk
0 1 2 3 4 5 6 7 8

X0.1 X1.1 X2.1 X3.1 X4.1 X5.1X0.0 X1.0 X2.0 X3.0 X4.0 X5.0

X0.1p

X6.0 X7.0 X8.0 X9.0 X10.0 X11.0

X12.0 X13.0 X14.0 X15.0 X16.0 X17.0 X12.1 X13.1 X14.1 X15.1 X16.1 X17.1

X6.1 X7.1 X8.1 X9.1 X10.1 X11.1

X0.0p

X6.0p X6.1p

X12.0p X12.1p

Figure 23: New Data and Parity Placement

i.e., every object reads only during one out of every d time intervals, there is no real

additional complexity.

The scheme in Figure 23 has a fragmentation problem, due to requiring a large

number of disks per request. Another way to lay out the data for a similar scheme

is illustrated in Figure 25. Here we still maintain a constant parity group size d and

a constant bandwidth requirement k, but we do not place every k parity groups on

consecutive disks, and hence do not need to schedule k � d disks to be read simulta-

neously. We only read d disks at a time, i.e., one parity group at a time. In other

words, out of every d time intervals, we only read k times; the rest of the d � k time

intervals are idle. Hence, in the example of Figure 25, we must read during 2 out of

every 6 time intervals and the other 4 are free to be used by other objects. Schedul-

ing and delivery for this example, under normal operation, is illustrated in Figure 26.

During the �rst 6 time intervals, we read and bu�er the �rst 2 parity groups, which

amounts to reading the �rst 6 subobjects. In the next 6 time intervals we deliver the

six subobjects read in the previous time interval (one per interval), and in addition

read the next 2 parity groups, and so on.

The advantage of this scheme over the previous one is that there is no need to

schedule k�d disks at a time, but rather only d disks at a time. Hence, not only does a

request need smaller slots, but also, all the slots are of the same width (since the parity

group size is constant); this scheme eliminates the space fragmentation problem,

26

Time

X0.0 X1.1 X1.2 Y1.0 Y1.1

X2.0 X2.1 X2.2

Y1.2

Y2.0 Y2.1 Y2.2

X3.0 X3.1 X3.2 Y3.0 Y3.1 Y3.2

X4.0 X4.1 X4.2 Y4.1 Y4.2 Y4.2

t

t+1

t+2

t+3

X5.0 X5.1 X5.2 Y5.1 Y5.2 Y5.2t+4

Z0.0 Z0.1 Z0.2

Z2.0 Z2.1 Z2.2

Z3.0 Z3.1 Z3.2

Z4.0 Z4.1 Z4.2

Z5.0 Z5.1 Z5.2X.0.p X.1.p X.2.p Y.0.p Y.1.p Y.2.pt+5

Z1.0 Z1.1 Z1.2

compute
 parity

Figure 22: Reading under Failure in Orthogonal Scheme

as follows:

� schedule a slot which is k � d disks wide

� during a single time slot read d subobjects; deliver one of them and keep the

other d � 1 in the bu�ers

� in the next d�1 time slots do not read anything but deliver the d�1 subobjects

from the bu�ers, one per time interval

� in the next time slot start all over, i.e., read the next d subobjects

Consider again the example of Figure 23 and suppose that disks 0 � 11 are idle at

time t. The reading and delivery of X, in normal mode of operation, is illustrated in

Figure 24, where at time t we read subobjects X0 �X5, but only deliver subobject

X0. In the next 5 time intervals we deliver the rest of the subobjects, X1 � X5,

one per interval; at time 6 we read subobjects X6 �X11, etc. Since in this scheme

an entire parity group is read in a single time slot, the same shift to the right as in

the \parity-per-subobject" scheme will work under failure. Therefore, an advantage

of this scheme is its simpler behavior under failure. A disadvantage is an increased

potential for fragmentation, since it requires much wider space slots than all the

previous schemes.

The idle time intervals can be used for servicing other requests, which adds another

dimension to the scheduling problem. However, since the scheduling is very regular,

25

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Z0.2Y0.0 Y0.1 Y0.2 Z0.0 Z0.1

X1.0 X1.1 X1.2

Z.0.pY.0.pX.0.p

Y1.0 Y1.1 Y1.2 Z1.2Z1.0 Z1.1

X2.0 X2.1 X2.2 Y2.0 Y2.1 Y2.2 Z2.2Z2.0 Z2.1

X3.0 X3.1 X3.2 Y3.0 Y3.1 Y3.2 Z3.2Z3.0 Z3.1

X4.0 X4.1 X4.2 Y4.0 Y4.1 Y4.2 Z4.2Z4.0 Z4.1

X5.0 X5.1 X5.2 Y5.0 Y5.1 Y5.2 Z5.2Z5.0 Z5.1

X6.0 X6.1 X6.2 Y6.0 Y6.1 Y6.2 Z6.2Z6.0 Z6.1

X.1.p

X.2.p

Z.11.pY.1.p

Z.21.pY.2.p

Figure 21: Orthogonal Parity Grouping

and were all read in a single time interval. The problem we had with that scheme

was that it possibly wasted too much storage for parity when it came to objects with

a small degree of declustering, e.g., objects that only required the bandwidth of one

disk. In those cases we preferred to have several subobjects in the same parity group.

We can take advantage of the simplicity of the parity-per-subobject scheme without

paying the storage overhead by changing the way data is placed on disks and the

way objects are scheduled for transmission. Instead of using a subobject as a striping

unit for data placement, we use the parity group as a striping unit. The scheduling

scheme is modi�ed accordingly; instead of scheduling subobjects, we schedule parity

groups. We discuss several such such schemes in this section, where a constant parity

group size of d and a constant bandwidth requirement of k are assumed.

Consider a scheme where the �rst k parity groups, which also make up the �rst d

subobjects, are placed on consecutive disks. The starting place of the next k parity

groups is determined by the stride size and the parity group size. An example of

this parity-striping scheme, with d = 6 and k = 2, is illustrate in Figure 23, where

X0:0;X1:0;X2:0;X3:0;X4:0 and X5:0 make up the �rst parity group and are placed

on the �rst 6 disks; X0:1;X1:1;X2:1;X3:1;X4:1 and X5:1 make up the second parity

group, and are placed on the next set of 6 disks, and so on; these �rst 2 parity groups

constitute the �rst 6 subobjects of X. The scheduling of reads and delivery of objects

are modi�ed accordingly. At each time interval we read d subobjects, but are only

able to deliver one. Therefore, we must bu�er the other d � 1 subobject, and in

addition not read any more subobjects until we are able to clear this backlog, i.e.,

we must wait for the next d � 1 time intervals before reading the next set of parity

groups. Therefore, the basic rules for delivery of objects and scheduling of reads are

24

X37.p

X26.p

X15.p

X6.0 X2.3

Y0-3.p

X0.1X0.0

Time

X0.2 Z0.1Y1.0 Z2.0

X1.0 X1.1 X1.2 Z1.1Y2.0 Z3.0

X2.0 X2.1 Z2.1Y3.0 Z4.0

X3.0 X3.2X7.0 Z3.1Z5.0

t

t+1

t+2

t+3

X0.3

X5.0

X3.3

X04.p X4.2X4.1 Z4.1Y5.0 Z024.pt+4 X4.3

X5.2X5.1 Z5.1Y6.0 Z135.pt+5 X5.3

X6.1 X6.3X6.2 Z6.1Y7.0 Z8.0t+6

X7.1 X7.3X7.2 Z7.1Y4-7.p Z9.0t+7

Figure 20: Reading of Objects

�rst subobject has a cascading e�ect; the following occurs in the very �rst time slot.

Due to the failure of disk 1, we read X1:1 instead of X0:1, which makes it impossible

to read X0:2. Therefore, we make up for X0:2 by reading X1:2, which makes it

impossible to read Y 0:0. We make up for Y 0:0 by reading Y 1:0, which results in

reading of Y 1:1 instead of Y 0:1, which �nally results in reading of Y 1:2 instead of

Y 0:2. In other words, the entire row that was suppose to be read at time t, starting

at the column of failure, is replaced by the row that was suppose to be read at time

t+ 1.

The advantage of this scheme is that we no longer have to worry about overlaps

and a proper stride size, i.e., even with a stride size of 1 these fragments can not

overlap. In addition, packing objects into parity groups of some constant size is

simple, i.e., costs and bene�ts of reliability are more manageable.

4.3 Alternative Data Placement Schemes

The simplest scheme (so far) has been the parity-per-subobject scheme, discussed at

the beginning of this section; in that case we didn't have to worry about multiple

dependent failures, the \shift to the right" was simple, etc. The reason things were

simpler is because all fragments in the same parity group resided on di�erent disks

23

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Y0.0 Z0.0 Z0.1

X1.0 X1.1 X1.2

Z024.pY0-3.p

X04.p

Y1.0 Z1.0 Z1.1

X2.0 X2.1 X2.2

X3.0 X3.1 X3.2

X4.0 X4.1 X4.2

Y2.0

Y3.0

Y4.0

Z2.0 Z2.1

Z3.0 Z3.1

Z4.0 Z4.1

X5.0 X5.1 X5.2 Y5.0 Z5.0 Z5.1

X6.0 X6.1 X6.2 Y6.0 Z6.0 Z6.1

X7.0 X7.1 X7.2 Y7.0 Z7.0 Z7.1

Z135.p

Y4-7.pX15.p

X26.p

X0.3

X1.3

X2.3

X3.3

X4.3

X5.3

X6.3

X7.3

X37.p

Figure 19: Di�erent Parity Group Sizes

longer required to deliver objects. This is due to the fact that some data was read

out of turn and we have to continue operating in shifted mode until we get back \in

synch".

There is a third way to remedy the problem of multiple dependent failures, ex-

hibited by the system of Figure 13. Instead of grouping fragments into parity groups

according to subobject layout, as we have done until now, we can group them into

parity groups orthogonally to the subobject layout, i.e., we can decouple the band-

width requirement, which dictates subobject size, from the reliability requirement,

which dictates parity group size. This alternative is illustrated in Figure 21. In the

scheme of Figure 15 each parity group consisted of 6 fragments belonging to 2 dif-

ferent subobjects. In this new scheme, there are still 6 fragments per parity group,

but they are not grouped by subobjects; instead, all 6 fragments come from di�erent

subobjects. For instance, in Figure 15 we grouped subobjects X0 and X1 into the

�rst parity group; hence, fragmentsX0:0;X0:1;X0:2;X1:0;X1:1, and X1:2 belonged

to one parity group. In the new scheme fragments X0:0, X1:0, X2:0, X3:0, X4:0,

and X5:0 belong to one parity group. Under failure, we can use the same rules for

shifting to the right as we did in previous schemes. Given the failure of disk 1 in

Figure 21 before time t, the schedule for reading of objects X;Y , and Z starting at

time t is illustrated in Figure 22. Notice that in this scheme a shift to the right of the

22

Time

X0.0 X0.1 X0.2 Z0.2Y0.0 Y0.2 Z0.1

X1.0 X1.1 X1.2

Y3.0 Z3.0

Z1.2Y1.1 Y1.2 Z1.1Y4.0 Z4.0

X2.0 X2.1 X5.0 Z2.2Y2.1 Y2.2 Z2.1Y5.0 Z5.0

X3.0 X3.2 X03.p Z3.2Y3.1 Y3.2 Z3.1Y03.p Z03.p

t

t+1

t+2

t+3

Figure 18: Delivery of Objects

available fragment to the right that is in the same parity group, but not in the same

subobject; in addition we never read anything twice.

The probability of a catastrophic failure increases as we use more and more frag-

ments per parity group. Speci�cally, this increases the probability of data loss, which

occurs when two disks fail in the same parity group; therefore, the wider the parity

group, the greater is the probability of a second failure resulting in data loss. In the

example of Figure 17, each parity group is 7 disks wide; hence if two failures occur

within 7 disks of each other, data will be lost.

This scheme remains unchanged in the case of variable bandwidth requirements.

Figure 19 depicts an example of a system with variable bandwidth requirements

and variable number of subobjects per parity group. In this example, there are

three objects, X;Y , and Z, with bandwidth requirements of 4; 1, and 2, respectively.

Subobjects from X are packed into parity groups of size 8, i.e., with two subobjects

per parity group. Subobjects from Y are packed into parity groups of size 4, i.e., with

4 subobjects per parity group. And, �nally, subobjects from Z are packed into parity

groups of 6, i.e., with 3 subobjects per parity group.

In case of failure a system with variable bandwidth requirements behaves identi-

cally to the one with a constant bandwidth requirement. The schedule, starting at

time t, for reading objects in the example of Figure 19, is illustrated in Figure 20; an

assumption in this �gure is that disk 4 fails before time t. By time t+ 3 we are able

to deliver Y 0 � Y 3, Y 's �rst parity group; by t+ 7 we are able to deliver X0 �X7,

X's �rst four parity groups, and by t + 5 we are able to deliver Z0 � Z5, Z's �rst

two parity groups. In order to prevent hiccups we would have to su�ciently o�set

the delivery of each object, as we did in previous schemes. Note that in this example

the system continues to operate in the \shifted" mode even after the failed disk is no

21

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 Y0.0 Y0.1 Y0.2

X1.0 X1.1

Y01.pX01.p

Y1.0 Y1.1 Y1.2

Z0.0Y0.3

Z1.0Y1.3

Z01.p

Figure 16: Variable BW { Multi-Subobject Parity Groups

but not necessarily consecutive ones. We must still satisfy the condition that no

two fragments of a parity group are stored on the same disk, but we can do that by

grouping non-overlapping subobjects into parity groups (as opposed to increasing the

stride size). This scheme is illustrated in Figure 17. In this example, subobjects X0

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Z0.2Y0.0 Y0.1 Y0.2 Z0.0 Z0.1

X1.0 X1.1 X1.2

Z03.pY03.pX03.p

Y1.0 Y1.1 Y1.2 Z1.2Z1.0 Z1.1

X2.0 X2.1 X2.2

X3.0 X3.1 X3.2

X4.0 X4.1 X4.2

Y2.0 Y2.1 Y2.2

Y3.0 Y3.1 Y3.2

Y4.0 Y4.1 Y4.2

Z2.2Z2.0 Z2.1

Z3.2Z3.0 Z3.1

Z4.2Z4.0 Z4.1

X5.0 X5.1 X5.2 Y5.0 Y5.1 Y5.2 Z5.2Z5.0 Z5.1

X6.0 X6.1 X6.2 Y6.0 Y6.1 Y6.2 Z6.2Z6.0 Z6.1

X7.0 X7.1 X7.2 Y7.0 Y7.1 Y7.2 Z7.2Z7.0 Z7.1

Z14.pY14.pX14.p

Z25.pY25.pX25.p

Figure 17: Non-overlapping Subobjects in a Parity Group

and X3 are paired in a parity group, and are protected by fragment X03:p; similarly

Y 0 and Y 3 are paired up in a parity group and are protected by Y 03:p, etc. In this

case, if disk 4 fails at time t, we can still deliver X, Y , and Z as illustrated in Figure

18. The same shift to the right, as was described in the previous scheme, works here.

Every time there is a fragment missing from a subobject, either due to a failed disk

or due to a shift by an object on the left, we make up for it by reading the next

20

the fragments in X1 or by reading the parity fragment X01:p. The general rules of

compensating for a missing fragment are as follows:

� rule 1: the fragment to be read out of turn should be the next fragment to the

right that is not in the same subobject but is part of the same parity group;

sometimes, this turns out to be a parity fragment rather than a data fragment

� rule 2: never read any fragment twice; therefore, if at time t we read fragment

Xi which would normally be read at time t + i, then at time t + i we should

\pretend" that we are unable to read Xi and employ rule 1 for reading out of

turn

For example, if disk 1 fails in the system of Figure 15 at time t, then X and Y can

still be delivered as follows:

time t: read X0:0;X0:2, and X1:0 rule 1

read Y 0:1; Y 0:2, and Y 1:0 rule 1

time t+ 1: read X1:1 and X1:2

do not read X1:0 rule 2

read X01:p rule 1

read Y 1:1 and Y 1:2

do not read Y 1:0 rule 2

read Y 01:p rule 1

Given a system of objects with variable bandwidth requirements, we'll be forced

to use a stride of size greater than or equal to the largest bandwidth requirement. The

example of Figure 16 illustrates this point using three types of objects with bandwidth

requirements of 2; 4, and 1. In this example, Z is a 1-disk-wide object; there are two

Z subobjects per parity group, and it is safe to place them on consecutive disks, e.g.,

if Z0:0 resides on disk 6, then Z1:0, which belongs to the same parity group, can

be safely placed on disk 7. However, Y is a 4-disk-wide object, and hence imposes a

condition that the stride be at least equal to 4. Note that it is not necessary to have a

constant number of subobjects per parity group. In fact, it is desirable for all objects

to have nearly equal parity group sizes, which would allow us to decide how much we

are willing to pay for reliability, in storage, bu�er space, etc., and then choose the

parity group size(s) accordingly. We come back to this discussion in Section 5.

It might be di�cult to predict the largest bandwidth requirement that a system

will ever be asked to satisfy. In this case, we could try a di�erent approach to avoiding

multiple dependent failures. We could still use multiple subobjects per parity group,

19

this case there are two fragments lost from one parity group, namely X0:1 and

X1:0, and therefore there is not su�cient data to deliver subobjects X0 and X1.

The problem is that each parity group for object X consists of 7 fragments, e.g.,

X0:0;X0:1;X0:2;X1:0;X1:1;X1:2 and X01:p, which reside on only 5 disks; hence,

in each parity group there are two pairs of fragments which share a disk, e.g., frag-

ments X0:1 and X1:0 which share disk 1 and fragments X0:2 and X1:1 which share

disk 2. A failure of either one of these disks e�ectively results in multiple dependent

failures. In other words, a single disk failure results in the loss of several fragments

and therefore has the same e�ect as multiple (simultaneous) disk failures. From here

on we refer to this condition as \multiple dependent failures".

One way to remedy this problem is to increase the stride such that fragments in

the same parity group do not share disks, e.g., as is shown in Figure 15, where the

stride is increased to 3. In general, a system can avoid multiple dependent failures

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Y0.0 Y0.1 Y0.2

X1.0 X1.1 X1.2

Y01.pX01.p

Y1.0 Y1.1 Y1.2

Figure 15: Increased Stride Size

by having a stride that is greater than or equal to the bandwidth requirement.

Under failure, it is again necessary to shift to the right, and it is also necessary to

satisfy the real time constraint by maintaining the same transmission rate as under

normal operation. Suppose that the bandwidth requirement can be satis�ed by k

disks; this means that k fragments must be read during each time slot, whether

there is a failure or not. Under normal conditions this is accomplished by reading one

subobject in each time slot. But when a failure occurs, it might not be possible to read

some fragment of a subobject, either due to the failure or due to the resulting shift to

the right. To make up for it we should read some other fragment \out of turn", i.e.,

something that would normally be read in a later time slot. With one subobject per

parity group, it should clearly be the parity fragment, but with multiple subobjects

per parity group there are usually several choices. For instance, if disk 2 fails in

the example of Figure 15, then we could compensate for X0:2 by reading any one of

18

operation, since a failure does not have to occur before we start reading a particular

parity group. For instance, if disk 1 in Figure 13 fails at time t + 1, we would not

be able to deliver X1 if we do not bu�er X0 at time t. Hence, we must bu�er each

fragment until the entire parity group, to which it belongs, is delivered. As mentioned

earlier, we could �x the \hiccup" problem by not starting the delivery of an object

until we've read an entire parity group. In case of failure, this would allow us to

provide data to the network, from the bu�ers, while collecting enough information to

perform a parity computation. The price we pay for this o�set is a small delay in the

delivery start time; there is no bu�ering penalty associated with the o�set, since we

must bu�er in anticipation of failure anyway. An example delivery schedule, for the

system of Figure 13 where disk 2 fails at time t+2, is illustrated in Figure 14. At time

Z2.0 Z2.1 Z2.2

Y0.0 Y0.1 Y0.2 Z1.0 Z1.1 Z1.2X1.0 X1.1 X1.2

Z0.0 Z0.1 Z0.2X0.0 X0.1 X0.2

Time

t

t+1

Read

Deliver

Y0.0 Y0.1 Y0.2 Z0.0 Z0.1 Z0.2X0.0 X0.1 X0.2

Read

Deliver

Y1.0 Y1.1 Y1.2 Z1.0 Z1.1 Z1.2X1.0 X1.1 X1.2

Read

Deliver

Y3.2 Y2.1 Y2.2 Z2.0 Z2.1 Z2.2X3.2 X2.1 X2.2

Read

Deliver

Y3.0 Y3.1 Y23.pX3.0 X3.1 X23.p

Read

Deliver

Y4.0 Y4.1 Y4.2 Z4.0 Z4.1 Z4.2X4.0 X4.1 X4.2

t+2

t+3

t+4

Z3.0 Z3.1 Z3.2

Y0.0 Y0.1 Y0.2

Y2.0 Y2.1 Y2.2X2.0 X2.1 X2.2

compute
 parity

Y3.0 Y3.1 Y3.2X3.0 X3.1 X3.2 Z3.0 Z3.1 Z3.2

Figure 14: Delivery when Bu�ering Ahead

t+2 we read X2, the �rst subobject a�ected by the disk failure, but due to the o�set,

we only deliverX1. At time t+3 we read X3, which completes the parity group and

makes delivery of X2 possible, and so on. The o�set enables us to continue a smooth

delivery of object X by providing a su�cient time slack for reading an entire parity

group before having to deliver its �rst subobject. Since in this example there are two

subobjects per parity group, the delivery only needs to be o�set from reading by a

single time slot. In general, an o�set of j � 1 time slots is su�cient for objects with

j subobjects per parity group.

The parity placement scheme illustrated above will not always be able to re-

cover from a single failure. Consider what happens in Figure 13 when, for instance,

disk 1 fails at time t and the system must still deliver objects X, Y , and Z. In

17

size. A �rst attempt at this would be to place several consecutive subobjects in one

parity group

4

. This scheme is illustrated in Figure 13, where every two subobjects

are protected by one parity fragment. For instance, subobjects X0 and X1, stored

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Z0.2Y0.0 Y0.1 Y0.2 Z0.0 Z0.1

X1.0 X1.1 X1.2

Z01.pY01.pX01.p

Y1.0 Y1.1 Y1.2 Z1.2Z1.0 Z1.1

X2.0 X2.1 X2.2 Y2.0 Y2.1 Y2.2 Z2.2Z2.0 Z2.1

X3.0 X3.1 X3.2 Y3.0 Y3.1 Y3.2 Z3.2Z3.0 Z3.1

Z23.pY23.pX23.p

Figure 13: Multiple Subobjects per Parity Group

on disks 0; 1; 2, and 3, are protected by X01:p stored on disk 4.

When a disk fails we again have to perform a shift to the right. The shift is

more complicated, due to having several subobject in a parity group, and is best

illustrated through the example of Figure 13. Suppose disk 0 fails at time t, when

we must read subobjects X0, Y 0, and Z0. As a result of failure, we shift to the

right and read fragments X0:1;X0:2, and X1:2 for object X, fragments Y 0:1; Y 0:2,

and Y 1:2 for object Y , and subobject Z0; since there is an idle slot between Y

and Z, there is no need to shift Z. At this time, we are not able to deliver X0

because we do not have enough information to reconstruct X0:0. Since there are two

subobjects per parity group, it takes two time slots to read an entire parity group

and reconstruct the missing data. For the same reason we are unable to deliver

Y 0 at time t; we can, however, deliver Z0 since it is not a�ected by the failure.

X0:1;X0:2;X1:2; Y 0:1; Y 0:2, and Y 1:2 must be bu�ered until we are able to read

the remainder of the parity groups. At time t + 1 we read fragments X1:0;X1:1,

and X01:p and compute the missing data from object X, i.e., X0:0. Similarly, we

read Y 1:0; Y 1:1, and Y 01:p and reconstruct Y 0:0; of course, we also read Z1, but

there is no need to do parity computation there. At this time, we are able to deliver

X0;X1; Y 0; Y 1, and Z1.

The problem we experienced in the previous example was that each subobject was

not \self-su�cient" and depended on other subobjects for parity information. This

not only created a \hiccup" in the delivery of objects, but also required bu�er space

for each object a�ected by the failure. These bu�ers are also necessary during normal

4

We would like these to be consecutive due to bu�ering problems, discussed later.

16

Y0.pX0.p Z0.p

Disk
0 1 2 3 4 5 6 7 8

X0.0 X0.1 X0.2 Z0.2Y0.0 Y0.1 Y0.2 Z0.0 Z0.1

Figure 12: Parity per Each Subobject

fails, all the active requests, starting with the one on the failed disk, have to perform

a shift to the right, until an idle slot is found. For instance, suppose disk 1 fails

in Figure 12 before we read X0; Y 0, and Z0, which are scheduled to be delivered

simultaneously. Then, in order to deliver X0, we must read X0:0 and X0:2 as we

would under normal operation, plus we must read X0:p from disk 3. In this case, we

can not simultaneously deliver Y 0 because disk 3 is busy; hence, we must read Y 0:p

from disk 6 to reconstruct Y 0:0 stored on disk 3. Assuming disk 6 is not scheduled to

read anything, i.e., we found an idle slot, the shift stops here; Z0 is not a�ected by

the failure and can be delivered from disks 8; 9, and 10. Since this is very similar to

the improved-bw-storage scheme, the discussions on reliability, reconstruction, etc.,

presented in that context, apply here.

As was already mentioned in Section 3.2, one problemwith the parity-per-subobject

scheme is that it potentially wastes too much storage due to parity. In the above ex-

ample, only three out of every four fragments are object fragments, i.e., only 75%

of the storage is used for actual data. The storage penalty for this example is high

because the degree of declustering is relatively small. Hence, this scheme should ex-

hibit poor performance in systems with small bandwidth requirements. An extreme

example would be a system with a constant bandwidth requirement of 1; in that case

we would end up duplicating the data and wasting 50% of the disk space. If the

disks are fairly reliable, such a high cost for parity storage is unnecessary, and the

system should be able to use much larger parity groups without su�ering a signi�cant

reduction in reliability.

4.2 Multiple Subobjects per Parity Group

The scheme of the previous section had a large storage cost, which was a result of

small parity groups; hence, to remedy this problem, we must increase the parity group

15

Cluster 1Cluster 0 Cluster 2

X3.0

X2.p X5.p

X3.1

X8.p

X3.2

X1.0

Y0.0

X1.1

X3.p

Y0.1

X1.2

X6.p

Y0.2

X2.0

Y0.p

Y1.0

X2.1

Y3.p

Y1.1

X2.2

Y6.p

Y1.2

X0.0 X0.1 X0.2

X0.p

disk 0 disk 1 disk 2 disk 3 disk 4 disk 5 disk 6 disk 7 disk 8

X4.0 X4.1 X4.2 X5.0 X5.1 X5.2
Y2.0 Y2.1 Y2.2

Y2.p Y5.p Y8.pY1.p Y4.p Y7.p

X1.p X4.p X7.p

Figure 11: Improved BW-Storage Scheme

disks 4; 5, and 6 and reconstruct Y 0:0 through a parity computation. If, on the other

hand, we are suppose to deliverX3 and Y 0 at this time, then we can accomplish that

by reading disks 1; 2, and 4, to reconstruct X3:0 and disks 3; 5 and 6 to reconstruct

Y 0:1.

Note however, that a system using this \improved-bw-storage" scheme is even

more prone to catastrophic failures than a system using just the \improved-bw"

scheme. By spreading the parity among all the disks in a cluster, we've created

even more dependencies between disks in adjacent clusters. Any two failures in adja-

cent clusters result in data loss. As in the improved-bw scheme, any two failures in

the same run result in degradation of service.

4 Staggered Striping

In this section we continue the discussion of parity schemes, but in the context of

staggered striping. First, we maintain the constraint of a constant bandwidth re-

quirement, and then we generalize this discussion to the case of variable bandwidth

requirements.

4.1 Parity per Subobject

In the case of constant bandwidth requirement, we can adapt the improved-bw-storage

scheme (see Section 3.2), used with simple striping, to a system using staggered strip-

ing by associating a parity fragment with each subobject. This parity-per-subobject

scheme is illustrated in Figure 12. In this example there are three objects, X;Y , and

Z; each of the subobjects is declustered among three disks, e.g., subobject X0 resides

on disks 0; 1, and 2. The parity for each subobject is stored on the disk following

the subobject, e.g., the parity for subobject X0 is stored on disk 3. When a disk

14

cluster 2 would have e�ectively lost two disks: 1) disk 6 due to the shift to the right

resulting from the failure of disk 0 and 2) disk 7 due to the second failure. Hence

our choices are: 1) drop Z0, 2) drop X0, which will make the shift unnecessary, or 3)

drop Y 0, which will prevent the shift from propagating to cluster 2. In this system,

it might be desirable to drop Y 0, which will result in two runs of one cluster each, as

oppose to one run of two clusters. In general, long runs are undesirable; as the length

of a run containing the �rst failure increases so does the probability that the second

failure will occur in that same run and result in degradation of service. Of course,

other factors enter into such a decision, e.g., what fraction of a particular object has

already been delivered.

The increased sensitivity to a second failure is due to the fact that we have created

dependencies between parity groups which do not exist in the naive scheme, i.e.,

certain disks belong to two parity groups; for instance, disk 3 in Figure 10 belongs

to two di�erent parity groups because it acts as the parity disk for cluster 0 and as

a data disk for cluster 2. To illustrate this point, consider the example of Figure 9

again. If there is only one active request in the system, then it can withstand up

to 3 failures, before a catastrophic one occurs, such that there is no more than one

failure in each cluster and there is no more than one failure in each parity group.

With 2 active requests in the system, it can withstand only a single failure, in any

parity group. As was mentioned before, with 3 requests in the system (which is a full

system), it can not withstand even a single failure.

As mentioned above, placing all the parity associated with cluster i on a single

disk of cluster i+ 1 is wasteful of storage. We can easily improve on this scheme by

spreading the parity information among all the disks of cluster i + 1. For instance,

one way of doing this is by placing the parity for the �rst subobject of cluster i on

the �rst disk of cluster i+ 1; the parity for the second subobject of cluster i can go

on the second disk of cluster i+ 1, etc.; in this case, the storage e�ciency would be

equal to that of the naive scheme. A system using this improved-bw-storage scheme

is illustrated in Figure 11. In this example subobjects X0 and X3 reside on cluster

0. The parity corresponding to subobject X0 is placed on disk 3, the �rst disk of

cluster 1; the parity corresponding to subobject X3 is placed on disk 4, the second

disk of cluster 1, etc.

In case of disk failure the system behaves essentially as it did with the previous

scheme, i.e., it performs the same shift to the right discussed above, except, depending

on which subobject is being delivered at the time, a di�erent parity disk is used to

compute the missing information. For example, suppose that in Figure 11 X0 and

Y 0 must be delivered at time t, and disk 0 is down. Then, we can read X0:1;X0:2

and X0:p from disks 1; 2 and 3, and reconstruct X0:0 through a parity computation;

in order to deliver Y 0 at the same time, we must read Y 0:1; Y 0:2 and Y 0:p from

13

perform a \shift to the right" as follows. Cluster i delivers data from all its operational

disks plus it reconstructs the missing data by reading the appropriate parity blocks

residing on the �rst disk of cluster i+1. If cluster i+1 is busy at time t, then it has

to behave as if its �rst disk also failed, since it can read only one fragment in each

time slot. Therefore, it has to perform a similar shift to the right, i.e., read the data

from all its available disks plus use the �rst disk of cluster i + 2 to reconstruct the

data residing on its �rst disk. This shift has to propagate to the right until an idle

cluster is found. If all clusters are busy, one request must be dropped (we discuss this

in more detail below). As an example, consider again Figure 9. If disk 0 fails, then

in order to deliver subobject X0, X0:0 must be reconstructed by reading X0:1;X0:2

and X0:p from disks 1, 2, and 3, respectively. If cluster 1 is not idle, then it must

perform a similar shift to the right. Of course, if cluster 3 is not idle, then one of the

three requests must be dropped.

The major advantage that this scheme has over the naive scheme is that reliability

is not provided at the cost of bandwidth. However, it is not as reliable as the naive

scheme; the number of possible scenarios where the second failure turns out to be

catastrophic is greater in this system than with the naive parity scheme. In general,

a system with K clusters, can withstand up to K failures, such that there is no

more than one failure per cluster and no more than one failure per parity group,

before data is lost. If the system has no idle slots, then even a single failure results

in degradation in service; this is true because in the normal mode all the available

bandwidth is already used. If the system is not full, then it can possibly withstand

multiple failures, but no more than the number of clusters. If the second failure occurs

in the same run, then it results in degradation of service. Consider the example in

Figure 10, where X0; Y 0, and Z0 are scheduled to be read at time t, and nothing is

scheduled on cluster 3. If disks 0 fails before time t, then X0; Y 0, and Z0 can still

Cluster 1Cluster 0 Cluster 2

disk 0

X4.0

X0.0

X3.p
Z1.p

X0.1

X4.1

X0.2

X4.2

X1.0

Y0.0

X0.p
X4.p

X1.1

Y0.1

X1.2

Y0.2

X2.0

X1.p

Z0.0

Y0.p

X2.1

Z0.1

X2.2

Z0.2

disk 1 disk 2 disk 3 disk 4 disk 5 disk 6 disk 7 disk 8

Cluster 3

X3.0

X2.p

Z1.0

Z0.p

X3.1

Z1.1

X3.2

Z1.2

disk 9 disk 10 disk 11

(busy) (busy) (busy) (idle)

Figure 10: A Single Run

be delivered by doing a shift to the right. Suppose a second failure occurs at time t;

if it turns out to be disk 3, then data is lost. If on the other hand

3

, it turns out to

be disk 7, then no data will be lost, but it will not be possible to deliver Z0, since

3

Note that any disk failure in clusters 1 or 2 will result in the same scenario.

12

read simultaneously. Therefore, in our system, we must attach semantics to parity

computation, i.e., we must associate parity with objects rather than with disk blocks.

3.2 Improved Bandwidth Schemes

In this section we continue using simple striping for data placement, but we use a

more sophisticated parity placement scheme. As mentioned earlier, one problem with

the naive scheme is that it potentially gives up a signi�cant amount of bandwidth in

order to provide reliability. We can improve on the naive scheme as follows. Instead of

having dedicated parity disks, which are only used for transmission in case of failure,

we can place both data and parity information on a disk; hence, we'd be able to

use it during both normal and degraded modes of operation. The simplest way of

accomplishing this is to place the parity information associated with cluster i on some

disk, let's say the �rst one, of cluster i+1

2

. This improved-bw scheme is illustrated in

Figure 9, where all the data residing on cluster 0 is protected by the parity on the �rst

disk of cluster 1, etc. Note that this scheme improves the bandwidth e�ciency, but

Cluster 1Cluster 0 Cluster 2

disk 0

X3.0
X0.0

X2.p
X5.p

X0.1
X3.1

X0.2
X3.2

X1.0
X4.0

X0.p
X3.p

X1.1
X4.1

X1.2
X4.2

X2.0

X1.p

X5.0

X4.p

X2.1
X5.1

X2.2
X5.2

disk 1 disk 2 disk 3 disk 4 disk 5 disk 6 disk 7 disk 8

Figure 9: Improved BW Scheme

signi�cantly reduces the storage e�ciency, as compared to the naive scheme. In the

example of Figure 9, under the normal mode of operation, data can be transmitted

at the maximum possible 12 MB/sec. But, only 4:5 out of the 9 GB of disk space can

be used to store objects. Because the �rst disk of every cluster contains both data

and parity, at most half of that disk can be used by either one; therefore, only half

of each disk in the system can be occupied by actual data. This results in only 50%

e�ciency of storage use, which by no means is a good tradeo�. However, we will still

use this scheme in the following discussion for the purposes of illustration and then

show how to improve upon it so as not to waste any more storage than is wasted by

the naive scheme.

When a failure occurs at time t in cluster i, it and its adjacent clusters have to

2

All arithmetic is done modulo number of disks.

11

recovery whether there is a delivery o�set or not.

Note that the storage and bandwidth costs in this scheme can be much lower

than in the basic naive scheme. For instance, if in the previous example all objects

divided evenly into parity groups of j subobjects each, then only 10% of storage and

bandwidth would be given up for parity. Another approach is to try to associate parity

with physical locations of the data blocks (as it is done in disk array systems [8]),

rather than with a particular object. This scheme is illustrated in Figure 8, where

again there is only one parity disk corresponding to all three clusters. Subobjects

Cluster 1

X1.1

Cluster 0 Cluster 2

disk 2disk 0 disk 1 disk 5disk 3 disk 4 disk 8disk 6 disk 7

Y2.1

X1.2

Y2.2

Y0.0

Z0.0

Y0.1

Z0.1

Y0.2

Z0.2

X1.0

Y2.0Y1.0

X0.0

Y1.1

X0.1

Y1.2

X0.2 P0

P1

disk 9

Figure 8: Another Improvement to the Naive Parity Scheme

X0;X1, and Y 0 are protected by parity P0; subobjects Y 1; Y 2, and Z0 are protected

by parity P1, etc.

Constructing parity groups in this manner solves the \object fragmentation" prob-

lem and also improves the e�ciency of storage use; however this scheme does not per-

form well under failure. When a failure occurs, appropriate blocks from other data

disks plus the parity disk must be read to reconstruct a missing block. Scheduling

the parity disk to read an appropriate block is not di�cult; however, scheduling the

data disks to read the correct blocks might be. An e�ort to reconstruct the missing

data could result in degradation of service and unreasonable bu�ering requirements.

This is best illustrated through an example. Suppose that disk 0 fails in the example

of Figure 8, and as the result of this failure X0:0 must be reconstructed. In order

to compute the missing data, fragments X0:1, X0:2, subobjects X1 and Y 0, and

fragment P0 must be read. Suppose also that clusters 1 and 2 are not idle, and

that cluster 1 is scheduled to read subobject X1, but cluster 2 is scheduled to read

subobject Z0. In this case, X0:1;X0:2 and X1 must be bu�ered until Y 0 is read.

Clearly, this does not work, since we can not guarantee when an appropriate block

will be scheduled to be read or when an appropriate cluster will become idle. In order

to make this scheme attractive, we must be able to predict which combinations of

objects will be scheduled together; in that case, we could construct the parity frag-

ments accordingly. In other words, if in the above example we knew that X and Z

would be scheduled at the same time, then we could compute P0 using X0;X1, and

Z0 instead of Y 0. But, we can not make such prediction. However, given the data

layout, we are able to predict which fragments of a particular object are going to be

10

Note that in this scheme, it would usually not be possible to recover the missing

information at the time of failure, which results in: a) a need for bu�ers and b) a

\hick-up" in data delivery until enough information is collected. For instance, if in

Figure 6 disk 4 fails before time t and delivery of objects X and Y is scheduled to

start at time t, then these objects can still be delivered as follows: 1) at time t, read,

deliver, and bu�er X0:0;X0:1, and X0:2, and also read and bu�er, but not deliver

Y 0:0; Y 0:2, and P1, 2) at time t + 1 read and bu�er X1:0;X1:2, and P0 and also

read Y 1:0; Y 1:1; Y 1:2, reconstruct Y 0:1 through parity computation, and deliver Y 0

and Y 1, and 3) at time t+ 2 read X2:0;X2:1, and X2:2, reconstruct X1:1 through

parity computation, and deliver X1 and X2. This is illustrated in Figure 7(a).

(a)

X2.2

X0.1X0.0

Time

X0.2

X2.0 X2.1

t

t+1

t+2

P1Y0.0 Y0.2

Y1.0 Y1.1 Y1.2

Read

Deliver

Read

Deliver

Read

Deliver

X0.1X0.0 X0.2

X1.0 X1.2

X2.2X2.0 X2.1

X1.1

Y0.0 Y0.1 Y0.2

X1.0 P0 X1.2

(compute Y0.1)

(compute X1.1)

Y1.0 Y1.1 Y1.2

t+3
Read

Deliver

X2.2

X0.1X0.0

Time

X0.2

X2.0 X2.1

t

t+1

t+2

P1Y0.0 Y0.2

Y1.0 Y1.1 Y1.2

Read

Deliver

Read

Deliver

Read

Deliver X0.1X0.0 X0.2

X1.0 X1.2

X2.2X2.0 X2.1

X1.1 Y1.0 Y1.1 Y1.2

Y0.0 Y0.1 Y0.2

X1.0 P0 X1.2

(compute Y0.1)

(compute X1.1)

(b)

t+3
Read

Deliver

t+4
Read

Deliver

Figure 7: Delivery under Failure

Bu�ering of data is necessary even under normal operation. Since we never know

when a failure might occur, each subobject must be bu�ered until its entire parity

group is read; otherwise there might not be su�cient information to compute parity at

the time of failure. Since we must pay a bu�ering penalty in order to insure recovery

under failure, we could also use these bu�ers to avoid hick-ups. This can be done by

o�setting the start of an object transmission for j � 1 time intervals, i.e., until the

�rst parity group is read in its entirety. The o�set insures smooth data delivery under

failure by providing su�cient time to read an entire parity group before having to

deliver its �rst subobject. This modi�cation to the delivery schedule of Figure 7(a)

is illustrated in Figure 7(b). The penalty for avoiding hick-ups is a small delay in

transmission starting time; as mentioned already, the bu�ers are necessary for failure

9

group has been contained within one cluster, with each subobject having its own

parity. Instead, we could use one parity disk for every j clusters, and hence construct

parity groups using j subobjects, as opposed to one. Of course, we can not expect

each object to have a \proper" number of subobjects, i.e., a number that can be

divided evenly by j; therefore, the �rst and last parity group of every object might

have less than j subobjects. Such a scheme is illustrated in Figure 6, where all three

clusters share a single parity disk. In this example, each parity group, except for the

Cluster 1

X1.1

Cluster 0 Cluster 2

disk 2disk 0 disk 1 disk 5disk 3 disk 4 disk 8disk 6 disk 7

X1.2 X2.0 X2.1 X2.2X1.0

X3.0

X0.0

X3.1

X0.1

X3.2

X0.2 P0

P1

disk 9

Y0.1 Y0.2 Y1.0 Y1.1 Y2.2Y0.0 P2

Figure 6: \Improved" Naive Parity Scheme

�rst and last group of every object, is constructed using 3 subobjects. For instance,

object X has 4 subobjects and is split into two parity groups, one of size 3 and one

of size 1; therefore,

P0 = X0:0 �X0:1 �X0:2�X1:0 �X1:1 �X1:2 �X2:0 �X2:1�X2:2

and

P1 = X3:0 �X3:1 �X3:2:

On the other hand, object Y 's �rst parity group is constructed out of only 2 subob-

jects, and therefore

P2 = Y 0:0� Y 0:1 � Y 0:2� Y 1:0� Y 1:1 � Y 1:2:

When a disk fails, the following must be done to recover the missing information:

� whenever the failed disk is scheduled to read a fragment, read an appropriate

fragment from the parity disk instead

� collect the necessary fragments in bu�ers, until an entire parity group is available

for parity computation

� when an entire parity group is available, compute the parity and deliver the

subobjects a�ected by the failure

8

Cluster 1

X1.1

Cluster 0 Cluster 2

ParityData Data

X4.1

X1.p

X4.p

X2.0

X5.0

X2.1

X5.1

X2.p

X5.p

X1.0

X4.0X3.0

X0.0

X3.1

X0.1

X3.p

X0.p

disk 0 disk 1 disk 2 disk 3 disk 4 disk 5 disk 6 disk 7 disk 8

Figure 5: Naive Parity Scheme

are read from disks 1 and 2, respectively, and X0:0 is reconstructed through a parity

computation, i.e., X0:0 = X0:1�X0:p.

The naive scheme can withstand up to one failure per cluster, before a catastrophic

failure occurs. If we are unable to rebuild the failed disk before a second failure occurs

in the same cluster, then that second failure will result in data loss. In this scheme

there can never be a degradation of service without data loss, since enough bandwidth

is reserved in a cluster to make up for a single disk failure.

Note that in this naive scheme reliability is gained at the cost of both storage

and bandwidth. Consider again the example of Figure 5 and suppose that each disk

can hold 1 GB of data which can be delivered at 4 MB/sec. (We will assume this

storage capacity and transmission rate for the remainder of the paper, unless stated

otherwise.) In that case, the system has 9 GB of storage, of which only 6 GB are

used for storing objects, i.e., about about 33% of the available storage is not used to

store data. In addition, during the normal mode of operation, only two (data) disks

in each cluster are used for object transmission; although each cluster is capable of

delivering 12 MB/sec, it only delivers 8 MB/sec. Hence, even during the normal mode

of operation about 33% of the available bandwidth is not being utilized. (Of course,

in the degraded mode each cluster can only deliver 8 MB/sec.)

In general, storage and bandwidth costs could be reduced by using larger parity

groups. For instance, if in the previous example the cluster size is increased to 3 data

disks (plus a parity disk), then storage and bandwidth loss would be reduced to 25%,

i.e., 9 out of 12 GB could be used for data and transmission could be done at 12 out

of the possible 16 MB/sec. However, this \arti�cial" increase in cluster size could

result in wasted bandwidth, if there is no need for such high transmission rates. In

addition, larger clusters increase the probability of multiple failure occurring within

the same cluster, which results in data loss. Hence, the increased e�ciency in storage

and (possibly) bandwidth must be balanced against the decreased reliability.

Instead of increasing the parity group size by increasing the cluster size, we could

try to do it by increasing the number of clusters per parity group. So far, each parity

7

and Z0 are protected by parity stored in P0, i.e., P0 = X0
Y 0
Z0. If disk 1 fails,

then the information stored on it can be reconstructed by reading the appropriate

data from disk 4, i.e., by reading P0 and then reconstructing X0 through a parity

computation, where X0 = Y 0
 Z0
 P0.

There are three modes of operation for a disk subsystem [7], originally de�ned

in the context of disk arrays: 1) normal mode where all disks are operational, 2)

degraded mode, where one (or more) disks have failed, and 3) rebuild mode, where

the disks are still down, but the process of rebuilding the missing information on

spare disks is in progress. It is important to rebuild the failed disk(s) as fast as

possible, since a second failure might result in degradation of service and/or loss

of data; it is also important to do so without a signi�cant interference with the

system's workload. Several rebuild schemes are described in [7]; these include: a)

basic rebuild, where the data is read from the surviving disks, reconstructed through

a parity computation, and then written to the spare disk, b) rebuild with read-redirect,

where, in addition, requests, for the portion of the data on the missing disk that has

already been reconstructed on a spare, are redirected to the spare disk, and c) piggy-

backing rebuild, which takes advantage of requests for data on surviving disks and

uses the retrieved information to reconstruct some portion of the failed disk. In the

following sections we extend the idea of parity based schemes to multimedia servers,

�rst in the context of simple striping and then in the context of staggered striping.

3 Simple Striping

In this section we discuss possible parity schemes in the context of simple striping,

under the assumption of constant bandwidth requirement and clustered disk schedul-

ing.

3.1 Naive Scheme

A simple scheme for providing parity information is to designate one of the disks in

a cluster as the parity disk, which amounts to every cluster acting as a separate disk

array. The example of Figure 5 illustrates this naive scheme, where every cluster

consists of two data disks and one parity disk. For instance, fragments X0:0 and

X0:1 are protected by parity stored in fragment X0:p. During the normal mode

of operation, only the data disks in each cluster are used for displaying an object.

During the degraded mode of operation, the surviving data disks plus the parity

disk are read and used to reconstruct the data that resides on the failed disk. For

instance, to deliver X0 in Figure 5 under normal operation, X0:0 and X0:1 are read

from disks 0 and 1, respectively. Under failure, for example of disk 0, X0:1 and X0:p

6

0; 1 and 2, is idle. This is the time slot in which we can begin transmitting X; call

this time slot t. At time t we transmit X0, then at time t+ 1 we (stagger over by 2

disks) and transmit X1 from disks 2; 3 and 4, and so on.

A special case of staggered striping, where all objects have the same bandwidth

requirement and hence the same degree of declustering, we refer to this as a constant

bandwidth requirement, is termed simple striping. In this case, the disks are divided

into clusters, with each cluster containing k disks with the stride also equal to k.

Figure 4 illustrates such as system, with 2 clusters and degree of declustering equal

to 3. Scheduling in this system is similar to the staggered striping schedule described

X1.1

Y1.1

X1.2

Y1.2

X1.0

Y1.0Y0.0

X0.0

Y0.1

X0.1

Y0.2

X0.2

disk 0 disk 1 disk 2 disk 3 disk 4 disk 5

cluster 1 cluster 2

Figure 4: Simple Striping

above. For instance, in Figure 4, if at time t cluster 1 is idle, then transmission of

object X can begin. Hence, at time t subobject X0 can be transmitted from cluster

1; at time t + 1 subobject X1 can be transmitted from cluster 2, and so on. We

refer to simple striping as having a constant bandwidth requirement and clustered

disk scheduling.

As mentioned in Section 1, reliability and availability of data are serious concerns

in information systems in general, which are solved by storing redundant information.

Two basic schemes for introducing redundancy are: a) mirroring and b) parity based

schemes. Mirroring [2] refers to fully replicating each disk on another disk; whenever

a disk fails, its mirror can be used to retrieve the missing data. Mirroring is not

a good replication technique for multimedia servers because it sacri�ces too much

of the system's storage and bandwidth for reliability (see Section 1). Parity based

schemes construct a parity block for every d data blocks. The parity block plus the

d data blocks constitute a parity group; we de�ne d to be the parity group size,

i.e., the number of data blocks in a parity group. The overhead for parity based

schemes is

1

d+1

of the total storage space, as opposed to

1

2

of the storage space as in

mirrored schemes. Parity schemes are a better choice of introducing redundancy into

multimedia systems since they allows control over how much storage and bandwidth

is used for replication of information, i.e., the more data blocks are in each parity

group, the smaller is the fraction of storage used for redundant information. For

example, Figure 2 illustrates a system using a parity scheme, where objects X0, Y 0,

5

system into clusters and replicating frequently accessed objects on several clusters to

reduce contention for a cluster containing a popular object. The staggered striping

method, introduced in [1], is a major improvement over the virtual replication method

because it avoids bottleneck formation by striping each object across all the disks in

the system, thus balancing the system's load without resorting to replication of data.

In a multimedia system, such as an on-demand video server, disk space is limited, in

a sense that only a fairly small fraction of the objects can reside on secondary storage.

Eliminating the need for replication increases the number of disk-resident objects and

therefore reduces the probability of having to satisfy a request by fetching an object

from tertiary storage; this results in a signi�cant performance improvement.

The basic idea behind staggered striping is that objects that are brought in to

disks from tertiary storage are striped across all the disks in the system. Each object

is divided into subobject, and each subobject is divided into fragments. A fragment

corresponds to the amount of data to be read from a single disk in a single time slot

or time interval. A time interval is the amount of time a disk needs to position its

head and read the fragment (a more thorough de�nition appears in [1]). The number

of fragments in a subobjects corresponds to the number of disks required to satisfy

the bandwidth requirement, k, of the object, and is termed the degree of declustering;

we de�ne the set of k disks storing a subobject as a space slot. We place a subobject

on a set of k disks and then stagger over to the next set of k disks to place the next

subobject; the stride determines the number of disks we skip before placing the next

subobject. In other words, it determines the distance (in number of disks) between

the �rst fragment of subobject i and the �rst fragment of subobject i+1. An example

of such a system is illustrated in Figure 3, where object X is declustered among three

disks and object Y is declustered among two disks. The �rst subobject of object X,

Disk
0 1 2 3 4 5 6

X0.0 X0.1 X0.2 Y0.0 Y0.1

X1.0 X1.1 X1.2 Y1.0 Y1.1

X2.0 X2.1 X2.2 Y2.0 Y2.1

Figure 3: Staggered Striping

X0, resides on disks 0; 1 and 2, where the �rst fragment X0:0 resides on disk 0, the

second fragment X0:1 resides on disk 1, etc. The stride in this example is equal to 2,

and hence the �rst fragment of subobject X1 is placed on disk 2. Object Y is placed

in a similar manner. The scheduling of X for transmission is as follows. We �rst �nd

a time slot in which the space slot corresponding to X's �rst subobject, namely disks

4

Data Data

disk 0 disk 1

ParityData

disk 2 disk 3

X0 Y0 Z0 P0

Figure 2: Disk Subsystem with Parity Information

in tertiary storage access; the greater is the available bandwidth of a system, the

more requests can be serviced simultaneously. Therefore, improvements in reliability

must be balanced against degradation in performance.

In this report we present several parity based fault tolerance schemes for a mul-

timedia server. For each scheme, we determine: a) how much storage is wasted due

to parity, b) how much bandwidth is wasted, c) how system behavior is altered due

to a disk failure, d) how many failures can the system withstand before degradation

of service occurs or data is lost

1

, and e) (in some cases) how to rebuild the failed

disk on a spare one. Degradation of service denotes the situation in which the system

is unable to continue servicing all requests that are active when the failure occurs,

due to a lack of available bandwidth (as opposed to data loss). In this situation, one

or more requests have to be rescheduled at a later time. We de�ne a failure to be

catastrophic if it results either in data loss or in degradation of service. Our goal in

this report is to determine the schemes for providing high reliability and availability

in the multimedia server and to consider the tradeo�s associated with each.

The rest of the report is organized as follows. Section 2 presents background

information in the areas of multimedia servers and fault tolerant disk subsystems.

Sections 3 and 4 present our parity schemes, and Section 5 compares these schemes

on the merits of performance and reliability.

2 Background

The concepts of striping and declustering are used in general purpose I/O subsystems,

as in RAID technology [8], as well as in application speci�c systems, such as database

management systems, e.g., [9] and [3], to name a few. In [5] and [4], these concepts

are extended to a parallel multimedia system. In [6] an architecture including a

tertiary store is introduced and a mechanism for supporting multiple users, termed

virtual replication, is described; the authors suggest partitioning the drives in the

1

The data is not really lost, since there is a copy on tertiary storage, but part of an object that

was in disk storage is no longer there.

3

stored on disks, the less is the probability that any one request will result in tertiary

storage access. The size of the objects precludes them from being stored in main

memory; the (usually) low bandwidth and high latency of tertiary devices precludes

objects from being transmitted directly from the tertiary store.

To exhibit reasonable performance, the multimedia server should contain a large

number of disks, something on the order of 1000 drives would not be uncommon. A

large number of disks would provide the bandwidth required to service many requests

simultaneously and the storage space needed to insure that the probability of fetching

an object from tertiary store is small. However, disks are not very reliable; hence,

given such a large number of disks, the probability that one of them fails is quite

high. According to [8], the mean time to failure (MTTF) of a single disk is on the

order of 30; 000 hours; this means that the MTTF of some disk in a 1000 disk system

is on the order of 30 hours. This is unacceptable for traditional database systems,

which require a high degree of reliability and availability of data. Due to the real-time

constraint, the reliability and availability requirements of a multimedia system are

even more stringent. Given the system of Figure 1, a disk failure does not result in

data loss, since a copy of all objects is stored on tertiary storage. However, it can

result in interruption (and possibly rescheduling) of request in progress, if a the data

for a currently displayed object is on a failed disk, and it does result in a signi�cant

degradation in performance, since the objects lost due to a failure must be retrieved

from tertiary storage. Therefore, without some form of fault tolerance, such a system

would not be usable.

To improve the reliability and availability of the system we must use some fraction

of the disk space to store redundant information. How much redundant information

we store and how we place it on the disks will determine: a) the amount of storage

available for \real" data, b) the amount of bandwidth available for displaying this

data, and c) the resiliency of the system to disk failure. The more redundant informa-

tion is stored, the less is the probability that a failure results in data loss and a subse-

quent (massive) access of tertiary storage. However, the less redundant information

is stored, the more space is available for storing objects and possibly the less band-

width is available for displaying them. For instance, consider the four-disk storage

subsystem illustrated in Figure 2, where the �rst three disks are used to store \real"

data and the last disk is used to store parity information, e.g., P0 = X0
 Y 0
 Z0.

In this example, only three fourth of the total storage space (disks 0; 1 and 2) is occu-

pied by actual objects. Similarly, only three disks at a time can be used to transmit

data; when all four disks are operational, disks 0; 1 and 2 are used to transmit data,

but when one of these disks fails, the data stored on it is reconstructed by reading

disk 3. Therefore, in this example, one fourth of the storage space and one fourth of

the available bandwidth are sacri�ced for reliability. As mentioned earlier, the more

objects can be stored on disks, the less is the probability that any one request results

2

1 Introduction

Technological advances over the past decade have made on-demandmultimedia servers

feasible. A challenging task in such systems is the real-time requirement of contin-

uously providing an object at a constant bandwidth, e.g., if this object is a movie,

then, once it begins, it must be transmitted continuously for the duration of the �lm

at a bandwidth speci�ed by the display station. Another challenging task in multi-

media systems is to to service multiple clients simultaneously. Both of these tasks

are accomplished in [1] through a proper layout of the data on the disk drives, using

a technique termed staggered striping, which is discussed in more detail in Section 2.

An example multimedia system is illustrated in Figure 1; it includes a multimedia

server, a communication network, and a set of display stations. The multimedia server

Network
display
stations

multimedia
server

D1 D2 D3 DN

N
1

N
K

T1

T2

T3

Figure 1: Multimedia System

consists of a tertiary storage library, a collection of disks, and a set of processors. The

entire database permanently resides on tertiary storage. The objects are retrieved,

from the tertiary device, and placed on disk drives on demand; if the secondary storage

capacity is exhausted then one or more objects must be purged. It is important to note

that retrieval of objects from the tertiary store results in a signi�cant performance

degradation and should be avoided as much as possible. The more objects can be

1

A Fault Tolerant Design of a Multimedia Server

WORK IN PROGRESS: please do not distribute

Steven Berson Leana Golubchik

Richard R. Muntz

UCLA Computer Science Department

February 10, 1994

