
Release Notes

MrC and MrCpp v. 5.0.0d2 — Pre-release

Contents
General Information...2
Acknowlegements..2
New in v. 5.0.0d2 ...3
New in v. 5.0.0d1 ...3
New in v. 4.1.0a7 ...4
New in v. 4.1.0a6 ...4
New in v. 4.1.0a5 ...5
New in v. 4.1.0a3 ...5
New in v. 4.1.0a2 ...6
New in v. 4.1.0a1 ...6
New in v. 4.1.0d4 ...8
New in v. 4.1.0d3 ...9
New in v. 4.1.0d2 ...9
New in v. 4.0.0d1 ...10
Using MrC's Optimization Options..10
MrCPlusLib.o Compatibility Requirements ..12
MrCExceptionsLib Compatibility Requirements ..12
New Language Features...12
Keywords for __option and #pragma...13
Pointer Alias Analysis Optimizations ..14
“Noreturn” Optimization..16
Bug Fixes in v. 5.0.0d2 ..17
Bug Fixes in v. 5.0.0d1 ..18
Bug Fixes in v. 4.1.0a8 ..21
Bug Fixes in v. 4.1.0a7 ..22
Bug Fixes in v. 4.1.0a6 ..24
Bug Fixes in v. 4.1.0a5 ..24
Bug Fixes in v. 4.1.0a4 ..25
Bug Fixes in v. 4.1.0a3 ..25
Bug Fixes in v. 4.1.0a2 ..27
Bug Fixes in v. 4.1.0a1 ..27
Bug Fixes in v. 4.1.0d4 ..28
Bug Fixes in v. 4.1.0d3 ..29
Bug Fixes in v. 4.1.0d2 ..30
Known C++ Language Deficiencies..31
Known Problems..32
Manual Errata...32

Copyright Apple Computer, Inc. 1997-2000 All rights reserved.

Important: Please read the Release Notes for MrC and MrCpp v. 3.0.1 (Golden
Master) for a full description of changes since ETO 22. These release
notes provide information about changes since that version.

General Information

MrC and MrCpp are C and C++ compilers which generate PowerPC XCOFF object
files for Power Macintosh systems. Elsewhere in this document we often refer to both
compilers by the single name MrC since the compilers are essentially the same other
than the language dialect they support.

The 5.x series of releases of MrC adds:

• greatly improved support for templates.

• more complete support for C++ namespaces.

The 4.x series of releases of MrC adds:

• support for C++ namespaces.

• support for the AltiVec™ architecture. AltiVec is supported in accordance with the
Motorola AltiVec Programming Model document. MrC[pp]’s implementation of
the Model is covered in a separate document ("AltiVec Support in MrC[pp]").

™ AltiVec is a registered trademark of Motorola, Inc.

Acknowlegements

It is one thing to put exceptional effort into a product when it is your job; it is
something else to do so when it is something you do in your spare time. We would like
to recognize the following honorary members of the MrC compiler team:

• Tsutomu Yoshida, who provided invaluable testing and advice during the
development of MrCpp’s new template mechanism

• Alex Rosenberg, who fixed a number of optimization bugs and provided a new
optimization

2

New in v. 5.0.0d2

• MrC now implements a “noreturn” optimization. See the ‘“Noreturn” Optimization’
section below for more details.

• The compiler now accepts arbitrary escaped characters (e.g., “\%”). When -ansi on
| strict is specified a warning is issued for characters which may not be escaped
according to the ANSI standard. Previously the compiler reported illegal escapes as
errors. This change allows for compatibility with the original K&R C specification.

New in v. 5.0.0d1

• MrCpp’s template mechanism has been totally revamped. All of the template
features described in the C++ standard should be supported, with the exception of
partial specialization.

• Support for the using declaration has been added, allowing individual declarations
from namespaces to be used in the current scope.

• When there are definitions of inline functions in headers, the functions may not
always be inlined, so code may be generated for the functions even though it is
declared to be inline. By default, MrCpp creates local static copies of such
functions. New “global” and “static” modifiers are now accepted by the “-
inline” command line option, allowing inline functions to be generated as either
globals or statics. The default is still static.

-inline <level>[,global]
or

-inline <level>[,static]

Note that the linker will issue warnings for duplicate non-template instance
definitions when such inline functions are generated as globals. The benefit of
global functions is that there will only be a single copy of each function.

The #pragma for inlines has also been enhanced to support this new option.

#pragma options inline <level>[,global]

or
#pragma options inline <level>[,static]

• MrC now generates more optimal prologs for functions whose only use of AltiVec
registers is to return a value in vector register v2.

3

• MrC has new modifiers for the -includes option (and equivalent pragmas),
allowing more flexibility in the handling of Unix and DOS pathnames.

-includes unix_mac
-includes dos_mac

#pragma options ([!]unix_mac_includes)
#pragma options ([!]dos_mac_includes)

The new options are similar to the original options (unix and dos) but will treat the
pathname strings as normal Mac file names if they cannot be found using the
pathname as a DOS or Unix pathname.

New in v. 4.1.0a8

• MrCpp used to generate less efficient code for class initializers of the form “b(a)”
compared to the code generated for “b = a”. Now the two forms are equivalent as
long as there is not a user-defined copy constructor.

New in v. 4.1.0a7

• The standard function epilog code has been improved by one cycle when the
function is less than 32760 bytes long and there are no condition registers to restore.

• The compile-time performance of the compiler’s handling of large numbers of
initializers for an array declared with an unknown dimension (e.g., char x[] = {...};)
has been improved.

New in v. 4.1.0a6

• The AltiVec model has been extended to support three new AltiVec data types:
vector unsigned int, vector signed int, and vector bool int. These
three types are intended to replace the long counterparts (vector unsigned long,
vector signed long, and vector bool long). Use of the “old” types is now
deprecated as is documented in the “Motorola Programmer Interface Manual” (which
can be accessed from http://www.mot.com/SPS/PowerPC/AltiVec/facts.html). The

4

latest version of the "AltiVec Support in MrC[pp]" document also documents these
new types.

Note that while the older types are deprecated, they are still supported. No warning
is given if they are used. Furthermore, the int types are treated as synonymous with
the long types.

New in v. 4.1.0a5

• There have been some changes to the mangling of template names, making the
output of the new compiler incompatible with that of older compilers. The
unmangling library has been updated but it may take some time before support for
the new mangling appears in your debugger of choice.

• The reporting of template instantiation errors has been improved and now displays
the template name and arguments.

• The precompiled header format has been changed, requiring that precompiled
headers be rebuilt to work with the new compiler.

• The "AltiVec Support in MrC[pp]" document has been updated to describe changes
in the AltiVec programming model. Four new intrinsics have been added
(vec_cmple, vec_cmplt, vec_abs, and vec_abss), and four redundant intrinsics have
been removed (vec_unpack2sh, vec_unpack2sl, vec_unpack2uh, and
vec_unpack2ul).

New in v. 4.1.0a3

• The mechanism which checks for uninitialized variables has been improved and can
now detect more cases than before. This mechanism is invoked via the
warn_uninit and warn_maybe_uninit modifiers to the -opt speed and -opt
size options.

• Section 3.1 of the "AltiVec Support in MrC[pp]" document has been updated to
describe a new “@” flag for specifying an arbitrary separator string in printf and
scanf.

5

New in v. 4.1.0a2

• A number of new intrinsics have been added. (Radar 2287980)

int __rlwimi(int, int, int, int, int);
// rotate left word immediate then mask insert
// Note: the first argument is overwritten.

int __rlwinm(int, int, int, int);
// rotate left word immediate then AND with mask

int __rlwnm(int, int, int, int);
// rotate left word then AND with mask

• The __lhbrx, __lwbrx, __sthbrx, and __stwbrx instrinsics have been changed to
allow their pointer arguments to point to a volatile object. This will produce a
volatile load or store (with the appropriate restrictions on how they can be
optimized).

• AltiVec loads and stores now permit a pointer to a volatile object. Such loads and
stores are now typed as volatile (with the appropriate restrictions on how they can be
optimized). This feature is not a part of the standard Motorola AltiVec programming
model; it use will result in a warning (warning 47).

• Several new optimizations are now performed on functions using AltiVec operations.
When possible in leaf functions (functions which do not call other functions) the
compiler will try to save the calling function’s VRsave register value in a volatile
register (R3-R10). The compiler will now try to generate delayed prologs even when
traceback tables are being generated.

• The "AltiVec Support in MrC[pp]" document has been updated.

New in v. 4.1.0a1

• MrC's handling of low and out of memory conditions has been improved. Such
problems typically occur when compiling with -opt speed or -opt size. Since
MrC compiles and generates code on a function by function basis, problems with
memory are often exacerbated by the use of -inline 5 or -inline all which have
the effect of pulling the bodies of called functions into the function being compiled,
increasing size and complexity of what must be optimized. MrC now makes better
use of temporary memory available through the Finder and provides better
diagnostics when out of memory conditions occur.

• MrC now recognizes more opportunities for optimizations of vector instructions.

6

MrC will convert some vmr instructions into equivalent vsldoi instructions to
improve instruction scheduling.

For more information on MrC[pp]'s optimization of AltiVec instructions see
Appendix D in "AltiVec Support in MrC[pp]".

• MrC now produces better code for return (0 != a). Such comparisons are now
turned into the canonical form (a != 0) which results in better code. (Radar
1315984)

• You may now use __option() in any expression instead of just preprocessor
expressions.

• Long double constants are no longer aligned to 16-byte boundaries in the string
table; 8-byte alignment is sufficient since long doubles are accessed as a pair of
doubles.

• Two new __option() keywords have been added.

altivec_model set if -altivec_model on or -vector on specified
noaltivec_model set if -altivec_model off or -vector off specified

• A number of new intrinsics have been added.

float __fres(float); // floating reciprocal estimate single
float __fabsf(float); // absolute value of a float
float __fnabsf(float); // negative absolute value of a float
int __abs(int); // absolute value of an integer
long __labs(long); // absolute value of a long integer
void __eieio(void); // enforce in-order execution of I/O
void __sync(void); // synchronize
void __isync(void); // instruction synchronize

• A new command line option has been added to control how path names in #include
directives are interpreted.

-includes dos | unix | mac

The default is mac.

• A new command line option has been added to control whether AltiVec recognition
is enabled.

-altivec_model off | on[,[no][altivec_]vrsave]

This is an alternative to the -vec[tor] command line option.

• Several new pragmas have been added to control AltiVec recognition and code
generation.

#pragma altivec_model on | off | reset

7

#pragma altivec_codegen on | off | reset
#pragma altivec_vrsave on | off | reset | allon

The altivec_model pragma is used to control recognition of AltiVec constructs.
The altivec_codegen pragma tells the compiler that it is allowed to perform
vectorization optimizations, converting scalar code to vector constructs where
possible. (Note: this pragma currently has no effect and will be used to control
future optimizations.) The altivec_vrsave pragma controls whether the compiler
generates code to update the VRsave register. (This can also be controlled by the
[no][altivec_]vrsave parameter on the -altivec_model and -vector command
line options.) See section 2.3 in the separate "AltiVec Support in MrC[pp]"
document for a more complete description of these pragmas.

• A new macro, __ALTIVEC__, is set to 1 to indicate that other AltiVec macros are
supported.

New in v. 4.1.0d4

• A new command line option (-longlong on | off) has been added to control
whether the compiler's built-in support for the long long data type is enabled. The
default is for long long support to be enabled. Using this option will change the
value of the __option(longlong) preprocessor function and the _LONG_LONG
macro.

• MrC now recognizes a variety of vector instruction usages which it can replace with
more optimal forms. (Radar 2258481)

Additional vector constant optimizations have been added to increase the possibility
of generating vspltis<s> (<s> = b, h, w) instructions instead of literals.

The compiler now recognizes more vector constants as opportunities to be replaced
by instructions that generate those constants. In cases where there is more than one
way to generate a vector constant the choice is made based on what is most favorable
for instruction scheduling.

All restrictions that the optimization of vector saturate instructions have been
removed. Previously these were handled less than optimally when mfvscr and
mtvscr instructions were used.

For more information on MrC[pp]'s optimization of AltiVec instructions see
Appendix D in "AltiVec Support in MrC[pp]".

8

New in v. 4.1.0d3

• MrC now supports the mutable keyword.

• The format for MrC's precompiled header files has changed due to changes in the
implementation of macros, so the version number with which such files are marked
also has changed, requiring rebuilding of any old precompiled header files.

• Previously, when compiling under the -opt speed or -opt size option in low
memory conditions, MrC would reduce the level of optimization and continue
compiling. For example, if a file contained a particular large function foo, MrC
might compile that function at -opt local while compiling the rest of the file at
-opt speed. A diagnostic message was printed out in such circumstances. MrC has
now been changed to issue an error and terminate the compilation when there is
insufficient memory to perform the requested optimizations. If the old behavior is
desired, a new modifier, ok_to_reduce_opt, may be added to the optimization
option specification (as in -opt speed,ok_to_reduce_opt).

• Some of the AltiVec instruction scheduling problems in the previous release have
been addressed.

• Two new __option keywords have been added.

vector set if -vec on specified on command line
novector set if -vec off specified on command line

New in v. 4.1.0d2

• AltiVec is supported in this release in accordance with the Motorola AltiVec
Programming Model document. MrC[pp]’s implementation of the Model is covered
in a separate document ("AltiVec Support in MrC[pp]").

Note that the MrC instruction scheduler simulates a processor with a single vector
unit that has single stage execution. This does not match any present or future
implementation of the AltiVec architecture. In other words, at the present time, the
scheduling is not optimal for the AltiVec instructions. We are looking into fixing
this in a future release.

• Stricter prototype checking.

• New __option keywords added for Metrowerks compatibility.

mpwc_newline same as mapcr

9

preprocess set if -c specified on command line
traceback set if -tb on or -traceback specified on command line
wchar_type 0 for C, 1 for C++

• Intrinsic functions for PowerPC operations now participate in more optimizations.

• MrCpp now performs the "empty member optimization", that is, base classes which
have no data will occupy no space (even though the base classes by themselves must
have a non-zero size).

New in v. 4.0.0d1

• Namespaces are supported, including unnamed namespaces, nested namespaces,
namespace aliases, and using directives. Using declarations are not supported. (Using
directives allow declarations in the specified namespace to be referenced without
qualification in the scope with the using directive. Using declarations allow a single
declaration from a namespace to be referenced in the current scope without
qualification.)

• All keywords defined in proposed C++ standard are now treated as such and may not
be used for identifiers. The keywords now recognized are namespace, using,
mutable, explicit, and the alternative operator representations (and, and_eq,
bitand, bitor, comp, not, not_eq, or, or_eq, xor, and xor_eq).

• Of these keywords, the only one not currently supported is mutable. Namespaces are
described elsewhere. The alternative operators can be used wherever the standard
operators can be used. The explicit keyword is also supported.

• The -alias option controls whether MrC[pp] will perform pointer alias analysis.
This option is discussed below in the section "Pointer Alias Analysis Optimizations".

Using MrC's Optimization Options

MrC and MrCpp provide a variety of options to control the optimization of generated
code. Producing the most optimal code for your particular program is not always as
simple as setting all of the controls to their most aggressive settings.

In addition to the -opt speed and -opt size options which provide for a variety of
aggressive optimizations oriented either toward fast performance or small size, there are
several optimizations that can be controlled individually. The goal of the more generic

10

-opt speed and -opt size optimization options is to provide a generally optimal set
of optimizations that apply well to a broad variety program code. The more specific
optimization options provide for control of optimizations whose benefit will vary more
depending on what is being compiled.

The -opt speed option provides a variety of modifiers for controlling individual
optimizations. The syntax for the use of these modifiers is to have them follow speed
in -opt speed separated by commas with no intervening spaces, as in -opt
speed,unroll,unswitch.

The unroll modifier instructs the compiler to do loop unrolling where possible, which
entails expanding loop code to perform several interations each time around the loop
reducing the number of tests for loop termination. The end result is bigger code which
executes fewer tests. This can be done when the compiler can make inferences about
the number of loop interations.

The unswitch modifier instructs the compiler to do loop unswitching, which entails
identifying tests inside of loops which will not change during the evaluation of the loop
so that the loop can be transformed into a test followed by two copies of the loop, one
with the code corresponding to the test being true and the other with the code
corresponding to the test being true. The end result is bigger code which executes
fewer tests.

The -inline optimization options controls the process of inlining, which replaces
function calls by the actual code for the function, eliminating the procedure call
overhead but expanding the size of the function doing the call. Various levels of
inlining are supported, with higher levels inlining code for increasingly large functions.
In addition to the benefit of removing procedure call overhead, inlining can open up
new possibilities for further optimizations when the code for the inlined function is
merged into the code for the calling function. On the down side, at higher levels of
inlining functions can become so large that there may be undesirable effects on cache
performance. Overly aggressive inlining may also result in less optimal register
assignments within a function in which calls have been inlined due to more competition
for registers. As a result, specifying too high a level of inlining can have a negative
effect on program performance. For this reason, you should experiment a bit in order to
find the optimal inline setting for your code.

The inline option choices are all, on, none, off, 0, 1, 2, 3, 4, and 5. Specifying
-inline all will cause functions to be inlined wherever possible, regardless of the
cost. Specifying -inline on causes functions to be inlined at level 2 as described
below. Using -inline none or -inline off suppresses inlining of functions.
Numeric inlining values from 0 to 5 specify levels of inlining from none to all varying
on the size and complexity of the functions being considered as candidates for inlining.
It is important to note that the default level of inlining for -opt speed is 2. Use of
higher levels of inlining may not be advantageous.

11

One side-effect of higher levels of inlining is that the size and complexity of functions
is greatly increased as function calls are expanded into the actual code for the called
function. Since the inlining process is recursive the original calling function may
expand significantly beyond its original size. As a result, the space required to perform
other optimizations can grow considerably over what is required for the default -opt
speed setting because many optimizations require multi-dimensional tables whose
dimensions depend of the number of statements or expressions in a function. Due to
the increased space required to optimize larger functions, MrC may not always be able
to complete the optimization of a very large function in the memory available. The
ok_to_reduce_opt modifier to the -opt speed and -opt size options is available to
indicate that the compilation should not fail in such cases but should continue at a lower
level of optimization for the function in question.

MrCPlusLib.o Compatibility Requirements

There has been a change to the prototype for the __rtti_cast function, which is called
for any dynamic_cast. Before this bug fix, any attempt to dynamic_cast a const
reference or pointer would fail. Therefore, this version of the MrCpp compilers must be
linked with the library, MrCPlusLib.o, 3.5d3, which is also available on ETO #23 in the
folder, "Prerelease:Libraries&Interfaces:Libraries:PPCLibraries: ". This release of
MrCpp is incompatible with earlier versions of the MrCPluslib.o. However, this version
(3.5d3) of the MrCPlusLib.o library is compatible with earlier versions of the MrCpp
compiler.

MrCExceptionsLib Compatibility Requirements

Version 4.1d1 or newer of MrCExceptionsLib is required when your program uses
exceptions and AltiVec instructions. The new version of the library is required to
restore the contents of AltiVec registers in the context changes that occur when an
exception is thrown.

New Language Features

MrC 4.0 supports namespaces, including unnamed namespaces, nested namespaces,
namespace aliases, and using directives. Using declarations are not supported. (Using
directives allow declarations in the specified namespace to be referenced without
qualification in the scope with the using directive. Using declarations allow a single

12

declaration from a namespace to be referenced in the current scope without
qualification.)

MrC 4.1 supports the mutable keyword.

Keywords for __option and #pragma

The built-in boolean function __option(<keyword>) is used, for a defined set of
keywords, to test whether a command line option or pragma is in effect.

==

MrC[pp] __option and #pragma options keywords

 Keyword __option true or value #pragma

 options allowed

 altivec_model -altivec_model on, -vector on yes

 ansi -ansi relaxed | strict yes

 ansi_relaxed -ansi relaxed yes

 ansi_strict -ansi strict yes

 ANSI_strict -ansi strict yes

 bool -bool on no

 chars_unsigned -char unsigned yes

 direct_to_SOM -som no

 dos_includes yes

 dos_mac_includes yes

 enumsalwaysint -enum int yes

 exceptions -exceptions on yes

 fp_contract -maf on, -fp_contract on no

 ldsize128 -ldsize 128 no

 little_endian 0 (supported in plugin only) no

 longlong -ansi off | relaxed no

 maf -maf on, -fp_contract on no

 mapcr -nomapcr yes

 mpwc_newline -nomapcr yes

 noaltivec_model -altivec_model off, -vector off yes

 nobool -bool off no

 nolonglong, -ansi strict no

 novector -vec off no

 pack_enums -enum min yes

 precompile -dump (or plugin precompile) no

13

 preprocess -c no

 read_header_once -notonce not specified yes

 require_protos -proto strict no

 require_prototypes -proto strict no

 rtti -rtti on yes

 RTTI -rtti on yes

 SOMCallOptimization #pragma SOMCallOptimization on no

 SOMCheckEnvironment #pragma SOMCheckEnvironment on no

 stdc 1 if C++, 0 of C no

 struct_align -align value (1, 2, 4) yes

 system_includes_from_project_tree -inclpath normal yes

 traceback -tb on or -traceback no

 trigraphs -ansi relaxed | strict no

 unix_includes yes

 unix_mac_includes yes

 unsigned_char -char unsigned yes

 vector -vec on no

 wchar_type 1 no

Pointer Alias Analysis Optimizations

The -alias option controls whether MrC[pp] will perform pointer alias analysis. Such
analysis allows the compiler to determine the impact of pointer usage on program
values. It is called alias analysis because pointers provide aliases to values in the sense
of being another way access a value without referring to the value directly (as is done
with a variable reference). The use of pointers can have an adverse effect on many
optimizations, for example, when encountering an assignment through a pointer, the
compiler must assume that some variable's value has changed (in the worst case, all
variables!). The -alias option allows you to tell the compiler about how you have
used pointers in the file being compiled, enabling the compiler to make assumptions
about how values are affected by pointer usage.

The ANSI C standard states a number of restrictions on the correct use of pointers:

• An object's stored value must be accessed only by an lvalue that has one of the
following types: the declared type of the object (with or without const and volatile
qualifiers), a signed or unsigned variant of the former, a struct or union type that
includes one of the above among its members, or a character type. Additionally,
an object declared as const may not be stored.

14

• An integral type added to or subtracted from a pointer yields a pointer value that
when de-referenced must point to an element of the same array object as the
original pointer.

• Between the previous and next sequence point an object must have its stored
value modified at most once by the evaluation of an expression. Furthermore, the
prior value must be accessed to determine the value to be stored.

The -alias option has the following forms.

-alias off disable pointer alias analysis (the default)
-alias [addr] enable pointer alias analysis by distinct address

[,ansi] enable pointer alias analysis by ANSI rules
[,type] enable pointer alias analysis by data type (assume pointers

to different types are not aliases)

The default is for pointer alias analysis to be disabled. By specifying one or more of
the addr, ansi, or type specifiers (separated by commas) following the -alias option,
you can tell the compiler to make one or more assumptions about how pointers are used
in the code being compiled.

The type specifier tells the compiler that pointers to types T1 and T2 will never refer to
the same memory location if T1 and T2 differ.

The ansi specifier tells the compiler to use strict ANSI C aliasing rules. An object
with a name a declared type T1 is not read or written by a pointer to type T2 if T1 and
T2 differ (according to the ANSI rules described above). A pointer assigned the
address of an array object and modified solely by increment or decrement operations
will access only elements of the original array object. An object is modified only once
between sequence points, so multiple store instructions between sequence points are
known to be distinct. And, an object modified between sequence points will not be
accessed by load instructions following a store instruction. Note that using the type
specifier implies a more restricted use of pointers than does the ansi specifier because
type implies that char pointers cannot point to other types.

The addr specifier tells the compiler to assume the worst -- i.e., any type of pointer can
point to any type of object -- in which case the compile must do a complete analysis of
pointer usage based on address information rather than type information.

While the assumptions behind each of the options may sound reasonable, you should
carefully consider how pointers are used in your code before enabling the -alias
option in order to prevent inappropriate optimizations made on inappropriate
assumptions. A useful place to start is with the -alias ansi option; use of this option
setting should be safe unless you are using pointers in a way which violates the ANSI
rules described above. The -alias type option can be used if you are sure that all
pointers only point to objects of the same type as the declared types of the pointers.
Alternately, -alias addr does a more constrained analysis of pointers without making
any assumptions based on pointer types.

15

The use of the -alias option is restricted depending on the setting of the -opt option.
At -opt off use of the -alias option is not permitted. At -opt local either the type
or the ansi specifier may be used (but not both). At -opt speed and -opt size either
the type or the ansi specifier may be used; the addr specifier may also be used.

“Noreturn” Optimization

It is often the case that some code paths are known to the developer to be “impossible”.
The “noreturn” compiler extension provides a mechanism for developers to provide
hints about “impossible” code paths through source code annotations. Numerous
standard and platform-specific functions calls are defined to not return to the caller.
The ANSI/ISO C standard exit() function is one example. The Mac OS
ExitToShell() function is another. We refer to such functions as “noreturn”
functions.

Listing 1:
if (a == NULL) {

 fprintf(stderr, “a was NULL!\n”);

 exit();

}

In listing 1, any code placed after the call to exit() cannot be reached. However, the
compiler does not “know” that exit() is a noreturn function. Now the compiler can
informed via a source annotation.

Method 1:
void exit(void);

#pragma noreturn(exit)

Method 2:
void exit(void) __attribute__((noreturn));

Method 1 is the syntax used in compilers from Symantec, Zortech, and Apple. Method
2 is the syntax used the GCC compiler and in future compilers from Metrowerks. MrC
supports both methods. Note that #pragma directives cannot be created via macro
expansion, so the latter syntax is preferable.

If a function has been properly annotated with one of the above methods, then several
changes takes place. One of the most visible differences is that the compiler may no
longer produce a warning about the lack of a return statement on every path out of a
function. Additionally, the compiler may be able to perform additional optimizations
with this information.

16

Listing 1 may look familiar, since it is similar to how the standard assert() macro
expands. In fact, an improved <assert.h> may include something like listing 2 for the
NDEBUG case.

Listing 2:
#if defined(__MRC__)%%(__MRC__>=0x500)&&__option(global_optimizer)

 #define assert(expression) ((expression)?(void)0:__noreturn())

#else

 #define assert(ignore) ((void)0)

#endif

The __noreturn() function is a new feature in MrC. It is an intrinsic noreturn
function that does nothing and may be used as a source annotation to indicate that a
given code path is impossible. A number of optimizations are possible given the
additional information provided the __noreturn() function.

Bug Fixes in v. 5.0.0d2

• A number of template bugs were fixed. (Many thanks to Tsutomu Yoshida for his
continued diligence in tracking down and reporting MrCpp problems.)

• MrCpp would become confused about constructor generation for classes including
members whose names began with two underscores.

• MrCpp 5.0.0d1 included a regression that caused it to no longer accept declarations
of the form “friend class A::B;”.

• MrCpp did not handle template instance qualifiers of non-template classes, e.g.,
A::B<T>.

• The compiler was generating an extra function descriptor for forward-declared K&R
style functions, as in the following example:

void foo();

void foo(x)

 int x;

{}

• MrCpp was not checking for the global scope qualifier (“::”) on struct tag names, as
in the following example:

void foo(struct ::std::S *p);

17

• The compiler would sometimes crash when -opt speed | size was specified and
it encountered an assignment of a struct to another struct of the same type appearing
as the first member of an enclosing struct, as in the following example:

struct A {int w, x;};

struct B {struct A wx; int z;};

A a;

B b;

b.wx = a;

• MrCpp did not allow operator functions having only enum or reference to enum
parameters (see the C++ Standard, section 13.5, paragraph 6).

• MrCpp did not correctly handle the setting of the “this” parameter when calling
member functions referenced through using declarations and when the called
function was a member of a multiply-inherited base class.

• The compiler would sometimes generate two-register address instructions (i.e., base
+ index) incorrectly using r0 as a base register. (Radar 2455437)

• MrCpp did not properly handle default function template parameters when these
parameters were defined in terms of types specified earlier in the template parameter
list.

• The compiler would sometimes generate an assertion when compiling a function-
level try block.

• MrCpp did not correctly handle typedef classes used to specify static members of
templates.

• The compiler did not parse expressions of the form “size of (a)[0]” correctly.

• MrCpp had a problem with precompiled headers involving destructors for derived
classes which must call virtual destructors in a base class.

Bug Fixes in v. 5.0.0d1

• The compiler was not detecting attempts to redefined typedefs for structs and classes.

• The compiler generated incorrect code for the following floating point constructs:
x = -0.0

x * -0.0

_inf() * 0.0

f(x) * 0.0

18

(Radar 2363288)

• Errors involving template instantiations and friend declarations did not always
display the line on which the error occurred.

• When trying to optimize operations on structures (with the -opt speed or -opt
size option in effect) the compiler could go into a loop and eventually overflow the
stack.

• The compiler did not detect some invalid casts, resulting in an internal compiler error
of the form:

addr_trans(…): Unexpected operator (…)

• MrCpp was overly restrictive in what it accepted for return types in declarations of
operator-> functions.

• The compiler sometimes mishandled copy constructors, resulting in an internal
compiler error of the form:

addr_trans(…): Unexpected operator (…)
This problem could result from a compiler-generated call to a copy constructor, e.g.,
when the compiler generates a temporary object when passing an object by value.

• MrC mishandled the AltiVec vec_dssall() function, only generating correct code
for the first instance of the function appearing in the program.

• Some uses of the AltiVec vec_dst() and vec_dstst() functions could lead to
asserts in the compiler.

• In particular circumstances the compiler would assert while trying to optimize
AltiVec load and store operations.

• MrCpp did not support “Koenig lookup” which allows namespaces referenced in a
functions parameter list to be used in the body without explicitly using the
namespace.

• The compiler did not handle struct and class tag with namespace qualification.

• MrCpp did not always consider open namespaces when searching for symbols.

• The compiler mishandled passing long long parameters to functions taking variable
argument lists.

• MrCpp was not always able to find constructors which were declared to be explicit.

• A problem was introduced in MrCpp 4.1.0a8 which did not allow assignments to
dereferenced const pointers. (Radar 2364467)

19

• MrCpp did not support default type arguments for templates. It mishandled non-type
parameters. It did not handle template template parameters. It did not allow nested
templates. It did not handle non-inlined member functions of classes nested inside of
class templates. It instantiated templates which were not actually needed. It did not
recognize many cases of valid template syntax, and it asserted while trying to handle
others. The template mechanism has been rewritten. (Radar 1327995, 1622458,
2338822, 2340563, 2406076)

• Given a declaration of a multi-dimensional array type, if that type was used in the
declaration of a function argument with the const attribute, the array type would
subsequently behave as if it had been declared with the const attribute.

Example:
typedef int A[4][4];

void foo(const A x);

// From this point on A behaves as if it were declared

typedef const int A[4][4];

• In certain circumstances MrC generated a pair of loads for a long long type using the
same register for the base of both of the loads and as the destination of the first load,
invalidating the base for the second load.

• In some circumstances MrC did not consider array and pointer types to be
equivalent. (Radar 1353590)

• MrCpp did not always correctly take into account the const and volatile attributes
when determining whether or not types match. (Radar 1353592)

• MrC now reports an error for empty declarations when -ansi strict is in effect.
The following examples will now be detected as errors.

int ;

int i,;

• MrCpp no longer calls operator delete if an exception is thrown during a call to the
placement variant of operator new.

• MrC would sometimes generate an incorrect function prolog for functions using
AltiVec and alloca().

• The compiler no longer crashes while optimizing certain nested loops.

• Exception rethrows were not freeing internal memory leading to a possible
premature termination of execution if enough rethrows were executed. This problem
has been fixed in a new version of MrCExceptionsLib.

• Use of the -alias type optimization option could result in some loads and stores
being removed erroneously.

20

• MrC would sometimes optimize expressions of the form x-c != 0 incorrectly. At
times this optimization would come into play with loops with a constant number of
iterations, resulting in the last iteration being skipped. (Radar 2438831)

• In rare circumstances MrC would incorrectly optimize casts done out-of-line by
library routines (e.g., unsigned int to float).

• MrC would sometimes make incorrect assumptions about the lifetime of variables in
code containing large numbers of assignments. (Radar 2427563)

Bug Fixes in v. 4.1.0a8

• A problem was introduced in MrC 4.1.0a7 which would cause the compiler to crash
when reporting an error when no matching declaration was found for a function call.

• Given nested structs, if the inner struct is declared with a tagless typedef (“typedef
struct {...} foo;”), and if the outer struct has a virtual function, then MrCpp
would issue an erroneous warning about an untagged nested typedef while
generating the compiler-generated constructor for the outer struct. (Radar 1325743)

• The compiler did not detect assignments to array elements in const member
functions when the array is also a member. It also did not detect assignments to
elements of const arrays. (Radar 1213512 and 1353576)

• When exceptions were enabled MrCpp would occasionally crash when compiling
functions with returns before the end of the function.

• The compiler did not detect attempts to call or take the address of main(). (Radar
1191083)

• MrC occasionally generated incorrect code for the AltiVec vmsummbm() function,
reversing the first two operands. (Radar 2354545)

• Under rare circumstances MrC would generate references to stack frame locals
without a stack frame having been created while attempting to delay the prolog in
functions with early returns. (Radar 2355537)

• MrC was incorrectly converting the constant -0.0 to +0.0 when converting long
double. The code for (vector float)(-0.0) was also incorrect. (Radar 1663379
and 2326138)

• Particularly complex templates could result in mangled names (function signatures)
which exceeded MrCpp’s 1024 char symbol name limit. The limit has not changed,
but template class names are now compressed in mangled names if the name is too

21

long. Note that new versions of the unmangle tool, dumpxcoff, unmangler library,
and debuggers are needed to properly disassemble the new compressed names. All
of these are forthcoming.

• MrCpp would sometimes emit an erroneous error message on declarations of objects
with namespace qualification when there were preceding declarations with class
qualification.

• MrCpp did not take the values of non-type template parameters into account when
matching templates.

• MrCpp did not handle namespace qualification in base class specification in class
declarations and in base initializers in constructor definitions.

• MrCpp would report a duplicate template function error in cases where a definition
of a template is followed by a declaration of the same template.

Bug Fixes in v. 4.1.0a7

• The VRsave register was not being correctly set in functions not directly using
AltiVec constructs that contained inlined calls to functions using AltiVec constructs.

• MrCpp complained about attempts to pass non-const pointers when const pointer
parameters were expected.

• MrC did not insert an implicit white space between characters immediately
preceding or following a macro expansion and the characters from the macro
expansion itself. In other words, a token cannot be created partly from characters
coming from a macro expansion and partly from characters not coming from a
macro. (Radar 2330913)

• A bug was introduced recently into MrCpp which caused it to have problems with
template functions which are called recursively.

• MrC would assert when attempting to cast a const float to a void (e.g., the statement
“(void)x;” where x is a const float).

• MrC would occasionally (depending on the contents of memory) incorrectly generate
macro expansions with the concatenation operator (##), leading to spurious
compilation errors.

• MrCpp was generating bad calls to __vec_ctor() when exceptions were enabled.
Calls to __vec_ctor() are generated when instantiating an array of objects.

22

• Asserts could result from the use of #pragma outofline and #pragma seldom.
The code generated for #pragma outofline was incorrect.

• MrC was incorrectly trying to use integer registers for the operands of vector
predicates when vector registers should have been used instead. (Radar 2338985)

• Use of the __rlwimi intrinsic could lead to asserts in compiler or bad code.

• Occasionally MrC would generate immediate constants in instructions incorrectly
when the constants were used by intrinsics or AltiVec operations appearing in loops.

• The AltiVec VRsave register was not being set correctly in functions using all of the
vector registers v0 through v15. The compiler was generating a LI (load immediate)
of the callee’s VRsave mask but not OR’ing it with the caller’s mask.

• MrCpp incorrectly reported an error for the use of user-defined overloads of operator
functions for scalar types.

• Occasionally MrC’s optimizer would remap a register to r0 in an instruction where
r0 was not permitted.

• MrCpp did not recognize valid user-supplied conversions for classes passed to
AltiVec functions.,

• MrCpp did not correctly handle user-supplied overloads for AltiVec intrinsic
functions.

• MrCpp did not report an error when a storage class (e.g., “static”) was specified on a
member function declaration.

• MrCpp was not correctly distinguishing functions with arguments that were different
instances of the same template.

• MrCpp did not handle namespace-qualified symbol references in struct tags. It also
did not always restrict itself to the specified namespace when resolving namespace-
qualified symbol references. It also did not handle symbol references with
namespace qualification followed by class qualification.

• In cases of loop induction variables which were signed chars, MrC would sometimes
incorrectly remove the induction variable from the loop even though there were still
uses of the induction variable in the loop.

• In cases of leaf function using AltiVec operations but having no AltiVec locals, the
compiler did not correctly set up the stack frame to access non-vector locals.

• The compiler would assert if an vector constant was passed directly to an AltiVec
intrinsic function.

23

Bug Fixes in v. 4.1.0a6

• MrCpp could not correctly parse “sizeof(n::t)” where n is a namespace and t is a
typedef.

• In certain circumstances MrC would incorrectly optimize a loop using a load-store-
update construct without generating all of the required increments.

• In certain circumstances when optimizing cases where the function prolog could be
delayed beyond a test of a condition, MrC would generate incorrect code.

• An assertion in the back end of the compiler could result from a previous “fix” to a
problem involving the destruction of base classes in a destructor.

• There was a problem in the fix done in 4.1.0a5 to handle matching of pointers to
const with formal parameters that were const arrays.

• MrCpp would sometimes incorrectly report an error when assigning to a mutable
field. It also failed to match function parameter types when an actual parameter was
a mutable field.

• The recent fix for MrCpp’s handling of const and volatile attributes when
determining the best match for overloaded functions required further refinement.

• Certain constructs involving logical operations on string constants could result in
generation of bad code or in a compiler assert.

Bug Fixes in v. 4.1.0a5

• In certain circumstances MrCpp was confusing struct/class/enum tag names with
something else with the same name declared in the same scope.

• MrCpp was not taking the const and volatile attributes into account when
determining the best match for overloaded functions.

• Constructs of the following form would cause the local optimizer to go into an
infinite loop.

if (<condition>)

 return 1;

return 0;

24

• The CodeWarrior plug-in version of MrC continued to have problems in which
warnings were treated as errors.

• In certain circumstances MrC would crash in the local optimizer while folding
constants.

• In certain circumstances use of the -ansifor option would lead to spurious errors in
function template instantiation.

• A recent fix for a problem in the destruction of base classes in destructors would
occasionally result in an internal error.

• MrC[pp]’s optimizer would occasionally generate incorrect code for expressions of
the form “(x & mask) >> shift” where the mask and shift values are constants.
(Radar 2319072)

• MrC[pp] had a problem matching types of actual and formal parameters when
pointers to const parameters were passed to functions with const array parameters
that had been declared with typedefs.

• In certain circumstances MrC would crash or assert while optimizing loops.

Bug Fixes in v. 4.1.0a4

• MrCpp would assert with an internal error when encountering a call to a static
member function if the function reference in the call was qualified with the class
name and parenthesized, e.g., (S::foo)().

• Macro expansions in preprocessor directive lines resulted in an error when the -ansi
on option was in effect.

• MrCpp did not generate code to adjust an object’s virtual-table pointer when
destructing that object’s base classes.

• A problem was introduced in MrC[pp] 4.1.0a3 which caused warnings to be treated
as errors.

Bug Fixes in v. 4.1.0a3

25

• In certain circumstances MrC would generate bad code for testing loop termination
for loops with more than one induction variable which the compiler erroneously
converted to a load-store-update form. (Radar 2290938)

• Invalid code was generated for certain loops with “artificial loop exits” where the
sense of the loop condition is changed by modification of the induction variable.
(Radar 2284970)

• Multiple uses of the same constant in different vector operations could lead to a
compiler assertion in cases where the constant was needed both in a register and as
an immediate operand in an instruction. This is a fix to a previous bug (Radar
2281875) “fix”.

• The compiler sometimes mishandled the __eieio() intrinsic during instruction
scheduling.

• A previous improvement in instruction scheduling of vector register-to-register
moves replaced some vmr instructions with vsldoi instructions in order to avoid
instruction unit conflicts. This prevented the compiler from removing some
unnecessary register-to-register moves.

• The compiler sometimes misscheduled AltiVec instructions involving registers V14
through V19.

• MrCpp sometimes mishandled the placement of dtor calls for compiler-generated
temporaries. In some cases the dtor calls were placed at the end of the current scope
rather than at the end of the current statement, allowing paths to the dtor that did not
first go through the corresponding ctor.

• When generating the code for a constructor MrCpp was not able to find the
constructor for a base class if the constructor for that base class was declared to be
explicit.

• The alignment of structures containing arrays of vector types was not being set
correctly.

• The compiler would sometimes generate a bad object file when a function which was
forward declared was later defined as using AltiVec instructions.

• With exceptions enabled MrCpp generated a spurious destructor call in the
constructor of classes which contained member arrays which needed constructing.
The spurious destructor call would destruct the first element of the array.

• MrC generated incorrectly optimized the case of shifting a long long value left by
exactly 32.

• MrCpp did not handle non-type arguments in function templates. It also did not
handle the explicit template function instatiation syntax, i.e., tfunc<args>(params).

26

MrCpp also had several problems with template function overload resolution,
including problems resolving overloaded template functions inside of namespaces.
MrCpp sometimes mistakenly reported errors on default values for template function
parameters.

• In certain cases MrC would attempt to use LSU (load-store-update) operations on
objects larger than 32,767 bytes, resulting in offsets too large for the instruction
encoding.

• In rare circumstances the compiler would assert with a “GRA ERROR” (an error in
the global register allocator) due to a bad edit in the addition of AltiVec support to
the compiler. (Radar 2305315)

Bug Fixes in v. 4.1.0a2

• An improvment was made to the fix reported below for Radar 2281875. The new fix
makes further optimizations possible.

Bug Fixes in v. 4.1.0a1

• The compiler incorrectly optimized away some loops with long long interation
variables and fixed bounds.

• Calls through function pointer variables sometimes resulted in random compiler
crashes. (Radar 2280663)

• Loading a precompiled header file created with the 4.x series of MrCpp sometimes
resulted in random compiler crashes. There was a problem in restoring the global
unnamed namespace, which is always used implicitly whether namespaces are used
explicitly or not.

• Incorrect code was generated in some instances for vector operations with three
arguments (e.g., vperm) at -opt speed and -opt size. (Radar 2281673)

• Under certain circumstances a conditional block optimized to be placed before the
function prologue did not set VRsave. (Radar 2281871)

• An internal compiler error sometimes resulted from the use of the same constant
value as an argument to different vector instructions. (Radar 2281875)

27

• The VRsave register was not set correctly for forwardly declared static functions
using vector operations.

• Negative long and long long constants were being converted to unsigned constants
with the same effective value. This could result in problems when the constant was
cast to a floating point type.

Bug Fixes in v. 4.1.0d4

• The pointer returned by the placement form of vector new was off by four bytes and
would result in an error when passed to vector delete.

• The warnings produced by the warn_uninit and warn_maybe_uninit modifiers to
-opt speed and -opt size were not put out by the compiler's normal warning
mechanism (meaning, for instance, that these warnings could not be turned into
errors using the -w iserror command line option).

• MrCpp did not recognize typedef names for classes in the syntax for base class
initializers. (Radar 225236)

• A number of internal problems involving long longs have been fixed. Some of these
were internal bookkeeping errors resulting from a failure to take into account that a
single long long takes two registers. (Radar 2255162)

• An internal compiler error would result from macro definitions using the "##"
concatenation operator where the left hand argument to the operator was a macro
parameter with an ordinal position corresponding to the ASCII representation of a
space or tab character.

• There was a 16000 character limit on the size of any macro parameter.

• Some expressions involving right shifts by constants were incorrectly optimized
away when they appeared in conditionals. (Radar 2269651)

• Warnings were not issued for shifts by constants greater than 32.

• The code generated for expressions involving signed short or char values involving
addition, subtraction, or multiplication by a constant was less than optimal. (Radar
2269652)

• The -opt speed optimization for division by a constant (other than a constant which is
a power of two) generated incorrect code. This problem was introduced in the 4.1
compilers. (Radar 2274418)

28

• Division by the constant -1 did not correctly set the sign of the result. Division by 1
and -1 are handled as a special case by the compiler, however the negation of the
numerator was overlooked in the -1 case.

• A bug was introduced in version 4.1.0d3 of MrCpp in a fix for the problem where
code generated for calls to dynamic_cast would try to dereference its first argument
without checking whether it was NULL. Under certain circumstances the bug that
was introduced would result in infinite recursion in the compiler and a resulting
crash.

• Long long multiplications were not correctly handled correctly in some cases where
the operand and result registers were the same.

• The compiler sometimes produced an internal error when processing an operation
involving a move from a location specified by the address of a parameter. The
following are example of such constructs:

aggregate_value = *(Aggregate_type *) ¶meter;

x = vec_lvsl(0, ¶meter);

(Radar 2268454)

Bug Fixes in v. 4.1.0d3

• There were a large number of problems reported against MrC's preprocessor. The
preprocessor was re-written in order to fix all known problems. Specific problems
fixed include spurious blanks introduced by macros intended to generate identifiers,
macros which behave differently on successive invocations with the same arguments,
failure to stop the expansion of calls to macros already being expanded, over-
evaluation of some arguments, and infinite recursion of the macro processor. Please
let us know if any new problems have been inadvertently introduced in the new
implementation of the preprocessor. (Radar 1307014, 1315304)

• In certain cases the optimizer would go into infinite recursion, ultimately resulting in
the compiler crashing. The circumstances under which this would happen are not
easy to characterize, but they involved constructs that the compiler was trying to turn
into ternary expressions ("… ? … : …").

• A number of internal errors in the code generator and optimizer have been fixed.
The circumstances under which some of these errors occur are not easy to
characterize. Particular errors that have been fixed include ones which produce the
following message:

• Register fp14 not found in list (RemFromRegList)

29

• In certain circumstances, when compiling with the -opt speed or -opt size options,
MrC would generate bad code for evaluating whether to branch on a conditional
statement. The bug appeared in very large functions.

• The compiler generated bad epilogs under the -opt size option for routines using
enough floating registers to require saving and restoring non-volatile floating point
registers.

• MrCpp did not try operator conversions when encountering an object as an array
subscript. (Radar 1221592)

• The compiler issued "variable not used" warnings for some compiler-generated
temporaries with names of the form ".TMP…".

• Under the -opt speed and -opt size options the compiler generated bad
immediate values for some vsldoi instructions.

• MrC did not handle the scheduling of vector saturate instructions correctly. Also,
under certain circumstances, the ordering of mfvscr and mtvscr instructions could
be incorrect.

• MrC switched two of the arguments to the vmaddfp and the vfnmsubfp vector
functions. (Radar 2258445)

• There were a number of other problems which appeared in MrC[pp] 4.1.0d2 when
used in conjunction with the new StdCLib released at that time, including the
creation of bad object files. These problems were the result of an error in the
realloc function in that library.

Bug Fixes in v. 4.1.0d2

• A number of code generation problems have been fixed. Many of these bugs only
appeared under subtle combinations of conditions which are not easily described
without referring to the internal operation of the compiler, so there isn't much to say
about them other than that we're happy we found them and fixed them.

• Given a class A with an explicit virtual destructor with an explicit empty exception
specification, and given a class B inheriting from A, the compiler automatically
generates a virtual destructor for B. In doing do, the compiler did not bother to
propagate the exception specification from the destructor in class A, but then issued
an error for a mismatched exception specification. The appropriate exception
specification is now propagated. An instance of this problem appears in the
stdexcept.h header.

30

• The compiler did not always propagate the correct type information when reducing
expressions of the form "*(cast)&var" to "var", so an expression like "*(ULONG
*)&buf[4]" would result in memory accesses to the wrong location. (Radar
1655090)

• The compiler would sometimes dereference pointers on the right hand side of
question-colon expressions before the left hand side was fully evaluated. (Radar
1669841)

• In certain circumstances involving user-defined conversions involving enums the
compiler would generate a spurious ambiguous conversion error. (Radar 1631487)

• In power alignment mode certain cases of structures whose first element was a
declaration of a nested structure or union containing a double would have a different
size when compiled by MrCpp and by MrC. (Radar 1677141)

• In certain cases the optimizer would use incorrect registers in load/store update
instructions accessing loop induction variables. (Radar 1647531)

• The produced a bad fixup entry in the object file in cases where the only reference to
a destructor was from an exception table entry for a compiler-generated constructor.

• The compiler mistakenly typed constants of the form "<n>e<m>f" as doubles instead
of floats.

• The compiler mistakenly made sizeof(+x) equal to sizeof(x) instead of
sizeof(int).

• The optimizer erroneously turned a loop's conditional branch into an unconditional
branch in certain conditions when the initial value of the loop induction variable was
set before this loop and then the value of expression expressing that initial value was
also changed before entering the loop. (Radar 2219054)

• Destructors that were called through thunks (which adjusted the this pointer) were
not using the adjusted this pointer for the operator delete call that followed. (Radar
1172105)

• The digraphs for the #, ##, {, }, [,] were not recognized.

Known C++ Language Deficiencies

• Templates. Partial template specializations are not supported. Partial ordering of
function templates is not supported.

31

• Standard libraries. There is a version of the STL library for MrC available from
STLport. The stream headers and libraries are missing some classes. The headers
and libraries do not use namespace std.

• While overloading of operator new and delete is supported, overloading of operator
new[] and delete[] is not.

• Operator new and typeid expressions do not throw exceptions.

Known Problems

• MrC's Commando dialogs do not support all of the latest changes in command line
options.

Manual Errata

• Page 3-52 of the "MrC/MrCpp: C/C++ Compiler for Power Macintosh" manual
incorrectly states that the "__option(<option_name>)" feature can be used in normal
conditional statements. Its use is actually limited to preprocessor conditionals. The
following shows the correct way to test whether the ansi option is set (as opposed to
what is shown in the manual).

#if __option(ansi)
...
#endif

32

