
Release Notes

MrC and MrCpp v. 3.0.1

C and C++ Compilers for Power Macintosh

Contents
Major Changes from v. 2.0 ..2

Language Changes ...2
Options ...2
New Defaults..3
Pragmas..3
Intrinsic Functions..4
Misc..4

General Information...4
Incompatibilities...5

Precompiled Header File Incompatibilities..5
MrCPlusLib Incompatibilities..5

Command Line Options ...6
Changes to ABI..10

Structure Passing by Value ..10
Virtual Function Tables and RTTI...11

New Language Features...11
C++ Exception Handling ...11
RTTI (Run Time Type Information)..12
bool Predefined Data Type ..12
long long Predefined Data Type ..13
alloca() Stack Allocation..13
Direct to SOM..14
Pragmas (General)..21
Intrinsic functions ..31

Optimization...33
Other Improvements ..34
Compatibility and Usage Issues...35
Known Outstanding Bugs ..36
Bug Fixes in v. 3.0.1 ..36

Major Changes from v. 2.0

Warning: Incompatible changes in MrCpp’s ABI (Application Binary Interface)
mean that most people should recompile all projects that use MrCpp.
This also means that you cannot mix C++ objects produced by MrCpp
v. 3.0.1 with object files compiled from earlier versions of MrCpp.
This restriction specifically applies to the use of objects produced by
MrCpp compilers before version 3.0.0d1, including v. 2.0.1f (which
was made available on ETO #22). Note that this only affects C++.

Language Changes

• A new C++ vtable layout and an ABI that is incompatible with previous versions of
this compiler.

• Support for C++ Exception Handling

• Support for 64-bit integers: long long predefined type.

• support for C++ Run Time Type Information (RTTI).

• bool predefined C++ data type.

• Function-try-block syntax is now supported.

• Exception-specifications (throw clauses) are now supported on function pointer
declarations.

Options

• Command line options: -alloca, -ansifor, -bool on|off, -EH, -ER, -exceptions on|off,
-inline all,-opt speed, warn_uninit, -opt speed, warn_maybe_uninit, -opt
size,warn_uninit, -opt size, warn_maybe_uninit and -rtti on|off, -abi [old | newest,
-aslm, -ir pathname[,...], -target 704.

• The built-in boolean function __option(<keyword>) is used, for a defined set of
keywords, to test whether a command line option or pragma is in effect.

The following keywords have been added:

New __option keywords Condition tested

 __option(RTTI) -rtti on
 __option(fp_contract) -fp_contract on
 __option(maf) Same as __option(fp_contract)
 __option(direct_to_SOM) -som
 __option(SOMCallOptimization) #pragma SOMCallOptimization on in

 effect
 __option(SOMCheckEnvironment) #pragma SOMCheckEnvironment on in

 effect
 __option(ldsize128) -ldsize 128
 __option(ANSI_strict) -ansi strict in effect
 __option(bool) -bool on

New Defaults

• The access of template functions instantiations has been reversed. The default
template access is now “public”. It was previously “static” and required a #pragma
template_access public in order to get the templates instantiated

• RTTI is on by default. Therefore, you must either link with MrCPlusLib.o or
explicitly turn RTTI off by using the option -rtti off. (NOTE: This might be
needed even if your program previously did not require MrCPlusLib.o at all.) If you
used the default setting for RTTI, your C++ code MUST be linked with the
MrCPlusLib.o, 3.4.4b1 (or greater version number), library. The implicit option,
-rtti on, is the default behavior of the releases of MrCpp version 3.0.0d1 or greater
. Therefore, the link to the MrCPlusLib.o is needed to avoid unresolved references
by the PPCLink tool to the RTTI type_info() functions that are in code generated
for Class objects. Another alternative is to explicitly turn off RTTI by the use of the
option -rtti off.

The symptoms you’ll see if you either have the wrong library or omit the library are
PPCLink errors like this: “Reference to unresolved symbol
__Type_info::_rttivtbl”. NOTE: If you had a program that formerly did not
require MrCPlusLib.o but did define polymorphic types, then it will now require the
current MrCPlusLib.o (or the -rtti off workaround).

Pragmas

• New MacSOM pragmas:

#pragma SOMModuleName id1::id2::...::idn,
#pragma SOMCheckEnvironment on | off | reset, and

#pragma SOMCallOptimization on | off | reset
#pragma SOMCModuleName id1::id2::...::idn

• Other new pragmas:

#pragma ignore <id> ...

#pragma disjoint (<disjoint-list>)

Intrinsic Functions

• Support for alloca() built-in intrinsic function.

• Intrinsic functions were added for machine instructions MTFSB0 and MTFSB1:
extern void __mtfsb0 (unsigned int crbD); /* MTFSB0 crbD */

extern void __mtfsb1 (unsigned int crbD); /* MTFSB1 crbD */

Misc.

• DOS, Unix, and Macintosh formatted files are accepted.

Source files from all three of these platforms are accepted. The compiler assumes a
“line” in a file can be terminated by a newline (0x0D, as in MPW), linefeed (0x0A, as
in Unix), or the sequence newline/linefeed (0x0D0A, as in DOS).

General Information

MrC and MrCpp are C and C++ compilers which generate PowerPC XCOFF object
files for Power Macintosh systems. Elsewhere in this document we often refer to both
compilers by the single name MrC since the compilers are essentially the same other
than the language dialect they support.

This release of MrC includes:

• support for C++ exception handling

• support for C++ Run Time Type Information (RTTI)

• alloca() builtin function for dynamic stack allocation

• pragmas for changing options in a file

• pragmas for generating inline / out-of-line traceback tables

• optimization improvements

• loop unswitching

• warning for use of undefined variables

• bug fixes

• pragmas for Direct to SOM

• pragmas for code placement, segmentation, inlining, and CFM

• support for PowerPC 604, X704

• intrinsic functions to generate special PowerPC instructions.

• intrinsic functions header file Intrinsics.h

• bool predefined data

• long long predefined data type

Incompatibilities

Precompiled Header File Incompatibilities

Precompiled headers created by MrC are not compatible with precompiled headers
created by MrCpp, and vice versa.

MrCPlusLib Incompatibilities

This version of MrCpp introduces an incompatible change in the layout of the virtual
function tables (vtables) in order to support the new Run Time Type Information
(RTTI) feature. In cases where it matters (libraries which contain any polymorphic
classes), the incompatibility is detected at link time. See the “Changes to ABI/Virtual

Function Tables and RTTI” section for details. The MrCPlusLib library provided with
the compiler is also incompatible with the versions of the library prior to version
3.4.4b1 and must be used only with this compiler.

Command Line Options

This release has several new command line options.

Note: Defaults are underlined.

-abi newest

generate code which conforms to newest Macintosh C++ ABI standard

-abi old

generate code which conforms to old Macintosh C++ ABI standard

-alloca

Recognize alloca as a built in function. The -alloca and -exceptions
on options may not be used together. See the section on new language
features for a further description of alloca.

-ansifor

Limit for-statement declared initializer to the for-body.

-aslm

For ASLM compatibility, reverts to old vtable format. This option is
incompatible with exceptions and RTTI.

-bool on

Enable C++ bool, true, and false as standard keywords.

-bool off

bool, true, false are normal identifiers.

-EH

Same as -exceptions on.

-ER

Same as -rtti on.

-exceptions on | off

Generate the static tables needed in order to support exception handling.
Also, allow try, throw, and catch in C++ source code.

Note: C code should also be compiled with -exceptions on if it is
likely to call C++ code which might throw an exception.

-ignorepragma id,...

Ignore #pragmas with the specified #pragma id’s.

-inline all

Functions are inlined wherever possible, regardless of cost; this was
formerly -I2.

-ir pathname [,pathname…]

Recursively search for include files in directory specified by pathname.

-load

A change to this option removes a restriction and now a -load ph file can
be used to create another -dump ph file. In other words you can have
both -load and -dump on the command line.

-nomfmem

The default behavior of the compiler is that the front end uses
Multifinder memory and the back end uses MPW memory. In some
cases, this results in more overall memory usage due to the fact that
there is no overlap in memory usage between the front end and the back
end. This can also constrain other applications which require Multifinder
memory.

The -nomfmem option enforces the use of MPW memory by the front
end. A caution here is that when using precompiled headers (load dump
files), the memory requirement by the front end may be exceedingly
large, in which case the option is either to use a larger MPW partition or
to revert back to using Multifinder memory.

-opt speed,unroll

The default for speed compile has been changed from unroll to
nounroll. To enable unrolling use speed,unroll.

-opt speed,unswitch

This option enables the “unswitching” optimization within loops. If a
loop has a conditional statement (if B then C else D) and the
condition is loop invariant, then the optimization is as follows: Two

copies of the loop are made, one containing C and all statements other
than the conditional statement; the other similarly contains D. The
condition, B, is removed from the loops and is used to determine which
copy of the loop to execute. The case of conditionals without an else
clause is handled similarly.

-opt speed,unroll,unswitch

This is an example to show that unroll and unbswitch may be used
together, that is, these options may be combined.

-opt speed,warn_uninit

-opt size,warn_uninit

The warn_uninit suboption of -opt speed or -opt size reports when
a variable is definitely being used before it has been assigned a value.
Usually, such a situation is a logic error.

Because of the effects of global optimization, the source position
reported for the reference in question is not always precise. By using the
variable name and approximate line number, it should be straightforward
to locate the reference.

-opt speed,warn_maybe_uninit

-opt size,warn_maybe_uninit

The warn_maybe_uninit suboption of -opt speed or -opt size
reports when a variable is possibly used before having been set.
Occasionally, correct programs may be flagged by this option. For
example, the use of x in the second if-statement below is flagged by
warn_maybe_uninit even when condition1 and condition2 are
equivalent:

 int x;

 if (condition1)

 x = 1;

 if (condition2)

 return x;

Because of the effects of global optimization, the source position
reported for the reference in question is not always precise. Using the
variable name and approximate line number it should be straightforward
to locate the reference.

-prefix pathname [,pathname…]

Include the specified file(s) prior to reading the first source file.

(a). A -prefix file can be a precompiled header file so that -load need not
be used.

(b). The first #include can be on a precompiled header as long as only
comments preceded it.

-rtti on | off

Enable/partially disable run-time type information. The “off” value
causes a partial disabling of the Run-Time Type Information). See
“Changes to ABI/Virtual Function Tables and RTTI” below for details.

-som

This option enables Direct to Som support in MrC. When this flag is
specified, classes which are derived (directly or indirectly) from the
special class named SOMObject will be processed differently than
ordinary C++ classes. For these classes, MrCpp will generate MacSOM
enabling class meta-data instead of standard C++ vtables.

-target 604

Generate code for PowerPC 604.

-target 704

This option is to tell the compiler to schedule instructions and optimize
for the yet-to-be-released Exponential X704™ processor..

-tb on,pragma,export,outofline

This pragma gives the user control over the generation of traceback
tables. By default the compiler does not generate traceback tables. The
-tb on is akin to the -traceback option. It generates traceback tables
for all functions defined in the file. The -tb pragma generates traceback
tables for all the functions specified by #pragma traceback (see
“pragma” in the section below). When -tb export is specified, then
functions marked for exporting with #pragma export will have a
traceback table. When -tb outofline is specified on the command
line, all the traceback tables generated as a result of the other traceback
options and pragma are generated in their own private csect (XCOFF
type XMC_TB). One csect is generated for each function to which the
pragma or he option is applicable. In addition, an extra branch
instruction is generated after the branch and link instruction
symbolizing the end of a particular function’s c-sect. The offset to the
traceback csect from this branch instruction is encoded in this branch
instruction. The offset also has a relocation entry so that the offset entry
is updated if the traceback table is relocated by the linker. PPCLink
should coalesce csects of type XMC_TB and put them at the end of the
PEF code section.

-unique_strings

Force all string constants to be unique. The default for the compilation
has been changed from generating unique strings to sharing strings.

Note: In some previous documentation for MrC the -curdir option was misspelled as
-currdir. The correct form is -curdir.

Changes to ABI

Two changes were made in this release of MrCpp as to how the compiler passes
arguments to certain functions, and how the virtual function tables are laid out. These
are changes in MrCpp’s ABI (Application Binary Interface) and means that most
people should recompile all of their projects that use MrCpp. Note that this only affects
C++ programs.

Structure Passing by Value

MrCpp now generates code using different calling conventions when there is a function
which is passed an object by value. In simple cases the object is simply passed by value
as happens with structures. However, if the object is an instance of a class which has a
copy constructor or a destructor, then a temporary copy of the object is created and is
passed by reference.

Previously the criteria for creating the temporary and passing it by reference was just
the existence of a copy constructor; now this will also happen if there is a destructor.
Previously if there was a destructor but no copy constructor the object would be passed
by value and destructed at the end of the called routine. Now all destructors for such
objects are called in the calling routine after returning from the called routine.

The only case that is actually handled differently is the case where an object passed by
value has a destructor and no copy constructor. However, since code produced by
previous versions of MrCpp passed the object by value and current versions of MrCpp
pass the object by reference, there is the possibility of serious runtime problems if code
calling such a routine is compiled with one version of MrCpp and if the routine itself is
compiled with an incompatible version of MrCpp. Thus is it recommended that people
recompile everything when they switch to this new version of MrCpp.

There were good reasons for making this ABI change. First, the language standard
requires that the destructor for such an object be called after the full expression in
which it appears has been evaluated, so our previous handling of such cases in which
we called the destructor inside of the called routine was incorrect. Secondly, our
previous strategy created problems for our implementation of exceptions. And lastly,
this is a small step toward a standard for a common ABI for all Macintosh compilers.

Virtual Function Tables and RTTI

For each class which contains virtual functions, the compiler will generate a Virtual
Function Table (vtable). In this release of MrCpp, the format of the vtable has changed
in an incompatible way. When an attempt to link together incompatible object files is
made, the incompatibility is detected at link time, because the new vtables will have a
different kind of name. A linker error message which mentions an undefined symbol
with a name that starts with _vtbl or _rttivtbl indicates an attempt to link together
incompatible object files.

The -rtti off option allows a partial disabling of the RTTI (Run Time Type
Information). The virtual function table entry which normally (-rtti on) contains a
pointer to the low-level RTTI string is replaced with a -1. This does not make the
vtable compatible with older versions of MrC, but it can save some data space.

Vtables generated by former versions of MrCpp did not contain space for this pointer.

New Language Features

MrC 3.0.1 supports a number of new language-level features, including new pragmas
and intrinsic functions.

C++ Exception Handling

When the -exceptions flag is given, exception handling is enabled. This permits the
use of try, throw, and catch blocks in C++ source, and it generates some small static
tables for either C or C++ code. In order for exceptions-enabled code to work, it must
be linked with exceptions-enabled libraries, and must also be able to find the new
shared library, MrCExceptionsLib. This release supports only standard C++
exceptions—an exception can be thrown only synchronously, and only from C++ code,
via a throw statement.

The C++ language support library (MrCPlusLib.o) contains memory allocation
routines which will work with both -exceptions and non-exception-aware code. (The
default versions of the new operator, and the array new operator are both changed, but
the calling sequences also changed in such a way that both versions can coexist as
overloaded functions in one library.)

The new shared library MrCExceptionsLib should be placed somewhere where it can
be found by any exceptions-enabled application. The standard location is in the
Extensions folder within the System Folder.

In order for exceptions to be handled correctly, exceptions-enabled libraries must be
used. This is especially important for “call-back routines”, called from libraries.

The default behavior of the new operator has changed in this release. When the new
operator fails because no memory is available, it will throw an exception. In previous
releases, it would return a NULL (zero) pointer.

Limitations

As stated above, code compiled with -exceptions must be linked with the new
versions of the libraries MrCPlusLib, MrCIOStreams.o (if it is used), and
MrCExceptionsLib. In addition, PCCLink 1.5 (or a higher version number) must be
used to link exceptions-aware code.

The library currently makes little use of exceptions— the various forms of the new
operator are the only library routines which will currently throw any exceptions.

All instances of #pragma options(exceptions) in a source file will be ignored.
Exceptions can only be turned on from the command line.

RTTI (Run Time Type Information)

MrCpp's implementation of RTTI adds five new keywords: typeid, const_cast,
dynamic_cast, reinterpret_cast, and static_cast. In order to use typeid, the
header <typeinfo.h> must be #included.

bool Predefined Data Type

MrCpp now supports bool as a predefined data type. When -bool on is specified on
the command line, the identifiers bool, true, and false all become reserved keywords

of the C++ language. See latest C++ Standard documentation for the semantics on how
to use the bool data type.

Note, with this feature enabled, older versions of types.h will cause errors since true
and false are defined there as enum values. You must use the latest version of types.h.

In order to test for the presence of this feature you can use __option(bool) or
__option(nobool).

long long Predefined Data Type

Support has been added for 64-bit arithmetic. You indicate this by declaring a variable
as type long long. When using this data type you do not need to use the Math64
header or library. Where possible, the compiler generates all 64-bit operations directly.
Anything that cannot be done directly is done by routines provided as part of
PPCRuntime.o.

The long long data type is accepted in most every place a long data type would be
accepted except for the following:

• When -ansi strict is specified on the command line.

• As a switch statement control expression or case label.

• As a constant in a preprocessor statement.

• Bit-field widths.

• As an enum value.

• As an array dimension.

• As a template value argument.

Support for the long long data type has been added to the C library. See the MPW
Libraries & Interfaces Release Notes for details.

alloca() Stack Allocation

alloca provides a way to dynamically allocate stack space. When the -alloca option
is specified on the command line, the compiler recognizes alloca() as a built-in
function having the prototype:

void * alloca (size_t num_bytes);

Calling alloca() dynamically allocates the requested amount of memory from the
stack and returns a pointer to this doubleword-aligned area. The area is freed upon
return from the function, or by any other mechanism that resets the stack pointer to a
parent’s call frame.

alloca() has the advantage over malloc() of being much more efficient, but the user
is cautioned that alloca() performs no checking of stack bounds and the return value
of alloca() does not indicate whether stack space has been exhausted. The user must
ensure an adequate stack region for the program (by appropriately setting the
application size resource, or for MPW tools by specifying a stack size with the
“setshellsize” MPW command).

A function that calls alloca() is not eligible for inlining since removal of the function
call boundary by inlining might greatly increase the program’s runtime stack
requirement.

Direct to SOM

General Description

MrCpp supports Direct-To-SOM programming in C++. You can write MacSOM based
classes directly using C++, that is, without using the IDL language or the IDL compiler.

To use the compiler’s Direct-To-SOM feature, combine the replacement SOMObjects
headers (described below) from CIncludes with an MPW installation that already has
SOM 2.0.8 (or greater) installed. Look in the SOMExamples folder for build scripts
called DTS.build.script .

The -som command line option enables Direct-To-SOM support. When this flag is
specified, classes which are derived (directly or indirectly) from the special class named
SOMObject will be processed differently than ordinary C++ classes—for these classes,
the compiler will generate the MacSOM enabling class meta-data instead of standard
C++ vtables. Also when -som is specified on the command line, the preprocessor
symbol __SOM_ENABLED__ is defined as 1.

MrCpp ships with new, replacement MacSOM header files. The header files have been
upgraded to support Direct-To-SOM. Two new header files are of special interest:

Header Requirements

MrCpp ships with new, replacement MacSOM header files. The header files have been
upgraded to support Direct-To-SOM. Two new header files are of special interest:

• somobj.hh Defines the root MacSOM class SOMObject. It should be included
when subclassing from SOMObject. If you are converting from IDL
with C++ to Direct-To-SOM C++, then this file can be thought of as a
replacement for both somobj.idl and somobj.xh .

• somcls.hh Defines the root MacSOM meta-class SOMClass. It should be
included when subclassing from SOMClass. If you are converting
from IDL with C++ to Direct-To-SOM C++, then this file can be
thought of as a replacement for both somcls.idl and somcls.xh .

Several other header files are worth documenting in relation to their usage with Direct-
To-SOM.

• som.xh This standard MacSOM header file defines the procedural interface to
SOMObjects™ for MacOS runtime kernel. It is not needed for basic
Direct-To-SOM use with the compilers; however, it can be included
should you wish to invoke procedural kernel interfaces.

• somdts.h New for Direct-To-SOM support. Do not include directly from your
source. This header file is included internally by the MacSOM header
files as needed.

• somobj.xh Use somobj.hh instead.

• somcls.xh Use somcls.hh instead.

A new version of all the SOMObjects™ for MacOS header files is provided for use with
Direct-To-SOM. These header files replace the older versions, and still allow non-
Direct-To-SOM IDL, C and C++ MacSOM class library development.

Note, as part of the normal SOM installation you should also have “somlib” in the
MPW {SharedLibraries} and “SOMobjects™ for Mac OS” in your Extensions folder.

Language Restrictions

Direct-To-SOM supports the development and use of MacSOM classes as well
as DSOM and CORBA compatible classes. MrCpp handles both SOM and
DSOM classes uniformly.

SOMObjects and the CORBA model of programming requires a higher degree
of encapsulation than is allowed in standard C++. These requirements result in
the following language restrictions which apply to either instance objects of or
classes derived from SOMObject.

With one exception, the C++ language restrictions listed below apply only to
operations on SOM classes or to operations on their instance objects. The
exception is that enums must be int (full) sized in the entire compilation unit.

Standard C++ (non-MacSOM based) classes can still be declared and used when
the -som flag is on, and, of course, these restrictions do not apply to them.

(a) When subclassing, the compiler uses the class derivation to determine if
the new class should be a MacSOM class. If it finds SOMObject as the
base class then the new sub-class becomes a MacSOM class, otherwise
not. When subclassing with more than one directly specified parent (i.e.,
multiple inheritance), all parents must either be MacSOM classes, or none
must be MacSOM classes — a class may not inherit from both a MacSOM
and non-MacSOM class.

(b) Struct and union MacSOM-based classes are not allowed.

(c) All class inheritance must be virtual.

(d) All data members must be private.

(e) Non-inlined member functions must be unique independent of casing and
signature. Thus, in general, function and operator overloading and
overriding are not allowed even if the function name has different casing.
Because the CORBA standard requires case insensitivity, it is allowed to
override a virtual function with the same (case independent) name and
signature.

(f) There must be at least one introduced, overridden, or virtual inline member func-
tion in the class. The lexically first such function in the class is treated as the
“key” member function used to detect whether the class is implemented in the
compilation unit.

(g) Inlined member functions have their access restricted to the attributes of
the section in which they are defined. Thus public inlines can access only
public members, protected inlines can access protected and public
members, and private inlines have full access.

(h) No static members (data or functions) are permitted.

(i) Only parameterless constructors (ctors) are allowed.

(j) No copy constructors are allowed. Thus passing MacSOM objects by
value and other direct copy assignments are not allowed.

(k) No global MacSOM objects are permitted.

(l) Sizeof() expressions involving SOMObjects and their classes are not
allowed.

(m) All enums are int-sized. Specifying -som on the command line will imply
-enum max which will cause all enums to be int sized. This affects the

entire compilation unit. (The compiler does not allow multiple sizes of
enums in SOM environments.)

(n) Method invocation with explicitly scoped by classname are treated with
protected access and the specific classname must be a direct parent of the
implementation class. “Scoped” here means that the access specifies the
scope explicitly, e.g., A::member. Thus, method invocation syntax using
classname qualification is used in MacSOM method implementations to
perform MacSOM parent call through.

(o) Templates that expand to MacSOM classes are not allowed.

(p) MacSOM-based classes may not have nested class definitions.

(q) Long double member function parameters and return type are not allowed.

(r) Aggregate parameters cannot be passed by value.

(s) Members with a variable number of argument (i.e., “...”) are not allowed.

(t) Only the basic forms of operator new and delete are allowed (e.g., new(T),
delete p). In other words the placement and array forms of new (e.g.,
new (address) T, new T[n]) and array form of delete (e.g., delete []
p) are not allowed.

(u) Arrays of MacSOM objects are not allowed.

(v) Embedded MacSOM objects are not allowed, i.e., MacSOM objects
declared within other classes.

(w) MacSOM classes are always defined as if they were surrounded by an
#pragma align=power and #pragma align=reset. In other words, all
MacSOM classes are power aligned.

MacSOM Pragmas

MrCpp supports seven MacSOM-specific pragmas:

#pragma SOMReleaseOrder (method1, method2, ..., methodn)

#pragma SOMClassVersion (className, majorVersion, minorVersion)

#pragma SOMMetaClass (className, metaClassName)

#pragma SOMCallStyle [O]IDL
#pragma SOMModuleName id1::id2::...::idn
#pragma SOMCheckEnvironment on | off | reset

#pragma SOMCallOptimization on | off | reset

These pragmas supply the compiler with information it needs to provide to the
MacSOM runtime kernel or for the compilation itself. Please refer to the
SOMObjects Developers Toolkit documentation, specifically, the Users Guide,
for more information regarding release order, class version, meta class
programming and call styles. The SOMCheckEnvironment and
SOMCallOptimization pragmas are specific to MrCpp and are fully described
here.

The syntax for these is compatible with other Direct-To-SOM C++ compilers.
All these pragmas except for SOMCheckEnvironment and
SOMCallOptimization may only occur within the scope of the class definition
for which they are intended. The pragmas may occur more than once within the
class but only if they specify exactly the same information. An error is reported
if they are inconsistent.

#pragma SOMReleaseOrder (method1, method2, ..., methodn)

As with IDL, MacSOM based classes must specify the release order of the
member functions of the class. This is done using the SOMReleaseOrder
pragma. The methodi’s in the pragma are simple member function (case
independent) method names with no qualification and no signature.

The SOMReleaseOrder pragma must specify every member introduced (i.e., no
overrides) by the class. Once the release order is specified, and the class made
available to clients, that order must not be changed. If a member is deleted, its
name must remain in the release order. If a new member is added, its name
should be added at the end of the release order list. If a member is migrated up
in the ancestry, its name will appear in both the ancestor and also in its original
release order.

If the SOMReleaseOrder pragma is omitted, the assumed release order will be
the lexical order that the member functions appear in the class. This is permitted
since it can be a inconvenient to maintain the pragma during initial class
development. But the pragma should be provided when the class is released for
use by clients. If the pragma is supplied, it is considered an error condition to
not list all the class’ members.

#pragma SOMClassVersion (className, majorVersion, minorVersion)

The SOMClassVersion pragma specifies the version numbers for the MacSOM
class. If the pragma isn’t provided, zeros are assumed. Version numbers must be
non-negative. If the class is being defined, then its version numbers are passed
to the MacSOM kernel in the class meta-data. When an instance of the class is
instantiated via the new operator, the version numbers are passed to the runtime
kernel which performs a consistency check to make sure the class
implementation is not out of date.

#pragma SOMMetaClass (className, metaClassName)

A class that defines the implementation on class objects is called a metaclass.
Just as an instance of a class is an object, so an instance of a metaclass is a class
object. Moreover, just as an ordinary class defines methods that its objects
respond to, so a metaclass defines methods that a class object responds to.

SOMClass is the root class for all SOM metaclasses. SOMClass itself is a
descendent of SOMObject and therefore inherits all the generic object methods;
this is why instances of a metaclass are class objects (rather than simply classes)
in the MacSOM runtime. All metaclasses must be descendants, directly or
indirectly, of SOMClass.

The default metaclass for a MacSOM class is SOMClass. The SOMMetaClass
pragma allows the user to pick another metaclass. It is an error if the specified
metaClassName does not have SOMClass as one of its ancestors. Also a class
cannot be defined as its own metaclass. Thus the className and
metaClassName parameters must never specify the same class.

#pragma SOMCallStyle OIDL

MacSOM itself supports two call styles, an older style that does not support
DSOM, called OIDL, and the newer that does, called the IDL call style. MrCpp,
by default, assumes that classes defined using Direct-To-SOM use the newer
IDL call style. When using this call style, all methods must have an
Environment pointer parameter as the first parameter. Just as when using
MacSOM without the DTSOM compiler support, the environment parameter is
used to communicate exception information following method invocation. This
environment parameter is explicitly required in the (DTSOM) C++ method
specifications. The pragma for OIDL is supplied and used by the SOM base
classes SOMObject and SOMClass. Note that when overriding methods
declared in SOMObject or SOMClass, the override method declaration should
appear exactly the same as the method when originally introduced. That is, for
SOMObject and SOMClass introduced methods, no environment parameter is
used; however, for other classes an environment parameter is required.

#pragma SOMModuleName id1::id2::...::idn

When an instance of a SOM object is created, that class’ name is made known to the
SOM runtime since the name is generated as part of the static data associated with any
MacSOM object. This means that there is the possibly of name collision between two
SOM objects (usually provided from two different suppliers). The SOMModuleName
pragma should be used to avoid this problem. It approximates the module name
functionality in IDL.

The idn’s in the SOMModuleName pragma specify simple identifiers. Any number of
identifiers may be specified, each separated by a ‘::’. The sequence of identifiers is

used to qualify all the externally visible names associated with a MacSOM object. In
other words, the token table name and the class name generated as part of the class’
static data so that the class is unique with respect to the SOM runtime environment.
For example, for class X, the token table name, XClassData becomes
id1_id2_..._idn_XClassData. The class name that will be known to the SOM
runtime becomes id1::id2::...::idn::X.

#pragma SOMCheckEnvironment on | off | reset

As discussed previously, the compilers assume the IDL call style by default. Thus all
introduced members of all descendants of SOMObject and SOMClass have an
Environment pointer parameter as the first parameter. The Environment is a data struc-
ture that contains environmental information and is also used to return exception data to
a client. After a call to an IDL introduced member returns, the caller can look at the
_major field in the Environment data. If the value of _major is not equal to
NO_EXCEPTION (0), there was an exception returned by the call. The caller can retrieve
the exception name and value using the somExceptionId and somExceptionValue rou-
tines.

Assume the analysis of the exception is not done at the call site but rather in a routine
called __som_check_ev(Environment *). Then a typical member call might look like,

member(&ev, other args...);
__som_check_ev(&ev);

This can get tedious to do on every member call, so the SOMCheckEnvironment
pragma is provided to tell the compiler to automatically insert a call to
__som_check_ev which should check _major and act accordingly if it is non-zero.
__som_check_ev is written by the user and must have the following prototype (which
is defined in somdts.h),

extern "C" void __som_check_ev(Environment *);

Note that __som_check_ev should clear the error status of the Environment (by calling
somExceptionFree), otherwise the next SOM call that returns will see the same error
again!

In addition to inserting a check after each member call, when SOMCheckEnvironment
is on, the compiler will insert a call to __som_check_new after each operator new call.

T *p = new T;
__som_check_new(p);

The user also supplies __som_new_new which should check to see if the allocation suc-
ceeded. It has the prototype (defined in somdts.h),

extern "C" void __som_check_new(SOMObject *);

These checks are inserted by the compiler as long as SOMCheckEnvironment is on. If
they are not needed, #pragma SOMCheckEnvironment off may be specified. This is
also the default setting.

Finally, a reset option is provided in case nesting of this pragma is needed. It restores
the SOMCheckEnvironment state to what it was at the time of the most recent corre-
sponding on.

#pragma SOMCallOptimization on | off | reset

Inserting the additional check code enabled by the SOMCheckEnvironment pragma
will obviously increases code size. Even without the checks, just doing a member call
requires accessing a pointer in the SOM data (generated by the compiler) and indirectly
jumping through that pointer. On the PowerPC, a size optimization is available to
minimize the call site code down to a single instruction (not counting the parameter
setup)!

The size optimization can be enabled by using #pragma SOMCallOptimization on.
The optimization involves moving most of the member call code to a small code
sequences referred to as “glue” code. The glue code is generated as part of the compila-
tion unit. There is one or two glue code routines for each explicitly called member (one
unless the same member is called with both SOMCheckEnvironment on and off). But
all calls to the same member go through the same glue code associated with that mem-
ber. The member call becomes a single instruction to the glue routine (ignoring parame-
ter setup). The glue is defined as if a #pragma internal was done so there is no NOP
following the call.

Each glue routine is responsible for determining the member pointer only. All the call-
ing (and the requisite NOP following the call) and Environment or NULL checking is
constant and therefore factored out into a small set of library routines. The glue code
therefore branches to these library routines. These routines are located in
PPCRuntime.o.

In an experimental implementation of this optimization in OpenDoc 1.1 code size was
reduced by approximately 10%.

Pragmas (General)
#pragma unused (var_or_param [,var_or_param]...)

where var_or_param is a local variable or function parameter.

This pragma suppresses compile-time warnings (warning 29) that are emitted when the
compiler discovers that one or more local variables or parameters have not been

referenced within the body of a function definition. The pragma is only allowed within
the body of a function definition. The warnings may either be suppressed by explicitly
including the pragma or specifying-w 29 on the command line. Note that variables are
only checked for reference independent of flow analysis. There is no validation as to
whether such variables are used correctly or skipped over due to changes in flow
control.

#pragma [no]inline_func ['list'] <func_list>

<func_list> ::= ['('] <the_list> [')']
<the_list> ::= <func> | <the_list> ',' <func>
<func> ::= ['::']<id> | <member> | <ctor> | <dtor> |

<operator> | <template>(only <id> for C)

<member> ::= <id> '::' <id> | <member> '::' <id>
<ctor> ::= <id> '::' <id>(<id>s are the same)
<dtor> ::= <id> '::' '~' <id>(<id>s are the same)
<operator> ::= 'operator' <op>
<template> ::= <id> '<' <template_args> '>' '::' <id> |

<id> '<' <template_args> '>' '::' <member>

The inline_func pragma specifies functions that are to be candidates for inlining are all
places in the source following the pragma. Conversely, the noinline_pragma specifies
that its functions are not to be inlined even if explicitly specified for inlining using the
inline keyword in C++.

For C++ we can have a simple id (as in the C case), or a member name. Member
names, in turn, can take to form of ctors (e.g., A::A), dtors (e.g., A::~A), simple
members (e.g., A::foo), operators (e.g., A::operator<< or B::operator int*), and
template members (e.g., T<char, 2>::foo).

<the_list> may optionally be enclosed in parentheses.

The keyword list is ignored unless it is the only identifier specified. Note that if the
first member of <the_list> is list::<id>, then an ambiguity exists in determining
whether to ignore list as a “noise” word. MrC[pp] elects to treat list as “noise” in
that case. If list::<id> must be specified, then it cannot be specified as the first
member, or the optional parentheses may be used. It is an error to omit all function
names or to have a null function name (i.e., two commas).

The Semantics of the pragma are:

• Any function specified on the function list must not be defined or called.
Declarations, however, are permitted. Template references require that the template
definition exist prior to the pragma. That’s the only way the references to instances
can be parsed. However, the specified instances must not exist.

• A valid reference to a function implies that function is a candidate for inlining
wherever it is used.

• A reference to a function in C++ implies a reference to all of its overloads, if any. In
example 1, the reference to T::member3 is a reference to both T::member3() and
T::member3(int).

• Any valid function specified in the [no]inline_func pragma that has not been defined
by the end of the compilation unit will be reported as “undefined” warning.

• Duplicate references to the same functions are reported as a warnings. References to
functions specified for inline_func are reported as an error if an attempt is made to
define them for noinline_func and vice versa.

• If there is a resolution conflict between the inline_func pragma and the auto-inliner,
then the pragma will override the analysis of the auto-inliner.

• Turning inlining or optimization off from the command line overrides these pragmas.

 #pragma [no]inline_site ['list'] <func_list>

The Syntax for the [no]inline_site pragma is identical to inline_func described
above. Thus the keyword list is ignored unless it is the only identifier specified.

The Semantics of the pragma are:

• The [no]inline_site pragma may only be used within a function (brace-enclosed
block) and applies only to that block and all blocks nested within it.

• The [no]inline_site pragma may not be used in template (member) function
definitions. Template definitions can be viewed basically as macro definitions. As
such, preprocessor statements like #pragma are processed as seen. If it occurs within
a template definition it is not in a function. Thus statement (1) applies.

• Inner blocks with their own [no]inline_site pragmas override enclosing block
[no]inline_site pragmas.

• Duplicate references to the same functions is reported as a warning. References to
functions specified for inline_site are reported as an error if an attempt is made to
define them for noinline_site and vice versa in the same block.

• References to defined or declared functions are validated (e.g., they must actually be
functions). References to yet-to-be-defined functions are also permitted but
obviously these are not validated.

• A reference to a function in C++ implies a reference to all of its overloads.

• If a [no]inline_site pragma appears in the middle of a block, then only functions in
the block from the point at which the pragma occurs are candidates for [no]inlining.
The pragma has no effect on calls in the block before the pragma.

• The [no]inline_site pragmas have precedence over the [no]inline_func pragmas for
the same functions.

• Any valid function specified in the [no]inline_site pragma that has not been called by
the end of the block will be reported as “unreferenced” warning (at the end of the
block containing the pragma).

#pragma seldom

The seldom pragma controls movement of the blocks of code containing the pragma.
seldom specifies that a block (of code) is seldom executed and that the compiler may
move the block to the end of its function (csect).

The Semantics of the pragma are

• The pragma may only be used within a function (brace-enclosed block) and applies
only to that block and all blocks nested within it (i.e., this has the same scoping rule
as #pragma [no]inline_site).

• The seldom pragma may not be used in template (member) function definitions.
Template definitions can be viewed basically as macro definitions. As such,
preprocessor statements like #pragma are processed as seen. If it occurs within a
template definition it is not in a function. Thus the rule above applies.

• The pragma applies to the entire block that contains it even if the pragma does not
appear at the beginning of the block.

• Speed optimizations like inlining may be turned off in blocks marked seldom unless
the optimization leads to smaller code size.

#pragma segment <seg_name> [[list] <funclist>]

<seg_name> ::= <id> | string
<funclist> ::= see #pragma [no]inline_func for syntax

Segment names may take the form of a single identifier or a double quoted (possibly
concatenated) character string. Case is significant. The syntax for the <func_list> is
identical to that described for [no]inline_func.

The semantics of the pragma are:

• This pragma may only appear outside of any function definitions.

• For the list form, any function on the list must not be defined or called. See
#pragma [no]inline_func for the complete semantics on the functions in the list
since the segment functions have identical semantics ([no]inline_funct semantics
items 1 and 2).

• A reference to a function in C++ implies a reference to all of its overloads.

• Any valid function specified in the segment pragma that has not been defined by the
end of the compilation unit will be reported as “undefined” warning.

• Duplicate references to the same functions are reported as a warnings.

• The non-list form applies to the next function in the compilation unit and all
following functions unless changed by another non-list segment pragma.

• The list form defines the segments for specific functions and takes precedence over
the non-list form.

• If the string is defined as null (""), the following functions are not defined for any
segment. It is error to specify a null string with the list form of this pragma.

• All functions defined for a particular segment are collected together at link time to be
placed adjacent to each other in the final executable.

#pragma <cfm_pragma> <option>

<cfm_pragma> ::= 'export' | 'import' | 'internal'
<option> ::= 'on' | 'off' | ['list'] | reset| | <name_list>
<name_list> ::= ['('] <the_names> [')']
<the_names> ::= <name> | <the_names> ',' <name>
<name> ::= <func> | <id>

The list form specifies a list of variable or function names. The syntax for function
names is identical to that described for <func>s which make up the <func_list>s
described for the [no]online_func pragmas. The syntax for a <name_list> is the
same as a <func_list> with respect to the treatment of the keyword ‘list’ and
parentheses. The use of this pragma requires that you use PPCLink v. 1.5d3 or later.

Common CFM Pragma Semantics are:

• This pragma may only appear outside of any function definitions.

• Template references require that the template definition exist prior to the pragma.

• The list form of these pragmas may only specify variables before they are defined or
referenced. Thus only externs are acceptable declared variables to the list form.

• The list form of these pragmas may only specify functions before they are defined or
called. Thus functions must be declared (explicitly through an extern or are class
member functions).

• A reference to a member function in C++ implies a reference to all of its overloads.
References to C++ class variables is not allowed.

• Variables and functions referenced by the list forms must be “known” prior to the
pragma. They can be defined or declared. What specifically is legal depends on the
pragma.

• These pragmas are never applied to file scoped symbols, i.e., those using the
keyword “static”. Specifying such a symbol in the list form will be reported as an
error by the pragma.

• Subject to the specific semantics of the CFM pragma (described later), an on CFM
pragma affects all functions and variables following the pragma up to the matching
off.

• Subject to the specific semantics of the pragmas, “inner” nested on pragmas override
or merge with “outer” nested on pragmas.

• The reset option is similar to the off option except that the state is reset to what it
was at the time of the most recent corresponding on.

The Semantics of the Export Pragma are:

• The export pragma is never applied to file scoped symbols, i.e., those using the
keyword static. Specifying such a symbol in the list form will be reported as an
error by the pragma.

• The export and import pragmas are orthogonal and may be applied independently.

• The export and internal pragmas are orthogonal for variables and may be applied
independently.

• Specifying export and internal for functions is an error since these pragmas conflict
with respect to functions (export says generate a TVector while internal says don’t).

The Semantics of the Import Pragma are:

• The import pragma is never applied to file scoped symbols, i.e., those using the
keyword static. Specifying such a symbol in the list form will be reported as an
error by the pragma.

• The import and export pragmas are orthogonal and may be applied independently.

• The import and internal pragmas are mutually exclusive. The import pragma will
disable the internal status if it is set.

The Semantics of the Internal Pragma are:

• The internal pragma is never applied to file scoped variables, i.e., those using the
keyword static. Such variables are implicitly internal. Specifying such a symbol in
the list form will be reported as an error by the pragma.

• Internal does affect file scoped (static) functions indicating that their function
descriptor (“TVector”) may be omitted.

• It is an error to take the address of a “internal” function.

• The internal and export pragmas are orthogonal for variables and may be applied
independently.

• Specifying internal and export for functions is an error since these pragmas conflict
with respect to functions (export says generate a TVector while internal says don’t).

• The internal and import pragmas are mutually exclusive. The internal pragma will
disable the import status if it is set.

The following explains the usage of these pragmas

• Terminology

• A compilation unit is a file compiled using MrC. A fragment is formed by linking
together compilation units. Global symbols in the fragment have the following
attributes:

• Export: List of global symbols that are defined in this fragment and thus can be
exported

• Import: List of global symbols that are referenced indirectly in the fragment.
These symbols can either be defined in the fragment or can be defined in some
other fragment. An extension of this concept is patchability. Symbols that are
defined in a fragment but are patchable require that they be treated as imports.
Thus for a symbol to be patchable, it should be declared as an import.

• Internal: List of global symbols whose uses are internal to a fragment, i.e., all
references to it from a fragment are direct.

• Effect of these attributes on Code generation

• MrC default (i.e., in the absence of any attributes) is to do interprocedural analysis
for functions defined in a compilation unit. Consistent with this, MrC will
generate single instruction call sites (no TOC reload) for global functions defined
in the compilation unit. This is also true for static functions as well

• For functions marked internal, a one instruction call site (no TOC reload) will be
generated

• For functions marked internal and whose address is not taken, a T-Vector may not
be generated in the compilation unit.

• For data marked internal, the data may be placed in the TOC. The size of data can
be controlled by a compile time option. MrC does not do this optimization yet.

• For imported functions, no interprocedural optimizations will be done.

• For imported functions, two instruction call sites will be generated (bl and TOC
reload).

• For imported data, access will be through TOC (that is, indirect).

• Relationship with other options

• shared_lib_export: This mechanism has been used in the past to generate a list
of functions in a .x file and mark them as exports. This mechanism has been
extended to also mark the defined functions as imports. This will provide
backward compatibility and ease of migration for users who want every function
defined to be patchable. However, users should be aware that marking functions
as imports turns interprocedural optimization off for such functions. For this
reason, the users should migrate to using the pragma where they can selectively
specify imports.

#pragma options inline [=] on | all | off | none | 0 |

 1| 2 | 3 | 4 |5 | reset

This pragma is used to either temporarily or permanently override the level of inlining
specified by the command line -inline option. The syntax for the pragma following
the inline keyword is identical to that of the command line (except for reset which is
specific to this pragma). The parameters have the same meaning as the command. The
reset option resets the inline level to what was specified or implied by the command
line.

The semantics of the pragma are:

• When the pragma is used outside of a function, then the specified inline level
overrides the command line until another #pragma options inline is encountered
outside of any functions. If reset is specified, the inline level is reset to what was
specified or implied by the command line.

• If the pragma is placed inside a function body (i.e., anywhere between its enclosing
braces), then the inline level is temporarily set according to the pragma for that
function only. The specified inlining level applies to the entire function no matter
where within the function the pragma is placed. If more than one #pragma options
inline is placed within the function, then it’s an error to specify different inlining
levels. The reset option is not permitted when the pragma is used within functions.
Following the function, the default inlining level is reset to what was in effect prior
to that function.

#pragma options opt [=] off | none | local | size |

speed[, <modifier> ...] | reset

<modifier> ::= unroll | norep | nointer | unswitch

This pragma is used to either temporarily or permanently override the level of
optimization specified by the command line -opt option. The syntax for the pragma
following the opt keyword is identical to that of the command line (except for reset
which is specific to this pragma). The parameters have the same meaning as on the
command line.

The semantics of the pragma are

• When the pragma is used outside of a function, then the specified optimization level
overrides the command line until another #pragma options opt is encountered
outside of any functions. If reset is specified, the optimization level is reset to what
was specified or implied by the command line.

• If the pragma is placed inside a function body (i.e., anywhere between its enclosing
braces), then the optimization level is temporarily set according to the pragma for
that function only. The specified optimization level applies to the entire function no
matter where within the function the pragma is placed. If more than one #pragma
options opt is placed within the function, then it’s an error to specify different
optimization levels. The reset option is not permitted when the pragma is used
within functions. Following the function, the default optimization level is reset to
what was in effect prior to that function.

• Note, -sym on implies no optimization. If anything other than off (or none) is
specified on the pragma, a warning will be issued, and the optimization level will
remain unchanged.

#pragma traceback [list] <func_list>

The semantics of the pragma are:

This pragma generates traceback tables for specified functions on the list. The syntax
for the <func_list> is identical to that described for [no]inline_func.

The semantics of the pragma are:

• This pragma is only processed if the -tb pragma option was specified on the
command line (See new command line options).

• This pragma may only appear outside of any function definitions.

• Any function on the list must not be defined or called. See
#pragma [no]inline_func for the complete semantics on the functions in the list,
since the segment functions have identical semantics ([no]inline_funct semantics
items 1 and 2).

• A reference to a function in C++ implies a reference to all of its overloads.

• Any valid function specified in the traceback pragma that has not been defined by the
end of the compilation unit will be reported as an “undefined” warning.

• Duplicate references to the same functions are reported as a warnings.

#pragma ignore <id>...

This pragma specifies that any subsequent pragma whose id is on the given id list is to
be ignored by the compiler without warning. Note that the same effect is produced by
use of the -ignore pragma command line option.

#pragma disjoint (<disjoint–list>)

where <disjoint-list> is defined as follows:
 <disjoint_list> ::= <disjoint-name> ',' <disjoint-name> |

<disjoint_list> ',' <disjoint-name>

<disjoint-name> ::= <id> | <disjoint-ptr>

<disjoint-ptr> ::= *<id> | *<disjoint-ptr>

Each identifier must be defined at the point this pragma is specified. For C++, a ‘::’
may be used to specify a global scope reference. As indicated in the syntax, there must
be at least two identifiers or pointers specified and no duplicates are allowed.

The semantics of the pragma are:

This pragma informs the compiler that none of the identifiers listed share the same
physical storage. If any identifiers share the same physical storage, the pragma may
give incorrect results. You can use #pragma ignore to turn off #pragma disjoint to
analyze the problem further. The disjoint pragma is applied to the identifiers within the
scope of their use.

The identifiers cannot refer to a member of a class, structure or union, a class, structure
or union tag, an enumeration constant, a label, a function or a function pointer.

The following transformation kernel was run for 1000 iterations with 500 transforms
per iteration with and without the use of the pragma disjoint . Without the use of the
pragma, the program runs in 110 milliseconds giving a cycle count per transform of 29.
With the use of the pragma, the program runs in 59 milliseconds or 16 cycles per
transform. The hardware used is a 132 MHz PPC 604.

void TransformVectors1 (float *pDestVectors, float
const(*pMatrix)[3],float const *pSourceVectors, int
NumberOfVectors)

#pragma disjoint(*pDestVectors, *pSourceVectors, *pMatrix,
**pMatrix)

{

int Counter, i, j;

for (Counter = 0; Counter < NumberOfVectors; Counter++)

{

for (i = 0; i < 3; i++)

{

float Value = 0;

for (j = 0; j < 3; j++)

{

Value += pMatrix[i][j] * pSourceVectors[j];

}

*pDestVectors++ = Value;

}

pSourceVectors += 3;

}

}

Note: The MacSOM pragmas are to be found in the Direct to SOM section
above.

Intrinsic functions

Support for intrinsic (built-in) functions which generate special PowerPC instructions
has been added. Calling an intrinsic evaluates the function arguments into the source
operands of the instruction and returns the destination operand of the instruction (if
any). The use of these intrinsics does not incur any function overhead, so they offer
benefits to performance-critical code that cannot be achieved with library routines.

With exceptions noted below, the function's name and prototype follow from the
machine instruction's name and operands. The function return value corresponds to the
instruction's destination operand, e.g. FABS; the function returns void if there is no
destination operand, e.g. STHBRX. The function’s arguments agree in number and
correspond with the instruction's source operands. The correspondence is also shown by
the function argument names in relation to the instruction template in the comment next
to each function.

The interface for these functions is as follows:

int __cntlzw (unsigned int rS); /* CNTLZW rA,rS */

void __dcbf (void * rA, int rB); /* DCBF rA,rB */

void __dcbt (void *rA, int rB); /* DCBT rA,rB */

void __dcbst (void *rA, int rB); /* DCBST rA,rB */

void __dcbtst (void *rA, int rB); /* DCBTST rA,rB */

void __dcbz (void *rA, int rB); /* DCBZ rA, rB */

void __eieio (void); /* EIEIO */

double __fabs (double frB); /* FABS frD,frB */

double __fmadd (double frA,double frC,double frB); /* FMADD frD,frA,frC,frB */

double __fmsub (double frA,double frC,double frB); /* FMSUB frD,frA,frC,frB */

double __fnabs (double); /* FNABS frD,frB */

double __fnmadd(double frA,double frC,double frB); /* FNMADD frD,frA,frC,frB */

double __fnmsub(double frA,double frC,double frB); /* FNMSUB frD,frA,frC,frB */

float __fmadds(float frA,float frC,float frB); /* FMADDS frD,frA,frC,frB */

float __fmsubs(float frA,float frC,float frB); /* FMSUBS frD,frA,frC,frB */

float __fnmadds(float frA,float frC,float frB); /* FNMADDS frD,frA,frC,frB */

float __fnmsubs(float frA,float frC,float frB); /* FNMSUBS frD,frA,frC,frB */

double __frsqrte (double frB); /* FRSQRTE frD,frB */

float __fres (float frB); /* FRES frD,frB */

double __fsel (double frA,double frC,double frB); /* FSEL frD,frA,frC,frB */

double __fsqrt (double frB); /* FSQRT frD,frB */

float __fsqrts (float frB); /* FSQRTS frD,frB */

unsigned int __lhbrx (void *rA, int rB); /* LHBRX rD,rA,rB */

unsigned int __lwbrx (void *rA, int rB); /* LWBRX rD,rA,rB */

double __mffs (void); /* MFFS frD */

void __mtfsb0 (unsigned int crbD); /* MTFSB0 crbD */

void __mtfsb1 (unsigned int crbD); /* MTFSB1 crbD */

int __mulhw (int rA, int rB); /* MULHW rD,rA,rB */

unsigned int __mulhwu (unsigned int rA, unsigned int rB); /* MULHWU rD,rA,rB */

double __setflm (double frB); /* MFFS frD; MTFSF 255,frB */

void __sthbrx (unsigned short rS, void *rA, int rB); /* STHBRX rS,rA,rB */

void __stwbrx (unsigned int rS, void *rA, int rB); /* STWBRX rS,rA,rB */

void __sync (void); /* SYNC */

Other vendors provide the same intrinsics under different names. You should map
names to the ones recognized by MrC.

Motorola mcc
#define __builtin_eieio __eieio

#define __builtin_isync __isync

#define __builtin_sync __sync

IBM XLC
#define __iospace_eieio __eieio

Notes:

• __frsqrte, __fres, __fsel are 603 and 604 instructions only.

• __fsqrt and __fsqrts are 604 instructions only.

• __setflm expands to two instructions: mffs to retrieve the old FPSCR, and mtfsf to
set the PFSCR to a new value. The old FPSCR is returned. Only the bottom 32 bits
of the argument and return value are defined.

• The data cache instructions and load/store byte reversed instructions take two
register operands which are added to form the effective address. The operands are
symmetric; however the intrinsic prototypes for the corresponding functions are
given as (void *, int) to make sense in terms of C address arithmetic.

• The data cache instructions act on cache blocks, whose size is processor-model
dependent. The dependency is especially manifest in __dcbz which modifies data.

• Fused multiply-add and related numerical functions are provided so that numerical
code which is sensitive to the increased accuracy of these instructions can explicitly
control their use. These functions would typically be used in conjunction with a
compiler switch that suppresses automatic MAF generation. In the same spirit of
providing explicit control, the negative MAF forms and __fnabs are included.

• Intrinsics.h

Introduced at the time of the ETO22 Pre-release was a MrC-specific header file
“Intrinsics.h”, located in the Cincludes folder. This file is primarily for the
documentation of intrinsic functions recognized by MrC version 2.0 and later. It is
not necessary to include Intrinsics.h if the file is compiled with MrC, because the
prototypes are built into the compiler. If the file is compiled using a compiler other
than MrC, or prior to MrC version 2.0, one of two situations is possible. The other
compiler may support the intrinsic as does MrC and inline it appropriately. Or, you
can include Intrinsics.h for the compilation and link with the static library
PPCCRuntime.o; the intrinsic function call will then resolve to an external library
routine which implements the functionality.

Optimization

Loop optimizations have been improved in MrC 3.0 with the addition of unswitching
on loop-invariant IF conditions (-opt speed,unswitch). Loop unrolling can now
unroll loops which consist of multiple basic blocks. The default for -opt speed is not to
unroll loops in general but unrolling is done by default for simple cases where the
iteration count is a small constant. In practice this often yields the performance benefit
without the size cost of unrolling all loops.

Conditional expressions of the form ((i relop 0) ? x : y) without side effects, and
the equivalent sequence written using IF statements, are optimized as expressions and
generated as a branchless inline sequence.

Pattern recognition of shift, mask, rotate and bit insert operations is improved, resulting
in better use of the RLWINM and RLWIMI instructions.

Local register allocation has been improved, resulting in fewer spills.

Multiplication of integers by constants is reduced to shift and add operations when the
resulting sequence improves performance. The settting of -target is considered in
estimating the tradeoff. At -opt size, only multiplication by a power of 2 is rewritten as
a shift.

Better code is generated for expressions involving char and short types. The optimizer
removes unnecessary conversions to full-width integers. Optimization of long long
types has been improved since the ETO #22 Pre-release.

#pragma disjoint allows the user to specify pointer aliasing information that cannot
be expressed otherwise in C. See the description of this pragma for an example of its
use in performance tuning.

A stack frame is no longer created for leaf functions with stack usage of 220 bytes or
less (“red zone” optimization). At -opt size, functions which use more than a few
non-volatile floating point registers call subroutines to do the save and restore.

The optimization improvements in MrC 3.0 are reflected in a variety of standard C and
C++ CPU benchmark programs. On the cross-platform BYTE benchmark MrC has
improved from an integer score of 2.8 to 6.1 on a Power Mac 9500/132. MrC’s
Nullstone score of 85% is among the best of current PowerPC compilers, as is its score
of 1.0 on the Stepanov C++ benchmark. MrC performance measurements are available
via the web at http://www.devtools.apple.com/compilers.

Other Improvements

Error Reporting

Error reporting has been “fixed” to format type conversion errors more properly (a
separator line was in the wrong place) and to show which argument is in error when a
conversion error occurs in parameter passing.

New Warnings

• warning 41: This usage is deprecated. [Arises from the usage b++, where b is a
boolean.]

• warning 40: Floating point constant does not fit in type xxxx. [Attempting to
initialize a variable of type xxxx with a value which it cannot hold.]

• warning 39: Floating point constant represented as denormalized. [Specified floating
point constant can only be represented as denormalized.

• warning 38: You can’t ignore #pragma ignore! [Arises from using the option
-ignorepragma ignore.]

Compatibility and Usage Issues

• Under certain circumstances MrC does not generate a v-table for a C++ class when it
is necessary. This problem occurs if the first member function of a class is not
defined. The problem may be avoided by ensuring that the first constructor for a
class is defined.

In some sense this behavior is not a problem. Instead it is a reflection of the
mechanism used by many C++ compilers to decide in which compilation unit to emit
the definition of a class’s v-table. The convention is to do this in the compilation that
includes the definition of the first member function of the class.

• Since the default for string constants has been changed from generating them
uniquely to sharing them, -unique_string option should be used if such constants
are being modified in code.

• We recommend that users of -shared_lib_export move to the #pragma export
form for identifying exported symbols. This information is then internally passed to
the linker in the object file and there is no need to identify exported symbols through
the -export or -@export PPCLink option.

• When multiple conflicting options are present on the command line, the option that
textually appears last wins. For example
MrC -opt speed -opt local -inline off foo.c

In this case the file will be compiled at -opt local without any inlining.

• The commando interface to the compiler is not complete with respect to new options
added to the compiler. However, all the options supported in the commando are
correctly implemented.

 • Users of the Standard Template Library (STL) should be aware that MrCpp is not
compatible with all of the public domain libraries or with the Metrowerks STL
library.

• A common problem that has arisen in the past is to compile a function and then to
link it as an export using the PPCLink option -export or @export. A side effect of
this can be that the compiler will optimize a call site to such a function to one word
call site, that is, one without the TOC reload slot, and PPCLink will add glue code
for this call site. This can lead to erroneous run time behavior. The correct thing to
do in this case is to use #pragma import for functions that need patching. The
compiler will then generate a TOC reload after the call. An alternate but less optimal
way to achieve the same effect is to use the -shared_lib_export option with the
compiler. This would make all global functions defined in the file as imports. This
would also turn off interprocedural analysis on those functions.

Known Outstanding Bugs

• An expression involving the long long type will generate incorrect code in the
following case: a comparison result is converted to long long and used in a binary
expression, e.g., the expression has the form x + (long long)(a != b). The conversion
to long long is incorrectly optimized away.

Bug Fixes in v. 3.0.1

• MrC crashes when compiling MD5 stack overflow in CG caused by LO creating a
huge tree. Stack check macros were added at strategic places in the backend to avert
a crash when compiling programs that produce deep expression trees. (Radar
#115688)

• MrC was generating the wrong code when optimization = on. The compiler
overwrote a CR-reg before using it. (Radar #115691)

• MrC Preprocessor has an error preprocessing the macro expansion when it sees the
‘##’ operator. The behavior of these compilers is different than the ANSI C spec.
(Radar #115738)

• MrC reports error, “cannot open PIL file 'Moonlighting:System Folder
7.5.1:Preferences:MPW:TempTS:MPEGVideoAdvanceToStartCodes.cp.n': Invalid
argument.” It was not detecting when the file name was too long. (Radar #1603713)

• BE: Incorrect code motion of __setflm intrinsic by GOptimizer and scheduler MrC
incorrectly moves the __setflm intrinsic backwards within the basic block for sqrt.c.
This has been fixed; changed the tree builder to put setflm calls into blocks by
themselves. All code motions stopped across these kinds of intrinsic calls. (Radar
#164070)

• Linker error for unresolved __Type_info::_rttivtbl. This has been fixed; we have
clarified the release notes for this release (starting with the 3.0.0d3 engineering
release), emphasizing the need to use the MrCPlusLib.o that comes with the -rtti
compiler. (Radar #1605054)

• Code Warrior Plugin compilers: MrC plugin currently drops temporary files in the
source repository. This has been changed in the 3.0.1 release of the MrC plugin.
(Radar #1605458)

• Code Warrior MrC/MrCpp Plugins: Does not handle UNIX-style source files (EOL
== newline). The change was to “enhance” the compilers to accept Mac (newlines,
0x0D), Unix (linefeeds, 0x0A), and DOS (newlines-linefeed in that order) all as end
of line characters. Both the MPW and future plugins will have this capability. (Radar
#1605466)

• MrC needs intrinsics to set single bits of FPSCR. I’d like to see intrinsics to support
the mtfsb1 and mtfsb0 commands. This has been chnaged and the “new” intrinsics
implemented. (Radar #1605458)

void __mtfsb0(unsigned int);

void __mtfsb1(unsigned int);

• MrCpp cannot invoke a virtual function of a base class defined within another class.
(Radar #1606815)

• MrC has a long double optimization bug. Problem ws fixed by changing GRA. In
some cases the second part of a long double register candidate was participating in
data flow analysis. (Radar #1606904)

• Error message information lost. Multi-line error messages are no longer truncated.
(Radar #1610766)

• Two pointer updates do not generate "lbzu" instructions in tight loop. Bugs
prevented this case from being recognized. (Radar #1611376)

• FE: symbol scoping problem with function-try-blocks; only the parameters are
visible in the catch blocks. (Radar #1611546)

• MrC doesn't honor #pragma import with -opt speed. (Radar #1612002)

• Extra warning emitted with -shared_lib_export on and -sym on. This was
because the option, -shared_lib_export on implies -inline 0 and was
“pretendening” that an EXPLICIT -inline 0 was done. You would/should get the

warning when the “-inline” is explicitly stated (other than 0). I suppressed the
"explicit" switch in “-shared_lib_export” on so the warning will not appear when
-shared_lib_export on is done. (Radar #1613418)

• Unsigned cast lost in conversion of 32-bit integer to long long. (Radar #1616590)

• "function-try-block" not yet implemented. Support for this has now been
implemented. (Radar #1363228)

• FE: Compiler Error building ODF. This problem occurs with exceptions and sym on
when there is a precompiled header which includes classes with inline member
functions which use operator new. (Radar #1600614)

• An int and a throw in a conditional (?:) expr has a problem. The fix also makes sure
that both the second and third operands of the ternary are not throws. (Radar
#1363226)

• MrCpp rejects exception spec in func ptr declaration. (Radar #1364821)

• Compiler fails to handle redefinition of a template function. (Radar #1401810)

• SCpp and MrCpp generate bad code for 'char(x)' type of casting in switch. The
compiles can disambiguate the cast vs. declaration ambiguity in this test. (Radar
#113087)

• MrC treats func ptr param decl with same name as class treated as an expr.This has
been fixed. The routine that tries to decide whether it has a declaration/cast or
expression now is more syntax sensitive to avoid such mistakes. (Radar #1191289)

• enum & int overloading and argument matching error. Compiler now does the
promotion to int of any enum involved in an expressions. (Radar #1191051)

• A union may not have virtual functions. This has been fixed and the compilers report
an error. (Radar #1215450)

• MrC nested scope bug. Externs are declared in the block in which they occur. A
global copy is also made and that is the one actually used for code generation. (Radar
#1174649)

• Enhancement request: exploit “red zone” for locals and temporaries. Changed to use
the red zone of the stack for leaf functions whose frame size is 220 bytes or less.
(Radar #1339572)

• do / while loop does not use BDNZ and CTR. (Radar #1393519)

• Overloading does not consider best match in local scope first. (Radar #1172083)

• Accepts taking an address of cast expression that does not yield a lvalue. (Radar
#1224842)

• Two classes in different scope with same v-base name get duplicate vtable entry.
(Radar #1197954)

• Pascal keword in overloaded operator function gets error. (Radar #1191286)

• "c %= x" is different from "c = c % x"; first is unsigned, latter is signed. (Radar
#1394695)

• The compiler generates bad code, while accessing parameters of a function, if the
parameters contain a long double and the total byte length of all parameters is greater
than 32 bytes.

• Some problems have been detected with extracting bit fields whose size is smaller
than a character. (Radar #1364763)

• Incorrect values are sometimes assigned during structure assignments of four bytes
or less. (Radar #1364067)

• The compiler does not correctly handle static initialization of structures containing
bit field groups which are smaller than a word. A bit field group is a group of
successive bit field declarations that are packed together. One manifestation of this
problem is an error message from the compiler indicating that it ran out of memory
while requesting a very large amount of memory. This problem occurs with
structures defined with the mac68k alignment mode. (Radars #176381, #1339273)

• In addition, bugs with the following Radar numbers were fixed: 1616141, 1616590,
1618383, 1618542, 1397516, 1398002, 1253046, 1377140, 1172086, 1360164,
1360624, 1600870, 1601252, and 1601609.

