
MrC[pp] Plugins For Metrowerks CodeWarrior® Pro4 and 5
7/27/99

Introduction

The MPW MrC and MrCpp (hereinafter referred to as “MrC[pp]”) compilers are available as
plugins for the PowerPC versions of the Metrowerks CodeWarrior Pro4 and Pro51. They are
integrated with the IDE environment. Thus the standard IDE mechanics of setting up projects
and preferences equally apply to the MrC[pp] plugin.

Installation

Eight files are required to install MrC[pp]; all of them go into the “CodeWarrior Plugins” folder
which is located within the “Metrowerks CodeWarrior” folder. You have the choice of placing
the entire “MrC[pp] Plugins” folder into the “CodeWarrior Plugins” folder or distributing the
contents of “MrC[pp] Plugins” into the corresponding “Compilers” and “Preference Panels”
folders within the “CodeWarrior Plugins” folder. The IDE (recursively) looks at all folders
within the “CodeWarrior Plugins” folder so it doesn't matter how you organize these files.

The eight files distributed in the “MrC[pp] Plugins” folder are:

MrC[pp] Plugins
 Compilers This folder contains the plugins and compilers
 MrC Actual MrC plugin
 MrCpp Actual MrCpp plugin
 MrC.C.PPC.shlb Called by MrC[pp] for C compilations
 MrC.CPP.PPC.shlb Called by MrC[pp] for C++ compilations
 Preference Panels This folder contains the 4 preference panels
 1 Language Settings

2 Code Generation
3 Warnings
4 Additional Options

MrC will dynamically load MrC.C.PPC.shlb for C compilations while MrCpp will load
MrC.CPP.PPC.shlb for C++ compilations. The four preference panels are described in the next
section. The panels will appear in the IDE’s Target Setting Panels list under their own unique
category called “MrC[pp] Preferences”.

You should install these files before you execute the Metrowerks IDE.

A folder of stationary called “MrC[pp]” is also supplied in the “(MrC[pp] Project Stationery)”
folder. The “MrC[pp]” folder contains three standard example setups; two for MrC in the
“Standard Console” folder and one for MrCpp in the “MPW Tool” folder. Drop the entire
“MrC[pp]” folder into the “(Project Stationery)” folder inside the Metrowerks CodeWarrior
folder (do not drop the folder containing “MrC[pp]”, i.e., do not drop “(MrC[pp] Project
Stationery)”. The stationary is organized as follows:

1 These plugins are designed for CWPro4 and 5 only. They will not work in anything earlier nor are they
guaranteed to work in any future CodeWarrior releases. While the current release will work in Pro5 there are
incompatibilities in the Pro5 #include headers.

1

MrC[pp] Drop this folder into “(Project Stationery)”
MPW Tool Example using the MPW libraries

MrCpp MPW Tool Hello World as an MPW tool
Standard Console Two C examples that use SIOUX

MrC Std C Console PPC Standard Hello World
MrC Std C Console Vector Example using AltiVec™ (see below)

“MrC Std C Console PPC” is the equivalent to Metrowerks’ “Std C Console PPC” but using
MrC instead of Metrowerk’s C/C++ compiler.

The “MrCpp MPW Tool” stationary illustrates how to build a C++ program with MrCpp. As
discussed later, you must use the MPW libraries and headers when using MrCpp (C++). This
stationary illustrates this and builds an MPW tool. You will have to change the Preferences
Access Paths to the MPW “Interfaces&Libraries” folder to wherever you have them on your
system.

“MrC Std C Console Vector” is similar to “MrC Std C Console PPC” but instead of a “hello
world” example it illustrates the use of some AltiVec vector operations. CWPro 4 doesn’t
support AltiVec (Pro5 does), so in order to use AltiVec with printf/scanf I/O, setjmp/longjmp,
dynamic memory allocation, or variable vector argument lists, you will need to use the additional
library and headers supplied in the “CW Replacement Libs and Hdrs” folder. Their use is
illustrated in the “MrC Std C Console Vector” stationary (admittedly contrived to use them).

To reiterate, the AltiVec stationary and “CW Replacement Libs and Hdrs” folder are for use in
CWPro4 only. You should use the Metrowerks supplied libraries and headers for CWPro5. You
may also get a dialog asking you to convert the project stationary. This is perfectly acceptible.

The “CW Replacement Libs and Hdrs” folder (for CWPro4) has the following files:

CW Replacement Libs and Hdrs Replacements for existing CW libs and hdrs
AltiVec.MSL4.Override.lib Override lib to support AltiVec in Pro4
csetjmp Replacement header to support AltiVec
cstdarg Replacement header to support AltiVec
cstdlib Replacement header to support AltiVec

The “AltiVec.MSL4.Override.lib” is a library needed to override the existing routines delivered
by Metrowerks Pro4 for AltiVec printf/scanf, dynamic memory allocation, and setjmp/longjmp
as defined in the “AltiVec™ Support for MrC[pp]” document. Note that you need to suppress
link warnings (as done in the stationary) since these routines override the ones in the standard
Metrowerks libraries and you need to set the link order in the project so that this library appears
before any of the other Metrowerks libraries. Although “AltiVec.MSL4.Override.lib” overrides
the existing Metrowerks routines, they only extend those routines to support AltiVec. They are
compatible with the existing routines in all other respects.

For setjmp/longjmp you need to use the csetjmp header (a compatible replacement for the
Metrowerks csetjmp header). These allow use of an alternate set of setjmp/longjmp routines in
“AltiVec.MSL4.Override.lib” when using vectors. Note that the Access Paths must be defined

™ AltiVec is a registered trademark of Motorola, Inc.

AltiVec is supported in this release in accordance with the Motorola AltiVec Programming Model document.
MrC[pp]’s implementation of the Model is covered in a separate document ("AltiVec Support in MrC[pp]").

2

so that the csetjmp header can be found through the System Paths (the stationary defines the
current project path as both a User and System path; alternatively you could just replace csetjmp
in the Metrowerks “Public Includes” inside of “MSL Common”).

To use stdarg.h with vector arguments you need to use the supplied cstdarg header (a compatible
replacement for the Metrowerks cstdarg header). No additional library is required to use this
header but the Access Paths must be defined as just mentioned for using csetjmp or the
Metrowerks vesion must be replaced.

Finally, to use vec_malloc(), etc., you need the supplied cstdlib (a compatible replacement for the
Metrowerks cstdlib header). The additional routines declared in the header are defined in the
“AltiVec.MSL4.Override.lib”. This header, like the others, must be defined as just mentioned
for using csetjmp or the Metrowerks vesion must be replaced.

Setting the IDE Preferences to Use MrC[pp]

In order to use MrC[pp] for your project source files you must define the File Mapping
preferences (unless you use the provided stationery). The IDE Compiler popup menu will now
have additional choices allowing you to select MrC or MrCpp for each desired source extension.

The Target Panel Settings will show a “MrC[pp] Preferences” category with four preference
panels listed under it. Each of these is discussed below.

• Language Settings - All the C/C++ language settings and file information

Map newlines to CR Controls interpretation of '\n' and '\r' depending on which
libraries are being used, i.e., MPW’s or Metrowerks’. For
MPW tools, this box must be checked.

Enums Always Int Use minimum-sized or int-sized enums.

Use Unsigned Chars Signed or unsigned chars.

Allow alloca() Intrinsic Recognize alloca() as a built-in function.

Enable Exceptions Exception processing. In C, only the generated tables are
produced to allow pass through from a C++ caller.

Support long long Recognize ‘long long’ as a predefined data type.

ANSI Controls levels of ANSI conformance, from approximately
K&R style up to strict ANSI conformance.

Enable bool support The ‘bool’ data type is supported (C++).

Direct to SOM Direct to SOM is supported (C++).

ANSI for-stmt scoping A variable declared in a for-statement as a iterator has its
scope limited to that for statement (C++).

Enable RTTI Enable RTTI support (normally enabled, C++).

Template Access Controls scoping of instantiated templates (C++).

3

Relaxed Type Checking Controls whether strict type checking is performed (C).

Require Funct ion Prototypes Prototypes are required for all non-static functions (C).

Prefix File Specify a header file or precompiled header file to be
included with every compilation.

Save intermediate file When reporting bugs it is sometimes necessary to supply the
compiler’s intermediate file. Turing this option on will let
that happen. Choosing the ASCII form will cause the
intermediate file to be generated into the same directory as
the source file. For file “foo.c” the intermediate file will be
“foo.c.n”. When the checkbox is off a binary form of
intermediate file is generated (which could also be saved)
into the system “Temporary Items” folder.

Include headers only once This is the default. Turing this option off allows the header
to be read more than once.

• Code Generation - All options related to code generation

Generate Code When this is unchecked no code will be generated and all
other Code Generation options are disabled. This can be
used for syntax checking only but normally you should just
leave it checked.

Target Processor Use code scheduling for the specified processor. Note that
when AltiVec is specified a variant of the 603 is always used
regardless of the Target Processor setting.

Struct Alignment Specify the default alignment for struct data.

Inlining Level Sets complexity limit on functions to be inlined.

Optimization level Specify level or form of code optimization. With
optimization for size you get some additional capability to
enable warnings for variables that are used before being set.
You also get them for the speed optimizations but
additionally you can limit certain kinds of speed
optimizations.

All Strings Unique Force all string constants to be unique.

Don’t se FMADD and FMSUB Generation of floating point “maf” (multiple-add-fused)
instructions. Default is to generate these instructions.

Pool Strings By Function String constants are associated with their functions instead of
the compilation unit.

Strict IEEE FP Adherence Control strict adherence to IEEE floating point semantics.

4

64-bit Long Doubles Size of long doubles is either 128 bits (default) or 64 bits.
The default is 128-bit long doubles.

ASLM Compatibility Support of RTTI and exceptions required a change in v-table
format. This option exists for ASLM compatibility to cause
generation of the “old” v-tables.

AltiVec Vector Support Specify whether AltiVec vector instructions are to be
generated.

Type Ptr Alias Analysis These control various pointer alias analysis optimizations.
ANSI Ptr Alias Analysis Note that only certain combinations of these are permitted as
Address Ptr Alias Analysis a function of the specified optimization level.

Symbol Generation Generate symbol information in the object file. You may
control the generation of certain categories of information as
specified by the checkboxes. Note that checking Symbol
Generation turns off all code optimization.

Generate Traceback Tables Allow the generation of traceback tables. These tables are
also recognized by MacsBug. Optionally you can select that
only functions specified by the traceback, export, or outofline
pragmas be candidates for traceback table generation.

• Warnings & Errors - Controls warning to be reported

MrC[pp] has many warnings. So this preference panel is organized to specify which warnings
you don’t want as opposed to those you do. Because there are so many possible warnings, the
Warnings & Errors panel is actually made up of two panels with a button to allow you to
switch between the two. There is a panel of general C and C++ warnings and a panel of
warnings that are specific to C++. Aside from the warnings checkboxes, all other preferences
in these panels are the same.

Select Warnings To Disable Normally this is checked to allow you specify specific
warnings that are not to be reported. Unchecking this box is
the same as checking all the boxes, i.e., it disables all the
warnings.

Treat All Warnings as Errors Warnings are considered as errors.

Show All Errors Continue reporting errors for a compilation unit past the
normal limit (4).

Warning checkboxes Check which warnings you want to suppress from being
reported. Note, the warning numbers are displayed in place
of the messages if the option key is pressed and as long as it
stays pressed.

5

• Additional Options - Miscellaneous options

This panel allows you to specify additional options not provided for in the other preference
panels (for example the -xi option). This will also be used for new compiler options that don’t
as yet have preference specifications in the other panels. Options supplied here can be for
either or both MrC and MrCpp. Only the options appropriate to the compiler being used are
processed. These options always override those specified in the other panels.

The options have the exact same format as those specified on an MPW Shell command line,
i.e., -option, where option is a valid command line option. This may be followed by
additional option parameters if applicable. Some useful options that could be specified here
are:

-p Display progress info to a “stderr”. A window is displayed at
the end of compilation called “stderr” showing the pathnames
of all the included files. This might be useful if you want to
make sure include files are coming from where you thing they
should.

-help Display all command line options. The “stderr” window
shows all the available command line options. Many of these
should not be specified because they either do not apply to the
plugins (e.g., -load, -dump) or have options specified in the
other panels.

General Restrictions and Considerations

The following are some general restrictions and/or considerations for using MrC[pp] plugins.

 1. While the MPW versions of MrC[pp] are shipped as “fat” compilers, only the PowerPC
version of the plugin is supported.

 2. There are incompatibilities with the object models supported by Apple and Metrowerks
(e.g., v-table formats, calling static constructors and destructors). You must not use the
Metrowerks headers and libraries when using the MrCpp (C++) plugin. Instead you must
use the MPW libraries and headers. When you do this with a C++ compilation, you also
need to change the name of the Main entry point in the “PPC Linker” preference panel to
__cplusstart instead of __start.

 3. Exceptions are not supported in the MrCpp plugin. This is due to the fact that the
Metrowerks linker does not support the tables produced by MrCpp.

 3. All compilers have their own “idiosyncrasies” and no two are quite the same! Unless you
follow strict portability conventions you will find this out. Such things as pragmas,
intrinsics, predefined macros, errors and warnings are different. Also, not all of
Metrowerks’ __option keywords are recognized by MrC[pp]. If you attempt to use
MrC[pp] with the Metrowerks headers, or you are trying to port a file that was previously
compiled with the Metrowerks compiler, you should define the macros those headers and
sources expect and/or you may have to modify some of the Metrowerks headers. The most
important macro is probably __MWERKS__. You’ll have to define a prefix file containing its
definition. If you use any of the other Metrowerks-specific predefineds, you’ll have to
define those as well. Metrowerks intrinsics which have no MrC[pp] counterpart have no

6

work around. Note, the standard macro indicating a MrC[pp] compilation is __MRC__.

 4. If you link with the MPW libraries, be sure to check the “Map newlines to CR” Language
Settings checkbox. The MPW libraries assume '\n' is 0x0D.

 5. The MrC[pp] compilers generate XCOFF object files. These are stored in the project until
link time. If the project is sufficiently large, i.e., many files, you may see the code and data
sizes change during the link. This is due to the fact that the linker is converting the stored
XCOFF into IDE objects as part of the link process.

 6. As just mentioned, each MrC[pp] XCOFF object file stored in the project is converted to the
IDE-required format as part of the linking process. When the Code Generation “Symbol
Generation” checkbox is checked, MrC[pp] will generate its debugging information in the
form required by XCOFF. Neither XCOFF nor the conversion process necessarily support
all the possible debugging functions supported for the Metrowerks compilers. Thus not all
the functionality supported by the Metrowerks debugger is possible.

 7. Precompiled headers generated by MrC[pp] are not compatible with those generated by
Metrowerks (thus you cannot use the standard Metrowerks MacHeaders.h). Further, MrC C
precompiled headers are not compatible with MrCpp C++ precompiled headers.

 8. The MrC[pp] compilers use temporary (MultiFinder) memory. Specifically, they allocate
the largest unused block (approximately the value displayed in the “About This Macintosh”)
minus a third of that (with a more reasonable limit if VM is being used). It also requires a
minimum of 2 megabytes. If the temporary memory allocation fails, it allocates from the
Metrowerks application heap (again requiring a minimum of 2 megabytes). In general, you
should not allocate a large partition to the IDE since that will reduce the available temporary
memory.

 9. Because there are two plugins, MrC and MrCpp, you can explicitly set the File Mappings
preferences as to which dialect (C or C++) to use for each file name extension. This differs
from Metrowerks where the extension implies the dialect and the “C/C++ Language”
preference “Activate C++ Compiler” checkbox acts as an override to force C++.

10. This version of the plugin will not work in any other release other than CWPro4 and Pro5.
It will also work in Pro3 but the AltiVec override libraries cannot be used in that
environment.

7

Version-Specific Release Notes

The following apply to changes and/or additions to only the plugins. Changes to the MPW
versions also apply here. See the MPW MrC[pp] release notes for further details.

4.1.0a8 (7/27/99)

1. The MrC[pp] plugins now support the keyword __builtin_align defined in
Metrowerks’ cstdlib. So the #define mentioned for 4.1.0a7 below is now unnecessary.

2. All other “problems” described for a7 with Pro5 still exist since they are up to
Metrowerks to fix!

4.1.0a7 (7/8/99)

1. Changed “Code Generation” plugins preference checkbox that controls generation of
FMADD & FMSUB instructions. The default for generating these instructions is “on”
but the checkbox showed it as “off”. The wording on the checkbox has been
appropriately changed.

To be sure of the setting in a project's preferences, users should make sure of the setting
in the MrC[pp] Code Generation preference panel by checking it appropriately and doing
a save.

2. Fixed __option(fp_contract), __option(maf) to return the true setting of the of
-fp_cntract and -maf command line options. They were returning the inverse of the
setting.

Note that Codewarrior Pro5 was released shortly after the final build of the a7 compilers.
Thus there is no guarantee the plugins will work properly in Pro5 even though the panels and
compilers appear to “work” in some preliminary testing in Pro5. What is known from this
preliminary testing is as follows:

• Pro5 supports AltiVec. Therefore the AltiVec.MSL4.Override.lib and substitute headers
(csetjmp, cstdarg, and cstdlib) are not needed to use AltiVec in Pro5. However,
Metrowerks decided to change the way cstdarg was originally defined for AltiVec and
therefore will not compile using the MrC[pp] plugins. In order to use the Metrowerks
cstdarg you need to add the following #define to their cstdarg.

#define __builtin_align __va_align__

• Metrowerks appearently has decided to define their own C++ standards and has some non-
standard contructs in some of their headers. Basically the construct,

extern "C" {
T foo[];

}

is illegal in C++ and MrCpp will report it as such. This occurs in the headers cctype,
cfloat, cmath, cstdio, cwctype, and cmath.macos.h. Note that this incompatibility
shouldn’t be a problem since you need to use the MPW headers for MrCpp anyhow.

8

• cstdio has an unterminated comment in the line where stdio_tofiles is defined. MrC[pp]
will report this even though the statement is being skipped.

4.1.0a1 (11/16/98)

No plugin-specific changes. See “MrC 4.1.0a1 Release Notes” for compiler changes.

4.1.0d4 (10/5/98)

1. Plugins updated for CWPro3 and 4. Preference panels completely redone.

2. New __option keywords added to minimize some of the Metrowerks header
incompatibilities.

mpwc_newline Same as “mapcr” (1 when “Map newlines to CR” is unchecked).
preprocess 1 if syntax checking only (set when Generate Code is unchecked).
traceback Set when the Generate Traceback Tables is checked.
wchar_type 0 for C, 1 for C++
little_endian Always 0 (this keyword is only recognized in the plugins)

3.0.0d2 (10/17/96)

1. The MrC[pp] panel now has an additional “CommandLine” text entry option. This is an
“escape” mechanism that can be used to supply additional MPW command line options to
the compilers that are not currently supplied as standard panel items.

2. Because of the additional “CommandLine” panel item, the preference data for a MrC[pp]
plugin project has changed. It is larger and items have moved. This means that if you
take a previously existing MrC[pp] project from CodeWarrior 9 and have CodeWarrior
10 update it, the preference items will be in the wrong place! The most obvious indication
of this is that a prefix file will appear in the “CommandLine” text entry.

Since the preference layout has changed in both content and size, the only way to
establish the new preferences in a converted project is to reset the preferences to “Factory
Settings”. This means, of course, you will have to reset your original preference items
manually.

3. The “MrC[pp] CodeGen” panel Optimizations have been changed. You now have more
control over the degree of compiler optimization than in previous versions. Here’s a
summary of the optimization levels you get in terms of the equivalent MPW command
line options:

“Optimizations” not checked ---> -opt off
“Optimizations” checked only ---> -opt local
“Optimizations” checked and...

“Optimize for size” ---> -opt size
“Optimize for speed” ---> -opt speed

and “Loop unrolling” ---> -opt speed,unroll
and/or “No copy propagation” ---> -opt speed,norep
and/or “No interproc opt.” ---> -opt speed,nointer
and/or “Warn uninit” ---> -opt speed,warn_uninit

9

and/or “Warn maybe uninit” ---> -opt speed,warn_maybe_uninit

Note, this is only temporary. We plan to redo all the MrC[pp] preference panels when
time permits. Also, as in the case of the new “CommandLine” panel item in the MrC[pp]
panel, these changes to the MrC[pp] CodeGen panel will cause incompatibilities with
converted projects. You should revert to the factory settings then reset you MrC[pp]
CodeGen items.

4. The prefix file in MrC[pp] now has the identical behavior as in the Metrowerks
compilers. Thus a prefix file may either be a text file or a precompiled header file. There
will be no more prompting for the precompiled header name if the file extension is
flagged to automatically precompile in the target preferences (for example, as illustrated
by the .pch and .pch++ target extensions). As in the Metrowerks compilers you will still
be prompted if the target extension is not flagged to be automatically precompiled.

Note, when a file is precompiled, either automatically or explicitly from the menu, the
prefix file is not used.

5. Two new pragmas are supported to supply the name of a precompiled header:

 #pragma dump "filename"
#pragma precompile_target "filename"

The “dump” pragma is identical to the “precompile_target” pragma. The former is the
style used by the “old” MPW C compiler while the latter is for Metrowerks compatibility.

The filename supplied by these pragmas will be the file that will receive the precompiled
header. If the filename is supplied as a null string, or the pragma is not present in the
file, the name of the source file is used with the extension removed. If more than one
pragma appears in the source, the one closest to the end of the file is used. If the filename
is a partial path name, the directory used is the same as the source file. A full pathname
of course specifically indicates where the precompiled header is to “go”.

6. #include has been extended to accept a precompiled header. However, this #include must
be the first statement in the source file (or prefix file if it is being used to do the
#include). In other words no definitions, declarations, or #define may precede this
#include. This also implies there can only one such #include of a precompiled header in
the source.

7. A __option(precompile) has been defined to indicate that a precompiled header is
being built.

Note, the plugin release is, at the time this is being written, a more current version than
what is going out on ETO 22. There are some additional __option keywords not yet
released for ETO 22 but are available in the plugins. These are summarized here but this
list will be moved to the standard MrC[pp] release notes beyond ETO 22.

__option(RTTI) -rtti on
__option(fp_contract) -fp_contract on
__option(maf) Same as __option(fp_contract)
__option(direct_to_SOM) -som
__option(SOMCallOptimization) #pragma SOMCallOptimization on in effect.
__option(SOMCheckEnvironment) #pragma SOMCheckEnvironment on in effect.
__option(ldsize128) -ldsize 128

10

__option(ANSI_strict) -ansi strict in effect.

8. Another feature of the plugins, because they are later than the ETO 22 release, is a change
to the storage classes of instantiated templates. Like the new __option keywords, this
summary will become part of the post-ETO 22 release notes for the MrC[pp] compilers.

Up until now, the default storage class for instantiated templates has been ‘static’. For
example,

template <class T> T F(T x) {return x;}

main()
{

F(1);
}

The compiler would instantiate an F(int) as if it were declared ‘static’,

static int F(int x) {return x;}

If you wanted to make this instantiation public (i.e., not ‘static’), then you needed to
supply a #pragma template_access public (or -xa public if you are using an MPW
command line). But if you did that, the compiler would not instantiate the function
unless you explicitly told it to using a #pragma template (or -xi from the command line),
i.e.,

#pragma template_access public
#pragma template F(int)

This has all been changed! Now the default access is public and the instantiations will
occur. Previous users of the MrC[pp] compilers who still need their instantiations
private will have to supply a #pragma template_access static. This is a major change
to previous behavior. But it makes MrC[pp] more consistent with other compilers.

Note, a unique feature of the MrC[pp] compilers (which is not new) is to specify the
template_access as extern. In this mode (and now in this mode only) the
instantiations will not occur and appropriate ‘extern’ declarations will be generated in
their place. This allows you to only have a single copy of the insantiations with all others
referring to them via extern declarations.

11

