
Safari Extensions Development Guide
Tools

2010-08-03

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Finder, Keychain, Logic,
Mac, Mac OS, and Safari are trademarks of
Apple Inc., registered in the United States and
other countries.

iWeb is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Safari Extensions 9

At a Glance 9
What’s the Difference Between an Extension and a Plug-in? 10
The Extension Architecture Has Two Parts 10
Extensions Have Their Own JavaScript API 11
You Create Extensions Right in Safari 11
You Can Define Your Settings Using Extension Builder 12
Debug Your Extension With Safari’s Built-In Tools 12
Update Your Extension Automatically from the Web 12

Prerequisites 12
See Also 13

Chapter 1 Extensions Overview 15

What Your Extension Can Do 15
The Extension Parts List 15
Extension Architecture 16
The Safari Extensions JavaScript API 17

Classes and Properties 17
The Application and Extension Objects 17
Web Content Interaction 18
Events—Commands, Messages, and Proxies 18

How To Create Extensions 19
Global HTML Page 20
Extension Bar Files 20
Injected Scripts and Stylesheets 21
The plist Files 21

Chapter 2 Using Extension Builder 23

Before You Begin 23
Opening Extension Builder 23
The Extension Builder Interface 24
Building A Simple Extension 27

Chapter 3 Accessing Resources Within Your Extension Folder 29

Using Relative URLs 29
Using Absolute URLs 30
Example: Loading a Background Image in CSS 30
Security 30

3
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Chapter 4 Adding Extension Bars 33

About Extension Bars 33
The extension.bars Array 33
Domain, URLs, and Access 34
Displaying Content in an Extension Bar 34

Creating an Extension Control Bar 35
Working with Windows and Tabs 36
Interacting with Injected Scripts 37

Message-Passing Example 38

Chapter 5 Adding a Global HTML Page 41

Adding a Global Page in Extension Builder 41
Handling Toolbar Items 41
Handling Contextual Menu Items 42
Support Logic for Extension Bars 42
Support Logic for Injected Scripts 44
Working with Windows and Tabs 44

Chapter 6 Adding Buttons to the Main Safari Toolbar 47

Creating an Image 47
Setting Up Extension Builder 48
Responding to Commands 49
Deciding Where to Respond 50

If You Respond From a Global HTML Page 51
If You Respond From an Extension Bar 51

Example: Implementing a Reload Button 51

Chapter 7 Adding Contextual Menu Items 53

Context Menu Events 53
Adding a Menu Item Using Extension Builder 54
Responding to Commands 54
Modifying the Default Behavior 55

Adding Context Information 55
Disabling the Contextual Menu 56
Adding Menu Items Programmatically 56
Changing the Menu Item Title 56

Deciding Where to Respond 57
If You Respond From a Global HTML Page 57
If You Respond From an Extension Bar 57

Example: Implementing a New Window Contextual Menu Item 57

4
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 8 Injecting Scripts 59

About Injected Scripts 59
Adding a Script 60

Chapter 9 Injecting Styles 61

About Injected Stylesheets 61
Adding a Stylesheet 61

Chapter 10 The Windows and Tabs API 63

SafariApplication 63
SafariBrowserWindow 63
SafariBrowserTab 64

Chapter 11 Messages and Proxies 65

Message Structure 65
Sending Messages to an Injected Script 65
Receiving Messages from an Injected Script 66
Example: Calling a Function from an Injected Script 67
Blocking Unwanted Content 68

Chapter 12 Access and Permissions 71

The Global HTML Page and Extension Bars 71
Injected Scripts and Stylesheets 71
Extension Website Access 72
Whitelists and Blacklists 73

Chapter 13 Settings and Local Storage 75

How to Create User Settings 75
Hidden Settings 76
Text Field Settings 76
Check Box Settings 76
Slider Settings 77
Pop-Up Button Settings 77
List Box Settings 78
Radio Buttons Settings 78
Groups and Separators 79

How to Use the Settings API 79
Using HTML5 Local Storage 80

5
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 14 Debugging Extensions 81

Debugging Extension Bars 81
Debugging Injected Scripts 83
Debugging a Global HTML Page 84

Chapter 15 Distributing Your Extension 85

Putting Your Extension on a Web Server 85
Submitting Your Extension to the Apple Gallery 85

Chapter 16 Updating Extensions 87

Document Revision History 89

6
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Introduction About Safari Extensions 9

Figure I-1 Safari extensions 9
Figure I-2 Extension diagram 10

Chapter 1 Extensions Overview 15

Figure 1-1 Extension diagram 16
Figure 1-2 Extension bar example 20

Chapter 2 Using Extension Builder 23

Figure 2-1 Enabling the developer tools 23
Figure 2-2 Extension Builder interface 25
Figure 2-3 Access restrictions 26
Figure 2-4 Hello world 28
Listing 2-1 helloworld.html 28

Chapter 4 Adding Extension Bars 33

Figure 4-1 Music player toolbar 36
Figure 4-2 Reference extension bar 37
Figure 4-3 Before and after 40
Listing 4-1 Music player bar 35
Listing 4-2 Safari developer reference bar 37
Listing 4-3 Extensionbar.html 39
Listing 4-4 Injected.js 39

Chapter 5 Adding a Global HTML Page 41

Listing 5-1 Moving logic to your global page 42

Chapter 6 Adding Buttons to the Main Safari Toolbar 47

Figure 6-1 Anti-aliased text in black on transparent background 48
Figure 6-2 Adding toolbar items 48
Listing 6-1 Reload command and validate handlers 51

Chapter 7 Adding Contextual Menu Items 53

Figure 7-1 Menu items pane 54

7
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Figure 7-2 Adding a menu item 58
Listing 7-1 New window command handlers 58

Chapter 8 Injecting Scripts 59

Figure 8-1 Specifying injected content 60
Listing 8-1 Modifying a webpage using DOM insertion 60

Chapter 9 Injecting Styles 61

Figure 9-1 Specifying an injected stylesheet 61

Chapter 11 Messages and Proxies 65

Listing 11-1 Injected.js 67
Listing 11-2 Global.html 68
Listing 11-3 Example: blocking content 68

Chapter 12 Access and Permissions 71

Figure 12-1 Access to secure pages 72
Figure 12-2 Whitelist and Blacklist 73

Chapter 13 Settings and Local Storage 75

Figure 13-1 Settings pane 75
Figure 13-2 Setting types 76
Figure 13-3 Extension storage 80
Listing 13-1 Responding to settings changes 79

Chapter 14 Debugging Extensions 81

Figure 14-1 Inspecting extension bars 82
Figure 14-2 Inspecting injected scripts 83
Figure 14-3 Inspect Global Page button 84

8
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Safari extensions provide a way for developers to add features to the Safari browser. You can add custom
buttons to the Safari toolbar, create bars of your own, add contextual menu items, display content, and inject
scripts and stylesheets into webpages. This lets your extension behave in a wide variety of ways.

Figure I-1 Safari extensions

Add buttons to
the toolbar

Add extension bars
Add tabs & windows
Modify web content

Modify context menus

Special Features

You write Safari extensions using HTML, CSS, and JavaScript, with support for HTML5 and CSS3. A JavaScript
API for extensions allows you to interact with the browser and web content in ways that scripts normally
can’t.

Important: To develop extensions for Safari, you need to sign up for the Safari developer program online,
at http://developer.apple.com. You need a certificate before your extension can be installed.

Safari extensions are supported in Safari 5.0 and later on the desktop (Mac OS X and Windows). Safari
extensions are not currently supported on iOS.

At a Glance

Safari extensions let you add persistent items to Safari—controls, contextual menu items, local or web-based
content, and scripts that modify the content Safari presents.

At a Glance 9
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

http://developer.apple.com

What’s the Difference Between an Extension and a Plug-in?

A plug-in can add support for media types to a browser. An extension can add many different features.

Extensions and plug-ins both expand a browser’s capabilities. Plug-ins let browsers display media that the
browser can’t display natively, or provide a particular media player experience. Extensions personalize and
enhance the browser itself, and can interact with ordinary web content.

A plug-in can’t interact with webpages except to display media of specific MIME types. A plug-in cannot add
features to Safari, such as toolbar buttons or contextual menu items.

A plug-in is a binary file that interfaces with the browser, but is essentially an application in itself—the browser
hands off specific media types to the plug-in to handle.

An extension is a collection of HTML, JavaScript, and/or CSS files that the browser uses to expand its feature
set. Extensions allow you to reformat webpages, block unwanted sites or unwanted material, display RSS
feeds and other data in a bar or window, and do literally thousands of other things that plug-ins can’t do.

The Extension Architecture Has Two Parts

You can logically divide extensions into two parts: a part that interacts with the Safari application, and a part
that interacts with web content.

The part of an extension that interacts with the Safari application resides in a global HTML page and/or in
extension bars. The part that interacts with web content resides in JavaScript files or CSS stylesheets that are
injected into content pages.

There is a strict division between these two parts, but you can send messages between them. Figure I-2
illustrates the architecture.

Figure I-2 Extension diagram

Safari Application

Contextual Menus
Windows
Tabs
Toolbar

Extension

Webpage Content

Global HTML page

Extension Bar pages

Webpage Proxy

Injected JavaScript

CSS stylesheets

Tab Proxy

Extensions don't require both of these parts—an extension can operate just on the Safari application or just
on web content.

10 At a Glance
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

Relevant Chapter: “Extensions Overview” (page 15)

Extensions Have Their Own JavaScript API

Extensions have access to a special JavaScript API that lets them access the Safari application and web content.
Safari Extensions Reference documents the complete API.

The extensions API has four main parts:

 ■ Safari Application APIs—let your extension work with windows and tabs.

 ■ Safari Extension APIs—let you add and remove injected scripts, injected stylesheets, toolbar items, and
contextual menu items from your extension.

 ■ Injected Scripts—let you read and modify web content.

 ■ Events—let you respond to mouse clicks on toolbar items or contextual menu items, and pass messages
between the different parts of your extension.

Relevant Chapter: “Extensions Overview” (page 15)

Important: Safari extensions are restricted to the JavaScript API’s documented in Safari Extensions
Development Guide and Safari Extensions Reference.

You Create Extensions Right in Safari

You create extensions using Extension Builder, which is built into Safari 5.0 and later. Open Extension Builder,
tell it to create an extension folder, drag your HTML, JavaScript, and CSS stylesheets into the folder, fill out
the fields in Extension Builder, and you’re good to go.

Note: Extensions are disabled by default in Safari 5.0. You need to enable the Develop menu in the Advanced
pane of the Safari Preferences panel, then enable extensions in the Develop menu if you are using Safari 5.0.

Extensions are enabled by default in Safari 5.0.1 and later. You must still enable the Develop menu to access
Extension Builder, however.

The main ingredients of an extension are:

 ■ Global HTML page—code that’s loaded once, when Safari launches or when your extension is enabled.
This is the ideal place to put the code for buttons in the Safari toolbar or contextual menus. This page
is never displayed; it’s just for logic.

 ■ Extension bars (HTML, CSS, JavaScript, media)—extension bars can display controls and HTML content;
extension bar files have access to the Safari application and can also contain code for Safari toolbar
buttons or contextual menus.

 ■ Injected scripts—scripts to be injected into browser content. These scripts can read, modify, add to, or
delete content.

At a Glance 11
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

 ■ Injected stylesheets—user stylesheets that can modify the display of web content by overriding or
adding to the styles normally applied.

 ■ Icon image—the icon for your extension.

Relevant Chapter: “Using Extension Builder” (page 23)

You Can Define Your Settings Using Extension Builder

Your extension can have its own user settings, accessible to the user in the Extensions pane of Safari
Preferences. You define the settings, user interface items, and default values using Extension Builder.

There is also a settings API similar to HTML5 local storage for accessing and modifying settings programatically.
You can use encrypted settings for security.

Relevant Chapter: “Settings and Local Storage” (page 75)

Debug Your Extension With Safari’s Built-In Tools

You can use the Safari developer tools to help debug your extension. The developer tools report HTML errors
and profile JavaScript, log messages to the console, and let you interactively set breakpoints, get variable
values, and call functions. The debugging tools are supported for extension bars, global HTML pages, and
injected scripts. Each extension bar and global page has its own console.

Relevant Chapter: “Debugging Extensions” (page 81)

Update Your Extension Automatically from the Web

Safari provides a method to support checking for updates to an extension automatically: the Update Manifest.
You specify a web address, and Safari periodically compares the installed version of your extension with the
latest version on your website. If your website has a newer version, Safari offers the user an update.

Relevant Chapter: “Updating Extensions” (page 87)

Prerequisites

You need to be familiar with HTML, JavaScript, and the basics of CSS. Familiarity with HTML5 and CSS3 is
helpful. To add a button to the toolbar, you need to be able to create an image with an alpha channel
(transparency).

12 Prerequisites
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

See Also

 ■ Safari Extensions JavaScript Reference

 ■ Safari DOM Extensions Reference

See Also 13
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

14 See Also
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Extensions

Extensions are a way for you, as a developer, to add features to Safari.

You write Safari extensions using HTML, CSS, and JavaScript, with support for HTML5 and CSS3. Safari exposes
a set of methods and properties to JavaScript for extensions to use, letting your extension do things that
scripts normally can’t.

To develop extensions for Safari, you first need to sign up for the Safari developer program online, at
http://developer.apple.com. You need to join the program and obtain a certificate before your extension can
be installed.

What Your Extension Can Do

Safari extensions let you add persistent items to Safari, such as controls, local or web-based content, and
scripts that modify web-based content.

 ■ You can create controls by adding buttons to the Safari toolbar, adding contextual menu items, creating
extension bars, or injecting controls into webpages.

 ■ You can display HTML content in an extension bar, in its own window or tab, or inject it into webpages.

 ■ Your extension can run invisibly in the background.

 ■ You can modify and reformat web content by applying scripts and stylesheets.

Your scripts and stylesheets can be applied either universally or selectively, using whitelists and blacklists
of URL patterns to determine which web pages they should be applied to.

To see examples of Safari Extensions, visit the Safari Extensions Gallery (http://extensions.apple.com/).

The Extension Parts List

An extension starts as a folder. Depending on what you want your extension to do, you put some or all of
the following items into the folder:

 ■ Global HTML page—An HTML page containing JavaScript code. The global HTML page is loaded
once—when the application launches or your extension is installed or enabled—and has access to the
Safari application API. This is the right place to code buttons for the Safari toolbar or contextual menu
items.

 ■ Extension bars—HTML, CSS, JavaScript, and media files. Extension bars can display controls and a short
strip of HTML content, such as scrolling headlines or a stock ticker; extension bars have access to the
Safari application-level API and can contain code for Safari toolbar items or contextual menu items.

What Your Extension Can Do 15
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

http://developer.apple.com
http://extensions.apple.com/

 ■ Injected scripts—JavaScript files to be injected into browser content. These scripts can read, modify,
add to, or delete content, and can be applied selectively to webpages using URL patterns.

 ■ Injected stylesheets—User stylesheets that can modify the display of web content by overriding or
adding to the styles normally applied. These stylesheets can also be applied selectively using URL patterns.

 ■ Icon.png—The icon for your extension. It should be at least 64x64 pixels and can be larger. For best
results, include an Icon-48.png and Icon-32.png for optimized display at smaller sizes. If your icon is
exactly 64x64, you should name it Icon-64.png.

 ■ Content files—You can display HTML content in a full window or tab or inject it into pages by creating
an iframe. The content source files can be hosted on remote web servers but it is recommended that
they reside in your extension package.

 ■ Any other images or media your extension needs.

Extension Architecture

You can think of extensions as being divided into two parts: a part that interacts with the Safari application,
and a part that interacts with web content.

The part of an extension that interacts with the Safari application resides in either your extension’s global
HTML page and/or in extension bars. The part that interacts with web content resides in JavaScript files or
CSS stylesheets that are injected into content pages.

The division between these parts is strict, but you can send messages between them using proxies. If the
global HTML page or an extension bar page needs to act on web content, it sends a message to the webpage
proxy, where an injected script can act on it.

Similarly, if an injected script needs to make use of code in the global HTML page or an extension bar, it can
send a message to the tab proxy. The extension architecture is illustrated in Figure I-2

Figure 1-1 Extension diagram

Safari Application

Contextual Menus
Windows
Tabs
Toolbar

Extension

Webpage Content

Global HTML page

Extension Bar pages

Webpage Proxy

Injected JavaScript

CSS stylesheets

Tab Proxy

16 Extension Architecture
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

An extension does not necessarily need to have both of these parts—an extension can operate only on the
Safari application or only on web content. For example, a toolbar button to close a window or insert a tab
would interact only with the application, while a stylesheet that reformats websites into black text on a white
background would operate only on web content.

The Safari Extensions JavaScript API

In addition to the usual JavaScript methods, extensions have access to a special JavaScript API that lets them
access the Safari application and web content. The full API is documented in Safari Extensions Reference, but
these are the main things you need to know:

Classes and Properties

The Safari extensions API has several classes, such as SafariBrowserWindow, SafariBrowserTab, and
SafariWebPageProxy, representing, for example, a window, a tab, and the webpage loaded in a tab. You
rarely, if ever, use the actual class names in your code, however. Instead, your extension JavaScript uses the
SafariNamespace object, safari, followed by a chain of properties. For example:

safari.application.activeBrowserWindow returns the active instance of SafariBrowserWindow.

safari.application.activeBrowserWindow.activeTab returns an instance of SafariBrowserTab.

safari.application.activeBrowserWindow.activeTab.page returns an instance of
SafariWebPageProxy.

As usual in JavaScript, there is more than one way to address a particular object and the chain of properties
goes both ways—a browser window has a tabs property representing its tabs, for example, and each tab
has a browserWindow property representing its parent window.

The Application and Extension Objects

The SafariApplication object allows you to work with windows and tabs, and to respond to commands
from toolbar items and contextual menu items. For example, you open a new browser window like this:

safari.application.openBrowserWindow();

The SafariExtension object allows you to add and delete buttons, menu items, scripts, and stylesheets
from your extension. For example, the following code snippet adds a simple black-and-white stylesheet to
the injected contents of your extension:

var bw = "body { color:black !important; background:white !important}" ;

safari.extension.addContentStyleSheet(bw);

You can access the SafariApplication and SafariExtension classes from your extension’s global HTML
page or from an extension bar. They are accessed as safari.application and safari.extension.

The Safari Extensions JavaScript API 17
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

Web Content Interaction

Scripts that are injected into web content can access the DOM of webpages they are injected into, allowing
them to read and modify the content. Injected scripts use the normal JavaScript
API—getElementsByTagName(), innerHTML, and so on—but because they are injected into a webpage,
they have the privileges of a script loaded from the same domain the content comes from.

This means your extension scripts have the same ability to modify webpages as the scripts loaded from the
website’s server.

This capability is available to scripts you designate as injected content.

You can also designate stylesheets as injected content. Injected stylesheets are treated as user stylesheets,
as defined by the W3C. This means that they can override styles applied by the webpage’s author if they are
declared important. For example, to override the body element’s background color, you could declare:

body { background: #ffffff !important }

The style cascades in the following order:

1. Your injected stylesheet’s normal declarations are applied.

2. The website author’s stylesheet’s normal declarations are applied.

3. Styles declared as important in the website author’s stylesheets are applied.

4. Styles declared as important in your injected stylesheets are applied, overriding any other definition
(you have the last say).

Events—Commands, Messages, and Proxies

There are several types of events in the Safari Extensions API, but there are four event types you commonly
use: “command”, “validate”, “contextmenu”, and “message”.

Command events are generated when the user clicks an extension’s toolbar item or chooses an extension’s
contextual menu item. You respond to commands by installing listener functions for “command” events,
then testing the command name. Listener functions are added using addEventListener("command",
functionName, false).

You can add an event listener function to the window or application:

safari.application.addEventListener("command", myCmdHandler, false);

Validate events are sent at various times prior to any command events, to ensure the command is valid, and
before showing context menu items. You can respond to a “validate” event by disabling your toolbar item
or menu item, modifying what it does, or by doing nothing if the command should be executed normally.

You can respond to command and validate events in either your global HTML page (recommended) or in an
extension bar.

18 The Safari Extensions JavaScript API
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

Contextmenu events are sent when the user right-clicks or control-clicks in a webpage, but before any
contextual menu is displayed, and before any validate or command event associated with the menu are sent.
Your injected scripts can respond to these events by passing contextual information, such as what element
is being clicked on, to your global script or extension bar, which can modify the contextual menu before it
is presented.

Message events are your way to pass information between parts of the extension. Messages are sent using
dispatchMessage(messageName, data). You listen for messages by installing a listener function for
“message” events: addEventListener("message", functionName, false).

The message API is accessible from all parts of an extension—the global HTML page, extension bars, and
injected scripts.

Proxies are used to support message passing across the application/content boundary. There is a page proxy
object (class SafariContentWebPage / SafariWebPageProxy) for sending messages to injected scripts
and a tab proxy object (class SafariBrowserTab / SafariContentBrowserTabProxy) for sending
messages to an extension bar or to the global page.

How To Create Extensions

Extensions are created using Extension Builder, which is built into Safari 5.0 and later. Enable the Develop
menu in the Advanced pane of Safari Preferences. Then choose Show Extension Builder in the Develop menu.

Note: Extensions were introduced in Safari 5.0, and were disabled by default, so in Safari 5.0 you must enable
extensions in the Develop menu before you can show Extension Builder.

Extensions are enabled by default in Safari 5.0.1 and later.

An extension consists of an extension package—a signed, compressed folder with the safariextz extension,
containing all your extension's files and a generated plist file that tells Safari how your extension is organized
and what it does.

Note: The Safari extension package is a Mac OS X bundle. You don’t need to understand bundles to create
extensions, but you may find it helpful. To learn more about bundles and the plist, see Bundle Programming
Guide.

To create an extension, first make an extension folder by clicking the + button in Extension Builder and
choosing New Extension, then create the HTML, CSS, JavaScript, and media files you need and put them in
the folder. The folder has the .safariextension extension when it is created.

Use Extension Builder to specify details about the structure and behavior of your extension and build an
extension package. Clicking Build creates a compressed, installable version of your extension with the
.safariextz extension. For details, see “Using Extension Builder” (page 23).

Here’s a more detailed description of the things you put into the extension folder:

How To Create Extensions 19
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

Global HTML Page

Your extension can have one global HTML page. It is not mandatory. This page is loaded only once, when
Safari loads your extension. It is never displayed. It exists as a container for JavaScript. You can add JavaScript
to your global page in-line, or include it in a separate file or files in your extension.

If you are adding items to the main Safari toolbar, it’s generally best to write a global HTML page to specify
what the toolbar items do, but you can also specify what the items do in a extension bar file. For details, see
“Adding Buttons to the Main Safari Toolbar” (page 47).

If you are adding contextual menu items, it’s generally best to write a global HTML page and specify what
the menu items are and what they do, but again, you can also specify contextual menu items and actions in
a toolbar file. For details, see “Adding Contextual Menu Items” (page 53).

Putting the code for toolbar items and contextual menus in your global page is more efficient than putting
it in an extension bar file because extension bar files are reloaded every time a window is opened, whereas
the global file is loaded only once during the application’s lifetime.

If your injected scripts use a large amount of code or data, it should be moved to the global HTML page, so
time isn’t spent reloading large blocks of code or data each time the user opens a webpage. Injected scripts
can’t call functions defined in your global page directly, but injected scripts can pass messages to the global
page, and the message handler in the global page can call other functions. For details, see “Messages and
Proxies” (page 65).

Extension Bar Files

Extension bars are toolbar-sized strips added to the Safari frame—below the Bookmarks bar and above the
tab bar—and dedicated to a particular extension. There can be multiple extensions with bars installed, and
multiple bars per extension. If more than one extension bar exists, they are stacked. An example of an
extension bar is shown in Figure I-1.

Each extension bar has a label which is listed in the View menu (the View menu is hidden by default in
Windows, but can be access through the gear button) and the menu item can be toggled to show or conceal
each bar in the stack.

Figure 1-2 Extension bar example

You can use extension bars to add controls to Safari or to display other content, such as a stock ticker, weather
forecast, flight information, or headlines. Extension bars are only 30 pixels tall, so content that needs a taller
display space should be shown in its own tab or injected into the browser content instead.

20 How To Create Extensions
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

Extension bar files can access the Safari application to do things like opening and closing windows and tabs,
loading URLs, responding to Safari toolbar items, and responding to menu choices in contextual menus.
Extension bar files cannot manipulate content loaded in a browser tab, however; for that you need to use
injected scripts or styles (see “About Safari Extensions” (page 9)). You can send and receive messages from
scripts in extension bars.

You create extension bars using HTML (also CSS, JavaScript, and any media files). You don’t need to do
anything special in the HTML to have your content displayed in an extension bar—just tell Extension Builder
which HTML files are sources for extension bars.

If your extension bar uses images or other media, they can be included in the extension package or loaded
from the web at runtime. It is strongly recommended that you use local media whenever possible.

Extension bar files are loaded each time Safari opens a window, so if your extension bar has code or data
that needs to load only once, you should put that material in a global HTML page instead.

If you want to create an extension bar, see “Adding Extension Bars” (page 33).

Injected Scripts and Stylesheets

You can have Safari inject scripts or stylesheets that you provide into the webpages Safari loads. These
injected scripts and styles can read and modify browser content.

Scripts can be specified as End scripts (interpreted when the page’s onload event occurs), or Start scripts
(interpreted before the page is interpreted). Most scripts are End scripts. Scripts that block unwanted content
before it displays are the most common use for Start scripts. You can have both Start scripts and End scripts.

Stylesheets are applied as user stylesheets, so normal declarations in them precede the webpage author’s
declarations in the cascade, but !important declarations are applied after the author’s declarations, allowing
user stylesheets to override the webpage author’s styles.

You can use URL patterns to decide which webpages your scripts and stylesheets are applied to by creating
a whitelist and/or a blacklist of URL patterns. The blacklist contains URL patterns for webpages you don’t
want to inject scripts or styles into. The whitelist contains URL patterns for webpages you do want your scripts
and styles injected into. For details, see “The Extension Builder Interface” (page 24).

If you want to inject scripts into webpages, see “Injecting Scripts” (page 59).

If you want to apply user stylesheets to webpages, see “Injecting Styles” (page 61).

The plist Files

The Info.plist file contains your extension’s metadata. This includes the extension name, author, and
version, as well as information about how your extension is organized—whether it has a global HTML page,
extension bars, or injected scripts, and which files are used for what. If your extension has settings, they are
also defined in a plist file—Settings.plist. Settings.plist is optional, but Info.plist is required.
When someone talks about your extension’s plist file, they generally mean Info.plist.

The plist files are created for you using Extension Builder, so you shouldn’t need to do anything with them
yourself. But to really understand how extensions work, you need to know the plist files exist. All the fields
you fill out in the Extension Builder interface are stored in a plist file.

How To Create Extensions 21
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

22 How To Create Extensions
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Extensions Overview

You can use Extension builder to build, install, reload, and uninstall extensions. Extension Builder is built into
Safari 5.0 and later.

Before You Begin

Before you can build and install an extension, you need to install a developer certificate. You obtain a certificate
by signing up for the Safari Developer Program at http://developer.apple.com. Install your certificate by
double-clicking the certificate file. This launches Keychain Access on Mac OS X, or the Certificate Import
Wizard on Windows.

Opening Extension Builder

To access Extension Builder, first enable the Safari developer tools by clicking “Show Develop menu in menu
bar” in the Advanced pane of Safari Preferences, as shown in Figure 2-1. (To learn more about the Safari
developer tools, see Safari User Guide for Web Developers.

Figure 2-1 Enabling the developer tools

Before You Begin 23
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

http://developer.apple.com

Note: In Safari 5.0, extensions are turned off by default and must be enabled by choosing Enable Extensions
in the Develop menu, so the Extensions icon is not initially shown in Preferences. In Safari 5.0.1 and later,
extensions are enabled by default.

Next, choose Show Extension Builder from the Develop menu. If no previous work has been done in Extension
Builder, the Extension Builder window is largely empty except for the + button. Don’t worry; that’s normal.

The Extension Builder Interface

Click the + button to create a new folder to hold your extension. You are prompted to either Add Extension
(choose an existing extension folder) or create a New Extension. Choose New Extension. You’re prompted
to give the folder a name and location. The folder is created with the .safariextension extension.

A generic extension icon is displayed with a label derived from your folder name. Add your extension’s HTML,
CSS, JavaScript, and media files to this folder. If you include an Icon.png file, the icon changes to show it,
otherwise the icon remains generic. Your certificate information is also displayed. The information is shown
in the format: Safari Developer: (Developer ID) email@address.

Click your extension’s icon to bring up the main Extension Builder interface, as shown in Figure 2-2.

24 The Extension Builder Interface
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

Figure 2-2 Extension Builder interface

At the top of the window is your extension’s icon, title, the name of the extension folder, and your developer
ID. The following interactive fields are displayed below:

 ■ Display Name—The visible name of your extension. Required.

 ■ Author—Your name or your company name.

 ■ Description—A brief description of what your extension does.

 ■ Website—The website that users should visit for information and support.

 ■ Bundle Identifier—Mac OS X bundle identifiers are alphanumeric strings in reverse DNS format. Use your
type of organization (com, gov, edu, org, and so on), your company name, and the extension name,
separated by dots. For example, com.MyCompany.myExtension. Required.

The Extension Builder Interface 25
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

 ■ Update Manifest—The URL to use when checking for available updates. For more information, see
“Updating Extensions” (page 87).

 ■ Display Version—The displayed version number for your extension. Required.

 ■ Bundle Version—The internal version number used by the operating system. One or more digits with
period separators, such as 1 or 4.1.1. This is the version number Safari uses when checking for updates.
Required.

 ■ Extension Website Access—Use this field to restrict your extension’s access to external websites. Your
choices are as follows:

 ❏ None—Your extension cannot access webpages by injecting scripts or stylesheets.

 ❏ Some—Your extension has access to webpages specified in the Allowed Domains field. If this field
is left blank, your extension has no website access.

 ❏ All—Your extension can access webpages from any domain.

If you choose Some or All, you can further choose to allow your extension access to secure sites (HTTPS
URLs) or not, as shown in Figure 2-3.

Figure 2-3 Access restrictions

When listing domains and pages your extension is allowed to access, you can use the asterisk as a wildcard
character. For more information on access and permissions, see “Access and Permissions” (page 71).

 ■ Global Page File—A page loaded once, when Safari loads your extension. This page is not displayed. It
is intended for JavaScript functions that handle response to commands, messages, and other events.

 ■ Extension Storage: Database Quota—The space you want to allocate for HTML5 client-side database
storage for your extension. For more information, see “Settings and Local Storage” (page 75).

 ■ Bars—An extension bar is space below the Bookmarks bar and above the tab bar reserved for your
extension. If you wish to display persistent data in the browser frame, create an extension bar. Add an
HTML file to your extension folder as the source for your extension bar and click New Bar, then choose
the file from the pop-up menu. You are prompted to enter a label to identify your bar in the View menu.
For more information, see “Adding Extension Bars” (page 33).

 ■ Context Menu Items—Items your extension adds to contextual menus. Click New Context Menu Item
to add an item. The interface expands to allow you to enter a title, identifier, and command for each
context menu item. For more information, see “Adding Contextual Menu Items” (page 53).

 ■ Toolbar Items—Buttons you are adding to the main Safari toolbar (not an extension bar). Click New
Toolbar Item and you are prompted to enter a label, palette label, tool tip, image file, identifier, and
command. The code that listens for the button click and executes the command goes in either your
global HTML page or an extension bar. For details, see “Adding Buttons to the Main Safari Toolbar” (page
47).

 ■ Start Scripts—Scripts to execute before a webpage is interpreted, usually a script that blocks unwanted
content.

26 The Extension Builder Interface
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

 ■ End Scripts—Scripts to execute when the page load event occurs (roughly when a function specified in
the body onload attribute would execute). Most scripts are End Scripts.

For more information, see “Injecting Scripts” (page 59).

 ■ Stylesheets—User Stylesheets to apply to browser content. For more information, see “Injecting
Styles” (page 61).

 ■ Whitelist—When injecting scripts or stylesheets, only URLs specified in the white list are affected. If no
whitelist is specified, all URLs are on the whitelist.

 ■ Blacklist—When injecting scripts or stylesheets, any URLs specified on the black list are skipped (scripts
and stylesheets are not injected).

Add URLs to the whitelist or blacklist by clicking New URL Pattern.

A URL pattern can include the * character to match any string. The * character can be used in any part
of the the Domain or Path, but not the Scheme.

Examples:

 ❏ http://*/*—matches all http URLs

 ❏ http://*.apple.com/*—matches all webpages from apple.com

 ❏ http://developer.apple.com/*—matches all webpages from developer.apple.com

 ❏ https://secure.A_BankForExample.com/accounts/*—matches all webpages from the
accounts directory of secure.A_BankForExample.com that are delivered over HTTPS.

 ❏ http://www.example.com/thepath/thepage.html—matches one webpage

For more information, see “Access and Permissions” (page 71)

 ■ Extension Settings—Persistent settings for your extension. Click New Settings Item to add a setting.
Hidden settings are not displayed to the user. All other settings appear in a pane for your extension in
Safari Preferences. Each setting has a key (identifier), a type (such as checkbox or text field), and an
optional default value. For details, see “Settings and Local Storage” (page 75).

Building A Simple Extension

In order to create an extension, you need a minimum of two files:

1. A certificate (to obtain a certificate, join the Safari developer program at http://developer.apple.com).

Install your certificate using Keychain Access (Mac OS X) or the Extension Certificate Wizard (Windows).
Double-clicking the certificate file launches the appropriate application.

2. A resource file, such as an HTML page, script, or CSS file. To create an extension bar, you need an HTML
file.

As the resource file for this example, create an HTML page that displays “Hello World” and save it as
helloworld.html. An example is shown in Listing 2-1.

Building A Simple Extension 27
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

http://developer.apple.com

Listing 2-1 helloworld.html

<!DOCTYPE html>
<html>
<head>
<title>Hello World</title>
</head>
<body>Hello World!</body>
</html>

Follow these steps to create an extension bar that displays “Hello World”.

1. Click the + button in Extension builder and choose New Extension. Extension builder creates an empty
folder with the extension .safariextension and prompts you for a name and location. Name the
new extension folder HelloWorld and have Extension Builder put it in your Documents folder. A generic
icon is displayed with the name HelloWorld.

This brings up the main Extension Builder interface, as shown in Figure 2-2 (page 25).

2. Put the helloworld.html file in the HelloWorld.safariextension folder.

(You don’t use Extension Builder for this step—just drag the file into the folder.)

3. Click New Bar in Extension Builder, enter a label such as Hello World, and choose
helloworld.htmlfrom the pop-up menu. This tells Extension Builder to use helloworld.html as the
source file for a new extension bar. The label appears in the View menu.

4. Click the Install button. Extension Builder creates a compressed folder with the extension .safariextz.
This is your extension package. The package is installed, and a new extension bar is added to your browser
window that displays “Hello World!” as illustrated in Figure 2-4.

Figure 2-4 Hello world

Notice that you can toggle the bar’s visibility by name in the View menu and disable or enable the extension
itself in the Extensions pane of Safari Preferences. You can edit and save helloworld.html to experiment
with it. Click Reload in Extension Builder to build and install the modified version.

28 Building A Simple Extension
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Using Extension Builder

Your global HTML page, extension bars, injected scripts, and stylesheets can all access resources within your
extension folder, such as .js files, images, and other media. The resources must reside within your
.safariextension folder when Extension Builder builds the extension (creates the compressed
.safariextz package).

Using Relative URLs

Relative URLs are resolved differently for injected scripts and other extension resources.

Used from an injected script, relative URLs are relative to the webpage the script is injected into. From within
an injected script—or any of its sub-resources, such as included scripts—resources in the extension folder
can be loaded only by using an absolute URL (See “Using Absolute URLs” (page 30)).

For all other extension resources, including injected stylesheets, relative URLs are relative to the source file
within the extension folder.

This means you can access resources within the extension folder using relative URLs from the global page,
extension bars, injected stylesheets, or any of their sub-resources.

You can have nested folders within your extension folder. For example, your extension folder could contain
a Scripts folder and an Images folder.

MyExtension.safariextz/

 Scripts/

 myScript.js

 Images/

 myImage.png

You can traverse the folder hierarchy with a relative URL by using ../ to go up a level. For example, from a
script in the Scripts folder, you could load an image in the Images folder using this snippet:

img.src='../Images/myImage.png'.

Using Relative URLs 29
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Accessing Resources Within Your Extension
Folder

Important: Do not begin a relative URL with a leading forward slash (/). Relative URLs must be relative to
the file they are loaded from, not relative to the extension’s folder.

This restriction applies in Safari 5.0.1 and later. If your extension uses relative URLs to access resources in
your folder, and the extension was tested using Safari 5.0, you should retest it using Safari 5.0.1 or later to
confirm that it does not use relative URLs that begin with the forward slash character.

Using Absolute URLs

You can use absolute URLs to access resources in your extension folder from any part of your extension.

Use of the file:/// scheme is not allowed. Absolute URLs begin with safari.extension.baseURI,
followed by the path within the folder and the filename. For example, using an absolute URL from a JavaScript
function looks like this:

img.src = safari.extension.baseURI + 'Images/myImage.png'

Important: The base URI ends in a forward slash. Do not begin the path with another.

You must use JavaScript to obtain the absolute URL, as it changes each time Safari is launched. To load a
resource from an HTML or CSS file using an absolute URL, you need to add some JavaScript to the source
file.

Example: Loading a Background Image in CSS

A injected stylesheet can add a background image to a website using images stored inside the extension.
The easiest way to do this is to use a relative URL directly in CSS. For example:

body { background-image:url('../Images/paper.jpg'); }

To accomplish the same thing using an absolute URL, insert a few lines of JavaScript into your stylesheet,
such as this:

<script type = "text/javascript">
var myImage = safari.extension.baseURI + "Images/paper.jpg" ;
document.body.style.cssText = "background-image: url(" + myImage + ")";
</script>

Security

Use of the file:/// scheme is not allowed.

The base URI returns a unique value each time Safari is run. It must be obtained at least once per session by
your extension. It does not persist from session to session and it is not predictable.

30 Using Absolute URLs
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Accessing Resources Within Your Extension Folder

This prevents outside scripts from determining the base URI of your extension and accessing its resources.

You can capture the base URI for your extension in a string and reuse the string within your code during a
session, but you cannot store the string and reuse it from session to session.

Security 31
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Accessing Resources Within Your Extension Folder

32 Security
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Accessing Resources Within Your Extension Folder

Extension bars are toolbar-sized areas that serve as dedicated display space for extensions. Each extension
bar is 30 pixels tall, so it’s an appropriate place to put controls, a set of links, or a single line of information
such as a scrolling headline or a stock ticker.

About Extension Bars

Extension bars are stacked between the Bookmarks bar and the tab bar. Each extension bar’s visibility can
be toggled on and off using the View menu (Mac OS X) or Action button (Windows). An extension can have
multiple extension bars.

You designate an HTML file as the source of an extension bar using Extension Builder. For an example, see
“Building A Simple Extension” (page 27).

Your extension bar can contain JavaScript functions defined in any of the usual ways, such as within the
<head> element or in an included .js file.

Extension bar source files are loaded and interpreted each time a new browser window is opened. When the
user opens a new window, Safari creates an instance of the SafariExtensionBar object for each bar. If no
windows are open, there are zero extension bar instances. Hiding a bar using the View menu does not remove
the instance. The extension’s global HTML page and other extension bar files can access the extension bar
and its properties using the safari.extension.bars array.

Multiple instances of an extension bar are independent, like the same webpage loaded in multiple windows.
If an extension bar contains an audio player, for example, the play and pause button in a given extension
bar act on the <audio> element in that bar, so if you start playing music, open a new window, and want to
stop the music, you need to go back to the original window. To have the play and pause buttons in any copy
of an extension bar act on the same <audio> element, put the <audio> element in a global HTML page.

The extension.bars Array

To address a particular instance of an extension bar, iterate through the safari.extension.bars array,
using the identifier property of the extension bar to identify the particular bar, and the browserWindow
property to identify the window instance. For example, to address the bar named “Audio Controls” in the
active window, you might do this:

const bars = safari.extension.bars;
const activeBrowserWindow = safari.application.activeBrowserWindow;
for (var i = 0; i < bars.length; ++i) {
 var bar = bars[i];
 if (bar.browserWindow === activeBrowserWindow && bar.identifier === "Audio
 Controls")
 {

About Extension Bars 33
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

 /* Do something. */
 }
}

Domain, URLs, and Access

An HTML file that acts as the source for an extension bar behaves pretty much the way any webpage would
in a 30-pixel tall window, with the following exceptions:

 ■ The domain of an extension bar is unique to the extension.

 ■ Relative URLs are relative to the copy of the extension bar source file in the extension package. URLs
outside of the extension package on the user’s drive cannot be accessed.

 ■ If you need to refer to a file in the package using an absolute URL, the URL is
safari.extension.baseURI + "relative-path/filename".

 ■ An extension bar file has access to the Safari application’s windows, tabs, contextual menu items, and
toolbar items.

 ■ An extension bar file can receive command events from contextual menu items or Safari toolbar items,
as well as message events sent from injected scripts; this requires installing a listener function for the
“command” event or “message” event.

 ■ An extension bar file can send messages to the webpage proxy. These messages can be received by
listener functions in injected scripts.

 ■ An extension bar file has access to the global HTML page, if your extension has one.

 ■ Extension bars can issue XMLHttpRequest to other domains. This allows your extension bar to read an
RSS feed or a news site, for example, into a string that can be parsed for information to display in the
bar. You set the domains your extension has permission to access using Extension Builder. For details,
see “Access and Permissions” (page 71).

Displaying Content in an Extension Bar

The HTML in an extension bar file is automatically rendered in the extension bar. The shape of the extension
bar, particularly its height, makes it suitable for particular tasks, such as the following:

 ■ A toolbar for your extension.

 ■ A specialized Bookmarks bar.

 ■ A ticker or news-crawl with headlines, stock price, weather, flight status, or other information suitable
for single-line presentation that can be obtained using XMLHttpRequest.

The user can hide the extension bar using the View menu, but the extension bar page still loads every time
a window is opened and any JavaScript still executes—only the display is suppressed by the View menu.

34 Domain, URLs, and Access
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

Creating an Extension Control Bar

To create an extension control bar, design a page that presents as a series of buttons, links, or controls, using
the title attribute of your control elements to show tooltips. The shape, placement, and function of the
controls are up to you, as long as they fit in the allotted space.

If the controls operate solely on the Safari application (manipulating windows and tabs, for example), or on
elements declared in the extension bar, the code can be entirely within the extension bar file or the global
HTML page.

If the extension bar triggers actions that need access to content loaded in a browser tab, however, the code
that acts on the content must be injected into the webpage. The extension bar cannot call functions in
injected scripts directly. The extension must send a message to the webpage proxy, and the injected script
must have a listener function registered for the message event. See “Interacting with Injected Scripts” (page
37).

The following example, Listing 4-1, is HTML that displays two buttons. Setting the title attribute on the
buttons creates tooltips. The <audio> element loads an audio file from a remote server. The buttons play
and pause the music.

Listing 4-1 Music player bar

<!DOCTYPE html>
<html>
<head>
 <title>Music Player Extension Bar</title>
 <script type="text/javascript">
 function playIt() {
 document.getElementById("music").play();
 }
 function pauseIt() {
 document.getElementById("music").pause();
 }
 </script>
</head>
<body>
My Music:

<input type=button value=">" onclick="playIt()" title="Play">

<input type=button value="||" onclick="pauseIt()" title="Pause">
<audio id="music" src="http://homepage.mac.com/qt4web/testmusic.m4a">
</audio>
</body>
</html>

To make this example into an extension bar, follow these steps:

1. Save the example as an HTML file.

2. Open Extension Builder, click +, choose New Extension, and give the extension a name (see “Using
Extension Builder” (page 23)).

3. Drag the HTML file into the extension folder you just created.

4. Click New Bar in Extension Builder and choose the HTML file from the pop-up menu.

Displaying Content in an Extension Bar 35
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

Click Install. You should see the music player toolbar in Safari, as shown in Figure 4-1.

Figure 4-1 Music player toolbar

Note that you can create several instances of the music bar by opening new windows, and that each bar
plays and pauses independently.

Working with Windows and Tabs

An extension bar can use either HTML or JavaScript to display content in a tab.

Note: Be sure to set your extension’s website access to Some or All in Extension Builder before working with
tabs—most tab properties return undefined unless your extension has access to the domain of the URL
loaded in the tab.

A link in an extension bar, such as link text , opens the linked URL in the active
browser tab, just as it would from a webpage. Unlike a normal webpage, the extension bar is not replaced
with the linked file, however. Consequently, an extension bar can contain a set of persistent links, similar to
the Bookmarks bar.

The standard window.open() method cannot be used to open a new tab and widow from an extension
bar. Instead, extension bars have access to the SafariApplication, SafariBrowserWindow, and
SafariBrowserTab classes, which allow you to open, close, activate and manipulate windows and tabs.

For example, this opens a window and returns the active tab:

var newTab = safari.application.openBrowserWindow().activeTab;

And this opens a new tab in the window containing the extension bar:

var newTab = safari.self.browserWindow.openTab();

For more details, see “The Windows and Tabs API” (page 63)

36 Working with Windows and Tabs
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

Listing 4-2, shows how to implement an extension bar that opens content in a new tab of the extension bar’s
window.

Listing 4-2 Safari developer reference bar

<!DOCTYPE HTML>
<html>
<head>
 <title>Safari Developer Reference</title>

 <script type="text/javascript">
 var server="http://developer.apple.com/";
 var reflib="safari/library/documentation/AppleApplications/Reference/"
 function openInTab(source){
 var newTab=safari.self.browserWindow.openTab();
 newTab.url=source;
 }
 </script>

</head>
<body style="color:#C02020;background:#C0C0C0;">
Safari Developer Reference Bar

 Dev Center

 HTML Ref

 CSS Ref
</body>
</html>

Figure 4-2shows what the example looks like when all three tabs have been opened.

Figure 4-2 Reference extension bar

Interacting with Injected Scripts

Extension bars cannot address the content of webpages, but they can interact with injected scripts indirectly,
by sending and receiving messages. There are two primary reasons to do this:

1. You might activate or control an injected script using controls in an extension bar.

Interacting with Injected Scripts 37
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

2. Your extension bar might contain code that your injected script needs to call.

Injected scripts are interpreted each time the user loads a URL the script applies to, including subframes, so
it’s important to keep your injected scripts lightweight; otherwise the load time for every page is slowed. An
extension bar is loaded only once per window, regardless of how many tabs are opened and URLs are loaded.
Consequently, if a script needs user controls, it’s better to put them in an extension bar than to inject them
into each page.

Similarly, if your script needs to perform significant calculations, or refer to a large table of data, it’s better
to load the data or large block of code once per window than once per page. In general, it’s better still to
load the code or data in your global HTML page and do it only once per session, but in cases where you need
one copy per window, the extension bar can be used.

In order to control an injected script, your extension bar needs to send a message by calling
theSafariWebPageProxy object’s dispatchMessage() method. The proxy stands in for the web content,
which can be accessed as the page property of a SafariBrowserTab object, which is in the tabs array or
activeTab property of a SafariBrowserWindow object, so sending a message to a script takes the general
form:

safari.application.activeBrowserWindow.activeTab.page.dispatchMessage(msgName,
data)

or

safari.application.browserWindows[n].tabs[n].page.dispatchMessage(name, data).

The injected script in the specified page must have a listener function registered for “message” events in the
SafariContentWebPage object (safari.self):

safari.self.addEventListener("message", respondToMessage, false);

In order to execute functions in your extension bar in response to a request from an injected script, you must
define and register a listener function for “message” events in your extension bar. You should generally
register your listener function at the window level. For example:

safari.self.browserWindow.addEventListener("message", respondToMessage, false);

For more details and examples, see “Messages and Proxies” (page 65).

Message-Passing Example

The following example shows an extension bar file, extensionbar.html, and an injected end script,
injected.js. The extension bar has a button to send a message and a text field that changes when it
receives a message. The script adds a text field to webpages that changes when it receives a message.

38 Interacting with Injected Scripts
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

Note: To see the example in action, follow these steps:

1. Copy the text in the following listings into a text editor and save as extensionbar.html and
injected.js.

2. Create an extension folder using Extension Builder and drag injected.js and extensionbar.html
into the folder.

3. In Extension Builder, set Extension Website Access to All.

4. Click New Bar in Extension builder and choose extensionbar.html.

5. Click New Script under Injected Extension Content—End Scripts: and choose injected.js.

6. Click Install, then load a webpage in Safari to load the script.

Note: You must designate injected.js as an End Script. If you attempt to run it as a Start Script,
document.body is undefined, as the webpage that the script is being injected into is not yet parsed.

Listing 4-3 Extensionbar.html

<!DOCTYPE HTML>
<html>
<head>
<script type="text/javascript">

 function sendMessage() {
 document.getElementById("textField").innerHTML="Sending message...";

safari.application.activeBrowserWindow.activeTab.page.dispatchMessage("hey",
"there");
 }

 function respondToMessage(messageEvent) {
 if(messageEvent.name === "gotIt")
 document.getElementById("textField").innerHTML=messageEvent.message;
 }

 safari.self.browserWindow.addEventListener("message",respondToMessage,false);

</script>
</head>
<body> Message Sender Bar
 <input type="button" value="Send" onclick="sendMessage()" >
 ...waiting...
</body>
</html>

Listing 4-4 Injected.js

var theBody = document.body;
// create a para and insert it at the top of the body
var element = document.createElement("p");
element.id = "status";

Interacting with Injected Scripts 39
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

element.style.cssText = "float:right; color:red";
element.textContent = "Waiting...";
theBody.insertBefore(element, theBody.firstChild);

function replyToMessage(aMessageEvent) {
 if (aMessageEvent.name === "hey") {
 document.getElementById("status").textContent="Message received.";
 safari.self.tab.dispatchMessage("gotIt","Message acknowledged.");
 }
}
// register for message events
safari.self.addEventListener("message", replyToMessage, false);

Figure 4-3, shows the extension bar and the webpage modified by the injected script, before and after sending
messages.

Figure 4-3 Before and after

40 Interacting with Injected Scripts
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding Extension Bars

A global HTML page is a place for you to put JavaScript code, data tables, and other resources requiring no
user interface that your extension needs to load only once per Safari session. The global page is not mandatory.
You can have at most one global page per extension.

The main uses for a global page are:

 ■ To hold the logic for handling Safari toolbar items.

 ■ To hold the logic for handling contextual menu items.

 ■ To hold the logic for handling settings changes.

 ■ To hold large blocks of logic or data used by extension bars.

 ■ To hold large blocks of logic or data used by injected scripts.

Adding a Global Page in Extension Builder

First create the global HTML page. The global HTML page is an HTML file that is loaded but never displayed.
It can contain JavaScript functions declared in script elements or in external .js files included using the
script element’s src attribute. The .js files can be located inside the extension folder and referenced by
relative URL.

If you have not already done so, click + in Extension Builder and choose New Extension. You are prompted
to give the extension a name and choose a location for it. Extension Builder creates a folder with the name
you choose and the file extension .safariextension.

Drag the HTML file that you want to use as your global page into the extension folder using the Finder or
Windows file system. Drag in any external .js files or other resources the global page needs as well.

Click Global Page File in Extension Builder and choose the file from the pop-up menu.

Handling Toolbar Items

The global page is the ideal place for the logic that handles toolbar items. You can also put the logic in an
extension bar, but since the logic doesn’t need to be loaded on a per-window basis and doesn’t need any
display space, it usually belongs in a global page.

To handle toolbar items, add a listener function for “command” events in your global page. Have the listener
function test the event name to see if it is the name of the command you specified for the toolbar item in
Extension Builder. If the event name is your command name, the user has clicked your toolbar item and you
should execute the command.

Adding a Global Page in Extension Builder 41
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

If there is any possibility that the toolbar item should be disabled, add a listener function for the “validate”
function as well. If the event name is the same as your command name, determine whether the toolbar item
should be disabled. If so, set event.target.disabled = true.

For details and examples, see “Adding Buttons to the Main Safari Toolbar” (page 47).

Handling Contextual Menu Items

The global page is also the ideal place for the logic that handles contextual menu items. Again, you can put
the logic in an extension bar, but since the logic doesn’t need to be loaded on a per-window basis and it
doesn’t need any display space, it usually belongs in a global page.

To handle contextual menu items, add a listener function for “command” events in your global page. Have
the listener function test the event name to see if it is the name of the command you specified for the
contextual menu item in Extension Builder. If the event name is your command name, the user has chosen
your contextual menu item and you should execute the command.

If there is any possibility that the contextual menu item should not be displayed, add a listener function for
the “validate” function as well. If the event name is the same as your command name, determine whether
the contextual menu item should be displayed. If not, set event.target.disabled = true.

If you need to obtain information from the webpage, such as the element that was clicked to initiate the
contextual menu, you can add event listeners for the “contextmenu” event in the global page and an injected
script. The script’s listener is called first, and can set pass information to the global page.

For details and examples, see “Adding Contextual Menu Items” (page 53).

Support Logic for Extension Bars

Functions and global variables declared in the global page can be accessed directly from extension bars, as
properties of safari.extension.globalPage.contentWindow. So, for example, if you define a myCalc()
function in your global page, you can call it from an extension bar using
safari.extension.globalPage.contentWindow.myCalc().

To simplify things, declare a constant in your extension bar such as:

const myGlobal = safari.extension.globalPage.contentWindow;

You can then access the myCalc() function from your extension var using myGlobal.myCalc().

The global page has access to the same API as an extension bar, so it can do all the same things, except that
it has no visible display area of its own. Consequently, it’s easy to move large chunks of code from an extension
bar to your global page. The following Listing 5-1, shows how.

This is an example of an extension bar that has a button. Clicking the button performs a simple calculation.

Listing 5-1 Moving logic to your global page

<!DOCTYPE HTML>
<html>

42 Handling Contextual Menu Items
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

<head>
 <title>old extension bar page</title>
 <script type="text/javascript">

 var theAnswer = 0;
 function calcThis(x) {
 x++;
 theAnswer = x;
 }

 function doButton() {
 calcThis(theAnswer);
 var mButton = document.getElementById("myButton");
 mButton.value = ("Increment " + theAnswer);
 }
 </script>
</head>
<body>
 <input type="button" value="Increment 0"
 onclick="doButton();" id="myButton" >
</body>
</html>

Here’s a version of the same extension bar, with the calculation moved to the global page. The code exported
to the global file is unchanged. A constant is defined in the extension bar and prepended to anything called
in the global file.

<!DOCTYPE HTML>
<html>
<head>
 <title>global page</title>
 <script type="text/javascript">

 var theAnswer = 0;
 function calcThis(x) {
 x++;
 theAnswer = x;
 }

 </script>
</head>
<body> </body>
</html>

<!DOCTYPE HTML>
<html>
<head>
 <title>extension bar page</title>
 <script type="text/javascript">

 const myGlobal = safari.extension.globalPage.contentWindow;

 function doButton() {
 myGlobal.calcThis(myGlobal.theAnswer);
 var mButton = document.getElementById("myButton");
 mButton.value = ("Increment " + myGlobal.theAnswer);
 }

Support Logic for Extension Bars 43
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

 </script>
</head>
<body>
 <input type="button" value="Increment 0"
 onclick="doButton();" id="myButton" >
</body>
</html>

You can also make function calls from the global page into an extension bar. Calling functions in this direction
is slightly more complex. There is one instance of the extension bar and all its functions per open window.
Your global page needs to identify which instance it wants to access, or iterate through them to access them
all.

For example, the following snippet iterates through the extension bars and calls the doSomething() function
defined in each one, but calls the doSomethingSpecial() function only in the active window’s extension
bar:

const myBars = safari.extension.bars;
function updateAllBars {
 for (var i = 0; i < myBars.length; ++i) {
 var barWindow = myBars[i].contentWindow;
 barWindow.doSomething();
 var myWindow = safari.application.activeBrowserWindow;
 if (myBars[i].browserWindow == myWindow)
 {
 barWindow.doSomethingSpecial();
 }
 }
}

Support Logic for Injected Scripts

JavaScript functions and variables in your global page cannot be called directly from injected scripts, but
injected scripts can send messages that trigger functions in the global page, and the global page can send
messages to injected scripts that trigger functions or contain the result of calculations.

For details and examples, see “Messages and Proxies” (page 65) and

Working with Windows and Tabs

Note: Be sure to set your extension’s website access to Some or All in Extension Builder before working with
tabs—most tab properties return undefined unless your extension has access to the domain of the URL
loaded in the tab.

The global HTML page itself is not displayed, but it can open windows and tabs and use them to display
content. The standard window.open() method cannot be used to open a new tab and widow from the
global HTML page, however. Instead, the global page has access to the SafariApplication,
SafariBrowserWindow, and SafariBrowserTab classes, which allow you to open, close, activate and
manipulate windows and tabs.

44 Support Logic for Injected Scripts
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

For example, this opens a window and returns the active tab:

var newTab = safari.application.openBrowserWindow().activeTab;

For details, see “The Windows and Tabs API” (page 63)

Working with Windows and Tabs 45
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

46 Working with Windows and Tabs
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Adding a Global HTML Page

Safari has a user-customizable toolbar that can contain a selection of buttons, such as a Home button, Zoom
button, and New Tab button. Your extension can define new toolbar items that can be installed in the toolbar.
These items also appear in the Customize Toolbar panel.

You control the actions of a toolbar item from either the global HTML page or from an extension bar by
installing a listener function for the “command” event.

Your extension can add more than one button to the toolbar, but if you are adding more than a few you
should not have them installed by default; you might also consider creating an extension bar for them instead.

Adding a button requires three steps: creating an image; filling out the appropriate fields in Extension Builder;
and adding logic to make the button do something.

Creating an Image

Buttons on the Safari toolbar are largely transparent, allowing them to be filled with the appropriate gradient
for the current Mac OS X or Windows user interface. You do not need to draw the button itself, only the
opaque part of its contents.

If you are used to working with alpha channels, create a 16 x 16 image consisting solely of an 8-bit alpha
channel, with alpha set to 255 for the transparent part of the button (including the outline) alpha set to 0
for the opaque parts of the button, which will appear in black, and intermediate alpha values for anti-aliasing.

If you are not used to working with alpha channels, create a 16 x 16 pixel image with a transparent background.
Fill in the button contents in black, or simply set the opacity for those pixels to 100%. If you draw or put text
on the button in black, notice that some pixels are grey. This is anti-aliasing. These pixels are not completely
black, so they are shaded. This is illustrated in Figure 6-1

Creating an Image 47
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

Figure 6-1 Anti-aliased text in black on transparent background

If you save your image as-is, these shaded pixels appear as black because they are completely opaque. To
preserve the anti-aliasing, make these grey pixels partly transparent. Depending on your image editor, this
may be accomplished by partly erasing the pixels or by setting the pixel opacity directly.

Save your image as a .png file (portable network graphics).

Setting Up Extension Builder

If you have not already done so, click the + button in Extension Builder, choose New Extension, and give
your extension a name. Create an image for each button you are adding and drag it into your extension
folder.

Click New Toolbar Item in Extension Builder. This expands the Toolbar Items pane, as shown in Figure 6-2.

Figure 6-2 Adding toolbar items

 ■ Enter a label for your toolbar item. This is a text label that is displayed if the bar has more buttons than
can be shown and the user clicks the chevron to see the overflow.

48 Setting Up Extension Builder
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

 ■ Enter a palette label for your toolbar item. This is the text label that is displayed when the user is
customizing the toolbar. It can be the same as the label, or it can be a bit longer if that makes the function
of your toolbar item clearer. If this field is left blank, the label is used.

 ■ Enter a tool tip for your toolbar item. This is the text displayed when the mouse pointer hovers over the
item. if this field is left blank, the label is used.

 ■ Drag a .png image file into your extension folder. The image should ideally be 14x14 or 16x16 pixels.
Larger images are cropped at 18x18 pixels. The image is an alpha mask. It must contain an 8-bit alpha
channel defining the part of the button face that is drawn, and nothing else. Using an alpha mask allows
your button to blend in with Safari’s native toolbar buttons on different platforms, even if the Safari UI
should change. Once you have an image file in your extension folder, you can choose it from the Image
pop-up menu. An image is required.

 ■ Enter an identifier. This field is required. The identifier is your name for the toolbar item. The name must
be unique in your extension. You can identify the toolbar item later by iterating through the array of
items and checking the value of the identifier property:

var itemArray = safari.extension.toolbarItems;
for (var i = 0; i < itemArray.length; ++i) {
 var item = itemArray[i];
 if (item.identifier === "my lovely button")
 {
 /* Do something. */
 }

 ■ Enter a command name. This is the event.command property of the event that is generated when the
user clicks your item in the toolbar. It does not need to be unique. For example, you might have both a
toolbar button and a contextual menu item that issue the same command. If this field is left blank, he
identifier is used.

If you check Include By Default, the item is installed in the toolbar when the extension is installed. Otherwise,
the user must choose to add the item in the Customize Toolbar window.

Responding to Commands

When the user clicks the button, Safari emits a “command” event. The command property of the event is the
string you entered in the Command field in Extension Builder. If you left the Command field blank, the
identifier is used instead.

You can respond to the “command” event by installing a listener function in either a global HTML page or
an extension bar.

You can’t receive the “command” event in an injected script. If you need the command to initiate an action
in an injected script, respond to the command in the global HTML page or an extension bar and send a
message to the script. For details, see “Messages and Proxies” (page 65).

At various times, such as when a tab is added, Safari will ask you to validate the command. If there is any
possibility that the command could be invalid, you should add an listener function for the “validate” event.

Responding to Commands 49
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

Your validate function should verify that the command is ready and should be enabled. For example, if your
command reloads the active tab, you should verify that the active tab has a URL to reload. If the tab is empty,
your validate function should disable the button. You can also modify the item’s image to reflect a modified
behavior.

The validate event is fired when an item is added to the toolbar, so this is also a good moment to update
badges.

You can have multiple UI items that issue the same command, such as a toolbar item and a contextual menu
item. You can use the same event handlers, regardless of the source.

If your functions are part of the global HTML page, you should register your listener functions with the
application:

safari.application.addEventListener("command", myCommandHandler, false);

safari.application.addEventListener("validate", myValidateHandler, false);

If your functions are part of an extension bar, you should register your listener functions with the extension
bar’s parent window:

safari.self.browserWindow.addEventListener("command", myCommandHandler, false);

safari.self.browserWindow.addEventListener("validate", myValidateHandler, false);

While you can implement the event handlers in either a global HTML page or in an extension bar, it is more
efficient to use a global HTML page, because the code is loaded only once, when Safari loads the extension,
instead of once per window.

Deciding Where to Respond

When your button is clicked, a “command” event is generated. You can listen for the event in either a global
HTML page or in an extension bar. If you put the event handler in the global file, you should register for the
event at the application level. If your event handler is in an extension bar, you should register with the
extension bar’s parent window.

The difference is that there is only one instance of the global HTML page’s functions, but there is an instance
of an extension bar in every open window.

If every instance of the extension bar registers for events at the application level, every instance responds to
the command. If each instance registers with its parent window, only the instance in the window where the
button was clicked responds to the command.

Using the global page is more efficient, as it loads only once. Furthermore, you shouldn’t create an empty
extension bar just to hold an event handler. If your extension has a bar, however, it might make sense to put
the event handler there, particularly if the action it takes is window-specific, like rearranging the tabs.

The only time you might want to put an event handler in the extension bar and register it with the application
is if your command acts on all open windows. Then your choice would be to iterate through the windows
in a global function or have a function local to each window that acts independently.

50 Deciding Where to Respond
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

If You Respond From a Global HTML Page

 ■ Register with the application: safari.application.addEventListener()

 ■ The window the event comes from is: event.target.browserWindow.

If You Respond From an Extension Bar

 ■ Register with the parent page: safari.self.browserWindow.addEventListener()

 ■ The window the event comes from is: self.browserWindow or event.target.browserWindow. The
two are equivalent.

Example: Implementing a Reload Button

The following example responds to the “reload-page” command event and the “reload-page” validate event.
The validate function disables the control if there’s nothing for it to do, but the command handler checks
anyway, in case things have changed since validation.

Listing 6-1 Reload command and validate handlers

function performCommand(event)
{
 if (event.command === "reload-page") {
 var currentURL = event.target.browserWindow.activeTab.url;
 if (currentURL)
 event.target.browserWindow.activeTab.url = currentURL;
 }
}

function validateCommand(event)
{
 if (event.command === "reload-page") {
 // Disable the button if there is no URL loaded in the tab.
 event.target.disabled = !event.target.browserWindow.activeTab.url;
 }
}

// if event handlers are in the global HTML page,
// register with application:
safari.application.addEventListener("command", performCommand, false);
safari.application.addEventListener("validate", validateCommand, false);
// if event handlers are in an extension bar,
// register with parent window:
// safari.self.browserWindow.addEventListener("command", performCommand, false);
// safari.self.browserWindow.addEventListener("validate", validateCommand,
false);

Example: Implementing a Reload Button 51
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

52 Example: Implementing a Reload Button
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Adding Buttons to the Main Safari Toolbar

Contextual menus pop up when the user control-clicks or right-clicks over an object. Safari presents different
contextual menus when the mouse pointer is over the toolbar, Bookmarks bar, an extension bar, the tab bar,
or the contents of a webpage.

Your extension can add menu items to the contextual menu that pops up over web content. You control the
actions of the menu item by installing a listener function for the “command” event in either your global HTML
page or in an extension bar.

Your extension can add multiple items to the contextual menu. The simplest way to add menu items is
through Extension Builder, but you can also add them programmatically.

Context Menu Events

When the user right-clicks or command-clicks in the web content window, a series of events are fired before
the menu is displayed:

1. A “contextmenu” DOM event that you can listen for in an injected script.

This event gives you the opportunity to add context information to the event or to prevent the menu
from displaying.

2. A “contextmenu” extension event that you can listen for in your global page or an extension bar.

This event gives you the opportunity to add menu items programmatically. You can read the context
information set by your injected script to help you determine what menu items to add.

3. A “validate” event for each menu item.

This event gives you the opportunity to disable menu items that should not be displayed, or modify a
menu item’s title.

Note: There are two versions of the “contextmenu” event—a DOM event that you can listen for in an injected
script, and an extension event that you can listen for in your global page or an extension bar. The DOM event
is always sent first.

You are not required to respond to any of these events. You can add context menu items using Extension
Builder, and if the menu items should be included in the context menu whenever the user clicks inside the
web content area, you need to respond only to the “command” event generated when the user actually
chooses one of your items from the menu. The "contextmenu” and “validate” events provide opportunities
for you to modify this default behavior.

Context Menu Events 53
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

Adding a Menu Item Using Extension Builder

You add an item to the contextual menu by clicking New Context Menu Item in Extension Builder. This
expands the contextual menu items pane, as shown in Figure 7-1.

Figure 7-1 Menu items pane

Enter a title for the menu item. This is the text that will appear in the contextual menu. This field is required.

Enter an identifier. This is required. The identifier must be unique within your extension.

Enter a command name. This is the name of the command event that is generated when the user chooses
your item from the menu. It does not need to be unique. For example, you might have both a toolbar item
and a contextual menu item that issue the same command. If this field is left blank, the identifier is used.

Responding to Commands

When the user chooses your toolbar item, Safari emits a “command” event. The command property of the
event is the string you entered in the Command field in Extension Builder. If you left the Command field
blank, the identifier is used instead.

You can respond to the “command” event by installing a listener function in either a global HTML page or
an extension bar.

You can’t receive the “command” event in an injected script. If you need the command to initiate an action
in an injected script, respond to the command in the global HTML page or an extension bar and send a
message to the script. For details, see “Messages and Proxies” (page 65).

Before the menu displays, Safari will ask you to validate the command by sending a “validate” event.

Your “validate” handler function should verify that it is appropriate to display the command. For example, if
your menu item reloads the active tab, you should verify that the active tab has a URL to reload. If the tab is
empty, your validate function should disable the menu item by setting event.target.disabled = true.

If you disable the menu item, it is not displayed.

If there is no possibility that the command is invalid, such as a “new tab” button, you are not required to
implement a validate function.

You can have multiple UI items that issue the same command, such as a toolbar button and a contextual
menu item. You can use the same event handlers for command and validation, regardless of the source.

54 Adding a Menu Item Using Extension Builder
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

If your functions are part of the global HTML page, you should register your listener functions with the
application:

safari.application.addEventListener("command", myCommandHandler, false);

safari.application.addEventListener("validate", myValidateHandler, false);

If your functions are part of an extension bar, you should register your listener functions with the extension
bar’s parent window:

safari.self.browserWindow.addEventListener("command", myCommandHandler, false);

safari.self.browserWindow.addEventListener("validate", myValidateHandler, false);

While you can implement the event handlers in either a global HTML page or in an extension bar, it is more
efficient to use a global HTML page, because the code is loaded only once per session instead of once per
page.

Modifying the Default Behavior

If you add contextual menu items using Extension Builder, the default behavior is for the items to be displayed
when the user opens a contextual menu over web content and for a “command” event to be generated
when the user chooses a menu item. You can modify this behavior in the following ways:

Adding Context Information

If you add a listener for the DOM “contextmenu” event in an injected script, you can set context information
by calling setContextMenuEventUserInfo in your event handler.

You can add the listener event to the document or any of its children, such as the body or a particular node.
For example:

document.addEventListener("contextmenu", handleContextMenu, false);

The following listener function stores the element name that the user clicks, so your extension can respond
differently to a click on an image or a paragraph, for example:

function handleContextMenu(event) {

 safari.self.tab.setContextMenuEventUserInfo(event, event.target.nodeName);

}

The data you store can be retrieved from the userInfo property of later events. You can store any data as
user info that you can pass in a message.

Modifying the Default Behavior 55
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

Disabling the Contextual Menu

You can prevent the contextual menu from displaying at all by calling event.preventDefault() from an
injected script in response to the DOM “contextmenu” event.

The following snippet prevents the contextual menu from displaying if the user clicks a video element:

document.addEventListener("contextmenu", handleContextMenu, false);

function handleContextMenu(event) {
 if (event.target.nodeName == "VIDEO") {
 event.preventDefault();
 }
}

Adding Menu Items Programmatically

You can add menu items to the contextual menu by responding to the extension version of the “contextmenu”
event in your global page or an extension bar. If you stored information on the event by calling
setContextEventUserInfo() in your injected script, you can use that information to help you decide
what menu items to add.

For example, the following snippet adds an “Enlarge Image” menu item to the contextual menu if the user
clicks on an image. (This snippet relies on an injected script to store the event target’s node name as user
info.)

safari.application.addEventListener("contextmenu", handleContextMenu, false);

function handleContextMenu(event) {
 if (event.userInfo === "IMG") {
 event.contextMenu.appendContextMenuItem("enlarge", "Enlarge Item");
 }
}

Note: You can only add menu items in response to the “contextmenu” event, not delete them. To temporarily
delete a menu item, set event.target.disabled = true in response to the menu item’s “validate” event.

Changing the Menu Item Title

You can modify a menu item’s title before it is displayed by setting the event.target.title property in
a “validate” event handler.

If you set user info in an injected script using a “contextmenu” event handler, you can read the
event.userInfo property in your “validate” event handler to help decide how to change the label.

For example, if an injected script stores the selected text being clicked you could change a “Search Google
Scholar” menu item to include the selected text using the following snippet:

event.target.title = "Search for \u201C" + event.userInfo + "\u201D on Google
Scholar";

56 Modifying the Default Behavior
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

In this example, you would also want to use the event.userInfo in your “command” event handler.

Deciding Where to Respond

When your menu item is chosen, a “command” event is generated. You can listen for the event in either a
global HTML page or in an extension bar. If you put the event handler in the global file, you should register
for the event at the application level. If your event handler is in an extension bar, you should register with
the extension bar’s parent window.

The difference is that there is only one instance of the global HTML page’s functions, but there is an instance
of an extension bar in every open window.

If every instance of the extension bar registers for events at the application level, every instance responds to
the command. If each instance registers with its parent window, only the instance in the window where the
item was chosen responds to the command.

Using the global file is more efficient, as it loads only once. Furthermore, you shouldn’t create an empty
extension bar just to hold an event handler. If your extension has a bar, however, it might make sense to put
the event handler there, particularly if the action it takes is window-specific, like rearranging the tabs.

The only time you might want to put an event handler in the extension bar and register it with the application
is if your command acts on all open windows. Then your choice would be to iterate through the windows
in a global function or have a function local to each window that responds to the event independently.

If You Respond From a Global HTML Page

 ■ Register with the application: safari.application.addEventListener()

 ■ The window the event came from is: safari.application.activeBrowserWindow.

If You Respond From an Extension Bar

 ■ Register with the parent page: safari.self.browserWindow.addEventListener()

 ■ The window the event came from is: safari.application.activeBrowserWindow.

Example: Implementing a New Window Contextual Menu Item

The following example adds a “New Window” item to the contextual menu, which opens a new browser
window.

You add the menu item in Extension Builder, as illustrated in Figure 7-2.

Deciding Where to Respond 57
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

Figure 7-2 Adding a menu item

The code in the following listing responds to the “new-window” command event and the “new-window”
validate event. Since opening a new window is possible any time, there is no validate handler. The “command”
listener function is registered with the application.

This example code is intended to be included in your global HTML page. If it is included in an extension bar,
the event listeners need to be added to the bar’s parent window instead of the application; otherwise each
instance of the extension bar executes the command—instead of adding just one window, every open
window adds a window, and the number of windows is doubled.

Listing 7-1 New window command handlers

 function performCommand(event) {
 if (event.command === "new-window")
 {
 safari.application.openBrowserWindow();
 }
 }
safari.application.addEventListener("command", performCommand, false);

58 Example: Implementing a New Window Contextual Menu Item
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Adding Contextual Menu Items

You can inject .js files into webpages (a .js file is a text file with the .js extension, containing JavaScript
functions and commands). The scripts in these files have access to the DOM of the webpages they are injected
into. Injected scripts have the same access privileges as scripts executed from the webpage’s host.

About Injected Scripts

Injected scripts are loaded each time an extension-accessible webpage is loaded, so you should keep them
lightweight. If your script requires large blocks of code or data, you should move them to the global HTML
page. For details, see “Example: Calling a Function from a Script” (page 67).

An injected script is injected into every webpage whose URL meets the access limitations for your extension.
For details, see “Access and Permissions” (page 71).

Scripts are injected into the top-level page and any children with HTML sources, such as iframes. Do not
assume that there is only one instance of your script per browser tab. If you want your injected script not to
execute inside of iframes, preface your high-level functions with a test, such as this:

if (window.top === window) {

 // The parent frame is the top-level frame, not an iframe.

 // All non-iframe code goes before the closing brace.

}

Injected scripts have an implied namespace—you don’t have to worry about your variable or function names
conflicting with those of the website author, nor can a website author call functions in your extension. In
other words, injected scripts and scripts included in the webpage run in isolated worlds, with no access to
each others’ functions or data.

Injected scripts do not have access to the safari.application object. Nor can you call functions defined
in an extension bar or global HTML page directly from an injected script. If your script needs to access the
Safari application or operate on the extension—to insert a tab or add a context menu item, for example—you
can send a message to the global HTML page or an extension bar. For details, see “Messages and Proxies” (page
65).

Important: When you use safari.extension from within an injected script, you are not addressing the
SafariExtension class. You are addressing the SafariContentExtension class.

Your injected scripts can access resources—images, HTML, and other scripts, for example—within your
extension folder. Relative URLs are relative to the webpage your script is injected into, however. If you need
to access local resources, use safari.extension.baseURI + “relative path and filename”. You cannot
access resources on the user’s hard drive outside of the extensions folder.

About Injected Scripts 59
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Injecting Scripts

To add content to a webpage, use DOM insertion functions, as illustrated in Listing 8-1 (page 60).

Listing 8-1 Modifying a webpage using DOM insertion

// create a para and insert it at the top of the body
var newElement = document.createElement("p");
newElement.textContent = "New Element!";
newElement.style.color = "red";
newElement.style.float = "right";
document.body.insertBefore(newElement, document.body.firstChild);

Note: DOM modification should take place in an End Script; in a Start Script, document.body may be
undefined.

Adding a Script

To add an injected script, follow these steps:

1. Create an extension folder—open Extension Builder, click +, choose New Extension, give it a name and
location.

2. Drag your script file into the extension folder.

3. Click New Script under Injected Extension Content in Extension Builder, as illustrated in Figure 8-1.

Figure 8-1 Specifying injected content

You can choose to inject your script as a Start Script or an End Script. An End Script executes when the
DOM is fully loaded—at the time the onload attribute of a body element would normally fire. Most
scripts should be injected as End Scripts.

A Start Script executes when the document has been created but before the webpage has been parsed.
If your script blocks unwanted content it should be a Start Script, so it executes before the page displays.

4. Choose your script file from the pop-up menu.

You can have both start and end scripts. You can have more than one script of each type.

In order for your scripts to be injected, you must specify either Some or All website access for your extension.
You can have your script apply to a single webpage, all webpages, or only certain webpages—pages from
certain domains, for example. For details, see the description of whitelists and blacklists in “Access and
Permissions” (page 71).

60 Adding a Script
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Injecting Scripts

You can designate CSS stylesheets to be injected into websites. Your stylesheets can add to or override styles
provided by the website author.

About Injected Stylesheets

Injected stylesheets are treated as user stylesheets, as defined by the W3C. This means that first your injected
styles are defined, then the author’s styles are added, then any of the author’s properties declared as
!important are added, then your properties defined as !important are added. At each stage, a new
definition overrides any previous one.

This means that style properties in your injected stylesheets are added to existing page style properties, but
do not override them, unless you declare them as !important.

For example, to override a website using colored text on a colored background and set it to black text on a
white background, you could add these styles:

body {
 color:black !important;
 background:white !important;
 }

Adding a Stylesheet

To add an injected stylesheet, follow these steps:

1. Create an extension folder—open Extension Builder, click +, choose New Extension, give it a name and
location.

2. Drag your stylesheet into the extension folder.

3. Click New Stylesheet under Injected Extension Content in Extension Builder, as illustrated in Figure 9-1.

Figure 9-1 Specifying an injected stylesheet

About Injected Stylesheets 61
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Injecting Styles

4. Choose your stylesheet from the pop-up menu.

You can have more than one injected stylesheet.

In order for your stylesheets to be injected, you must specify either Some or All website access for your
extension. You can have your stylesheet apply to a single webpage, all webpages, or only webpages from
certain domains. For details, see the description of whitelists and blacklists in “Access and Permissions” (page
71).

If you reference images or other external resources in your stylesheets, you can use relative URLs to indicate
sources within your extension package, relative to the stylesheet.

Important: In injected scripts, relative URLs are relative to the webpage the script is injected into. In injected
stylesheets, relative URLs are relative to the stylesheet.

62 Adding a Stylesheet
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Injecting Styles

The standard window.open() JavaScript method cannot be used to open a new tab and widow from a
global HTML file or an extension bar. Instead, the global file and extension bars have access to the
SafariApplication, SafariBrowserWindow, and SafariBrowserTab classes, whose methods and
properties allow you to work with windows and tabs.

SafariApplication

There is one instance of the SafariApplication class: safari.application. The SafariApplication
instance has a method for opening browser windows:

var myWin = safari.application.openBrowserWindow();

All open browser windows can be accessed as properties of the SafariApplication instance:
safari.application.browserWindows is an array of all open windows and
safari.application.activeBrowserWindow is the currently active browser window.

SafariBrowserWindow

Each open browser window is an instance of the SafariBrowserWindow class, which has methods to
activate windows, close them, and determine if a window is visible onscreen. The SafariBrowserWindow
class also gives direct access to tabs.

 ■ browserWindow.tabs—returns an array of all the tabs in the window, in left-to-right order.

 ■ browserWindow.openTab()—creates a new tab at any point in the array. The tab can be hidden.

 ■ browserWindow.insertTab()—inserts an existing tab at any point in the array.

 ■ browserWindow.activeTab—returns the currently selected tab in the window.

A browser window is commonly accessed as a property of the Safari application instance:

safari.application.browserWindows[n]

or

safari.application.activeBrowserWindow

SafariApplication 63
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

The Windows and Tabs API

SafariBrowserTab

The SafariBrowserTab class allows you to identify a tab’s parent browser window, get and set the URL
associated with a tab, make a tab active, close a tab, and extract a data:// URL containing a snapshot image
of what is rendered in the tab as a base-64 encoded PNG.

For example, this opens a window and returns the active tab:

var newTab = safari.application.openBrowserWindow().activeTab;

And this opens a new tab in the window containing the extension bar:

var newTab = safari.self.browserWindow.openTab();

64 SafariBrowserTab
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

The Windows and Tabs API

Code in your global HTML page and extension bars interacts with the Safari application; it can’t directly access
the contents of a webpage loaded in a browser tab. Similarly, an injected script interacts with web content;
it can’t access the same Safari extensions API as extension bars or a global page.

But it’s sometimes desirable to cross this boundary. You may have controls in an extension bar or the main
Safari toolbar that you want to affect web content, for example, or you may have a large block of code or
data in an extension bar or your global HTML page that you want to use from an injected script.

The solution is to pass messages between parts of your extension. Because your global HTML page and
extension bars can’t address webpages directly, they send messages to the SafariWebPageProxy. Similarly,
injected scripts can’t address the global HTML page or an extension bar directly, so they send messages to
the SafariContentBrowserTabProxy.

Message Structure

A message is an event whose type is “message”. You send a message by calling dispatchMessage(name,
data) and receive messages by registering a listener function for “message” events.

A message event has a name property and a message property, which are the name and data you pass in
dispatchMessage.

This can be a little confusing, so it bears repeating: event.name is the message name, and event.message
is the message data.

Message data is not limited to a single data type; it can be boolean, numeric, a string, an array, a RegExp
object, or anything that conforms to the W3C standard for safe passing of structured cloned data. It can also
be null, undefined, or left blank, in cases where the command needs no data.

For example, the following snippet sends an array in a message:

var myArray = ["a", "b", "c"];

safari.self.tab.dispatchMessage("passArray", myArray);

Sending Messages to an Injected Script

To send messages to an injected script, you call theSafariWebPageProxy object’s dispatchMessage()
method. The proxy stands in for the web content, which can be accessed as the page property of a
SafariBrowserTab object, which is in the tabs array or activeTab property of a SafariBrowserWindow
object, so sending a message to a script takes the general form:

Message Structure 65
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

safari.application.activeBrowserWindow.activeTab.page.dispatchMessage("name",
"data");

Another example would be:

safari.self.tabs[0].page.dispatchMessage(myMessageName,myData);

The second example sends a message to the page in the leftmost tab of the window containing the extension
bar.

In order to receive the message, your injected script must have a listener function defined and registered for
“message” events. The listener function is called for all messages, so it needs to check the message name to
be sure it’s responding to the desired message. For example, the following function looks for an
“activateMyScript” message, then parses the message content:

function handleMessage(msgEvent) {
 var messageName = msgEvent.name;
 var messageData = msgEvent.message;
 if (messageName === "activateMyScript")
 { if (messageData === "stop")
 stopIt();
 if (messageData === "start")
 startIt();
 }
 }

The listener function in an injected script is added as a listener for “message” events in the
SafariContentWebPage object (safari.self):

safari.self.addEventListener("message", handleMessage, false);

Note: The addEventListener()method takes a string for the event type, the name of the listener function
(not in quotes, and without the usual trailing “()”), and a boolean that tells the system whether the listener
function should be given the event in the capture phase or the bubble phase. This is usually set false.

Receiving Messages from an Injected Script

A receiver function in an extension bar or global HTML page behaves identically to a receiver function in a
script (it checks the message name before evaluating the message). But instead of registering with the
SafariContentWebPage, a receiver function in an extension bar or global HTML page can register for the
event at the tab, window, or application level:

safari.application.activeBrowserWindow.activeTab.addEventListener("message",
waitForMessage, false);

safari.application.activeBrowserWindow.addEventListener("message", waitForMessage,
false);

safari.application.addEventListener("message", waitForMessage, false);

66 Receiving Messages from an Injected Script
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

The message is sent first to the application, then filters down to the window and tab. At each level, the event
is sent to listener functions registered with boolean true. If no one has claimed it, the message then bubbles
up from the tab through the window and back to the application, this time for listeners registered with
boolean false. In most cases, it makes no practical difference at which level you intercept the message.

To send a message to an extension bar or global HTML page from an injected script, the script dispatches
the message to the tab proxy:

safari.self.tab.dispatchMessage("heyExtensionBar","Klaatu barata nikto");

Example: Calling a Function from an Injected Script

If an injected script makes use of a large block of code or an extensive table of data, it is more efficient to
put the bulky code or data in an extension bar or a global HTML page than in the injected script.

The following example is an injected script, Injected.js, that makes a function call to a global HTML page,
Global.html, using messages. To see the example in action, follow these steps:

1. Create an extension folder using Extension Builder.

2. Copy the listings into a text editor and save as Injected.js and Global.html.

3. Drag Injected.js and Global.html into your extension folder.

4. Click Extension Global Page in Extension builder and choose Global.html.

5. Click New Script in End Scripts and choose Injected.js.

6. Set the Extension Website Access level to All.

7. Click Install.

Listing 11-1 Injected.js

var initialVal=1;
var calculatedVal=0 ;

function doBigCalc(theData) {
 safari.self.tab.dispatchMessage("calcThis",theData);
}

function getAnswer(theMessageEvent) {
 if (theMessageEvent.name === "theAnswer") {
 calculatedVal=theMessageEvent.message;
 console.log(calculatedVal);
 }
}
safari.self.addEventListener("message", getAnswer, false);

doBigCalc(initialVal);

Example: Calling a Function from an Injected Script 67
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

Listing 11-2 Global.html

<!DOCTYPE HTML>
<html>
<head>
<title>global HTML page</title>
<script type="text/javascript">

function bigCalc(startVal, event) {
 //imagine hundreds of lines of code here...
 endVal = startVal + 2;
 //return to sender
 event.target.page.dispatchMessage("theAnswer", endVal);
}

function respondToMessage(theMessageEvent) {
 if(theMessageEvent.name === "calcThis")
 {
 var startVal=theMessageEvent.message;
 bigCalc(startVal, theMessageEvent);
 }
}

 safari.application.addEventListener("message",respondToMessage,false);
</script>
</head>
<body>
</body>
</html>

In the example just given, the final value of the calculation is logged to the webpage console. To see the log
entry, choose Show Web Inspector in the Develop menu.

For an example that shows how to pass messages to a script from an extension bar, see “Message-Passing
Example” (page 38).

Blocking Unwanted Content

Safari 5.0 and later (and other Webkit-based browsers) generates a “beforeload” event before loading each
sub-resource belonging to a webpage. The “beforeload” event is generated before loading every script,
iframe, image, or stylesheet specified in the webpage, for example.

To block content, your script must be run as a Start Script, so that it executes before the content is displayed.

If your script responds to a “beforeload” event by calling event.preventDefault(), the pending
sub-resource is not loaded. This is a useful technique for blocking ads, as shown in Listing 11-3.

Listing 11-3 Example: blocking content

function blockAds() {
 var itsAnAd = event.url.match(/ads.example.com/i);
 if (itsAnAd) {
 event.preventDefault();
 }

68 Blocking Unwanted Content
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

}

document.addEventListener("beforeload", blockAds, true);

Note: The url property of the event is the URL of the pending resource.

Blocking unwanted content can require a fair amount of code or a large table of data (or both) to filter all
unwanted content accurately. You should put large blocks of code or data in your global page, so they are
loaded only once, not in a script that loads before every webpage.

This creates a problem. You can put the code in your global page and call it by passing a message, but
dispatchMessage() is an asynchronous function call. You need to delay the resource load until you know
whether to allow it.

To solve this problem, use the canLoad() function, which returns data and operates synchronously:

var myReply = safari.self.tab.canLoad(event, myMessageData);

This dispatches a message event synchronously. You pass the “beforeload” event and any message data. The
name of the message is always “canLoad”. The message data can be anything you like, but probably includes
the URL of the resource in question.

A listener function in your global page (or an extension bar) sees the “canLoad” message, determines whether
the resource should be blocked, and sets event.message to a reply that tells your injected script what to
do. The reply can be a string, an object, or anything that can be passed as message data.

You need to register a listener function for the “beforeload” event in your injected script and call canLoad()
from the listener function, so it all takes place before the resource loads. To block a resource from loading,
call event.preventDefault() from the listener function as well.

The following example listens for the “beforeload” event in an injected script and passes the resource URL
to the global page in canLoad(). The listener function in the global page compares the URL to a list domains
to exclude, and sets the message returned to “allow” or “block”. The listener function in the injected script
waits for the returned value, then conditionally prevents the load.

This part goes in your injected Start Script:

function isItOkay() {
 var myMessageData = event.url;
 var theAnswer = safari.self.tab.canLoad(event, myMessageData);
 if (theAnswer == "block") {
 event.preventDefault();
 }
}

document.addEventListener("beforeload", isItOkay, true);

This part goes in your global HTML page:

function blockOrAllow(event) {
 if (event.name === "canLoad") {
 var itsAnAd = event.message.match(/ads.example.com/i);
 if (itsAnAd)
 {
 event.message = "block";

Blocking Unwanted Content 69
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

 } else {
 event.message = "allow";
 }
 }
}

safari.self.addEventListener("message", blockOrAllow, true);

70 Blocking Unwanted Content
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Messages and Proxies

Extensions can have two parts—an application part, consisting af any global page or extension bars, and a
content part, consisting of any injected scripts or stylesheets. The two parts have different access and
permissions.

In addition, there are settings you can specify when building your extension that select the websites your
extension can interact with.

Note: For security reasons, there are some things that no part of your extension can access. This includes
files on the user’s hard disk outside of the extension package, as well as functions and variables defined in
scripts loaded from the webpage’s domain.

The Global HTML Page and Extension Bars

The global HTML page and extension bars have access to the SafariApplication and SafariExtension
classes. They can work with windows and tabs, extension settings, and add or remove extension items. They
can also respond to commands from the Safari toolbar or the contextual menu that appears over a webpage.

The global HTML page and extension bars do not have access to the content of webpages, and they can
communicate with injected scripts only by sending messages—they cannot access an injected script’s
functions or variables directly.

The global page and extension bars do not have permission to use the JavaScript window.open() method.
They must use the Safari Extensions API. See “The Windows and Tabs API” (page 63).

Injected Scripts and Stylesheets

Injected scripts have access to the SafariContentExtension class. They have the same permission to
access and modify the webpages they are injected into as scripts originating in the webpage’s own domain.
They have permission to use the standard JavaScript API, as well as Safari-specific and Webkit-specific
JavaScript APIs.

Injected scripts cannot access the SafariApplication or SafariExtension classes. They cannot respond
to command events generated by the Safari toolbar or contextual menus, nor can they access functions or
variables defined in the global HTML page or extension bars. They can, however, send messages to the global
HTML page and extension bars, and the message data can be an object (such as an array, for example)
declared in the injected script.

The Global HTML Page and Extension Bars 71
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

Access and Permissions

Injected scripts and stylesheets cannot access resources within the extension folder, such as images or other
files, using relative URLs. Any relative URL in an injected script or stylesheet is interpreted as relative to the
webpage. To access resources within the extension folder from an injected script or stylesheet, you must use
an absolute URL. For details, see “Accessing Resources Within Your Extension Folder” (page 29).

Extension Website Access

You choose the webpages and domains your extension has access to in Extension Builder. Only the websites
you choose have web content injected into them, and only those websites can be manipulated using the
tab object’s properties, such as title and url.

Use the Extension Website Access field in Extension Builder to restrict your extension’s access to external
websites. Your choices are as follows:

 ■ None—Your extension cannot access webpages by injecting scripts or stylesheets, and most tab properties
are undefined.

 ■ Some—Your extension can access webpages from a list of domains.

You are prompted for a list of domain patterns. For example: developer.apple.com or
www.example.org.jp.

A leading * character matches any string in the domain. For example: *.apple.com matches
www.apple.com, developer.apple.com, or any host name in the apple.com domain. Similarly,
*.co.jp matches all co.jp domains and *.jp matches all .jp domains.

Note: Do not include a scheme, such as http:// in the domain pattern.

 ■ All—Your extension’s access is not limited by a list of domain patterns. Potentially, your extension has
access to all domains. Website access can be limited by using a whitelist and/or blacklist, however. See
“Whitelists and Blacklists” (page 73).

Important: If you set your access to Some, and do not specify any domain patterns, your extension has no
website access.

If you choose Some or All, you can further choose to allow your extension access to secure sites (HTTPS URLs)
or not, as shown in Figure 12-1.

Figure 12-1 Access to secure pages

72 Extension Website Access
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

Access and Permissions

Whitelists and Blacklists

The whitelist and blacklist work in conjunction with the Extension Website Access field. First, access is limited
by the Extension Website Access settings, then the whitelist and blacklist are applied.

 ■ If there is no whitelist or blacklist, no restrictions are added to your Extension Website Access.

 ■ If there is a whitelist, your scripts and styles are applied only to webpages whose URL match an entry
on your whitelist.

 ■ If there is a blacklist, your scripts and styles are not applied to any webpages whose URL matches a
blacklist entry.

Again, note that these restrictions are in addition to those set in the Extension Website Access field. If you
specify Some access, for example, you have access only to the domains matching your provided domain
patterns. Items in your whitelist and blacklist create additional restrictions within those domains. Be sure all
the items in your whitelist are within a domain you have access to.

Add URLs to the whitelist or blacklist by clicking New URL Pattern as illustrated in Figure 12-2.

Figure 12-2 Whitelist and Blacklist

A URL pattern takes the form Scheme://Domain/Path.

Scheme can be http or https.
Domain is the host domain, such as developer.apple.com or www.example.co.jp.
Path is the directory and/or webpage, such as safari/ or safari/library/navigation/index.html.

A URL pattern can include the * character to match any string. This allows you to specify all pages in a
particular domain, for example, without having to create an exhaustive list.

The * character can be used anywhere in the domain or path, but not the scheme.

Examples:

 ■ http://*/*—matches all http URLs

 ■ http://*.apple.com/*—matches all webpages from apple.com

 ■ http://developer.apple.com/*—matches all webpages from developer.apple.com

 ■ https://secure.example.com/accounts/*—matches all webpages from the accounts directory
of secure.example.com that are delivered over HTTPS.

 ■ http://www.example.com/thepath/thepage.html—matches one webpage

Important: The format for URL patterns in a whitelist or blacklist is not the same as the format for domain
patterns in Extension Website Access.

Whitelists and Blacklists 73
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

Access and Permissions

74 Whitelists and Blacklists
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 12

Access and Permissions

You can define settings for your extension using Extension Builder. You can choose a type of user interface,
such as a checkbox, radio button, text field, or slider, and a default value for each setting. You can choose to
make any setting secure (encrypted).

The settings you define appear in your extension’s preference pane, in Safari Preferences. Safari handles the
user interface, stores the values, and notifies you when a value changes.

There is also an API for accessing your settings programatically. The API provides for both normal and secure
(encrypted) settings. The API is similar to the HTML5 local storage API, but the settings API has an additional
feature: support for default values.

You can also make use of HTML5 client-side data storage, commonly referred to as local storage. You can
use both Safari settings and HTML5 local storage if you like.

How to Create User Settings

You create your extension’s user settings and define the user interfaces for them in Extension Builder. Click
New Setting Item under Extension Settings to begin.

The extension settings pane expands, as shown in Figure 13-1 (page 75).

Figure 13-1 Settings pane

The pane changes depending on the type of setting you choose, but you are usually prompted for a key, a
default value, and a title, along with the option of saving the item in secure settings.

The key is the identifier for the item, used in the settings API.

The default value is the initial value for the item when your extension is installed. A default value is optional.

The title is the label the user sees for the setting.

Use the Type pop-up menu to choose the user interface control type. The menu is illustrated in Figure 13-2.

How to Create User Settings 75
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

Figure 13-2 Setting types

Hidden Settings

Hidden settings have no title and are not displayed in the extension’s settings pane. They are for your internal
settings that you intend to handle programatically. The reason you might want to define a hidden setting
in Extension Builder is to give it a default value.

Text Field Settings

Text field settings take a string as a value and have the option of being displayed as a password (characters
are not visible after entry).

Check Box Settings

A check box is true when checked, false when unchecked. But you can set any pair of values to a check box’s
two states.

76 How to Create User Settings
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

Slider Settings

Sliders have a minimum value at the far left, a maximum value at the far right, and step value (the smallest
change possible for the control).

Pop-Up Button Settings

A pop-up button displays the title of the currently selected item. When the user clicks the button, a pop-up
menu presents a list of all the items, allowing the user to choose one. The button itself has a title, a key, and
a value. The list items have titles and values.

How to Create User Settings 77
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

List Box Settings

List box settings contain a list of items, such a file list. Each item has a title the user sees and a value that the
list box returns when that item is chosen. The box itself has a title, a key, and a value. The list items have
titles and values.

Radio Buttons Settings

You should have at least two radio buttons for this user interface item to make sense. The user must choose
one, but only one, of the radio buttons. Each radio button has a title that the user sees and a value that the
button selects for.

78 How to Create User Settings
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

Groups and Separators

If your user settings should be grouped, enter a group label before each block of settings. This puts a large,
bold heading before the group.

If you want to put separators between settings, insert a separator.

How to Use the Settings API

The display and user interface for settings are managed by Safari. You can use the
SafariExtensionSettings class to get the current value of a setting before using it. Use in the setting’s
key as a property name to get its current value:

var myVolume = safari.extension.settings.volume

Whenever a setting is changed, Safari generates a “change” event. The event is generated whether the change
is made programmatically or by a user. The target of the event is the settings or secureSettings object.

To find out which value has changed, read the key property of the event:

var mySettingKey = event.key

The new value and old value of the setting are in the newValue and oldValue properties of the event.

To be sure you are using the current value of your settings, you must either install an event listener for the
“change” event in your global page or extension bar, or get the value of your variables directly from the
safari.extension.settings property immediately before using them.

The following example installs a listener function for an extension with only one user setting, whose key is
“volume”. The function updates a global variable whenever the setting changes.

Listing 13-1 Responding to settings changes

var myVolume
function volumeChanged {
if (event.key == "volume")
 {
 myVolume=event.newValue;

How to Use the Settings API 79
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

 }
}

safari.extension.settings.addEventListener("change", volumeChanged, false);

You can set values programmatically by setting the safari.extension.settings.key property to the
desired value:

safari.extension.settings.volume = myVolume for example, or

safari.extension.secureSettings.volume = myVolume

Using HTML5 Local Storage

Safari provides full support for HTML5 client-side storage, both simple local storage of key/value pairs, and
the client-side database API which allows you to create persistant relational databases on the client machine.

When used from an injected script, the domain of the local storage is the domain of the webpage the script
is injected into. In other words, local data is stored with webpage’s data.

For injected scripts, the amount of database storage available is set in the user’s security preferences.

In Safari 5.0.1 and later, you can use client-side databases in your global page or extension bars as well. When
used from a global HTML page or extension bar, the domain of the local storage is the extension. This data
belongs to your extension.

To use client-side databases from your global page or an extension bar, you need to allocate database storage
for your extension in the Extension Storage section of Extension Builder, as shown in Figure 13-3.

Figure 13-3 Extension storage

The default storage amount is none. You can choose a value from one to one hundred Megabytes.

Important: If you do not allocate storage in Extension Builder, any call to openDatabase from the global
page or an extension bar returns null.

The local storage API is documented in Safari Client-Side Storage and Offline Applications Programming Guide.

80 Using HTML5 Local Storage
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 13

Settings and Local Storage

You test and debug extensions using Safari’s built-in developer tools: the Web Inspector, Error Console, and
integrated JavaScript debugger. Learn how to use these tools by reading Safari User Guide forWebDevelopers.

This chapter shows you how to apply the developer tools specifically to Safari extensions, but does not go
into detail about using the tools.

Debugging Extension Bars

To debug an extension bar, control-click or right-click on the extension bar. This brings up a contextual menu
with two choices: Reload and Inspect Element. To debug, choose Inspect Element.

This opens the Web Inspector with the extension bar selected and opens a copy of the Error Console dedicated
to the extension bar. This is illustrated in Figure 14-1.

Debugging Extension Bars 81
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Debugging Extensions

Figure 14-1 Inspecting extension bars

The Elements pane shows the DOM tree for the extension bar, including any in-line JavaScript. HTML or
JavaScript syntax errors are numbered and highlighted in red.

Clicking an element highlights it in the extension bar of the browser window, displays its atributes and styles,
and allows you to edit them interactively (double-click an attribute or style value to edit it). You can display
event listeners for all nodes, or any given node.

In addition, the console API is supported for extension bars and is compatible with Firebug. You can log
data to the console and see it using the Web Inspector. In the example shown, the extension bar logs the
word “test”, followed by the title and URL of the current tab, then an image of the visible portion of the
window as a base-64 encoded PNG.

If your extension bar includes any .js files or other resources, you can inspect them by clicking Resources.
You can enable JavaScript debugging, set breakpoints, profile your JavaScript, look at how resources load,
or examine HTML5 local storage databases, just as you would on a website you were developing. For details,
see Safari User Guide for Web Developers.

82 Debugging Extension Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Debugging Extensions

Debugging Injected Scripts

Debugging an injected script or stylesheet with the Safari developer tools is very much like debugging a
script or stylesheet for your own website. The main difference is that you must load a webpage that your
extension has access to in order to inject the script for debugging.

Choose Show Web Inspector from the Develop menu or right-click on the webpage and choose Inspect
Element, then click Scripts and choose your script from the pop-up menu of script names. Your script name
is prefaced by safari-extension://, as illustrated in Figure 14-2.

Figure 14-2 Inspecting injected scripts

Any detected errors in the script are shown in the Error Console. Click in the gutter between the line number
and script to set a breakpoint. The firebug-compatible console API is available for logging data.

Note: Currently, you cannot use the console to interactively enter the names of injected script objects, such
as variables or functions defined in the script. You can log data to the console using the console API, set
breakpoints, profile scripts, and so on, but the private namespace of your injected script keeps the console
from recognizing object names defined in the script.

For more information on debugging scripts, see Safari User Guide for Web Developers.

Debugging Injected Scripts 83
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Debugging Extensions

Debugging a Global HTML Page

When your extension has a global HTML page, a button is added to the Extension Builder interface, below
the Global Page File field, as illustrated in Figure 14-3.

Figure 14-3 Inspect Global Page button

Click Inspect Global Page to open the Web Inspector with your global page selected for debugging.

For details on debugging HTML and JavaScript using Safari’s integrated tools, see Safari User Guide for Web
Developers.

84 Debugging a Global HTML Page
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 14

Debugging Extensions

You are free to distribute your extension by download from your web server, on disk, by email, or using any
of the usual methods to distribute digital media. You may also submit your extension for inclusion in Apple’s
Safari Extension Gallery.

Putting Your Extension on a Web Server

Include a link to a copy of your .safariextz folder on your website.

Be sure to include a description of what your extension does.

Make sure your web server is serving the extension using the MIME type application/octet-stream.

Most web servers maintain a table of file extensions and MIME types, and provide an administrative tool for
updating the table.

For example, to add a MIME type to an Apache web server, use the AddType directive:

AddType application/octet-stream .safariextz

For IIS web servers, the MIME settings are typically accessed using the MMC by right-clicking the host computer
name and choosing Properties, then adding a new MIME setting and file extension.

For more information, consult the vendor’s documentation for your web server, or do a web search for “add
MIME type” + YourWebServer + YourVersionNumber.

Submitting Your Extension to the Apple Gallery

Go to developer.apple.com and log in as a Safari Developer. There is a form on the website to submit your
application.

Be sure to post your extension on a web server with the MIME type for .safariextz files set to
application/octet-stream.

The Safari Extension Gallery includes a link to your extension. Your extension is not mounted on the Apple
web server.

Putting Your Extension on a Web Server 85
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

Distributing Your Extension

86 Submitting Your Extension to the Apple Gallery
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 15

Distributing Your Extension

You can have Safari automatically check for updates to your extension and offer to download and install an
update when one becomes available.

To enable automatic updates, create a text file with the .plist file extension and put it on a web server,
then include the URL of the file in the Update Manifest field of Extension Builder.

The .plist file is XML with this basic structure:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Extension Updates</key>
 <array>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.yourCompany.safari.yourExtensionName</string>
 <key>Developer Identifier</key>
 <string>YourCertificateID</string>
 <key>CFBundleVersion</key>
 <string>Your current bundle version</string>
 <key>CFBundleShortVersionString</key>
 <string>Your current display version</string>
 <key>URL</key>
 <string>Your-.safariextz-URL</string>
 </dict>
 </array>
</dict>
</plist>

Copy the structure, but replace the contents of the <string> elements with the data for your extension,
leaving all other elements exactly as shown.

If your Developer ID is shown in Extension Builder as:

Safari Developer: (12A345BCDE) you@yourmail.com

Then YourCertificateID for the update manifest is: 12A345BCDE.

Your-.safariextz-URL must be a valid URL to download the current version of your extension. Be sure
your web server has the .safariextz file extension associated with the MIME type
application/octet-stream. For more information, see “Putting Your Extension on a Web Server” (page
85).

If you have more than one extension, you can maintain a single update manifest for all of them. The form
for multiple extensions is:

<?xml version="1.0" encoding="UTF-8"?>

87
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

Updating Extensions

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Extension Updates</key>
 <array>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.yourCompany.safari.firstExtensionName</string>
 ...
 </dict>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.yourCompany.safari.nextExtensionName</string>
 ...
 </dict>
 </array>
</dict>
</plist>

Include one <dict> element inside the <array> element for every extension.

88
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 16

Updating Extensions

This table describes the changes to Safari Extensions Development Guide.

NotesDate

Fixed typos and code errors. Expanded contextual menu section and clarified
update manifest.

2010-08-03

New document.2010-06-21

89
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

90
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Safari Extensions Development Guide
	Contents
	Figures and Listings
	Introduction
	Extensions Overview
	What Your Extension Can Do
	The Extension Parts List
	Extension Architecture
	The Safari Extensions JavaScript API
	Classes and Properties
	The Application and Extension Objects
	Web Content Interaction
	Events—Commands, Messages, and Proxies

	How To Create Extensions
	Global HTML Page
	Extension Bar Files
	Injected Scripts and Stylesheets
	The plist Files

	Using Extension Builder
	Before You Begin
	Opening Extension Builder
	The Extension Builder Interface
	Building A Simple Extension

	Accessing Resources Within Your Extension Folder
	Using Relative URLs
	Using Absolute URLs
	Example: Loading a Background Image in CSS
	Security

	Adding Extension Bars
	About Extension Bars
	The extension.bars Array
	Domain, URLs, and Access
	Displaying Content in an Extension Bar
	Creating an Extension Control Bar

	Working with Windows and Tabs
	Interacting with Injected Scripts
	Message-Passing Example

	Adding a Global HTML Page
	Adding a Global Page in Extension Builder
	Handling Toolbar Items
	Handling Contextual Menu Items
	Support Logic for Extension Bars
	Support Logic for Injected Scripts
	Working with Windows and Tabs

	Adding Buttons to the Main Safari Toolbar
	Creating an Image
	Setting Up Extension Builder
	Responding to Commands
	Deciding Where to Respond
	If You Respond From a Global HTML Page
	If You Respond From an Extension Bar

	Example: Implementing a Reload Button

	Adding Contextual Menu Items
	Context Menu Events
	Adding a Menu Item Using Extension Builder
	Responding to Commands
	Modifying the Default Behavior
	Adding Context Information
	Disabling the Contextual Menu
	Adding Menu Items Programmatically
	Changing the Menu Item Title

	Deciding Where to Respond
	If You Respond From a Global HTML Page
	If You Respond From an Extension Bar

	Example: Implementing a New Window Contextual Menu Item

	Injecting Scripts
	About Injected Scripts
	Adding a Script

	Injecting Styles
	About Injected Stylesheets
	Adding a Stylesheet

	The Windows and Tabs API
	SafariApplication
	SafariBrowserWindow
	SafariBrowserTab

	Messages and Proxies
	Message Structure
	Sending Messages to an Injected Script
	Receiving Messages from an Injected Script
	Example: Calling a Function from an Injected Script
	Blocking Unwanted Content

	Access and Permissions
	The Global HTML Page and Extension Bars
	Injected Scripts and Stylesheets
	Extension Website Access
	Whitelists and Blacklists

	Settings and Local Storage
	How to Create User Settings
	Hidden Settings
	Text Field Settings
	Check Box Settings
	Slider Settings
	Pop-Up Button Settings
	List Box Settings
	Radio Buttons Settings
	Groups and Separators

	How to Use the Settings API
	Using HTML5 Local Storage

	Debugging Extensions
	Debugging Extension Bars
	Debugging Injected Scripts
	Debugging a Global HTML Page

	Distributing Your Extension
	Putting Your Extension on a Web Server
	Submitting Your Extension to the Apple Gallery

	Updating Extensions
	Revision History

