
Safari CSS Visual Effects Guide
Audio, Video, & Visual Effects

2010-05-26

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPhone, QuickTime, and
Safari are trademarks of Apple Inc., registered
in the United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Gradients 9

Creating Linear Gradients 9
Creating Radial Gradients 10
Specifying Color Stops 10
Creating Background Gradients 12

Masks 15

Reflections 19

Transitions 21

How Transitions Work 21
Setting Transition Properties 22
Using Timing Functions 23
Starting Transitions 24
Handling Transition Events 26

Animations 27

How Animations Work 27
Setting Animation Properties 28
Creating Keyframes 29
Using Timing Functions 29
Repeating Animations 31
Starting Animations 31
Handling Animation Events 32

Transforms 35

Coordinate Systems and Rendering 36
Setting Transform Functions 37

Rotating an Element 37
Setting Multiple Transforms 38

Changing the Origin 39

3
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Setting the Perspective 40
Setting the Transform Style 41
Back Face Visibility 43
Creating Transforms in JavaScript 43

Interactive Visual Effects 45

Using Click or Tap to Trigger a Transition Effect 45
Using Touch to Drag Elements 46

Create an Element to Manipulate 47
Register and Implement Event Handlers 49

Using Gestures to Translate, Scale, and Rotate Elements 51
Create the Element to Manipulate 51
Register and Implement Event Handlers 51

Document Revision History 53

4
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Gradients 9

Figure 1 Linear gradient 9
Figure 2 Radial gradients 10
Figure 3 Orange gradient 11
Figure 4 Orange gradient that starts later and ends earlier 12
Figure 5 Color stops at the same location 12
Figure 6 Tiled linear gradient 13
Listing 1 Creating a linear gradient 9
Listing 2 Creating radial gradients 10
Listing 3 Creating an orange gradient 11
Listing 4 Using the from() and to() functions 11
Listing 5 Not specifying start and end color stops 11
Listing 6 Multiple color stops at the same location 12

Masks 15

Figure 1 Results of a fuzzy border mask 15
Figure 2 Results of applying a gradient mask 16
Figure 3 Results of applying a SVG mask 17
Listing 1 Creating a fuzzy border 15
Listing 2 Applying a gradient mask 16
Listing 3 Applying a mask to an image with a border radius 16
Listing 4 Applying a SVG mask 16

Reflections 19

Figure 1 Reflection 20
Listing 1 Creating a reflection using a gradient mask 19

Transitions 21

Figure 1 Transition of two properties 22
Figure 2 Card Flip example 22
Figure 3 Cubic Bezier timing function 24
Listing 1 Setting transition properties 23
Listing 2 Creating multiple transitions at once 23
Listing 3 Setting all transition properties at once 23
Listing 4 Setting a transition’s timing function 24
Listing 5 Simple fade away effect 25
Listing 6 Handling transition end event 26

5
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations 27

Figure 1 Poster Circle example 28
Listing 1 Setting animation properties 28
Listing 2 Declaring keyframes 29
Listing 3 Using timing functions in keyframes 30
Listing 4 Creating an animation that repeats 31
Listing 5 Starting an animation 31
Listing 6 Restarting an animation 32
Listing 7 Handling animation events 32

Transforms 35

Figure 1 HTML page with rotation and perspective transforms 35
Figure 2 3D coordinate space 36
Figure 3 Rotating text 38
Figure 4 Element rotated around the top-right corner 39
Figure 5 Setting the perspective 40
Figure 6 Preserving 3D 42
Figure 7 Setting the perspective and preserving 3D 42
Listing 1 Rotating an element 37
Listing 2 Setting multiple transforms using a whitespace-separated list 38
Listing 3 Nesting transforms 38
Listing 4 Rotating an element around the top-right corner 39
Listing 5 Adding perspective 40
Listing 6 Setting the transform style 41
Listing 7 Hiding the back side of a face card 43

Interactive Visual Effects 45

Figure 1 Click box to enlarge 45
Figure 2 Drag box application 47

6
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Safari visual effects allow you to create sophisticated graphical user interfaces for web applications for the
desktop and iPhone OS. The visual effects available range from image effects using gradients, masks, and
reflections, to more complex 2D and 3D effects.

These CSS and the DOM visual effects extensions allow you to add 2D and 3D graphics to your web
applications, create complex animations, and generate smooth transitions when element properties—such
as position or color—change. When you combine these visual effects with DOM mouse and touch events,
you can create interactive applications, similar to native applications, that run in Safari.

Some of the properties and classes described in this book are proposed W3C standards or Apple extensions.
Properties in CSS that begin with -webkit are usually proposed standards—the -webkit prefix will be
dropped when they are approved. Similarly, JavaScript classes that begin with WebKit are also proposed
standards or Apple extensions.

Important: Not all CSS properties and JavaScript classes described in this book are supported on all Safari
platforms. Refer to the respective reference documents, Safari CSSReference and Safari DOMAdditions Reference
for support level and availability details.

Who Should Read This Document

You should read this document if you want to use visual effects in your web content and web applications—if
you are creating web applications for either Safari on the desktop or iPhone OS. Definitely read this document
if you are creating a custom web application for iPhone.

Organization of This Document

The articles in this book are as follows:

 ■ “Gradients” (page 9) explains how to use linear and radial gradients in place of images.

 ■ “Masks” (page 15) explains how to block out or obscure areas of an element.

 ■ “Reflections” (page 19) explains how to create a mirror image effect of an element.

 ■ “Transitions” (page 21) explains how to add transitions to your content that animate property value
changes.

 ■ “Animations” (page 27) covers the basics on how to add animations to your content, including creating
keyframes and setting timing functions.

 ■ “Transforms” (page 35) describes how to add 2D and 3D graphics effects to your content.

Who Should Read This Document 7
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Interactive Visual Effects” (page 45) provides step-by-step instructions on how to combine DOM events
with visual effects to create interactive web applications.

See Also

There are a variety of other resources for Safari web content developers in the ADC Reference Library.

For details on properties and classes discussed in this book, refer to these visual effects reference documents:

 ■ Safari DOM Additions Reference describes the touch event classes that you use to handle multi-touch
gestures in JavaScript.

 ■ Safari CSS Reference describes the CSS properties supported by various Safari and WebKit applications.

If you are creating content for Safari on iPhone OS, also read these documents:

 ■ Safari Web Content Guide describes how to create content that is compatible with, optimized for, and
customized for iPhone OS.

 ■ iPhone Human Interface Guidelines for Web Applications provides user interface guidelines for designing
webpages and web applications for Safari on iPhone OS.

If you want to use the JavaScript media APIs, then you should read these documents:

 ■ JavaScript ScriptingGuide forQuickTime describes how to use JavaScript to query and control the QuickTime
plug-in directly.

If you are combining visual effects with touch events on iPhone OS, see this sample code:

 ■ FingerTips demonstrates how to build an interactive 3D carousel using CSS, JavaScript and touch events.

If you want to read the WebKit W3C proposals, then go to http://www.webkit.org/specs.

8 See Also
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://www.webkit.org/specs

A gradient is a visual effect you can apply to a surface that gradually changes the fill color from one value to
the next, creating a rainbow effect. Gradients can be used anywhere that an image can be used. For example,
you can specify a gradient that changes the color of a background from yellow at the top to blue in the
middle and green at the bottom. Gradients are specified using the -webkit-gradient function and can
be passed in place of an image URL. There are two types of gradients, linear and radial. You can specify
multiple in-between color values, called color stops, and the gradient function interpolates the color values
between them.

Creating Linear Gradients

A gradient applied to a rectangle area is called a linear gradient. A linear gradient requires a start point and
end point to specify the direction of the gradient. Points are specified using two numbers separated by a
space, where the first number is the x-coordinate and the second is the y-coordinate. You can use the constants
left top, left bottom, right top, and right bottom instead of the two numbers. For example, pass
left top as the first point and left bottom as the second point to create a linear gradient that progresses
from the top of a rectanglar area to the bottom, as shown in Figure 1.

Figure 1 Linear gradient

Listing 1 creates the rectanglar gradient shown in Figure 1.

Listing 1 Creating a linear gradient

<style>
.linear { width:130px; height:130px; border:2px solid black; padding: 10px;
 background: -webkit-gradient(linear, left top, left bottom,
from(#00abeb), to(#fff));
 -webkit-background-origin: padding; -webkit-background-clip: content;
 }
</style>
<div class="linear"></div>

Creating Linear Gradients 9
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

Creating Radial Gradients

A gradient specified using circles is called a radial gradient. You specify a radial gradient by setting the type
to radial and specifying a start inner circle and an end outer circle. Each circle is specified by a center and
a radius. The color values change gradually from the circumference of the inner circle outward to the
circumference of the outer circle. The two circles can have offset centers creating spherical effect when
rendered as shown in Figure 2.

Figure 2 Radial gradients

Listing 2 creates the sphere shapes shown in Figure 2.

Listing 2 Creating radial gradients

<style>
.radial {
 width:150px;
 height:150px;
 border:2px solid black;
 background-image: -webkit-gradient(radial, 45 45, 10, 52 50, 30,
from(#A7D30C), to(rgba(1,159,98,0)), color-stop(90%, #019F62)),
 -webkit-gradient(radial, 105 105, 20, 112 120, 50, from(#ff5f98),
to(rgba(255,1,136,0)), color-stop(75%, #ff0188)),
 -webkit-gradient(radial, 95 15, 15, 102 20, 40, from(#00c9ff),
to(rgba(0,201,255,0)), color-stop(80%, #00b5e2)),
 -webkit-gradient(radial, 0 150, 50, 0 140, 90, from(#f4f201),
to(rgba(228, 199,0,0)), color-stop(80%, #e4c700));
 display: block;
}
</style>
<div class="radial"></div>

Specifying Color Stops

You use the color-stop function to create a color stop. You pass this function as a parameter to the
-webkit-gradient() function to specify the start, intermediate, and end colors in both a linear and a radial
gradient. The colors between the specified color stops are interpolated.

10 Creating Radial Gradients
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

The first parameter of the color-stop() function is the percentage of the distance from the start point to
end points of the gradient. The second parameter is the color at that location. For example, if the first color
stop in a linear gradient is color-stop(0.0, yellow) as shown in Listing 3, then the gradient starts at
yellow. If the next color stop is color-stop(0.5, orange), then the gradient transitions from yellow to
orange at 50% of the total distance. If the end color stop is color-stop(1.0, red), then the gradient
transitions from orange at 50% to red at the end, 100% of the distance.

Listing 3 Creating an orange gradient

body {
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
 yellow),
 color-stop(0.5, orange), color-stop(1.0, red));
}

The result of Listing 3 is shown in Figure 3.

Figure 3 Orange gradient

The from() and to() functions are provided as a convenience for setting the start and end color stops.
Passing from(yellow) as the color stop to the -webkit-gradient() function is the same as passing
color-stop(0.0, yellow). Passing to(red) is the same as passing color-stop(1.0, red). Listing
4 simplifies Listing 3 (page 11) using these functions.

Listing 4 Using the from() and to() functions

body {
 background: -webkit-gradient(linear, left top, left bottom, from(#ff0),
 color-stop(0.5, orange), to(rgb(255, 0, 0)));
}

For both types of gradients, you do not need to specify colors at 0% and 100%, as shown in Listing 5. At and
before the first specified color stop, the color of the first color stop is used. At and after the last color stop,
the color of the last color stop is used. In other words, if the first color stop is at 40%, then that color is used
from 0% to 40%.

Listing 5 Not specifying start and end color stops

background-image: -webkit-gradient(linear, left top, left bottom,
 color-stop(0.40, #ff0),
 color-stop(0.5, orange),
 color-stop(0.60, rgb(255, 0, 0)));

Specifying Color Stops 11
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

In contrast, to Figure 3 (page 11), which shows the results when the gradient values are interpolated from
0% to 100%, Figure 4 shows the results when the interpolation starts at 40% and ends at 60%. Yellow is used
from 0% to 40% and red from 60% to 100%.

Figure 4 Orange gradient that starts later and ends earlier

In addition, if no color stop is specified, then the gradient is transparent black. If multiple color stops are
specified at the same location, then they appear in order. Only the first and last color stop at location 0.5 is
used in the sample shown in Listing 6.

Listing 6 Multiple color stops at the same location

-webkit-gradient(linear, left top, left bottom, from(#00abeb), to(#fff),
color-stop(0.5, #fff), color-stop(0.5, #66cc00))

Figure 5 shows the results of Listing 6, where the gradient transitions from blue to white in the first half and
green to white in the second half.

Figure 5 Color stops at the same location

Creating Background Gradients

When specifying a gradient as a background, the gradient becomes a background tile. If no size is specified,
then the gradient scales to the box specified by the -webkit-background-origin property. This property
defaults to the upper-left corner of the padding area, so the gradient is scaled to the size of the padding-box
as shown in Figure 3 (page 11). (The padding area is specified by the CSS padding, border, and margin
properties.) This is equivalent to setting the -webkit-background-size property to 100% in both the x
and y directions.

12 Creating Background Gradients
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

If you want to tile a vertical gradient using a narrow strip, set -webkit-background-size to give the
gradient tile an explicit size. Figure 6 shows the same linear gradient as in Figure 3 (page 11), but with the
-webkit-background-size property set to 20.0.

Figure 6 Tiled linear gradient

Creating Background Gradients 13
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

14 Creating Background Gradients
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Gradients

Masks allow you to block out or obscure areas of an image before rendering it. An alpha mask is an image
containing alpha values ranging from 0 to 1. When an alpha mask is applied to an image, the image is not
visible in the areas where the alpha values are 0 and visible in the areas where the alpha values are 1. In areas
where the alpha value is between 0 and 1, the image appears semitransparent depending on the value.

Masks can be stacked in a way similar to how opacity, transforms, and reflections work. A parent’s mask is
applied to its children and their descendants. The final mask, used to clip an element, is built from
concatenating all the masks together, tiling and stretching them as specified. At a minimum, the mask knocks
out everything outside of the border box of an object.

The -webkit-mask... CSS properties are analogous to the background and border-image properties. You
can set the mask’s origin, position, and size, and specify how it is used. The -webkit-mask property is a
shortcut for setting all the other -webkit-mask... properties.

For example, if you apply a mask that is solid black in the center and semitransparent around the border as
in Listing 1, then the image is rendered with a fuzzy border as shown in Figure 1.

Listing 1 Creating a fuzzy border

Figure 1 Results of a fuzzy border mask

Image Mask Result

Because gradients can be used in place of any image, gradients can be passed as a mask to
-webkit-mask-image as well, shown in Listing 2. Figure 2 shows the results of applying this gradient to
the image.

15
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Masks

Listing 2 Applying a gradient mask

<img src="field.png" style="-webkit-mask-image:
 -webkit-gradient(linear, left top, left bottom, from(rgba(0,0,0,1)),
to(rgba(0,0,0,0)))">

Figure 2 Results of applying a gradient mask

Masks respect the -webkit-border-radius property setting of an element too. If you add a border radius
to the previous example as shown in Listing 3, then you get the gradient effect but with rounded corners.

Listing 3 Applying a mask to an image with a border radius

<img src="field.png" style="-webkit-border-radius: 10px; -webkit-mask-image:
 -webkit-gradient(linear, left top, left bottom, from(rgba(0,0,0,1)),
to(rgba(0,0,0,0)))">

SVG images can be used as masks too. A semitransparent circle mask can be applied to an image as shown
in Listing 4, producing the results shown in Figure 3 (page 17).

Listing 4 Applying a SVG mask

16
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Masks

Figure 3 Results of applying a SVG mask

Mask Result

17
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Masks

18
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Masks

A reflection is a mirror image with its own specific transform and mask.

Use the -webkit-box-reflect property to set the direction, offset, and mask of an image’s reflection as
shown in Listing 1.

Listing 1 Creating a reflection using a gradient mask

<img src="ship.jpg" style="-webkit-box-reflect:below 3px
 -webkit-gradient(linear, left top, left bottom, from(transparent),
 color-stop(0.5, transparent), to(white));">

The first argument of the -webkit-box-reflect property specifies the direction of the reflection, which
can be either above, below, left, or right. The second argument is the offset or space between the original
image and the reflection. The third argument is a mask applied to the reflection. In this example, the mask
is specified as a gradient from transparent to white at 50% of the image height, producing a realistic mirror
effect as shown in Figure 1.

19
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Reflections

Figure 1 Reflection

Reflections update automatically as the source image changes. If you hover over links, you’ll see the hover
effect happen in the reflection too. If you add a reflection to a video element, the video plays in the reflection
as well.

Reflections can be stacked in a way similar to how opacity, transforms, and masks work. A parent ’s reflection
is applied to its children and their descendants. The final reflection is built from concatenating all the reflections
together, tiling and stretching them as specified.

Also reflections are not interactive elements—mousing or touching a reflection does not generate any events.
Reflections have no effect on layout other than being part of a container’s overflow. Reflections behave in a
way similar to box shadows in this respect.

20
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Reflections

Transitions are implicit animations that occur when you change an animatable CSS property. Normally when
the value of a CSS property changes, the affected elements are rendered immediately using the new property
value. Using CSS transitions, the element automatically transitions from its current state to its new state when
you set the property value.

To create a transition, you first create a style that sets up a transition—for example, you specify the element’s
property that triggers the transition and the duration of the transition. Then you apply the style to an element
and set the element’s property value. Changing the property value starts the transition from the old to the
new value.

Not all element properties are animatable. In general, any CSS property that accepts values that are numbers,
lengths, percentages, or colors is animatable. Some CSS properties that accept discrete values, such as the
visibility property, are animatable too, but they display a jump between values rather than a smooth
transition when changed. See Safari CSS Reference for which properties are animatable.

Note: There are actually two types of animations: declared animations and implicit animations. This article
describes implicit animations, which are called transitions. Read “Animations” (page 27) for details on
declared animations.

iPhone OS Note: In iPhone OS, transitions and animations of the -webkit-transform and opacity
properties are performance-enhanced.

How Transitions Work

Normally when the value of a CSS property changes, the result is rendered immediately. When applying a
transition to an element’s property, the change animates smoothly from the old value to the new value over
time. The property values are computed over time. Therefore, if you query the value of a property during a
transition, you may get an intermediate value that is the current animated value, not the old or new value.

For example, suppose you define a transition for the left and background-color properties and then set
both property values of an element at the same time. The element’s old position and color transition to the
new position and color over time as illustrated in Figure 1. If you query the properties in the middle of the
transition, you get an intermediate location and color for the element.

How Transitions Work 21
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

Figure 1 Transition of two properties

Starting appearance
Time = 0.0 sec

Intermediate appearance
Time = 0.5 sec

Final appearance
Time = 1.0 sec

You can also control how these intermediate values are computed over time using a timing function. Read
“Using Timing Functions” (page 23) to learn more about timing functions.

Transitions are powerful if you combine them with 2D and 3D transforms. For example, Figure 2 shows the
results of applying a transition to an element in 3D space. See the CardFlip sample code project for the
complete source code for this example.

Figure 2 Card Flip example

Setting Transition Properties

You use the CSS transition properties to set parameters of a transition. Typically, you need to set the element’s
property that the transition applies to and the duration of the transition. You don’t need to set the element’s
property if you want the transition to apply to all properties. In addition, you can set a timing function (how
intermediate values are distributed over the duration) and a delay before the transition begins.

22 Setting Transition Properties
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

Each parameter has a corresponding CSS property beginning with -webkit-transition. Use the
-webkit-transition-property property to set the element’s property and the
-webkit-transition-duration property to set the duration of the transition. In addition, you can use
the -webkit-transition property as a shorthand to set all the transition parameters using one style rule.

For example, Listing 1 defines a simple 2 second transition when the opacity property of an element is set.

Listing 1 Setting transition properties

div {
 -webkit-transition-property: opacity;
 -webkit-transition-duration: 2s;
}

You can also pass multiple comma-separated parameters to the -webkit-transition-... properties to
set up multiple transitions at once. The order of the parameters determines which transition the settings
apply to. For example, in Listing 2, the first parameter of each line applies to a -webkit-transform transition
and the second parameter applies to an opacity transition.

Listing 2 Creating multiple transitions at once

div.zoom-fade {
 -webkit-transition-property: -webkit-transform, opacity;
 -webkit-transition-duration: 4s, 2s;
 -webkit-transition-delay: 2s, 0;
}

Listing 3 creates a 500 millisecond transition for the opacity property in one style rule using the
-webkit-transition shorthand.

Listing 3 Setting all transition properties at once

div.sliding {
 -webkit-transition: opacity 500ms ease-out 100ms;
}

Using Timing Functions

Timing functions allow a transition to change speed over its duration. The timing function is a mathematical
function that provides a smooth curve or path for the transition. These effects are commonly called easing
functions.

You set a timing function using the -webkit-transition-timing-function property. For example, you
can define a timing function that starts out slowly, speeds up, and slows down at the end. The timing function
is specified using a cubic Bezier curve, which is defined by four control points, as illustrated in Figure 3. The
first and last control points are always set to (0,0) and (1,1), so you just need to specify the two in-between
control points. The points are specified as a percentage of the overall duration.

Using Timing Functions 23
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

Figure 3 Cubic Bezier timing function

O
ut

pu
t p

er
ce

nt
ag

e

Input percentage

1.0

1.0

0.5

0.5

P0

P2

P3

P1

You can set your control points by passing the cubic-bezier function as the parameter with your custom
control points as arguments or by using constants for common timing effects. For example, in Listing 4,
transitions are created for the -webkit-transform and opacity properties. The -webkit-transform
transition is 4 seconds and uses an ease-out timing function. The opacity transition is 2 seconds and uses
a custom Bezier path.

Listing 4 Setting a transition’s timing function

div.zoom-fade {
 -webkit-transition-property: -webkit-transform, opacity;
 -webkit-transition-duration: 4s, 2s;
 -webkit-transition-timing-function: ease-out, cubic-bezier(0.5, 0.2, 0.3,
1.0);
}

The default value for the timing function is ease, where the control points are (0.25, 0.1) and (0.25,
1.0) respectively.

Starting Transitions

Once you define a transition, you need to apply it to an element to start the transition. For example, normally,
changing the value of an element’s left style property causes the element to jump to the new location.
Although this is fine for static pages, it provides for a limited user-interface experience for rich web applications.
A JavaScript function could be used to iterate over an array of intermediate values, constantly updating the
left property with new values, but this is computationally expensive and requires significantly more code.
Instead you define a transition as described in “Setting Transition Properties” (page 22) and apply it to an
element as follows.

24 Starting Transitions
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

1. Define the transition in CSS.

This code fragment defines a 2 second opacity transition.

div {
 -webkit-transition-property: opacity;
 -webkit-transition-duration: 2s;
}

2. Create a corresponding style in CSS that can be applied to an element.

This code fragment sets the opacity property to 0 causing a fade away effect.

div.fadeAway {
 opacity:0;
}

3. Apply the style to an element in HTML.

This code fragment uses the onclick handler to trigger the fade away effect on the element.

<div style="width:100px;
 height:100px;
 background-color:blue;"
 onclick="className = 'fadeAway'">

Listing 5 shows the complete HTML for this simple web application that displays a 100 x 100 box that fades
away when clicked.

Listing 5 Simple fade away effect

<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1,
user-scalable=no"/>
 <style type="text/css" media="screen">

div {
 -webkit-transition-property: opacity;
 -webkit-transition-duration: 2s;
}

div.fadeAway {
 opacity:0;
}

 </style>
</head>
<body>

<div style="width:100px;
 height:100px;
 background-color:blue;"
 onclick="className = 'fadeAway'">
Tap to fade
</div>

Starting Transitions 25
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

</body>
</html>

Handling Transition Events

You can set a handler for a DOM event that is sent at the end of a transition. The event is an instance of
WebKitTransitionEvent and its type is webKitTransitionEnd in JavaScript.

For example, the JavaScript code in Listing 6 displays an alert panel whenever a transition ends.

Listing 6 Handling transition end event

box.addEventListener('webkitTransitionEnd', function(event) { alert("Finished
 transition!"); }, false);

26 Handling Transition Events
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transitions

You can use animation properties to animate elements as they move, resize, change color and opacity, and
undergo other visual changes. You can also animate 2D and 3D visual effects such as rotating, scaling, and
translating elements.

To create an animation, you first set animation properties, then you create keyframes, and then apply the
animation to some elements. For example, you set the animation’s name, duration, direction, and iteration
count. You can also set a timing function that specifies how an animation progresses between keyframes.
The timing function defines a Bezier curve—a path that the animation follows between keyframes. You define
keyframes using a special keyframes at-rule.

Note: There are actually two types of animations: declared animations and implicit animations. Declared
animations, described in this article, are explicitly executed when the animation properties are applied to
elements. Implicit animations are called transitions and are triggered when you set a new value for an
animatable CSS property. Read “Transitions” (page 21) for details on implicit animations.

iPhone OS Note: In iPhone OS, transitions and animations of the -webkit-transform and opacity
properties are performance-enhanced.

How Animations Work

Animations are similar to transitions except you have more fine control by specifying keyframes. A keyframe
defines the state of an animation at a particular point in time. A sequence of keyframes define the starting,
middle, and ending points of an animation. The frames in between these points are computed based on the
animation and style properties you set.

Similar to transitions, when applying an animation to an element’s property, the change animates smoothly
from the old value to the new value over time. The property values are computed over time. Therefore, if
you query the value of a property during an animation, you may get an intermediate value that is the current
animated value, not the old or new value. However, unlike transitions, animations do not change property
values at the end of the animation.

Similar to transitions, you can control how these intermediate values are computed over time using a timing
function, except that the timing function applies to the part of the animation between keyframes. Read
“Using Timing Functions” (page 29) to learn more about timing functions.

You can create unique effects combining animations with 2D and 3D transforms. For example, Figure 1 shows
an animation of elements in 3D space. See the PosterCircle sample code project for the complete source code
for this example.

How Animations Work 27
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

Figure 1 Poster Circle example

Setting Animation Properties

Use the CSS animation properties to set basic parameters about an animation. At a minimum, you need to
set an animation name and duration. In addition, you can specify how many times an animation iterates,
whether it alternates between the begin and end states, and whether the animation should begin in a running
or paused state. You can also set a delay before the animation begins.

Each parameter has a corresponding CSS property beginning with -webkit-animation. For example, use
the -webkit-animation-name property to specify a name. Use the -webkit-animation-duration
property to specify the duration in seconds. Use the -webkit-animation-iteration-count property to
specify the number of times the animation repeats. In addition, you can use the -webkit-animation
property as a shorthand to set all these parameters in one style rule.

For example, an animation called diagonal-slide is declared in Listing 1. The animation name is
diagonal-slide, its duration is five seconds, and it repeats ten times.

Listing 1 Setting animation properties

.diagonalslide {
 -webkit-animation-name: diagonal-slide;
 -webkit-animation-duration: 5s;
 -webkit-animation-iteration-count: 10;
}

The animation name is used to associate it with its keyframes. You use the animation name in the keyframes
at-rule as described in “Creating Keyframes” (page 29).

28 Setting Animation Properties
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

Creating Keyframes

Keyframes are specified in CSS using a specialized @-webkit-keyframes at-rule. The keyframes rule consists
of the @-webkit-keyframes keyword, followed by the animation name, and then a set of style rules for
each keyframe as shown in Listing 2. The style rules are contained in blocks, surrounded by braces, and are
preceded by a percentage value marking the keyframe’s point in time. Any style rules can be placed in the
blocks including 2D and 3D visual effects.

The value is a percentage of the animation’s duration (or the keywords from or to) . For example, 0% specifies
the start of an animation, 50% halfway through an animation, and 100% the end of an animation. The from
keyword is equivalent to 0% and the to keyword is equivalent to 100%. When the animation executes, it
transitions smoothly from one state to the next in increasing order, from 0% to 100%.

Listing 2 shows a keyframes at-rule where the animation is called wobble and the keyframes move an element
back and forth over time. (You set the animation name using the -webkit-animation-name property as
described in “Setting Animation Properties” (page 28).) In the first keyframe, the value of the element’s left
property is 100 pixels. By 40% of the animation duration, the value of the left property animates to 150
pixels. At 60% of the animation duration, the value of the left property animates back to 75 pixels. At the
end of the animation, the value of the left property returns to 100 pixels.

Listing 2 Declaring keyframes

 @-webkit-keyframes wobble {

 0% {
 left: 100px;
 }

 40% {
 left: 150px;
 }

 60% {
 left: 75px;
 }

 100% {
 left: 100px;
 }

 }

Using Timing Functions

Timing functions allow an animation to change speed over its duration. The timing function is a mathematical
function that provides a smooth curve or path for the transition. These effects are commonly called easing
functions.

You set a timing function in a keyframe block using the -webkit-animation-timing-function property.
The timing function determines the speed of an animation from the current to the next keyframe. The timing
function is specified using a cubic Bezier curve, which is defined by four control points as illustrated in Figure

Creating Keyframes 29
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

3 (page 24). The first control point is always (0,0) and the last control point is (1,1), so you only need to specify
the two in-between control points of the curve. The in-between points are specified as a percentage of the
overall duration. For example, this line of code sets the second point to (0.5, 0.2) and the third point to (0.3,
1.0) using the cubic-bezier function:

-webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.3, 1.0);

Similar to the -webkit-transition-timing-function property, you can set your control points by
passing the cubic-bezier() function as the parameter with your custom control points as arguments or
by using constants for common timing effects. For example, Listing 3 shows a keyframes at-rule that uses
two timing function constants: ease-out and ease-in. Five keyframes are specified for an animation called
bounce. Between the first and second keyframe (the first quarter of the duration) an ease-out timing
function is used. Between the second and third keyframe (second quarter of the duration) an ease-in timing
function is used. And so on. The effect appears as an element that moves up the page 50 pixels, slowing
down as it reaches its highest point then speeding up as it falls back to 100 pixels. The second half of the
animation behaves in a similar manner, but only moves the element 25 pixels units up the page creating a
bouncing ball effect.

Note: The y-axis increases downwards. Therefore, in the first bounce, when the element’s y-coordinate
changes from 100 to 50 pixels, it moves up by 50 pixels. In the second bounce, when the y-coordinate changes
from 100 to 75 pixels, it moves up by 25 pixels, half the height of the first bounce.

Listing 3 Using timing functions in keyframes

 @-webkit-keyframes bounce {

 from {
 -webkit-transform: translateY(100px);
 -webkit-animation-timing-function: ease-out;
 }

 25% {
 -webkit-transform: translateY(50px);
 -webkit-animation-timing-function: ease-in;
 }

 50% {
 -webkit-transform: translateY(100px);
 -webkit-animation-timing-function: ease-out;
 }

 75% {
 -webkit-transform: translateY(75px);
 -webkit-animation-timing-function: ease-in;
 }

 to {
 -webkit-transform: translateY(100px);
 }

 }

30 Using Timing Functions
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

Repeating Animations

You use the -webkit-animation-iteration-count property to set the number of times to repeat an
animation. Listing 4 defines an animation that slides elements from the upper-left to lower-right corner. The
-webkit-animation-iteration-count property is set to 10 causing the animation to repeat 10 times
when it is applied.

Listing 4 Creating an animation that repeats

.diagonalslide {
 -webkit-animation-name: diagonal-slide;
 -webkit-animation-duration: 5s;
 -webkit-animation-iteration-count: 10;
}

@-webkit-keyframes diagonal-slide {

 from {
 left: 0;
 top: 0;
 }

 to {
 left: 100px;
 top: 100px;
 }

}

Starting Animations

Once you create an animation and specify its keyframes, you apply it to an element to begin the animation.
You do this by applying the animation style to an element. This is typically triggered by some event such as
the user clicking an element.

Listing 5 shows how to apply an animation to an element when the user clicks it. (The diagonalslide is
defined in Listing 4 (page 31).) When the user taps in the blue box that says “Tap to slide” the onClick
attribute changes the style class of the div element to diagonalslide and the animation begins.

Listing 5 Starting an animation

<div onClick="className='diagonalslide'">
 Tap to slide
</div>

The effects of an animation cease once the animation completes or if the animation is removed. You remove
an animation by setting the -webkit-animation-name property to a value that does not include the name
of that animation.

When an animation finishes running because it has executed the number of times described in its iteration
count, the properties that were being animated return to their original values without animation.

Repeating Animations 31
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

To restart an animation, set the -webkit-animation-name property to a value that includes the name of
that animation. Because style changes are coalesced, you may have to do this after a short delay. Listing 6
shows how to restart the bounce animation.

Listing 6 Restarting an animation

<style>
top:
.bounce {
 -webkit-animation-name: bounce;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: 3;
}
</style>

<script type="text/javascript" charset="utf-8">
function restartBounce(element)
{
 element.style.webkitAnimationName = '';
 window.setTimeout(function() {
 element.style.webkitAnimationName = 'bounce';
 }, 0);
}
</script>

<body>
<div class="bounce" onclick="restartBounce(this)">
</div>
</body>

Handling Animation Events

Several animation-related events are available through the DOM event system. The start and end of an
animation, and the end of each iteration of an animation, all generate DOM events. The events are instances
of the WebKitAnimationEvent class and the possible types are webkitAnimationStart,
webkitAnimationIteration, and webkitAnimationEnd in CSS.

Listing 7 adds an event listener for webkitAnimationEnd events at page load time on the div element
with the box identifier. (See Listing 3 (page 30) for the definition of the bounce keyframes in this sample.)
When the webkitAnimationEnd event occurs, an instance of WebKitAnimationEvent is created, the
function checks to see if the animation was the bounce animation, and, if so, hides the box by setting the
element’s display style to hidden.

Listing 7 Handling animation events

<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1,
user-scalable=no"/>
 <title>Bounce Animation</title>
 <style>
 div#box {
 position: absolute;

32 Handling Animation Events
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

 width: 100px;
 height: 100px;
 background-color: blue;
 -webkit-transform: translateY(100px);
 }
 .bounce {
 -webkit-animation-name: bounce;
 -webkit-animation-duration: 4s;
 -webkit-animation-iteration-count: 3;
 }
 @-webkit-keyframes bounce {
 ...
 }
 }
 </style>
 <script type="text/javascript" charset="utf-8">
 function attachEventHandler() {
 box.addEventListener('webkitAnimationEnd', function(event)
{ alert("Finished animation!"); }, false);
 }
 </script>
 </head>

<body onload="attachEventHandler()">
 <div id="box" class="bounce">
 </div>
</body>
</html>

Note that an event is generated for each animation-name value and not necessarily for each property being
animated since you can animate more than one property of an element at a time. You can animate multiple
properties either with a single animation-name value with keyframes containing multiple properties, or
with multiple animation-name values. For the purposes of events, each animation-name specifies a single
animation.

The time the animation has been running is sent with each event generated. This allows a
webkitAnimationIteration event handler to determine the current iteration of a looping animation or
the current position of an alternating animation. This time does not include any time the animation was in
the paused play state.

Read “Interactive Visual Effects” (page 45) for how to create interactive user interfaces using visual effects
with DOM touch events.

iPhone OS Note: Because the mouse is emulated, events may not behave as you expect on iPhone OS. Read
“Handling Events” for how to make elements clickable.

Handling Animation Events 33
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

34 Handling Animation Events
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Animations

CSS transform properties provide powerful formatting possibilities without having to resort to using images
or Flash. Using the transform properties, elements can be translated, rotated, and scaled in 2D and 3D space.
Perspective can also be applied to elements giving a sense of depth to the way they are rendered.

The CSS visual formatting model defines a coordinate system for each element. This coordinate space can
be thought of as being expressed in pixels, starting in the upper-left corner of the parent with positive values
proceeding to the right and down. In the basic formatting model, it is possible to set only the position and
size of elements. Using CSS transforms, you can position elements in 2D and 3D space.

For example, Figure 1 shows a simple HTML document rendered using CSS transform properties. The "Now
Version 2.0!” element is rotated around the z-axis. The “Lorem Ipsum” element specifies a 3D perspective for
its children elements. The containing text element is rotated around the x-axis.

Figure 1 HTML page with rotation and perspective transforms

<div> element rotated around the z-axis

<div> element with 3D perspective

<p> element rotated around the x-axis

Before using transform properties, you should understand how the coordinate systems and rendering work.
Then use CSS transform properties to set the transform function per element. Use additional transform
properties to set the origin and set other rendering attributes.

35
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

iPhone OS Note: In iPhone OS, transitions and animations of the -webkit-transform and opacity
properties are performance-enhanced.

Coordinate Systems and Rendering

Transformed coordinate spaces behave differently in 2D and 3D. In 2D, the transformed coordinate space
behaves as described in the coordinate system transformations section of the Scalable Vector Graphics (SVG)
1.1 Specification. This is a coordinate system with two axes: The x-axis increases horizontally to the right; the
y-axis increases vertically downwards. In 3D, a z-axis is added, with positive z-values conceptually rising
perpendicularly out of the window toward the user and negative z-values falling into the window away from
the user as illustrated in Figure 2.

Figure 2 3D coordinate space

– Z

- Y

+ Y

+ X

– X

+ Z

Setting a transform property for an element establishes a new local coordinate system for that element. You
can apply multiple transforms to parent and child elements. Transformations are cumulative. That is, elements
establish their local coordinate system within the coordinate system of their parent. In this way, a transform
property effectively accumulates all the transform properties of its ancestors. The accumulation of these
transforms defines a current transformation matrix (CTM) for the element.

A transform property does not affect the flow of the content surrounding the transformed element. However,
the value of the overflow area takes into account transformed elements. This behavior is similar to what
happens when elements are translated via relative positioning. Therefore, if the value of the overflow
property is scroll or auto, scroll bars appear as needed to see content that is transformed outside the
visible area.

36 Coordinate Systems and Rendering
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

If a transform, other than the identity transform, is set for an element, a stacking context and a containing
block is created for that element. The object acts as though position: relative has been specified, but
also acts as a containing block for fixed-positioned descendants. The z-position of a transformed element
(its location on the z-axis) does not affect the order within a stacking context. With elements at the same
z-index, objects are drawn in order of increasing z-position.

Note that elements are flat, planar surfaces with no z-depth in their default orientation. The transform property
can be used to change their size, position, and orientation to position them in 3D space. However, though
elements can be positioned to intersect, they are always rendered fully above or below each other. Which
elements are rendered later (and therefore above elements rendered earlier) is determined by which is
“closer” to the viewer.

Setting Transform Functions

A 2D or 3D transform is applied to an element using the -webkit-transform property. The parameter to
this property is a list of transform functions, described in “Visual Effects Timing Functions” in Safari CSS
Reference. The set of transform functions is similar to those allowed by SVG, although there are additional
functions to support 3D transforms.

Rotating an Element

Listing 1 rotates a div element by 45 degrees around the z-axis using an inline style.

Listing 1 Rotating an element

<div style = "width: 12em;
 margin-top: 5em;
 -webkit-transform: rotate(45deg)">
I am rotated!
</div>

The results on iPhone OS are shown in Figure 3.

Setting Transform Functions 37
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Figure 3 Rotating text

The rotate() function is just one of a number of functions you can apply using the -webkit-transform
property. For a complete list of transform functions, see “Visual Effects Transform Functions” in Safari CSS
Reference.

Setting Multiple Transforms

You can apply multiple transforms to the same element and apply transforms to parent and child elements.
The -webkit-transform property accepts a single transform function or a whitespace-separated list of
functions. When a list of functions is provided, the final transformation value for the element is obtained by
performing a matrix concatenation of each entry in the list.

Listing 2 sets an element’s transform to a list of transform functions and Listing 3 produces the same results
by applying different transforms to nested elements.

Listing 2 Setting multiple transforms using a whitespace-separated list

<div style="-webkit-transform:translate(-10px,-20px)
 scale(2) rotate(45deg) translate(5px,10px)"/>

Listing 3 Nesting transforms

<div style="-webkit-transform:translate(-10px,-20px)">
 <div style="-webkit-transform:scale(2)">
 <div style="-webkit-transform:rotate(45deg)">
 <div style="-webkit-transform:translate(5px,10px)">
 </div>
 </div>
 </div>
</div>

38 Setting Transform Functions
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Changing the Origin

Use the -webkit-transform-origin property to change the origin of transforms applied to an element
from the center default. The origin is expressed as a percentage of the size of the element. For example, the
default value 50% 50% causes transformations to occur around the center of the element. Changing the
origin to 100% 0% causes transformation to occur around the top-right corner of on element.

The code in Listing 4 rotates the second box in Figure 4 around the top-right corner.

Listing 4 Rotating an element around the top-right corner

<div style="height: 200px;
 width: 300px;
 font-size:300%;
 text-align:center;
 background-color:red;">
I am not rotated!
</div>

<div style="height: 200px;
 width: 300px;
 font-size: 300%;
 text-align: center;
 background-color: blue;
 -webkit-transform: rotate(-45deg);
 -webkit-transform-origin: 100% 0%;">
I am rotated about my top-right corner!
</div>

Figure 4 Element rotated around the top-right corner

Changing the Origin 39
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Setting the Perspective

Use the -webkit-perspective property to change the perspective in 3D and give a sense of depth to a
scene by causing elements further away from the viewer to appear smaller. The -webkit-perspective
property applies the same transform as the perspective transform function, except that it applies only to
the children of the element, not to the transform applied to the element itself.

The code fragment in Listing 5 sets the parent element’s -webkit-perspective property to 500 causing
the child element to appear in 3D.

Listing 5 Adding perspective

<html>
 <head>
 <meta name="viewport" content="user-scalable=no, width=device-width"/>
 <title>Setting the Perspective</title>
 </head>
 <body>
 <div style="font-size: 200%; margin: 1em 1em; -webkit-perspective: 500;"
 >
 I have perspective.
 <div style="height: 6em; width: 6em; text-align:center;
background-color: yellow; -webkit-transform: rotateY(40deg);">
 I'm 3D.
 </div>
 </div>
 </body>
</html>

Figure 5 shows the before and after results of setting the perspective of a parent element.

Figure 5 Setting the perspective

Before perspective After perspective

40 Setting the Perspective
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Setting the Transform Style

Use the -webkit-transform-style property to change how nested elements are rendered in 3D space.
If -webkit-transform-style is flat, all children of this element are rendered flattened into the 2D plane
of the element. Therefore, rotating the element about the x-axes or y-axes causes children positioned at
positive or negative z positions to appear on the element's plane, rather than in front of or behind it. If
-webkit-transform-style is preserve-3d, this flattening is not performed, so children maintain their
position in 3D space.

This flattening takes place at each element, so preserving a hierarchy of elements in 3D space requires that
each ancestor in the hierarchy have -webkit-transform-style set to preserve 3D. But
-webkit-transform-style affects only an element's children; the leaf nodes in a hierarchy do not require
the preserve-3d style.

The code in Listing 6 shows how to set the transform style of the parent element.

Listing 6 Setting the transform style

<div style="font-size: 200%; margin: 1em 1em;
 -webkit-perspective: 500;" >
 <div style="height: 8em;
 width: 6em;
 text-align:center;
 background-color: yellow;
 -webkit-transform-style: preserve-3d;
 -webkit-transform: rotateY(40deg);">
 I am the parent, and have perspective.
 <div style="-webkit-transform: translateZ(3em);
 background-color: blue;">
 I stand out from my parent element.
 </div>
 </div>
</div>

Figure 6 shows the before and after results of setting this property when the parent element has no
perspective.

Setting the Transform Style 41
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Figure 6 Preserving 3D

Before preserve 3D After preserve 3D

Figure 7 shows the before and after results of setting this property when the parent element has perspective
too.

Figure 7 Setting the perspective and preserving 3D

Before preserve 3D After preserve 3D

Note that it’s possible for the elements in a 3D tree to be located behind an ancestor element and therefore,
be invisible or hidden. To prevent this, ensure that ancestor elements in a 3D tree that uses preserve-3d
set -webkit-transform-style to flat (the default).

Also, the effect of setting -webkit-transform-style to preserve-3dmay not be possible for all elements.
Elements that have overflow set to hidden are unable to render their child elements in 3D. In this case,
the element behaves as if the property is set to flat.

42 Setting the Transform Style
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Back Face Visibility

Use the -webkit-backface-visibility property to set whether or not the “back side” of a transformed
element is visible when facing the viewer. If the identity transform is set, the front side of an element faces
the viewer. Applying a rotation about the y-axis of 180 degrees (for instance) causes the back side of the
element to face the viewer. For example, you might use this setting to create a box out of six elements, but
where you want to see the inside faces of the box. You also need this property when creating a backdrop
for a 3D stage.

Another example is when you want to place two elements back to back, as in the CardFlip sample code
project. Without this property, the front and back elements of the face card could at times switch places
during the flip transition causing a flicker. Listing 7 shows the style settings of the face card that sets the
-webkit-backface-visibility property to hidden. Figure 2 (page 22) shows the results of setting this
property—a smooth flip transition with no flicker.

Listing 7 Hiding the back side of a face card

/* Styles the card and hides its "back side" when the card is flipped */
.face
{
 position: absolute;
 height: 300px;
 width: 200px;
 /* Give a round layout to the card */
 -webkit-border-radius: 10px;
 /* Drop shadow around the card */
 -webkit-box-shadow: 0px 2px 6px rgba(0, 0, 0, 0.5);
 /* Make sure that users will not be able to select anything on the card */

 /* We create the card by stacking two div elements at the exact same location.
 The back of the card
 is shown when we rotated the card 180 degrees along the y-axis. Setting
 this property to hidden
 ensures that the "back side" is hidden when the card is flipped.
 */
 -webkit-backface-visibility: hidden;
}

Creating Transforms in JavaScript

There are also a few JavaScript classes that you can use to access and manipulate transforms. Use the
WebKitCSSMatrix class to create either a 4x4 matrix for 3D or a vector for 2D and the
WebKitCSSTransformValue class to get and set the transform. There are also methods added to DOMWindow
to convert points that use instances of the WebKitPoint class as parameters. This section presents some
examples of manipulating transforms in JavaScript. Refer to Safari DOM Additions Reference for details on all
these classes.

Use the window’s getComputedStyle() method to get an element’s style and the webkitTransform
property to get an element’s transform as follows:

var theTransform = window.getComputedStyle(element).webkitTransform;

Back Face Visibility 43
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

The webkitTransform property is a string representation of a list of transform operations. Usually this list
contains a single matrix transform operation. For 3D transforms, the value is "matrix3d(...)" with the 16 values
of the 4x4 homogeneous matrix between the parentheses. For 2D transforms, the value is a "matrix(...)" string
containing the 6 vector values.

Similarly, use the webkitTransform property to set the transform of an element as follows:

var box2 = document.getElementById('box2');
box2.style.webkitTransform = theTransform;

You can also use this string representation of a transform to create an instance of WebKitCSSMatrix as
follows:

var matrix = new WebKitCSSMatrix(theTransform);

Once you create a WebKitCSSMatrix object, you can apply transform functions to it in JavaScript using the
multiply(), inverse(), translate(), scale(), rotate(), and rotateAxisAngle() methods. This
code fragment sets the transform of another element to a scaled version of the matrix above:

var box3 = document.getElementById('box3');
box3.style.webkitTransform = matrix.scale(0.5, 0.5);

See the documentation for WebKitCSSMatrix in Safari DOM Additions Reference for more details on these
methods.

44 Creating Transforms in JavaScript
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Transforms

Note: DOM touch events used in this chapter are available on iPhone OS only.

You can use visual effects in combination with DOM mouse and touch events to create interactive web
applications—applications that allow the user to manipulate objects on the screen with the mouse or finger.
The first step to building interactive web applications is to register for user events—specifically, register for
mouse, touch, and gesture events. Next, you implement the event handlers to apply the desired visual effects.
This article contains three step-by-step examples that show you how to combine event handling with visual
effects. Each example uses different types of events and visual effects. For example, you can implement web
applications that allow the user to manipulate a 2D graphics object using multi-touch gestures.

Using Click or Tap to Trigger a Transition Effect

In this example, the user can click an element using the mouse or tap an element using a finger on an iPhone
OS-based device to change the size of an element. The element is a box that increases in width by a multiple
of 1.5 when tapped using a transition effect as illustrated in Figure 1.

Figure 1 Click box to enlarge

Follow these steps to implement this example:

1. Create an element for the user to manipulate.

This CSS fragment creates a box element and uses the -webkit-transition-... properties to create
a smooth transition when the width of the box changes:

Using Click or Tap to Trigger a Transition Effect 45
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

div#box
{
 background-color: blue;
 display: block;
 position: absolute;
 width: 50;
 height: 50;
 -webkit-transition-property: width;
 -webkit-transition-duration: 0.5s;
 -webkit-transition-timing-function: default;
}

2. Register for input events.

The following HTML registers an onclick event handler, grow(), for the box element:

<body>
 <div id="box" onclick="grow();"></div>
 <h1>Click box to grow</h1>
</body>

3. Implement the event handlers.

The following grow() JavaScript method sets the width of the box, which triggers the transition effect
in step 1:

function grow() {
 box = document.getElementById("box");
 var old_width = box.offsetWidth;
 box.style.width = old_width * 1.5;
}

Using Touch to Drag Elements

In this example, the user can touch a box to drag it around the screen. The high-level steps are the same as
before. You create an element to manipulate, register event handlers, and implement event handlers. However,
in this example, touch events and transforms are used, and most of the application is written in JavaScript.

46 Using Touch to Drag Elements
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

Figure 2 Drag box application

Create an Element to Manipulate

Follow these steps to create a simple box that can be dragged across the screen.

1. Implement the element creation method in JavaScript.

This Box creation method sets the initial position of the box and registers a handler for the touchstart
event.

function Box(inElement)
{
 var self = this;

 this.element = inElement;
 this.position = '0,0';
 this.element.addEventListener('touchstart', function(e) { return
self.onTouchStart(e) }, false);
}

2. Next create Box.prototype to contain additional methods for getting and setting the position of the
box.

Box.prototype = {
...
}

3. Add a position() get method as follows:

get position()
{
 return this._position;
},

Using Touch to Drag Elements 47
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

4. Add a position() set method to set the transform using the -webkit-transform CSS property.

// position strings are "x,y" with no units
set position(pos)
{
 this._position = pos;

 var components = pos.split(',')
 var x = components[0];
 var y = components[1];

 const kUseTransform = true;
 if (kUseTransform) {
 this.element.style.webkitTransform = 'translate(' + x + 'px, ' + y +
'px)';
 }
 else {
 this.element.style.left = x + 'px';
 this.element.style.top = y + 'px';
 }
},

Note: Visual effects properties follow the same conventions as other CSS properties you set in JavaScript.
Therefore, setting this.element.style.webkitTransform in JavaScript is the same as setting the
-webkit-transform property in CSS.

5. Add x() and y() get and set methods to support the position() get and set methods above.

// position strings are "x,y" with no units
get x()
{
 return parseInt(this._position.split(',')[0]);
},

set x(inX)
{
 var comps = this._position.split(',');
 comps[0] = inX;
 this.position = comps.join(',');
},

get y()
{
 return parseInt(this._position.split(',')[1]);
},

set y(inY)
{
 var comps = this._position.split(',');
 comps[1] = inY;
 this.position = comps.join(',');
},

6. Now, add a loaded() function that creates the box element:

function loaded()
{

48 Using Touch to Drag Elements
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

 new Box(document.getElementById('main-box'));
}

7. Add this line of code to invoke the loaded() method when the application launches:

window.addEventListener('load', loaded, true);

8. Finally, set the appearance of the box using CSS as follows:

.box {
 position: absolute;
 height: 150px;
 width: 150px;
 background-color: green;
}

.box:active {
 background-color: orange;
}

Note: Elements have to be clickable to receive touch events. Read “Making Elements Clickable” in SafariWeb
Content Guide for how to make a nonclickable element clickable.

Register and Implement Event Handlers

The bulk of the work in dragging the box is implemented in the touch event handlers. The touch events are
instances of the TouchEvent class. This example registers for all three types of touch events: touchstart,
touchmove, and touchend events. It tracks single touches, not gestures, to implement dragging. Read “Using
Gestures to Translate, Scale, and Rotate Elements” (page 51) for how to handle gesture events.

1. First implement the onTouchStart() event handler to start tracking touch events.

The onTouchStart() method was registered as an event handler in “Create the Element to
Manipulate” (page 51). This method first checks to see that there is only one touch, not multiple touches.
It then stores the current position and registers for touchmove and touchend events.

onTouchStart: function(e)
{
 // Start tracking when the first finger comes down in this element
 if (e.targetTouches.length != 1)
 return false;

 this.startX = e.targetTouches[0].clientX;
 this.startY = e.targetTouches[0].clientY;

 var self = this;
 this.element.addEventListener('touchmove', function(e) { return
self.onTouchMove(e) }, false);
 this.element.addEventListener('touchend', function(e) { return
self.onTouchEnd(e) }, false);

 return false;
},

Using Touch to Drag Elements 49
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

2. Next implement the onTouchMove() event handler to move the element. The position() set method,
implemented in “Create the Element to Manipulate” (page 51), uses the -webkit-transform CSS
property to translate the element.

onTouchMove: function(e)
{
 // Prevent the browser from doing its default thing (scroll, zoom)
 e.preventDefault();

 // Don't track motion when multiple touches are down in this element (that's
 a gesture)
 if (e.targetTouches.length != 1)
 return false;

 var leftDelta = e.targetTouches[0].clientX - this.startX;
 var topDelta = e.targetTouches[0].clientY - this.startY;

 var newLeft = (this.x) + leftDelta;
 var newTop = (this.y) + topDelta;

 this.position = newLeft + ',' + newTop;

 this.startX = e.targetTouches[0].clientX;
 this.startY = e.targetTouches[0].clientY;

 return false;
},

Note: Use the preventDefault()method to disable the browser default behavior. For example, Safari
on iPhone OS might attempt to scroll or zoom when the user touches and moves a finger on the screen.

3. Finally implement the onTouchEnd() event handler to remove the touchmove and touchend event
handlers.

This method is invoked after the last touch leaves the screen, so you no longer need to observe touchmove
and touchend events until the next touchstart event.

onTouchEnd: function(e)
{
 // Prevent the browser from doing its default thing (scroll, zoom)
 e.preventDefault();

 // Stop tracking when the last finger is removed from this element
 if (e.targetTouches.length > 0)
 return false;

this.element.removeEventListener('touchmove', function(e) { return
self.onTouchMove(e) }, false);
 this.element.removeEventListener('touchend', function(e) { return
self.onTouchEnd(e) }, false);

 return false;
},

50 Using Touch to Drag Elements
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

Using Gestures to Translate, Scale, and Rotate Elements

Gesture events are high-level events that encapsulate the lower-level touch events—they are instances of
the GestureEvent class. Gesture and touch events can occur at the same time. Your application has the
choice of handling touch events, gesture events, or both. The advantage of gesture events is that the location
and angle of the fingers are already calculated when the events arrive. Thus gesture events support pinch
open to zoom in, pinch close to zoom out, and pivoting to rotate elements. You simply apply the event
location, scale, and rotation values to your element.

The steps in this example are similar to implementing the draggable box in “Using Touch to Drag
Elements” (page 46). Instead of just dragging the box, the user can also pinch open and close to scale it and
pivot to rotate it. To do this, you simply extend the example to handle gesture events for scaling and rotating.
In summary, you create the element to manipulate, register for touch and gesture events, and implement
handlers that translate, scale, and rotate the element.

Create the Element to Manipulate

Follow these steps to create a simple box that can be translated, scaled, and rotated.

1. Implement the element creation method in JavaScript.

This Box creation method sets the initial position, scale, and rotation of the box and registers handlers
for the touchstart and gesturestart events.

function Box(inElement)
{
 var self = this;

 this.element = inElement;

 this.scale = 1.0;
 this.rotation = 0;
 this.position = '0,0';

 this.element.addEventListener('touchstart', function(e) { return
self.onTouchStart(e) }, false);
 this.element.addEventListener('gesturestart', function(e) { return
self.onGestureStart(e) }, false);
}

2. Follow steps 2 through 8 in “Create an Element to Manipulate” (page 47) to create a box prototype, add
the position() accessors and associated support methods, and create the box.

Register and Implement Event Handlers

The bulk of the work in this application is in the touch and gesture event handlers. This example builds on
the example in “Using Touch to Drag Elements” (page 46) by handling gesture events, too. The touch events
are used to implement dragging as before and the gesture events are used to implement translating, scaling,
and rotating.

Using Gestures to Translate, Scale, and Rotate Elements 51
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

1. First implement theonTouchStart(),onTouchMove(), andonTouchEnd() event handlers by following
step 1 through 3 in “Register and Implement Event Handlers” (page 49) to allow single-finger dragging.

2. Next, implement the onGestureStart() event handler to begin tracking gesture events for translating,
scaling, and rotating.

This method registers the other gesture event handlers, onGestureChange() and onGestureEnd(),
for the gesturechange and gestureend events.

onGestureStart: function(e)
{
 // Prevent the browser from doing its default thing (scroll, zoom)
 e.preventDefault();

 var self = this;
 this.element.addEventListener('gesturechange', function(e) { return
self.onGestureChange(e) }, true);
 this.element.addEventListener('gestureend', function(e) { return
self.onGestureEnd(e) }, true);

 return false;
},

3. Implement the onGestureChange() event handler to translate, scale, and rotate the element.

This method sets the element’s scale and rotation to the GestureEvent object’s precomputed scale
and rotation values. You do not need to compute the distance between multiple fingers or the change
in angle to scale and rotate the element.

onGestureChange: function(e)
{
 // Prevent the browser from doing its default thing (scroll, zoom)
 e.preventDefault();

 // Only interpret gestures when tracking one object. Otherwise, interpret
 raw touch events
 // to move the tracked objects.
 this.scale = e.scale;
 this.rotation = e.rotation;
 this.position = this.position;

 return false;
},

4. Implement the onGestureEnd() event handler to remove the handlers for the gesturechange and
gestureend events.

onGestureEnd: function(e)
{
 // Prevent the browser from doing its default thing (scroll, zoom)
 e.preventDefault();

 this.element.removeEventListener('gesturechange', this.gestureChangeHandler,
 true);
 this.element.removeEventListener('gestureend', this.gestureEndHandler, true);

 return false;
},

52 Using Gestures to Translate, Scale, and Rotate Elements
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Interactive Visual Effects

This table describes the changes to Safari CSS Visual Effects Guide.

NotesDate

Made minor edits throughout.2010-05-26

Added information on radial gradients and made minor changes to the chapter
"Gradients." Added "CSS" to the title.

2010-02-24

Minor edits.2010-01-20

Minor edits throughout.2009-07-27

Minor edits throughout.2009-06-08

Added CSS gradients, masks, and reflections.2009-03-16

New document that describes how to add visual effects to web content that is
supported by Safari on the desktop and iPhone OS.

2008-11-19

53
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Safari CSS Visual Effects Guide
	Contents
	Figures and Listings
	Introduction
	Gradients
	Creating Linear Gradients
	Creating Radial Gradients
	Specifying Color Stops
	Creating Background Gradients

	Masks
	Reflections
	Transitions
	How Transitions Work
	Setting Transition Properties
	Using Timing Functions
	Starting Transitions
	Handling Transition Events

	Animations
	How Animations Work
	Setting Animation Properties
	Creating Keyframes
	Using Timing Functions
	Repeating Animations
	Starting Animations
	Handling Animation Events

	Transforms
	Coordinate Systems and Rendering
	Setting Transform Functions
	Rotating an Element
	Setting Multiple Transforms

	Changing the Origin
	Setting the Perspective
	Setting the Transform Style
	Back Face Visibility
	Creating Transforms in JavaScript

	Interactive Visual Effects
	Using Click or Tap to Trigger a Transition Effect
	Using Touch to Drag Elements
	Create an Element to Manipulate
	Register and Implement Event Handlers

	Using Gestures to Translate, Scale, and Rotate Elements
	Create the Element to Manipulate
	Register and Implement Event Handlers

	Revision History

