
Safari HTML5 Audio and Video Guide
Audio, Video, & Visual Effects

2010-03-18

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iPod, iPod touch, Mac,
Mac OS, QuickTime, and Safari are trademarks
of Apple Inc., registered in the United States
and other countries.

iPhone is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 8
See Also 8

Chapter 1 Audio and Video HTML 9

Basic Syntax 9
Device-Specific Considerations 10

Optimization for Small Screens 10
User Control of Downloads Over Cellular Networks 10
iPhone Video Placeholder 11
Media Playback Controls 11
Supported Media 11
Video Overlays 12

Working with Attributes 12
Resizing the Video 12
Enabling the Controller 12
Autobuffering 13
Playing Background Music 13
Showing a Poster 13

Providing Multiple Sources 14
Specifying Multiple Media Formats 14
Specifying Multiple Delivery Schemes 15
Multiple Data Rate Sources 16

Specifying Fallback Behavior 16
Fall Back to the QuickTime Plug-in 17
Fall Back to Any Plug-In 17

Chapter 2 Controlling Media with JavaScript 19

A Simple JavaScript Media Controller and Resizer 19
Using DOM Events to Monitor Load Progress 20
Replacing a Media Source Sequentially 22
Using JavaScript to Provide Fallback Content 23
Handling Playback Failure 24
Resizing Movies to Native Size 25

Chapter 3 Adding CSS Styles 27

Adding CSS Styles to Video 27
The Example HTML Code 27

3
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

The Example CSS Styles 28
The Example JavaScript Functions 29
Code Example: Adding Style to Video 29

Adding a Styled Progress Bar 31
Adding A Styled Play/Pause Button 33

Document Revision History 35

4
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Audio and Video HTML 9

Figure 1-1 The iPhone video placeholder 11
Table 1-1 Attributes of the <audio> and <video> elements 9
Listing 1-1 Creating a simple movie player 10
Listing 1-2 Playing Background audio 13
Listing 1-3 Showing a poster 13
Listing 1-4 Specifying multiple audio sources 15
Listing 1-5 Specifying multiple delivery schemes 15
Listing 1-6 Adding simple fallback behavior 16
Listing 1-7 Falling back to the QuickTime plug-in 17
Listing 1-8 Falling back to a plug-in for IE 18

Chapter 2 Controlling Media with JavaScript 19

Listing 2-1 Adding simple JavaScript controls 19
Listing 2-2 Installing DOM event listeners 21
Listing 2-3 Summing a TimeRanges object 22
Listing 2-4 Replacing media sequentially 22
Listing 2-5 Testing for playability using JavaScript 23
Listing 2-6 Testing for failure using JavaScript 24
Listing 2-7 Resizing movies programmatically 25

Chapter 3 Adding CSS Styles 27

Listing 3-1 Adding dynamic 3D rotation, hiding, and opacity to video 30
Listing 3-2 Adding a styled progress bar 32
Listing 3-3 Adding a styled play/pause button 33

5
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

6
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

If you embed audio or video media in your website, you should read this document.

HTML5 is the next major version of HTML, the primary standard that determines how web content interacts
with browsers. HTML5 enables audio and video to play natively in the browser without requiring proprietary
plug-ins. With HTML5, you can add media to a website with just a few lines of code. You can also create
customized media controllers for rich interactivity using standard web technologies.

The HTML5 <audio> and <video> tags make adding media to a website simple. Just use the src attribute
to identify the media source and include a controls attribute so the user can play and pause the media.

Example:

<video src="http://Myserver.com/Path/Mymovie.mp4" controls> </video>

You can set additional attributes, such as autoplay or loop, optionally supply a height and width, or simply
let the browser allocate the space it needs based on the media. In any case, it generally requires only a single
line of code.

Safari on iPhone OS 3.0 and later (including iPad) and Safari on the desktop 3.1 and later (for Mac OS X and
Windows) support the <video> and <audio> elements. Not all browsers support these tags yet, and not all
types of encoded media play back in all browsers. However, there are simple ways to provide fallbacks if the
browser doesn't yet support the <video> or <audio> tag, and simple methods to provide alternate media
sources if the browser supports the tags but can't play a particular media file.

Because the <audio> and <video> elements are standard HTML they integrate automatically with CSS and
JavaScript. You can combine CSS properties, JavaScript functions, and DOM events to create sophisticated
movie controllers customized to your needs and aesthetics, yet entirely based on W3C standards and
independent of third-party plug-in APIs.

Standard JavaScript methods allow you to play, pause, jump to a given point, or specify a new source, and
DOM events notify you when the media loads, plays, pauses, or completes. You can apply CSS properties
and use DOM events to modify <video> elements just as you would any other element—change the opacity,
overlay text, move the element smoothly across the page, add a reflection, rotate the element in 3D, and so
on. This document includes several examples.

7
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Important: This is a preliminary document. Although it has been reviewed for technical accuracy, it is not
final. Apple is supplying this information to help you adopt the technologies and programming interfaces
described herein. This information is subject to change, and software implemented according to this document
should be vetted against final documentation. For information about updates to this and other developer
documentation, you can check the ADC Reference Library Revision List. To receive notification of
documentation updates, you can sign up for a free Apple Developer Connection Online membership and
receive the bi-weekly ADC News e-mail newsletter. See http://developer.apple.com/products/for more details
about ADC membership.)

Organization of This Document

This document shows you how to use the HTML5 <audio> and <video> tags in the following ways:

 ■ “Audio and Video Tag HTML” (page 9)—How to use the <audio> and <video> tags, taking
device-specific considerations into account; how to specify multiple sources; and how to provide fallback
content for browsers that don’t support the <audio> and <video> elements.

 ■ “Controlling Media With JavaScript” (page 19)—How to control media using JavaScript and DOM events.

 ■ “Adding CSS Styles” (page 27)—How to enhance media presentation using CSS.

See Also

 ■ Safari DOM Additions Reference—DOM events added to Safari to support HTML5 audio and video, touch
events and gestures, and CSS transforms and transitions.

 ■ Safari CSS Visual Effects Guide—How to use CSS transitions and effects in Safari.

 ■ Safari CSS Reference—Complete list of CSS properties, rules, and property functions supported in Safari,
with syntax and usage.

 ■ Safari HTML Reference—The HTML elements and attributes supported by different Safari and WebKit
applications.

 ■ WebKit DOM Programming Topics—How to get the most out of using DOM events in Safari.

 ■ SafariWebContent Guide—How to create web content that works well in Safari on the desktop and Safari
on iPhone OS.

 ■ iPhoneHuman InterfaceGuidelines forWebApplications—User interface guidelines for designing webpages
and web applications for Safari on iPhone OS.

8 Organization of This Document
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

In its simplest form, the <audio> and <video> tags require only a src attribute to identify the media,
although you generally want to set the controls attribute as well, so the user can play and pause the media.
The browser allocates space, provides a default controller, loads the media, and plays it when the user clicks
the play button. It’s all automatic.

There are optional attributes as well, such as autoplay, loop, height, and width.

Basic Syntax

The attributes for the <audio> and <video> tags are summarized in Table 1-1 (page 9). The only difference
between the <audio> and <video> tag attributes is the option to specify a height, width, and poster image
for video.

Table 1-1 Attributes of the <audio> and <video> elements

DescriptionValueAttribute

If present, asks the browser to begin loading the
media immediately.

Boolean—any value sets this to
true

autobuffer

If present, asks the browser to play the media
automatically.

Boolean—any value sets this to
true

autoplay

If present, causes the browser to display the default
media controls.

Boolean—any value sets this to
true

controls

The height of the video player.pixelsheight (video only)

If present, causes the media to loop indefinitely.Boolean—any value sets this to
true

loop

If present, shows the poster image until the first
frame of video has downloaded.

url of image fileposter (video only)

The URL of the media.urlsrc

The width of the video player.pixelswidth (video only)

Basic Syntax 9
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Important: Several of the attributes are boolean. Although they can be set to false using JavaScript, any
use of them in the HTML tag sets them to true. Controls="controls", for example, is the same as
controls=true or simply controls. Even controls=false sets controls to true in HTML. To set these
attributes to false in HTML, omit them from the tag.

Listing 1-1 shows an HTML page that autoplays a video with user controls.

Listing 1-1 Creating a simple movie player

<!DOCTYPE html>
<html>
 <head>
 <title>Simple Movie Player</title>
 </head>
 <body>
 <video src="http://Domain.com/path/My.mov"
 controls="controls"
 autoplay="autoplay"
 height=270 width=480
 >
 </video>
 </body>
</html>

Device-Specific Considerations

There are a handful of device-specific considerations you should be aware of when embedding audio and
video using HTML5.

Optimization for Small Screens

Currently, Safari optimizes video presentation for the smaller screen on iPhone or iPod touch by displaying
audio or video using the full screen—video controls appear when the screen is touched, and the video is
scaled to fit the screen in portrait or landscape mode. Neither video nor audio is presented within the webpage.
The height and width attributes affect only the space allotted on the webpage, and the controls attribute
is ignored. This is true only for Safari on devices with small screens. On Mac OS X, Windows, and iPad, Safari
displays audio and video inline, embedded in the webpage.

User Control of Downloads Over Cellular Networks

In Safari on iPhone OS (for all devices, including iPad), where the user may be on a cellular network and be
charged per data unit, autobuffering and autoplay are disabled. No data is loaded until the user initiates it.
This means the JavaScript play() and load() methods are also inactive until the user initiates playback,
unless the play() method is triggered by user action. In other words, a user-initiated Play button works,
but an onLoad play event does not.

This plays the movie:<input type="button" value="Play" onClick="document.myMovie.play()">

10 Device-Specific Considerations
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

This does nothing on iPhone OS: <body onLoad="document.myMovie.play()">

Because the native dimensions of a video are not known until the movie metadata loads, a default height
and width of 150 x 300 is allocated on devices running iPhone OS if the height or width is not specified.
Currently, the default height and width do not change when the movie loads, so you should specify the
preferred height and width for the best user experience on iPhone OS, especially iPad.

iPhone Video Placeholder

On iPhone and iPod touch, a placeholder with a play button is shown until the user initiates playback, as
shown in Figure 1-1. The placeholder is translucent, so the background or any poster image shows through.
The placeholder provides a way for the user to play the media.

Figure 1-1 The iPhone video placeholder

On the desktop and iPad, the first frame of a video displays as soon as it becomes available. There is no
placeholder.

Media Playback Controls

Controls are always supplied during fullscreen playback on iPhone and iPod touch, and the placeholder
allows the user to initiate fullscreen playback. On the desktop or iPad, you must either include the controls
attribute or provide playback controls using JavaScript. It is especially important to provide user controls on
iPad because autoplay is disabled.

Supported Media

Safari on the desktop supports any media the installed version of QuickTime can play. This includes media
encoded using codecs QuickTime does not natively support, provided the codecs are installed on the user’s
computer as QuickTime codec components.

Safari on iPhone OS (including iPad) currently supports uncompressed WAV and AIF audio, MP3 audio, and
AAC-LC or HE-AAC audio. HE-AAC is the preferred format.

Safari on iPhone OS (including iPad) currently supports MPEG-4 video (Baseline profile) and QuickTime movies
encoded with H.264 video (Baseline profile) and one of the supported audio types.

iPad and iPhone 3G and later support H.264 Baseline profile 3.1. Earlier versions of iPhone support H.264
Baseline profile 3.0.

Device-Specific Considerations 11
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Video Overlays

Currently, all devices running iPhone OS are limited to playback of a single video stream at any time. Playing
more than one video—side by side, partly overlapping, or completely overlaid—is not currently supported
on iPhone OS devices. You can change the video source dynamically, however. See “Replacing a Media Source
Sequentially” (page 22) for details.

Working with Attributes

There are several ways you can control media playback directly in HTML by setting attributes appropriately.

Resizing the Video

In Safari on iPhone OS, the native size of the video is unknown until the user initiates a download. If no height
or width is specified, a default size of 150 x 300 pixels is allocated in the webpage. On iPad, the video currently
plays in this default space. On iPhone or iPod touch, the video plays in full-screen mode once the user initiates
it, and the default space is allocated to a placeholder on the webpage.

In Safari on the desktop, the movie metadata is downloaded automatically whenever possible, so the native
video size is used as the default. If only the height or width parameter is specified, the video is scaled up
or down to that height or width while maintaining the native aspect ratio of the movie. If both height and
width are specified, the video is presented at that size. If neither is specified, the video is displayed at its
native size.

Enabling the Controller

In Safari, the default video controller is slightly translucent and is overlaid on the bottom 18 pixels of the
video. The controller is not normally visible when the movie is playing—it appears only when the movie is
paused, when the user touches the video, or when the mouse pointer hovers over the playing movie. In cases
where it is crucial that the bottom of the video never be obscured, omit the controls attribute. (You cannot
set the attribute to false explicitly in HTML—you set it to false implicitly by leaving the attribute out.)

If you do not set the controls attribute, you must either set the autoplay attribute, create a controller
using JavaScript, or play the movie programmatically from JavaScript. Otherwise the user has no way to play
the movie.

Warning: To prevent unsolicited downloads over cellular networks at the user’s expense, embedded
media cannot be played automatically in Safari on iPhone OS—the user always initiates playback. A
controller is automatically supplied on iPhone or iPod touch once playback in initiated, but for iPad you
must either set the controls attribute or provide a controller using JavaScript.

12 Working with Attributes
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Autobuffering

If you set the autobuffer attribute, it tells the browser you want the specified media file to start buffering
immediately, making it more likely that it will begin promptly and play through smoothly when the user
plays it.

If you have multiple movies on the page, you should leave the autobuffer attribute unset, to prevent all
the movies from downloading at once.

Note: The autobuffer attribute is not supported in Safari 4.0.4. Safari on the desktop always autobuffers.
Safari on iPhone OS never autobuffers.

Playing Background Music

To play an audio file in the background, set the autoplay attribute but not the controls attribute, as
shown in Listing 1-2. To play the file continuously, set the loop attribute.

Listing 1-2 Playing Background audio

<!DOCTYPE html>
<html>
 <head>
 <title>Background Audio Player</title>
 </head>
 <body>
 <audio src="http://Domain.com/path/My.mp3"
 autoplay
 loop
 <!-- values are optional for boolean attributes -->
 >
 </audio>
<p>If the sound is turned on, you should hear music playing...</p>
 </body>
</html>

Note: On iPhone or iPod touch, the audio is played in full-screen mode. On iPad, the audio does not play
unless you set the controls attribute or provide a JavaScript control.

Showing a Poster

Setting a poster image normally has a transitory effect—the poster image is shown only until the first frame
of the video is available, which is typically a second or two. On iPhone and iPod touch, however, the first
frame is not shown until the user initiates playback, and a poster image is recommended, as shown in Listing
1-3.

Listing 1-3 Showing a poster

<!DOCTYPE html>
<html>

Working with Attributes 13
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

 <head>
 <title>Movie Player with Poster</title>
 </head>
 <body>
 <video src="http://Domain.com/path/My.mov"
 controls="controls"
 autoplay="autoplay"
 height=340 width=640
 poster="http://Domain.com/path/Poster.jpg"
 >
 </video>
 </body>
</html>

Providing Multiple Sources

Not all types of audio and video can play on all devices and browsers. Fortunately, the <audio> and <video>
elements allow you to list as many <source> elements as you like. The browser iterates through them until
it finds one it can play or runs out of sources. Instead of using the src attribute in the media element itself,
follow the <audio> or <video> tag with one or more <source> elements, prior to the closing tag.

<audio controls=controls>
<source src="mySong.aac">
<source src="mySong.oga">
</audio>

The <source> element can have a type attribute, specifying the MIME type, to help the browser decide
whether or not it can play the media without having to load the file.

<audio controls=controls>
<source src="mySong.aac" type="audio/mp4">
<source src="mySong.oga" type="audio/ogg">
</audio>

The type attribute can take an additional codecs parameter, to specify exactly which versions of which
codecs are needed to play this particular media.

<audio controls=controls>
<source src="mySongComplex.aac" type="audio/mp4; codecs=mp4a.40.5">
<source src="mySongSimple.aac" type="audio/mp4; codecs=mp4a.40.2">
</audio>

Specifying Multiple Media Formats

List the alternate media sources in the order of most desirable to least desirable. The browser chooses the
first listed source that it thinks it can play. For example, if you have an AAC audio file, an Ogg Vorbis audio
file, and a WAVE audio file, listed in that order, Safari plays the AAC file. A browser that cannot play AAC but
can play Ogg plays the Ogg file. A browser that can play neither Ogg nor AAC might still be able to play the
WAVE.

Listing 1-4 a simple example of using multiple sources for an audio file:

14 Providing Multiple Sources
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Listing 1-4 Specifying multiple audio sources

<!DOCTYPE html>
<html>
 <head>
 <title>Multi-Source Audio Player</title>
 </head>
 <body>
 <audio
 controls="controls"
 autoplay="autoplay"
 >
 <source src="http://Domain.com/path/MyAudio.m4a">
 <source src="http://Domain.com/path/MyAudio.oga">
 <source src="http://Domain.com/path/MyAudio.wav">
 </audio>
 </body>
</html>

Notice that you don’t have to know which browsers support what formats, and then sniff the user agent
string for the browser name to decide what to do. Just list your available formats, preferred format first,
second choice next, and so on. The browser plays the first one it can.

Currently, most common browsers support low-complexity AAC and MP3 audio and basic profile MPEG-4.
Most browsers that do not support these formats support Theora video and Vorbis audio using the Ogg file
format. Generally speaking, if you provide media in MPEG-4 (basic profile) and Ogg formats, your media can
play in all common browsers that support HTML5 media.

Note: Safari on iPhone OS supports low-complexity AAC audio, MP3 audio, AIF audio, WAVE audio, and
baseline profile MPEG-4 video. Safari on the desktop (Mac OS X and Windows) supports all media supported
by the installed version of QuickTime, including any installed third-party codecs.

Specifying Multiple Delivery Schemes

You can also use multiple source files to specify different delivery schemes. Let’s say you have a large real-time
video streaming service that uses RTSP streaming, and you want to add support for Safari on iPhone OS,
including iPad, using HTTP Live Streaming, along with a progressive download for browsers that can’t handle
either kind of streaming. As shown in Listing 1-5, with HTML5 video it’s quite straightforward.

Listing 1-5 Specifying multiple delivery schemes

<!DOCTYPE html>
<html>
 <head>
 <title>Multi-Scheme Video Player</title>
 </head>
 <body>
 <video controls autoplay >
 <source src="http://HttpLiveStream.4gu">
 <source src="rtsp://LegacyStream.3gp">
 <source src="http://ProgressiveDownload.m4v">
 </video>
 </body>
</html>

Providing Multiple Sources 15
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Again, the browser picks the first source it can handle. Safari on the desktop plays the RTSP stream, while
Safari on iPhone OS plays the HTTP Live stream. Browsers that support neither 4gu playlists nor RTSP URLs
play the progressive download version.

Multiple Data Rate Sources

HTML5 does not support selection from multiple sources based on data rate. If you supply multiple sources,
the browser chooses the first it can play based on scheme, file format, profile, and codecs. Bandwidth is not
tested. To provide multiple bandwidths, you must provide a src attribute that specifies a source capable of
supporting data rate selection itself.

For example, if one of your sources is an HTTP Live Stream, the playlist file can specify multiple streams, and
Safari selects the best stream for the current bandwidth dynamically as network bandwidth changes.

Similarly, if the source is a QuickTime reference movie, it can include alternate sources for progressive
download, and Safari chooses the best reference movie for the bandwidth when the video is first requested
(though it does not dynamically switch between sources if available bandwidth subsequently changes).

Specifying Fallback Behavior

It’s easy to specify fallback behavior for browsers that don’t support the <audio> or <video> elements—just
put the fallback content between the opening and closing media tags, after any <source> elements. See
Listing 1-6.

Listing 1-6 Adding simple fallback behavior

<!DOCTYPE html>
<html>
 <head>
 <title>Simple Movie Player with Trivial Fallback Behavior</title>
 </head>
 <body>
 <!-- opening tag -->
 <video src="http://Domain.com/path/My.mov"
 controls="controls"
 >

 <!-- fallback content -->
 Your browser does not support the video element.

 <!-- closing tag -->
 </video>
 </body>
</html>

Browsers that don’t support the <audio> or <video> tags simply ignore them. Browsers that support these
elements ignore all content between the opening and closing tags (except <source> tags).

16 Specifying Fallback Behavior
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Note: Browsers that understand the <audio> and <video> tags do not display fallback content, even if
they cannot play any of the specified media. To provide fallback content in case no specified media is playable,
see “Using JavaScript to Provide Fallback Content” (page 23).

Fall Back to the QuickTime Plug-in

There is a simple way to fall back to the QuickTime plug-in that works for nearly all browsers—download the
prebuilt JavaScript file provided by Apple, AC_QuickTime.js, from http://developer.apple.com/internet/li-
censejs.html and include it in your webpage by inserting the following line of code into your HTML head:

<script src="AC_QuickTime.js" type="text/javascript">
</script>

Once you’ve included the script, add a call to QT_WriteOBJECT() between the opening and closing tags
of the <audio> or <video> element, passing in the URL of the movie, its height and width, and the version
of the activeX control for Internet Explorer (just leave this parameter blank to use the current version). See
Listing 1-7 for an example.

Listing 1-7 Falling back to the QuickTime plug-in

<!DOCTYPE html>
<html>
 <head>
 <title>Simple Movie Player with QuickTime Fallback</title>
 <script src="AC_QuickTime.js" type="text/javascript">
 </script>
 </head>
 <body>
 <video controls="controls">
 <source src="myMovie.mov" type="video/quicktime">
 <source src="myMovie.3gp" type="video/3gpp">
 <!-- fallback -->
 <script type="text/javascript">
 QT_WriteOBJECT('My.mov' , '320', '240', '');
 </script>
 </video>
 </body>
</html>

You can pass more than twenty additional parameters to the QuickTime plug-in. For more about how to
work with the QuickTime plug-in and the AC_QuickTime.js script, see HTML Scripting Guide for QuickTime.

Fall Back to Any Plug-In

Since most browsers now support the <audio> and <video> elements, you can simplify the process of
coding for plug-ins by including only the version of the <object> tag that works with Internet Explorer as
your fallback for HTML5 media.

The example shListing 1-8 uses HTTP Live Streaming for browsers that support it, MPEG-4 by progressive
download for most others, Ogg Vorbis for browsers that support only open-source media, and falls back to
a plug-in for versions of Internet Explorer that don’t support HTML5.

Specifying Fallback Behavior 17
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

http://developer.apple.com/internet/licensejs.html
http://developer.apple.com/internet/licensejs.html

Listing 1-8 Falling back to a plug-in for IE

<!DOCTYPE html>
<html>
 <head>
 <title>Simple Movie Player with Plug-In Fallback</title>
 </head>
 <body>
 <video controls="controls">
 <source src="HttpLiveStream.m3u8 type="vnd.apple.mpegURL">
 <source src="ProgressiveDowload.mp4" type="video/mp4">
 <source src="OggVorbis.ogv" type="vido/ogg">
<!-- fallback -->
 <OBJECT CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab"
 HEIGHT="320"
 WIDTH="240"
 >
 <PARAM NAME="src" VALUE="ProgressiveDownload.mp4">
 </object>
 </video>
 </body>
</html>

TListing 1-8 uses the QuickTime plug-in. To use a different plug-in, change the CLASSID and CODEBASE
parameters to those of your preferred plug-in and provide the PARAM tags the plug-in requires.

18 Specifying Fallback Behavior
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio and Video HTML

Because the <audio> and <video> elements are part of the HTML5 standard, there are standard JavaScript
methods, properties, and DOM events associated with them.

There are methods for loading, playing, pausing, and jumping to a time, for example. There are also properties
you can set programmatically, such as the src URL and the height and width of a video, as well as read-only
properties such as the video’s native height. Finally, there are DOM events you can listen for, such as load
progress, media playing, media paused, and media done playing.

This chapter shows you how to do the following:

 ■ Use JavaScript to create a simple controller.

 ■ Change the size of a movie dynamically.

 ■ Display a progress indicator while the media is loading.

 ■ Replace one movie with another when the first finishes.

 ■ Provide fallback content using JavaScript if none of the media sources are playable.

For a complete description of all the methods, properties, and DOM events associated with HTML5 media,
see Safari DOM Additions Reference. All the methods, properties, and DOM events associated with
HTMLMediaElement, HTMLAudioElement, and HTMLVideoElement are exposed to JavaScript.

A Simple JavaScript Media Controller and Resizer

Any of the standard ways to address an HTML element in JavaScript can be used with <audio> or <video>
elements. You can assign the element a name or an id, use the tag name, or use the element’s place in the
DOM hierarchy. The example in Listing 2-1 uses the tag name. The example creates a simple play/pause
movie control in JavaScript, with additional controls to toggle the video size between normal and doubled.
It is intended to illustrate, in the simplest possible way, addressing a media element, reading and setting
properties, and calling methods.

Listing 2-1 Adding simple JavaScript controls

<!DOCTYPE html>
<html>
 <head>
 <title>Simple JavaScript Controller</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 function playPause() {
 var myVideo = document.getElementsByTagName('video')[0];
 if (myVideo.paused)
 myVideo.play();

A Simple JavaScript Media Controller and Resizer 19
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

 else
 myVideo.pause();
 }

 function makeBig() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.height = (myVideo.videoHeight * 2) ;
 }
 function makeNormal() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.height = (myVideo.videoHeight) ;
 }

 </script>
 </head>

 <body>
 <div class="video-player" align="center">
 <video src="myMovie.m4v" poster="poster.jpg" ></video>

 Play/Pause

 2x Size |
 1x Size

 </div>
 </body>
</html>

The previous example gets two read-only properties: paused and videoHeight (the native height of the
video). It calls two methods: play() and pause(). And it sets one read/write property: height. Recall that
setting only the height or width causes the video to scale up or down while retaining its native aspect ratio.

Note: Safari for iPhone OS version 3.2 does not support dynamically resizing video on the iPad.

Using DOM Events to Monitor Load Progress

One of the common tasks for a movie controller is to display a progress indicator showing how much of the
movie has loaded so far. One way to do this is to constantly poll the media element’s buffered property,
to see how much of the movie has buffered, but this is a waste of time and energy. It wastes processor time
and often battery charge, and it slows the loading process.

A much better approach is to create an event listener that is notified when the browser has something to
report. Once the movie has begun to load, you can listen for progress events. You can read the buffered
value when the browser reports progress and display it as a percentage of the movie’s duration.

Another useful DOM event is canplaythrough, a logical point to begin playing programmatically.

Listing 2-2 loads a large movie from a remote server so you can see the progress changing. It installs an event
listener for progress events and another for the canplaythrough event. It indicates the percentage loaded
by changing the inner HTML of a paragraph element.

You can copy and paste the example into a text editor and save it as HTML to see it in action.

20 Using DOM Events to Monitor Load Progress
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

Listing 2-2 Installing DOM event listeners

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Progress Monitor</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 function getPercentProg() {
 var myVideo = document.getElementsByTagName('video')[0];
 var soFar = parseInt(((myVideo.buffered.end(0) / myVideo.duration) *
100));
 document.getElementById("loadStatus").innerHTML = soFar + '%';
 }

 function myAutoPlay() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.play();
 }

 function addMyListeners(){
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.addEventListener('progress',getPercentProg,false);
 myVideo.addEventListener('canplaythrough',myAutoPlay,false);
 }

 </script>
 </head>

 <body onLoad="addMyListeners()">
 <div align=center>
 <video controls
 src="http://homepage.mac.com/qt4web/sunrisemeditations/myMovie.m4v" >
 </video>
 <p ID="loadStatus">
 MOVIE LOADING...
 </p>
 </div>
 </body>
</html>

Note: On the iPad, Safari does not begin downloading until the user clicks the poster or placeholder. Currently,
downloads begun in this manner do not emit progress events.

The buffered property is a TimeRanges object, essentially an array of start and stop times, not a single
value. Consider what happens if the person watching the media uses the time scrubber to jump forward to
a point in the movie that hasn’t loaded yet—the movie stops loading and jumps forward to the new point
in time, then starts buffering again from there. So the buffered property can contain an array of discontinuous
ranges. The example simply seeks to the end of the array and reads the last value, so it actually shows the
percentage into the movie duration for which there is data. To determine precisely what percentage of a
movie has loaded, taking possible discontinuities into account, iterate through the array, summing the
seekable ranges, as illustrated in Listing 2-3

Using DOM Events to Monitor Load Progress 21
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

Listing 2-3 Summing a TimeRanges object

 var myBuffered = myVideo.buffered;
 var total = 0;
 for (ndx = 0; ndx < myBuffered.length; ndx++)
 total += (seekable.end(ndx) - seekable.start(ndx));

The buffered, played, and seekable properties are all TimeRanges objects.

Replacing a Media Source Sequentially

Another common task for a website programmer is to create a playlist of audio or video—to put together a
radio set or to follow an advertisement with a program, for example. To do this, you can provide a function
that listens for the ended event. The ended event is triggered only when the media ends (plays to its complete
duration), not if it is paused.

When your listener function is triggered, it should change the media’s src property, then call the load
method to load the new media and the play method to play it, as shown in Listing 2-4.

Listing 2-4 Replacing media sequentially

<!DOCTYPE html>
<html>
 <head>
 <title>Sequential Movies</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 // listener function changes src
 function myNewSrc() {
 var myVideo = document.getElementsByTagName('video')[0];

myVideo.src="http://homepage.mac.com/qt4web/sunrisemeditations/myMovie.m4v";
 myVideo.load();
 myVideo.play();
 }
 // function adds listener function to ended event -->
 function myAddListener(){
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.addEventListener('ended',myNewSrc,false);
 }
 </script>
 </head>
 <body onload="myAddListener()">
 <video controls
 src="http://homepage.mac.com/qt4web/sunrisemeditations/A-chord.m4v"
 >
 </video>
 </body>
</html>

The previous example works on both Safari for the desktop and Safari for iPhone OS, as the load() and
play() methods are enabled even on cellular networks once the user has started playing the first media
element.

22 Replacing a Media Source Sequentially
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

Using JavaScript to Provide Fallback Content

It’s easy to provide fallback content for browsers that don’t support the <audio> or <video> tag using HTML
(see “Fallback” (page 16)). But if the browser understands the tag and can’t play any of the media you’ve
specified, you need JavaScript to detect this and provide fallback content.

To do this, you need to iterate through your source types using the canPlayType method.

Important: The HTML5 specification has changed. Browsers conforming to the earlier version of the
specification, including Safari 4.0.4 and earlier, return "no” if they cannot play the media type. Browsers
conforming to the newer version return an empty string (“”)instead. You need to check for either response,
or else check for a positive response rather than a negative one.

If the method returns “no” or the empty string (“”) for all the source types, the browser knows it can’t play
any of the media, and you need to supply fallback content. If the method returns “maybe” or “probably” for
any of the types, it will attempt to play the media and no fallback should be needed.

The following example creates an array of types, one for each source, and iterates through them to see if the
browser thinks it can play any of them. If it exhausts the array without a positive response, none of the media
types are supported, and it replaces the video element using innerHTML. Listing 2-5 displays a text message
as fallback content. You could fall back to a plug-in or redirect to another page instead.

Listing 2-5 Testing for playability using JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Fallback</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 function checkPlaylist() {
 var playAny = 0;
 myTypes = new Array ("video/mp4","video/ogg","video/divx");
 var nonePlayable = "Your browser cannot play these movie types."
 var myVideo = document.getElementsByTagName('video')[0];
 for (x = 0; x < myTypes.length; x++)
 { var canPlay = myVideo.canPlayType(myTypes[x]);
 if ((canPlay=="maybe") || (canPlay=="probably"))
 playAny = 1;
 }
 if (playAny==0)
 document.getElementById("video-player").innerHTML = nonePlayable;
 }

 </script>
 </head>
 <body onload="checkPlaylist()" >
 <div id="video-player" align=center>
 <video controls height="200" width="400">
 <source src="myMovie.m4v" type="video/mp4">
 <source src="myMovie.oga" type="video/ogg">
 <source src="myMovie.dvx" type="video/divx">

Using JavaScript to Provide Fallback Content 23
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

 </video>
 </div>
 </body>
</html>

Handling Playback Failure

Even if a source type is playable, that’s no guarantee that the source file is playable—the file may be missing,
corrupted, misspelled, or the type attribute supplied may be incorrect. If Safari 4.0.4 or earlier attempts to
play a source and cannot, it emits an error event. However, it still continues to iterate through the playable
sources, so the error event may indicate only a momentary setback, not a complete failure. It’s important
to check which source has failed to play.

Important: If you install an event listener for the error event, it should not trigger fallback behavior unless
the currentSrc property contains the last playable source filename.

Changes in the HTML5 specification now require the media element to emit an error only if the last playable
source fails, so this test should not be necessary in the future, except for compatibility with current browsers.

TThe example in Listing 2-5 iterates through the source types to see if any are playable. It saves the filename
of the last playable source. If there are no playable types, it triggers a fallback. If there are playable types, it
installs an error event listener. The event listener checks to see if the current source contains the last playable
filename before triggering a failure fallback. (The currentSrc property includes the full path, so test for
inclusion, not equality.)

Notice that when adding a listener for the error event you need to set the capture property to true,
whereas for most events you set it to false.

Listing 2-6 Testing for failure using JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Fallback</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 var lastPlayable;
 myTypes = new Array ("video/mp4","video/ogg","video/divx");
 mySrc = new Array ("myMovie.mp4","myMovie.oga","myMovie.dvx");

 function errorFallback() {
 var errorLast = "An error occurred playing " ;
 var myVideo = document.getElementsByTagName('video')[0];
 if (myVideo.currentSrc.match(lastPlayable))
 { errorLast = errorLast + lastPlayable ;
 document.getElementById("video-player").innerHTML = errorLast;
 }
 }

 function checkPlaylist() {
 var noPlayableTypes = "Your browser cannot play these movie types";

24 Handling Playback Failure
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

 var myVideo = document.getElementsByTagName('video')[0];
 var playAny = 0;
 for (x = 0; x < myTypes.length; x++)
 {
 var canPlay = myVideo.canPlayType(myTypes[x]);
 if ((canPlay=="maybe") || (canPlay=="probably"))
 { playAny = 1;
 lastPlayable=mySrc[x];
 }
 }
 if (playAny==0)
 {
 document.getElementById("video-player").innerHTML = noPlayableTypes;
 } else {
 myVideo.addEventListener('error',errorFallback,true);
 }
 }

 </script>
 </head>
 <body onload="checkPlaylist()" >
 <div id="video-player" align=center>
 <video controls >
 <source src="myMovie.mp4" type="video/mp4">
 <source src="myMovie.oga" type="video/ogg">
 <source src="myMovie.dvx" type="video/divx
 </video>
 </div>
 </body>
</html>

Resizing Movies to Native Size

If you know the dimensions of your movie in advance, you should specify them. Specifying the dimensions
is especially important for delivering the best user experience on iPad. But you may not know the dimensions
when writing the webpage. For example, your source movies may not be the same size, or sequential movies
may have different dimensions. If you install a listener function for the loadedmetadatata event, you can
resize the video player to the native movie size dynamically using JavaScript, as soon as the native size is
known. If sequential movies may be different sizes, you can do this any time you change the source. Listing
2-7 shows how.

Listing 2-7 Resizing movies programmatically

<!DOCTYPE html>
<html>
 <head>
 <title>Resizing Movies</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <script type="text/javascript">

 // set height and width to native values
 function naturalSize() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.height=myVideo.videoHeight;

Resizing Movies to Native Size 25
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

 myVideo.width=myVideo.videoWidth;
 }
 // install listener function on metadata load
 function myAddListener(){
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.addEventListener('loadedmetadata',naturalSize,false);
 }
 </script>
 </head>
 <body onload="myAddListener()" >

 <video src="http://homepage.mac.com/qt4web/myMovie.m4v"
 controls >
 </video>

 </body>
</html>

26 Resizing Movies to Native Size
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Controlling Media with JavaScript

Because the <video> element is standard HTML, you can modify its appearance and behavior using CSS
styles. You can modify the opacity, add a reflection, rotate the video in three dimensions, and much more.
You can also use CSS styles to enhance elements that interact with audio or video, such as custom controllers
and progress bars.

Note: You may want to create your own stylish movie controller—including a progress bar and a time
scrubber—that slides smoothly out of the way when not in use. To see an example of just that, download
the ConcertDemo sample code from
http://developer.apple.com/safari/library/samplecode/HTML5VideoPlayer/index.html.
The sample code contains complete HTML, JavaScript, CSS, and video.

This chapter illustrates some methods of adding CSS styles to video, as well as how to add a styled progress
bar and play/pause button. For more information on using CSS styles in Safari, see Safari CSS Visual Effects
Guide, Safari Graphics, Media, and Visual Effects Coding How-To's, and Safari CSS Reference.

Adding CSS Styles to Video

The example in Listing 3-1 (page 30) shows how to rotate video in three dimensions, hide and reveal content
underlying the video, and change the opacity to composite video over a background. All the changes can
be applied dynamically while the video is playing. The example uses a combination of HTML, CSS, and
JavaScript to achieve these effects. Each part is explained individually in the following sections.

The Example HTML Code

In the body of the document, the example first defines content to go under the video:

 <div id="back">
 <p style="position:relative;top:50%;" align="center">
 This is hidden behind the video
 </p>
 </div>

The content is a div element just a little smaller than the video with text centered horizontally and vertically.

The example then adds the video, inside a div element named “overlay”:

 <div id="overlay" >
 <video class="video-player" id="player"
 height="348" width="680" controls
 src="myMov.mp4"
 >
 </video>

Adding CSS Styles to Video 27
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

Because the overlay is declared after the background, CSS naturally puts it in the layer above the background
if they overlap later.

Finally, the example adds buttons to flip the video, reveal the hidden content, and fade the video in or out
by changing its opacity, along with a button that displays the current opacity:

 <input type=button value="flip backward" onclick="flipVideo()"
 id="flipflop">
 <input type=button value="show back" onclick="toggleBack()"
 id="backer">
 <input type=button value="fade out" onclick="fadeTo(0)">
 <input type=button value="fade mid" onclick="fadeTo(.5)">
 <input type=button value="fade in" onclick="fadeTo(1)">
 <input type=button value="opacity: 100%" id="showfade">
 </div>

The “overlay” div element is then closed—it includes the buttons and the video, so the buttons stay with
the video when they are repositioned.

The Example CSS Styles

In the style section of the head, the example sets the background content to the size of the video, gives it
a background color, and makes it hidden:

 #back{
 height:330px;
 width:670px;
 background-color:gray;
 visibility:hidden; }

The example then positions the div containing the video and buttons at the top of the page (with a 5-pixel
pad for aesthetics), covering the background content:

 #overlay{
 position:absolute;
 top:5px; }

Finally, the example adds styles to the video itself. First it adds a background color. Then it specifies that any
change in the webkit-transform or opacity properties should be animated by specifying them in
webkit-transition-property. The animation timing is set to start gradually (ease in) and take one second
to complete:

 #player {
 background-color:black;
 -webkit-transition-property: -webkit-transform, opacity;
 -webkit-transition-timing-function: ease-in;
 -webkit-transition-duration: 1s; }

The CSS style declarations begin with # because they are each applied to a single element, based on its
unique id attribute. Style declarations that begin with a dot (for example .back) are applied based on the
class attribute, which multiple elements may share.

28 Adding CSS Styles to Video
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

The Example JavaScript Functions

The JavaScript section of the head defines three functions:flipVideo(),toggleBack(), andfadetTo(val).

The flipVideo() function rotates the video in 3D, flipping it 180° around the vertical axis by setting the
style.webkitTransform property to rotateY(0deg), or rotateY(180deg). Because the function is a
toggle, it checks the button text to see what it should do—flip forward or flip backward—then changes the
text of the button to show what it does next time.

 function flipVideo() {
 var myVideo = document.getElementById('player');
 var myButton = document.getElementById('flipflop');
 if (myButton.value=="flip backward"){
 myVideo.style.webkitTransform = "rotateY(180deg)";
 myButton.value="flip forward";
 }else{
 myVideo.style.webkitTransform = "rotateY(0deg)";
 myButton.value="flip backward";
 } }

The toggleBack() function also rotates the video in 3D, this time 90° around the vertical axis, so it is edge-on
to the viewer and therefore invisible. It also changes the style.visibility property of the background
content from hidden to visible. Because the function is a toggle, it then changes the text of the button
from “show back” to “hide back”. When called again, it resets the Y rotation to 0° and sets the background
content back to hidden:

 function toggleBack() {
 if (myButton.value=="show back"){
 myVideo.style.webkitTransform = "rotateY(90deg)";
 myButton.value="hide back";
 backContent.style.visibility="visible";
 }else{
 myVideo.style.webkitTransform = "rotateY(0deg)";
 myButton.value="show back";
 backContent.style.visibility="hidden";
 } }

The fadeTo(opacityVal) function takes one parameter: the desired opacity value. It sets the video’s
style.opacity property to that value and changes the text in a button to display the current opacity as a
percent.:

 function fadeTo(opacityVal) {
 document.getElementById('player').style.opacity=opacityVal;
 var showPercent= ("opacity "+ (opacityVal * 100) + "%");
 document.getElementById('showfade').value= showPercent;
 }

Notice that JavaScript is not used to animate the effects on the video. JavaScript just changes the style
property values. The animation parameters are specified in CSS and the effects are rendered automatically.

Code Example: Adding Style to Video

Listing 3-1 is a complete working example, incorporating all the material in the previous three section,
illustrating how to combine HTML, CSS, and JavaScript to add style to video dynamically.

Adding CSS Styles to Video 29
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

Listing 3-1 Adding dynamic 3D rotation, hiding, and opacity to video

<!DOCTYPE html>
<html>
 <head>
 <title>Flipping and Fading Video</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">

 <style>

 #back{
 height:330px;
 width:670px;
 background-color:gray;
 visibility:hidden;
 }

 #overlay{
 position:absolute;
 top:5px;
 }

 #player {
 background-color:black;
 -webkit-transform:rotateY(0deg);
 -webkit-transition-property: -webkit-transform, opacity;
 -webkit-transition-duration: 1s;
 -webkit-transition-timing-function: ease-in;
 }

 </style>

 <script type="text/javascript">

 function flipVideo() {
 var myVideo = document.getElementById('player');
 var myButton = document.getElementById('flipflop');
 if (myButton.value=="flip backward"){
 myVideo.style.webkitTransform = "rotateY(180deg)";
 myButton.value="flip forward";
 }else{
 myVideo.style.webkitTransform = "rotateY(0deg)";
 myButton.value="flip backward";
 }
 }

 function toggleBack() {
 var backContent=document.getElementById('back');
 var myVideo = document.getElementById('player');
 var myButton = document.getElementById('backer');
 if (myButton.value=="show back"){
 myVideo.style.webkitTransform = "rotateY(90deg)";
 myButton.value="hide back";
 backContent.style.visibility="visible";
 }else{
 myVideo.style.webkitTransform = "rotateY(0deg)";
 myButton.value="show back";
 backContent.style.visibility="hidden";

30 Adding CSS Styles to Video
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

 }
 }

 function fadeTo(opacityVal) {
 document.getElementById('player').style.opacity=opacityVal;
 var showPercent= ("opacity "+ (opacityVal * 100) + "%");
 document.getElementById('showfade').value= showPercent;
 }

 </script>

 </head>
 <body style="background-color:#C0C0C0;">
 <div id="back">
 <p style="position:relative;top:50%;" align="center">
 This is hidden behind the video
 </p>
 </div>
 <div id="overlay">
 <video id="player"
 height="348" width="680" controls
 src="myMov.m4v"
 >
 </video>

 <input type=button value="flip backward" onclick="flipVideo()"
 id="flipflop">
 <input type=button value="show back" onclick="toggleBack()"
 id="backer">
 <input type=button value="fade out" onclick="fadeTo(0)">
 <input type=button value="fade mid" onclick="fadeTo(.5)">
 <input type=button value="fade in" onclick="fadeTo(1)">
 <input type=button value="opacity: 100%" id="showfade">
 </div>
 </body>
</html>

Adding a Styled Progress Bar

As shown in “Using DOM Events to Monitor Load Progress” (page 20), it’s fairly easy to monitor the movie
loading process and show what percentage has downloaded using JavaScript alone. By integrating CSS styles,
you can create a real progress bar.

The following example, Listing 3-2, creates a div element named video-playerwhose height is the height
of the video plus the progress bar. It puts the video element inside the video-player, then adds a
background bar by creating a nested div element and styling it with a size, color, and shadow. Inside the
bar it adds a partly transparent progress indicator, positioning it on top of the background bar but setting
its width to 0%. Because the bar and progress indicator are inside the video-player element, they inherit
its width. That way when the progress indicator’s width goes from 0 to 100%, it grows to the width of the
video. The progress indicator is translucent, so the background bar shows through.

A listener function on the progress event updates the width property of the progress indicator. An installer
function installs the listener and is called on page load.

Adding a Styled Progress Bar 31
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

Listing 3-2 Adding a styled progress bar

<!DOCTYPE html>
<html>
 <head>
 <title>Styled Progress Bar</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">

 <style>
 #video-player {
 width: 680px;
 height: 366px;
 background-color: black;
 }
 #background-bar {
 height: 18px;
 width: 680px;
 background-color: #D4D4D4;
 -webkit-box-shadow: 0px 2px 4px rgba(0,0,0,0.8);
 }
 #loader {
 height: 18px;
 width: 1%;
 opacity:.25;
 background-color: blue;
 }
 </style>

 <script type="text/javascript">
 function showLoad() {
 var myVideo = document.getElementsByTagName('video')[0];
 var soFar = parseInt(((myVideo.buffered.end(0) / myVideo.duration) * 100));
 myLoader=document.getElementById("loader");
 myLoader.style.width=(soFar + '%');
 }

 function myAddListener() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.addEventListener('progress',showLoad,false);
 }

 function playVideo() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.play();
 }

 </script>

 </head>
 <body onload="myAddListener()" >
 <div id="video-player">
 <video height="348" width="680" autoplay
 src="http://homepage.mac.com/qt4web/myMovie.m4v"
 >
 </video>

 <div id="background-bar">
 <div id="loader">

32 Adding a Styled Progress Bar
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

 </div>
 </div>
 <div>
 <p> </p>
 <input type="button" value="play" onclick="playVideo()">
 </div>
 </body>
</html>

Note that the previous example includes a simple JavaScript play button. If the controls attribute is omitted
and no JavaScript controls are provided, a user on the iPad has no way to play the movie.

Adding A Styled Play/Pause Button

The final example, Listing 3-3, creates a video-player element that surrounds the video with a black background
and puts a play/pause button under the video, centered horizontally. The play/pause button is styled with
24-point white text on a dark grey background, at 50% opacity.

When the user presses the play/pause button, it plays or pauses the movie. It also toggles the button’s value
between “>” and “||”. The opacity is set to 50% when the video is paused and 20% when it’s playing, so the
button is less distracting from the playing video.

Finally, a call to reset the play/pause button is added as an event listener to the video element’s ended event.

Listing 3-3 Adding a styled play/pause button

<!DOCTYPE html>
<html>
 <head>
 <title>Styled Play/Pause Button</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">

 <style>
 #video-player {
 width:50%;
 margin-left:25%;
 margin-right:25%;
 background-color: black;
 }

 #videobutton {
 line-height: 24pt;
 border: 3px solid white;
 -webkit-border-radius: 16px;
 opacity: 0.5;
 font-size: 24pt;
 color: white;
 background-color: #404040;
 cursor: pointer;
 text-align: center;
 z-index: 1;
 opacity:.5;
 }
 </style>

Adding A Styled Play/Pause Button 33
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

 <script type="text/javascript">

 function pauseButton() {
 var myButton = document.getElementById("videobutton");
 myButton.value = "||";
 myButton.style.opacity=".2";
 }

 function playButton() {
 var myButton = document.getElementById("videobutton");
 myButton.value = ">";
 myButton.style.opacity=".5";
 }

 function playPause() {
 var myVideo = document.getElementsByTagName('video')[0];
 if (myVideo.paused) {
 myVideo.play();
 pauseButton();
 }else{
 myVideo.pause();
 playButton();
 }
 }

 function myAddListener() {
 var myVideo = document.getElementsByTagName('video')[0];
 myVideo.addEventListener('ended',playButton,false);
 }

</script>
</head>

<body onload="myAddListener()">
 <div id="video-player">
 <video src="http://homepage.mac.com/qt4web/myMovie.m4v"
 height="270" width="480">
 </video>
 <P align=center>
 <input id="videobutton" type=button onclick="playPause()" value=">">
 </p>
 </div>
 </body>
</html>

34 Adding A Styled Play/Pause Button
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Adding CSS Styles

This table describes the changes to Safari HTML5 Audio and Video Guide.

NotesDate

Corrected typos in sample code and text. Minor changes throughout.2010-03-18

New document showing how to use the HTML5 <audio> and <video> elements
using HTML, JavaScript methods, DOM events, and CSS styles.

2010-03-09

35
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

36
2010-03-18 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Safari HTML5 Audio and Video Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Audio and Video HTML
	Basic Syntax
	Device-Specific Considerations
	Optimization for Small Screens
	User Control of Downloads Over Cellular Networks
	iPhone Video Placeholder
	Media Playback Controls
	Supported Media
	Video Overlays

	Working with Attributes
	Resizing the Video
	Enabling the Controller
	Autobuffering
	Playing Background Music
	Showing a Poster

	Providing Multiple Sources
	Specifying Multiple Media Formats
	Specifying Multiple Delivery Schemes
	Multiple Data Rate Sources

	Specifying Fallback Behavior
	Fall Back to the QuickTime Plug-in
	Fall Back to Any Plug-In

	Controlling Media with JavaScript
	A Simple JavaScript Media Controller and Resizer
	Using DOM Events to Monitor Load Progress
	Replacing a Media Source Sequentially
	Using JavaScript to Provide Fallback Content
	Handling Playback Failure
	Resizing Movies to Native Size

	Adding CSS Styles
	Adding CSS Styles to Video
	The Example HTML Code
	The Example CSS Styles
	The Example JavaScript Functions
	Code Example: Adding Style to Video

	Adding a Styled Progress Bar
	Adding A Styled Play/Pause Button

	Revision History

