
Safari Web Content Guide
User Experience

2010-03-24

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Dashcode, iPod,
iPod touch, iTunes, iWork, Keynote, Mac, Mac
OS, Objective-C, Pages, QuickTime, and Safari
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder, iPhone, Multi-Touch, and Numbers are
trademarks of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Who Should Read This Document 12
Organization of This Document 12
See Also 13

Chapter 1 Creating Compatible Web Content 15

Use Standards 15
Follow Good Web Design Practices 16
Use Security Features 16
Avoid Framesets 17
Use Columns and Blocks 18
Know iPhone OS Resource Limits 19

Checking the Size of Webpages 20
Use the Select Element 20
Use Supported JavaScript Windows and Dialogs 21
Use Supported Content Types and iPhone OS Features 22
Use Canvas for Vector Graphics and Animation 24
Use the HTML5 Audio and Video Elements 24
Use Supported iPhone OS Rich Media MIME Types 24
Don’t Use Unsupported iPhone OS Technologies 25

Chapter 2 Optimizing Web Content 29

Using Conditional CSS 29
Using the Safari User Agent String 31

Chapter 3 Configuring the Viewport 35

Layout and Metrics on iPhone and iPod touch 35
What Is the Viewport? 36

Safari on the Desktop Viewport 37
Safari on iPhone OS Viewport 38
Examples of Viewports on iPhone OS 38

Default Viewport Settings 42
Using the Viewport Meta Tag 42
Changing the Viewport Width and Height 43
How Safari Infers the Width, Height, and Initial Scale 46
Viewport Settings for Web Applications 49

3
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

Chapter 4 Customizing Style Sheets 53

Leveraging CSS3 Properties 53
Adjusting the Text Size 53
Highlighting Elements 54

Chapter 5 Designing Forms 57

Laying Out Forms 57
Customizing Form Controls 59
Configuring Automatic Correction and Capitalization 61

Chapter 6 Handling Events 63

One-Finger Events 63
Two-Finger Events 66
Form and Document Events 67
Making Elements Clickable 67
Handling Multi-Touch Events 68
Handling Gesture Events 70
Preventing Default Behavior 71
Handling Orientation Events 72
Supported Events 73

Chapter 7 Configuring Web Applications 75

Specifying a Webpage Icon for Web Clip 75
Specifying a Startup Image 76
Hiding Safari User Interface Components 76
Changing the Status Bar Appearance 76

Chapter 8 Creating Video 77

Sizing Movies Appropriately 77
Don’t Let the Bit Rate Stall Your Movie 78
Using Supported Movie Standards 78
Encoding Video for Wi-Fi, 3G, and EDGE 78
Creating a Reference Movie 79
Creating a Poster Image for Movies 80
Configuring Your Server 81

Chapter 9 Storing Data on the Client 83

Creating a Manifest File 83
Declaring a Manifest File 84
Updating the Cache 84

4
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Handling Cache Events 85

Chapter 10 Getting Geographic Locations 87

Geographic Location Classes 87
Getting the Current Location 87
Tracking the Current Location 88
Handling Location Errors 88

Chapter 11 Debugging 89

Enabling the Safari Console 89
Viewing Console Messages 91
Creating Messages in JavaScript 93

Appendix A HTML Basics 95

What Is HTML? 95
Basic HTML Structure 95
Creating Effective HTML Content 97
Using Other HTML Features 99

Appendix B CSS Basics 101

What Is CSS? 101
Inline CSS 101
Head-Embedded CSS 102
External CSS 103

Document Revision History 105

5
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Creating Compatible Web Content 15

Figure 1-1 Comparison of frameset on the desktop and iPhone OS 17
Figure 1-2 Comparison of no columns vs. columns 18
Figure 1-3 Comparison of the select element on the desktop and iPhone OS 21
Figure 1-4 Confirm dialog 22
Figure 1-5 Playing video on iPhone OS 23
Figure 1-6 Viewing PDF documents on iPhone OS 23
Table 1-1 Supported iPhone OS rich media MIME types 25

Chapter 2 Optimizing Web Content 29

Figure 2-1 Small device rendering 30
Figure 2-2 Desktop rendering 30
Listing 2-1 Screen-specific style sheet 31
Listing 2-2 Print-specific style sheet 31
Listing 2-3 iPhone running on iPhone OS 2.0 user agent string 32
Listing 2-4 iPod touch running iPhone OS 1.1.3 user agent string 32
Listing 2-5 iPad running iPhone OS 3.2 user agent string 32
Listing 2-6 iPhone running iPhone OS 1.0 user agent string 32

Chapter 3 Configuring the Viewport 35

Figure 3-1 Layout and metrics in portrait orientation 36
Figure 3-2 Differences between Safari on iPhone OS and Safari on the desktop 37
Figure 3-3 Safari on desktop viewport 38
Figure 3-4 Viewport with default settings 39
Figure 3-5 Viewport with width set to 320 39
Figure 3-6 Viewport with width set to 320 and scale set to 150% 40
Figure 3-7 Viewport with width set to 320 and scale set to 50% 41
Figure 3-8 Viewport with arbitrary user scale 41
Figure 3-9 Default settings work well for most webpages 42
Figure 3-10 Comparison of 320 and 980 viewport widths 44
Figure 3-11 Webpage is too narrow for default settings 45
Figure 3-12 Web application page is too small for default settings 46
Figure 3-13 Default width and initial scale 47
Figure 3-14 Default width with initial scale set to 1.0 47
Figure 3-15 Width set to 320 with default initial scale 48
Figure 3-16 Width set to 200 with default initial scale 48
Figure 3-17 Width set to 980 and initial scale set to 1.0 49
Figure 3-18 Not specifying viewport properties 50
Figure 3-19 Width set to device-width pixels 50

7
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

Chapter 4 Customizing Style Sheets 53

Figure 4-1 Comparison of text adjustment settings 54
Figure 4-2 Differences between default and custom highlighting 55
Listing 4-1 Setting the text size adjustment property 54
Listing 4-2 Changing the tap highlight color 55

Chapter 5 Designing Forms 57

Figure 5-1 Form metrics when the keyboard is displayed 58
Figure 5-2 A custom checkbox 59
Figure 5-3 A custom text field 60
Figure 5-4 A custom select element 60
Table 5-1 Form metrics 58
Listing 5-1 Creating a custom checkbox with CSS 59
Listing 5-2 Creating a custom text field with CSS 60
Listing 5-3 Creating a custom select control with CSS 61

Chapter 6 Handling Events 63

Figure 6-1 The panning gesture 64
Figure 6-2 The touch and hold gesture 64
Figure 6-3 The double-tap gesture 65
Figure 6-4 One-finger gesture emulating a mouse 66
Figure 6-5 The pinch open gesture 66
Figure 6-6 Two-finger panning gesture 67
Table 6-1 Types of events 73
Listing 6-1 A menu using a mouseover handler 67
Listing 6-2 Adding an onclick handler 68
Listing 6-3 Displaying the orientation 72

Chapter 8 Creating Video 77

Figure 8-1 Export movie panel 79
Figure 8-2 Reference movie components 80
Table 8-1 File name extensions for MIME types 81

Chapter 9 Storing Data on the Client 83

Listing 9-1 Sample manifest file 83

Chapter 11 Debugging 89

Figure 11-1 Selecting Developer settings 90
Figure 11-2 Enabling the Debug Console 90

8
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 11-3 The message banner 91
Figure 11-4 Messages in the console 92
Figure 11-5 Filtered console messages 92
Figure 11-6 Viewport width or height tip 93
Figure 11-7 JavaScript timeout message 93
Figure 11-8 Console messages from your JavaScript code 94

Appendix A HTML Basics 95

Listing A-1 Basic HTML document 95
Listing A-2 Adding a paragraph 97
Listing A-3 Adding a heading 97
Listing A-4 Creating a hyperlink 97
Listing A-5 Adding an image 98
Listing A-6 Creating a table 99

Appendix B CSS Basics 101

Listing B-1 The styles.css file 103

9
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

10
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Safari runs on multiple operating systems and devices. All versions of Safari—Safari on the desktop and Safari
on iPhone OS—use the same WebKit engine. Therefore, web content intended for the desktop might work
well on devices running iPhone OS without any modifications. Some differences exist, however, so at a
minimum you should ensure that your webpages are compatible with Safari on iPhone OS. Next, you might
optimize your webpages for iPhone OS simply as a convenience to the user. For example, ensure that your
webpages work over Wi-Fi, 3G, and EDGE, scale correctly when rendered, and contain media that is viewable
on iPhone OS. There are also a few modifications you can make for specific devices such as iPad. Finally, you
might build custom web applications for either platform that look and behave like native applications.

Safari on the desktop is the Safari application that runs on Mac OS X and Windows. It is a full-featured web
browser for the desktop that supports industry standards as well as many WebKit extensions. In addition, it
includes a number of tools that developers can use to analyze, test, and debug websites and web applications.

Safari on iPhone OS, the application for browsing the web on devices such as iPhone, iPod touch, and iPad,
is also a full web browser running on a small handheld device with a high-resolution screen. This unique
implementation of Safari responds to a finger as the input device and supports gestures for zooming and
panning. It also renders webpages in portrait or landscape orientation. It contains many built-in features
such as PDF viewing, video playback, and support for links to the native Phone, Mail, Maps, and YouTube
applications.

The WebKit is an open source project as well as a framework in Mac OS X that lets developers embed a web
browser in their Cocoa applications. WebKit has a JavaScript and Objective-C interface to access the Document
Object Model (DOM) of a webpage. Dashboard, Mail, and many other Mac OS X applications also use WebKit
as an embedded browser. You can use the UIWebView class in UIKit on iPhone OS to embed a web browser
in an native iPhone application.

In addition to providing browser functionality, WebKit also implements some extensions to HTML, CSS, and
JavaScript, including several specific to Safari. Safari extensions include CSS animation and transform properties,
and JavaScript database support. Safari on iPhone OS includes JavaScript multitouch event support. Some
extensions are fully supported on both platforms and others are not. Check reference documents for specific
availability of those features you want to use.

This document teaches you how to create web content compatible with Safari running on any platform and
how to separate your iPhone OS-specific web content from your other web content so that when you optimize
your web content for iPhone OS, it still works on the desktop and other browsers. This document also covers
some basics on tailoring web applications for iPhone OS.

11
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

iPhone OS Note: Safari on iPhone OS behaves the same on different devices except when the user taps links
to iPhone-only applications. Read Apple URL Scheme Reference for information on the links that behave
differently on other devices. On iPad, the behavior of HTML5 media elements is similar to the desktop. Read
Safari HTML5 Audio and Video Guide for the differences on iPad.

Who Should Read This Document

You should read this document if you want your web content to look good and perform well on either the
desktop or iPhone OS, plan to write iPhone OS-specific web content, use iPhone OS-specific style sheets, or
use iPhone application links in your web content. Definitely read this document if you are creating a custom
web application for either platform.

iPhone OS Note: Also read iPhone Human Interface Guidelines for Web Applications, a companion document,
which describes how Safari on iPhone OS behaves and contains metrics and tips on designing user interfaces
for iPhone OS. Understanding how Safari on iPhone OS presents web content to the user and how the user
can zoom, pan, and double-tap on your webpages are prerequisites for reading this document.

Organization of This Document

This chapter covers important information that you should read first:

 ■ “Creating Compatible Web Content” (page 15) provides guidelines for creating web content that is
compatible with Safari on the desktop and Safari on iPhone OS.

This chapter covers the first steps you need to follow to optimize web content for Safari:

 ■ “Optimizing Web Content” (page 29) describes how to detect Safari on different platforms and use
conditional Cascading Style Sheets (CSS) so that you can begin optimizing web content for iPhone OS.

These chapters describe different ways to optimize web content for iPhone OS:

 ■ “Configuring the Viewport” (page 35) explains how to use the viewport tag to control the layout of your
webpages.

 ■ “Customizing Style Sheets” (page 53) covers how to adjust the text size when zooming and how to
control highlighting using CSS.

 ■ “Designing Forms” (page 57) explains how to lay out forms, design custom form controls, and turn auto
correction and capitalization on and off.

 ■ “Handling Events” (page 63) provides information on what events you can handle in JavaScript.

This chapter describes how to create video content for multiple platforms:

 ■ “Creating Video” (page 77) explains how to create video content for playback on iPhone OS in general,
including video content embedded in your webpages.

12 Who Should Read This Document
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

This chapter covers information on how to store data locally:

 ■ “Storing Data on the Client” (page 83) describes how to use the HTML5 application cache for storing
resources locally.

This chapter covers information on how to debug web content:

 ■ “Debugging” (page 89) describes the Safari on iPhone OS console which you use to help test and debug
your webpages.

If you are new to web development, read these appendixes that provide introductions to HTML and CSS:

 ■ “HTML Basics” (page 95) provides an overview on how to create structured HTML web content.

 ■ “CSS Basics” (page 101) describes how to add style sheets to existing HTML web content.

See Also

There are a variety of other resources for Safari web content developers in the ADC Reference Library.

If you are creating an iPhone OS web application, then you should also read:

 ■ iPhone Human Interface Guidelines for Web Applications, which provides user interface guidelines for
designing webpages and web applications for Safari on iPhone OS.

 ■ Apple URL Scheme Reference, which describes how to use the Phone, Mail, Text, YouTube, iTunes, and
Maps applications from your webpages.

If you want to learn more about visual effects, then you should read:

 ■ Safari CSS Visual Effects Guide, which describes how to use the CSS visual effects properties including the
transition, animation, and transforms properties. It also covers the JavaScript APIs for handling visual
effects events.

If you want to embed video and audio in your webpages read:

 ■ Safari HTML5 Audio and Video Guide, which describes how to use the HTML5 audio and video elements
in your webpages.

If you want to learn more about JavaScript multi-touch event support, then you should read:

 ■ Safari DOMAdditions Reference, which describes DOM extensions including touch event classes that you
use to handle multi-touch gestures in JavaScript on iPhone OS.

If you want to learn more about JavaScript database support, then you should read:

 ■ Safari Client-Side Storage andOffline Applications ProgrammingGuide, which describes a simple relational
database that you can use to store persistent data in JavaScript that cannot be stored in cookies.

If you want to use the JavaScript media APIs, then you should read:

See Also 13
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ JavaScript Scripting Guide for QuickTime, which describes how to use JavaScript to query and control the
QuickTime plug-in directly.

If you want to learn more about what HyperText Markup Language (HTML) tags and Cascading Style Sheets
(CSS) properties are supported in Safari, then read:

 ■ Safari HTML Reference, which describes the HTML elements and attributes supported by various Safari
and WebKit applications.

 ■ Safari CSS Reference, which describes the CSS properties supported by various Safari and WebKit
applications.

If you are using JavaScript and want access to the DOM or use the canvas object, then read:

 ■ WebKitDOMProgrammingTopics, which describes how to use JavaScript in web content for WebKit-based
applications.

 ■ WebKit DOM Reference, which describes the API for accessing WebKit's Document Object Model.

If you are developing web content for Safari on the desktop and iPhone OS, then you should read:

 ■ Safari User Guide for Web Developers, which describes how to use the Debug menu in Safari.

 ■ Dashcode User Guide, which describes how to use Dashcode to create web applications.

If you want to embed a browser in your iPhone OS application, then read:

 ■ UIWebView Class Reference for a description of the UIWebView class.

If you want to learn more about WebKit or contribute to the open source project, then go to The WebKit
Open Source Project.

If you want to read the WebKit W3C proposals, then go to: http://www.webkit.org/specs.

14 See Also
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://webkit.org
http://webkit.org
http://www.webkit.org/specs

This chapter covers best practices in creating web content that is compatible with Safari on the desktop and
Safari on iPhone OS. Many of these guidelines simply improve the reliability, performance, look, and user
experience of your webpages on both platforms. If your target is iPhone OS, the first step is to get your web
content working well on the desktop. If your target is the desktop, with minimal modifications, you can get
your web content to look good and perform well on iPhone OS too.

For example, you need to pay attention to the layout of your content and execution limits on iPhone OS. If
you use conditional CSS, as recommended in “Optimizing Web Content” (page 29), your webpages optimized
for iPhone OS still work in other browsers. Read the rest of this document for how to optimize your web
content for Safari.

iPhone OS Note: When designing your webpages, be aware of how Safari on iPhone OS presents webpages
to the user and how the user interacts with your webpages using gestures to zoom, pan, and double-tap.
Read iPhone Human Interface Guidelines forWeb Applications for metrics and tips on designing user interfaces
for iPhone OS.

Use Standards

The first design rule is to use web standards. Standards-based web development techniques ensure the most
consistent presentation and functionality across all modern browsers, including Safari. A well-designed
website probably requires just a few refinements to look good and work well on Safari.

The WebKit engine, shared by Safari on the desktop and Safari on iPhone OS, supports all the latest modern
web standards, including:

 ■ HTML 4.01

 ■ XHTML 1.0

 ■ CSS 2.1 and partial CSS3

 ■ ECMAScript 3 (JavaScript)

 ■ DOM Level 2

 ■ AJAX technologies, including XMLHTTPRequest

The web is always evolving, and as it does, so does WebKit and Safari. You’ll want to keep informed of the
evolving standards emanating from the Web Hypertext Application Technology Working Group (WHATWG)
and World Wide Web Consortium (W3C) standards bodies. The WHATWG and W3C websites are a good place
to start learning more about these standards and the upcoming HTML5:

www.whatwg.org
www.w3.org

Use Standards 15
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

http://www.whatwg.org
http://www.w3.org

Refer to Safari reference documents, such as Safari HTML Reference and Safari CSS Reference, for availability
of features on specific platforms.

Follow Good Web Design Practices

You should follow well-established rules of good web design. This section covers a few basic rules that are
critical for Safari. Read Web Page Development: Best Practices for more general advice on designing webpages.

 ■ Add a DOCTYPE declaration to your HTML files.

Preface your HTML files with a DOCTYPE declaration, which tells browsers which specification to parse
your webpage against. See “HTML Basics” (page 95) for how to do this.

 ■ Separate your HTML, CSS, and JavaScript into different files.

Your webpages are more maintainable if you separate page content into distinct files for mark-up,
presentation, and interaction.

 ■ Use well-structured HTML.

You increase cross-platform browser compatibility by running your HTML files through a validator. You
should fix common problems such as missing quotes, missing close tags, incorrect nesting, incorrect
case, and malformed doctype. See http://validator.w3.org or use the validator provided by your web
development tools.

 ■ Be browser independent.

Avoid using the user agent string to check which browser is currently running. Instead, read Object De-
tection to learn how to determine if a browser supports a particular object, property, or method, and
read Detecting WebKit with JavaScript to learn how to detect specific WebKit versions. Also use the W3C
standard way of accessing page objects—that is, use getElementByID("elementName"). Only as a
last resort, use the user agent string as described in “Using the Safari User Agent String” (page 31) to
detect Safari on iPhone OS.

Read “HTML Basics” (page 95) and “CSS Basics” (page 101) for how to write structured HTML and add CSS to
existing HTML.

Use Security Features

Safari on all platforms uses the same SSL implementation to provide end-to-end security. The same encryption
that prevents listening on the wire is just as secure when used in a wireless situation, whether through Wi-Fi,
3G, or EDGE. Specifically, Safari supports:

 ■ SSL 2, SSL 3, and TLS with many popular cipher suites

 ■ RSA keys up to 4096

 ■ HTTPS

16 Follow Good Web Design Practices
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

http://developer.apple.com/internet/webcontent/bestwebdev.html
http://validator.w3.org
http://developer.apple.com/internet/webcontent/objectdetection.html
http://developer.apple.com/internet/webcontent/objectdetection.html
http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit

iPhone OS Note: Note that the Diffie-Hellman protocol, DSA keys, and self-signed certificates are not available
on iPhone OS.

Avoid Framesets

In general, avoid using complicated framesets that rely on the ability to scroll individual frames because there
are no scroll bars on iPhone OS.

On the desktop, frames in a frameset can be independently scrolled as shown on the left in Figure 1-1. On
iPhone OS, scrollable frames in a frameset are expanded to fit their content and then a frame is scaled down
to fit its region as shown on the right in Figure 1-1. Scrollable full-width inline frames are expanded to fit
their content, too. All other scrollable inline frames can be panned using the two-finger gesture. See
“Two-Finger Events” (page 66) for the events generated from the two-finger gesture.

Because there are no scroll bars on the inline frames, this is not an optimal user experience for viewing web
content on iPhone OS, so avoid using framesets. Instead use columns as described in “Use Columns and
Blocks” (page 18).

Figure 1-1 Comparison of frameset on the desktop and iPhone OS

Frameset on the desktop Frameset on iPhone

980 x 544 pixels

488 x 544 pixels 488 x 544 pixels

Avoid Framesets 17
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Use Columns and Blocks

To be compatible with iPhone OS, use columns and blocks to lay out your webpage like many online
newspapers. This makes your webpage more readable and also works better with double-tapping on iPhone
OS.

Text blocks that span the full width of the webpage are difficult to read on iPhone OS as shown on the left
in Figure 1-2. Columns not only break up the webpage, making it easy to read, as shown on the right in
Figure 1-2, but allow the user to easily double-tap objects on the page.

Figure 1-2 Comparison of no columns vs. columns

No columns Columns

When the user double-taps a webpage, Safari on iPhone OS looks at the element that was double-tapped,
and finds the closest block (as identified by elements like <div>, , , and <table>) or image element.
If the found element is a block, Safari on iPhone OS zooms the content to fit the screen width and then
centers it. If it is an image, Safari on iPhone OS zooms to fit the image and then centers it. If the block or
image is already zoomed in, Safari on iPhone OS zooms out.

Your webpage works well with double-tapping if you use columns and blocks. Read “CSS Basics” (page 101)
for how to add CSS to existing HTML.

18 Use Columns and Blocks
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Know iPhone OS Resource Limits

Your webpage performing well on the desktop is no guarantee that it will perform well on iPhone OS. Keep
in mind that iPhone OS uses EDGE (lower bandwidth, higher latency), 3G (higher bandwidth, higher latency),
and Wi-Fi (higher bandwidth, lower latency) to connect to the Internet. Therefore, you need to minimize the
size of your webpage. Including unused or unnecessary images, CSS, and JavaScript in your webpages
adversely affects your site’s performance on iPhone OS.

Because of the memory available on iPhone OS, there are limits on the number of resources it can process:

 ■ The maximum size for decoded GIF, PNG, and TIFF images is 3 megapixels.

That is, ensure that width * height ≤ 3 * 1024 * 1024. Note that the decoded size is far larger
than the encoded size of an image.

 ■ The maximum decoded image size for JPEG is 32 megapixels using subsampling.

JPEG images can be up to 32 megapixels due to subsampling, which allows JPEG images to decode to
a size that has one sixteenth the number of pixels. JPEG images larger than 2 megapixels are
subsampled—that is, decoded to a reduced size. JPEG subsampling allows the user to view images from
the latest digital cameras.

 ■ The maximum size for a canvas element is 3 megapixels.

The height and width of a canvas object is 150 x 300 pixels if not specified.

 ■ Individual resource files must be less than 10 MB.

This limit applies to HTML, CSS, JavaScript, or nonstreamed media.

 ■ JavaScript execution time is limited to 10 seconds for each top-level entry point.

If your script executes for more than 10 seconds, Safari on iPhone OS stops executing the script at a
random place in your code, so unintended consequences may result.

This limit is imposed because JavaScript execution may cause the main thread to block, so when scripts
are running, the user is not able to interact with the webpage.

Read “Debugging” (page 89) for how to debug JavaScript on iPhone OS.

 ■ The maximum number of documents that can be open at once is eight.

iPhone OS Note: In iPhone OS 1.1.4 and earlier, the JavaScript execution time was limited to 5 seconds and
the size of allocations to 10 MB. Also, the limit on the size of canvas elements was the same as Safari on the
desktop.

iPhone OS Note: In iPhone OS 2.2.1 and earlier, the sum of all of the frames needs to be less than 2
megapixels—that is, width * height * number of frames ≤ 2 * 1024 * 1024. In iPhone OS 3.0
and later, the limit only applies to one frame at a time.

You also need to size images appropriately. Don’t rely on browser scaling. For example, don’t put a 100 x
100 image in a 10 x 10 element. Tile small backgrounds images; don’t use large background images.

Know iPhone OS Resource Limits 19
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Checking the Size of Webpages

You can check the size of your webpages by using Safari’s Web Inspector as described in “Optimizing Download
Time” in Safari User Guide for Web Developers or by saving your webpage as a web archive. The total size of
the web archive is the size of the page and its associated resources. Follow these steps to create a web
archive:

1. Choose File > Save As.

2. Enter the filename in the Save As text field.

3. Choose Web Archive from the Format pop-up menu.

4. Click Save.

On Mac OS X, check the size of the web archive using either Finder or Terminal. Typically, pages under 30
MB work fine on iPhone OS.

Use the Select Element

If you use the select HTML element in your webpage, iPhone OS displays a custom select control that is
optimized for selecting items in the list using a finger as the input device. On iPhone OS, the user can flick
to scroll the list and tap to select an item from the list. Figure 1-3 compares the select element on the desktop
with the select element on iPhone OS.

20 Use the Select Element
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Figure 1-3 Comparison of the select element on the desktop and iPhone OS

Select on the desktop Select on iPhone

Use Supported JavaScript Windows and Dialogs

Use windows and dialogs supported by Safari on iPhone OS and avoid the others.

You can open a new window in JavaScript by invoking window.open(). Remember that the maximum
number of documents—hence, the maximum number of open windows—is eight on iPhone OS.

Supported JavaScript dialog methods include alert, confirm, and prompt. If you use these methods, Safari
on iPhone OS displays an attractive dialog that doesn’t obscure the webpage, as show in Figure 1-4.

Use Supported JavaScript Windows and Dialogs 21
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Figure 1-4 Confirm dialog

iPhone OS Note: Note that the showModalDialog and print methods are not supported in Safari on
iPhone OS.

Use Supported Content Types and iPhone OS Features

Be aware of the features you get for free in Safari on iPhone OS by using supported content types and
elements that tailor the presentation of content for small handheld devices with touch screens. In particular,
Safari on iPhone OS handles content types such as video and PDF files different from the desktop. Safari on
iPhone OS also has the ability to preview content types and launch another application if it is available to
display that type of document. Following links such as phone numbers in your web content may launch
applications too.

On iPhone and iPod touch, the video and audio is played back in fullscreen mode only. The video automatically
expands to the size of the screen and rotates when the user changes orientation, as shown in Figure 1-5. The
controls automatically hide when they are not in use. On iPad, the video and audio is played either inline in
the webpage or in fullscreen mode. Read “Creating Video” (page 77) for how to export video for iPhone OS.

22 Use Supported Content Types and iPhone OS Features
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Figure 1-5 Playing video on iPhone OS

PDF documents are easy to view using Safari on iPhone OS and even easier to page through as shown in
Figure 1-6. PDF documents linked from web content are opened automatically. The page indicator keeps
track of where the user is in a document. And just as with video, the user can rotate iPhone OS to view a PDF
in landscape orientation.

Figure 1-6 Viewing PDF documents on iPhone OS

Use Supported Content Types and iPhone OS Features 23
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Safari on iPhone OS previews other content types like MS Office (Word, Excel and PowerPoint), iWork (Pages,
Numbers, and Keynote), and RTF documents. If another application registers for a content type that Safari
on iPhone OS previews, then that application is used to open the document. For example, on iPad, Pages
may be used to open Word and Pages documents that are previewed in Safari on iPhone OS. If another
application registers for a content type that Safari on iPhone OS doesn’t support natively or preview, then
Safari on iPhone OS allows the document to be downloaded and opened using that application.

iPhone OS Note: Previews of RTF documents is available in iPhone OS 3.2 and later. The ability to open a
downloaded file is available in iPhone OS 3.2 and later.

When the user taps certain types of links, Safari on iPhone OS may launch a native application to handle the
link—for example, Mail to compose an email message, Maps to get directions, and YouTube to view a video.
If the user taps a telephone number link on a phone device, a dialog appears asking whether the user wants
to dial that number. On the desktop, most of these links redirect to the respective website. Read Apple URL
Scheme Reference to learn more about using these types of links in your web content.

iPhone OS Note: Note that Java and Flash content types are not supported. See “Don’t Use Unsupported
iPhone OS Technologies” (page 25) for a complete list of unsupported technologies.

Use Canvas for Vector Graphics and Animation

You can use the same canvas object used by Dashboard widgets to implement sophisticated user interfaces
for web applications. The canvas object was introduced in Safari 2.0, is adopted by other browser engines,
and is part of the WHATWG specification. Read WebKit DOM Programming Topics to learn more about using
the canvas object.

Use the HTML5 Audio and Video Elements

You can use the HTML5 audio and video elements to add audio and video to your webpages. On smaller
devices like iPhone and iPad touch, the movie plays in full screen mode only and automatic playback is
disabled so a user action is required to initiate playback. On iPad, the video plays inline in the webpage.
When the video is played inline, you can create custom controls and receive media events—for example,
pause and play events—to enhance the user experience. Use the HTMLMediaElement class and its subclasses,
described in Safari DOM Additions Reference, to do this. Read Safari HTML5 Audio and Video Guide for more
in-depth information on the audio and video elements. Read “Creating Video” (page 77) for how to create
media files compatible with Safari.

Use Supported iPhone OS Rich Media MIME Types

Table 1-1 lists the rich media MIME types supported by Safari on iPhone OS. Files with these MIME types and
filename extensions can be played on iPhone OS.

24 Use Canvas for Vector Graphics and Animation
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

Table 1-1 Supported iPhone OS rich media MIME types

ExtensionsDescriptionMIME type

3gp, 3gpp3GPP mediaaudio/3gpp

3g2, 3gp23GPP2 mediaaudio/3gpp2

aiff, aif, aifc, cddaAIFF audioaudio/aiff

audio/x-aiff

amrAMR audioaudio/amr

mp3, swaMP3 audioaudio/mp3

audio/mpeg3

audio/x-mp3

audio/x-mpeg3

mp4MPEG-4 mediaaudio/mp4

mpeg, mpg, mp3, swaMPEG audioaudio/mpeg

audio/x-mpeg

wav, bwfWAVE audioaudio/wav

audio/x-wav

m4aAAC audioaudio/x-m4a

m4bAAC audio bookaudio/x-m4b

m4pAAC audio (protected)audio/x-m4p

3gp, 3gpp3GPP mediavideo/3gpp

3g2, 3gp23GPP2 mediavideo/3gpp2

mp4MPEG-4 mediavideo/mp4

mov, qt, mqvQuickTime Movievideo/quicktime

m4vVideovideo/x-m4v

Don’t Use Unsupported iPhone OS Technologies

In general, Safari on iPhone OS does not support any third-party plug-ins or features that require access to
the file system. The following web technologies are not supported on iPhone OS:

 ■ Downloadable web fonts

If you attempt to download web fonts, the CSS is parsed but the font fails and a default font is used
instead. The default font is dependent on the browser.

Don’t Use Unsupported iPhone OS Technologies 25
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

 ■ Modal dialogs

Don’t use window.showModalDialog() or window.print() in JavaScript. Read “Use Supported
JavaScript Windows and Dialogs” (page 21) for a list of supported dialogs.

 ■ Mouse-over events

The user cannot “mouse-over” a nonclickable element on iPhone OS. The element must be clickable for
a mouseover event to occur as described in “One-Finger Events” (page 63).

 ■ Hover styles

Since a mouseover event is sent only before a mousedown event, hover styles are displayed only if the
user touches and holds a clickable element with a hover style. Read “Handling Events” (page 63) for all
the events generated by gestures on iPhone OS.

 ■ Tooltips

Similar to hover styles, tooltips are not displayed unless the user touches and holds a clickable element
with a tooltip.

 ■ Java applets

 ■ Flash

Don’t bring up JavaScript alerts that ask users to download Flash.

 ■ QuickTime VR (QTVR) movies

 ■ Plug-in installation

 ■ Custom x.509 certificates

 ■ WML

Safari on iPhone OS is not a miniature web browser—it is a full web browser that renders pages as
designed—therefore, there is no need for Safari on iPhone OS to support Wireless Markup Language
(WML). Alternatively, it does support XHTML mobile profile document types and sites at .mobi domains.

The XHTML mobile document type is:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.1//EN"
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd">

 ■ File uploads and downloads

Safari on iPhone OS does not support file uploading, that is, <input type="file"> elements. If your
webpage includes an input-file control, Safari on iPhone OS disables it.

Because iPhone OS does not support file downloads, do not prompt the user to download plug-ins like
Flash on iPhone OS. See “Using the Safari User Agent String” (page 31) for how to detect Safari on iPhone
OS.

 ■ HTML contenteditable Attribute

Safari on iPhone OS does not support editing elements on the fly. If you're using contenteditable to
enable text input within a styled element—for example, using <p contenteditable> or <div
contenteditable>)—you can replace this styled element with a styled textarea element. In Safari,
you can customize the appearance of textarea elements using CSS. If necessary, you can even disable
any platform-specific, built-in styling on a textarea element by setting -webkit-appearance to
none.

26 Don’t Use Unsupported iPhone OS Technologies
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

By default, Safari on iPhone OS blocks pop-up windows. However, it is a preference that the user can change.
To change the Safari settings, tap Settings followed by Safari. The Block Pop-ups setting appears in the
Security section.

iPhone OS Note: Downloadable web fonts were supported in iPhone OS 1.1.4 and earlier. SVG is supported
in iPhone OS 2.1 and later. XSLT is supported in iPhone OS 2.0 and later.

Don’t Use Unsupported iPhone OS Technologies 27
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

28 Don’t Use Unsupported iPhone OS Technologies
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Compatible Web Content

The first step in optimizing web content for iPhone OS is to separate your iPhone OS-specific content from
your desktop content and the next step is to tailor the web content for iPhone OS. You might want to follow
these steps even if iPhone OS is not your target platform so your web content is more maintainable in the
future.

Use conditional CSS so that you can create iPhone OS-specific style sheets as described in “Using Conditional
CSS” (page 29). You can also use object detection and WebKit detection as described in “Follow Good Web
Design Practices” (page 16) to use extensions but remain browser-independent. Only if necessary, use the
user agent string as described in “Using the Safari User Agent String” (page 31) to detect Safari on iPhone
OS or a specific device.

After optimizing your content, read the rest of the chapters in this document to learn how to set viewport
properties, adjust text size, lay out forms, handle events, use application links, and export media for iPhone
OS. Finally read “Debugging” (page 89) for how to debug your webpages.

Using Conditional CSS

Once you use CSS to lay out your webpage in columns, you can use conditional CSS to create different layouts
for specific platforms and mobile devices. Using CSS3 media queries, you can add iPhone OS-specific style
sheets to your webpage without affecting how your webpages are rendered on other platforms.

For example, Figure 2-1 shows a webpage containing conditional CSS specifically for iPhone OS. Figure 2-2
shows the same webpage rendered on the desktop.

Using Conditional CSS 29
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

Figure 2-1 Small device rendering

Figure 2-2 Desktop rendering

CSS3 recognizes several media types, including print, handheld, and screen. iPhone OS ignores print and
handheld media queries because these types do not supply high-end web content. Therefore, use the screen
media type query for iPhone OS.

To specify a style sheet that is just for iPhone OS without affecting other devices, use the only keyword in
combination with the screen keyword in your HTML file. Older browsers ignore the only keyword and
won’t read your iPhone OS style sheet. Use device-width, max-device-width, and min-device-width
to describe the screen size.

30 Using Conditional CSS
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

For example, to specify a style sheet for iPhone and iPod touch, use an expression similar to the following:

<link media="only screen and (max-device-width: 480px)" href="small-device.css"
 type= "text/css" rel="stylesheet">

To specify a style sheet for devices other than iPhone OS, use an expression similar to the following:

<link media="screen and (min-device-width: 481px)" href="not-small-device.css"
 type="text/css" rel="stylesheet">

Alternatively, you can use this format inside a CSS block in an HTML file, or in an external CSS file:

@media screen and (min-device-width: 481px) { ... }

Here are some examples of CSS3 media-specific style sheets where you might provide a different style for
screen and print. Listing 2-1 displays white text on dark gray background for the screen. Listing 2-2 displays
black text on white background and hides navigation for print.

Listing 2-1 Screen-specific style sheet

@media screen {
 #text { color: white; background-color: black; }
}

Listing 2-2 Print-specific style sheet

@media print {
 #text { color: black; background-color: white; }
 #nav { display: none; }
}

For more information on media queries, see: http://www.w3.org/TR/css3-mediaqueries/.

Using the Safari User Agent String

A browser sends a special string, called a user agent, to websites to identify itself. The web server, or JavaScript
in the downloaded webpage, detects the client’s identity and can modify its behavior accordingly. In the
simplest case, the user agent string includes an application name—for example, Navigator as the application
name and 6.0 as the version. Safari on the desktop and Safari on iPhone OS have their own user agent
strings, too.

The Safari user agent string for iPhone OS is similar to the user agent string for Safari on the desktop except
for two additions: It contains a platform name and the mobile version number. The device name is contained
in the platform name. For example, you can detect iPhone OS and the specific device such as iPad. Typically,
you do not send iPhone-specific web content to an iPad since it has a much larger screen. Note that the
version numbers in this string are subject to change over time as new versions of iPhone OS become available,
so any code that checks the user agent string should not rely on version numbers.

For example, Listing 2-3 shows the user agent string for an iPhone running iPhone OS 2.0 and later, where
the string XXXX is replaced with the build number.

Using the Safari User Agent String 31
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

http://www.w3.org/TR/css3-mediaqueries/

Listing 2-3 iPhone running on iPhone OS 2.0 user agent string

Mozilla/5.0 (iPhone; U; CPU iPhone OS 2_0 like Mac OS X; en-us)
AppleWebKit/525.18.1 (KHTML, like Gecko) Version/3.1.1 Mobile/XXXXX Safari/525.20

The parts of the Safari on iPhone OS user agent string are as follows:

(iPhone; U; CPU iPhone OS 2_0 like Mac OS X; en-us)
The platform string. iPhone is replaced with iPod when running on an iPod touch and iPad when
running on an iPad.

AppleWebKit/525.18.1
The WebKit engine build number.

Version/3.1.1
The Safari family version.

Mobile/XXXXX
The mobile version number, where XXXX is the build number.

Safari/525.20
The Safari build number.

For example, the user agent string for an iPod touch contains iPod in the platform name as shown in Listing
2-4.

Listing 2-4 iPod touch running iPhone OS 1.1.3 user agent string

Mozilla/5.0 (iPod; U; CPU like Mac OS X; en) AppleWebKit/420.1 (KHTML, like
Gecko) Version/3.0 Mobile/4A93 Safari/419.3

The user agent string for an iPad contains iPad in the platform name as shown in Listing 2-5.

Listing 2-5 iPad running iPhone OS 3.2 user agent string

Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us) AppleWebKit/531.21.10
(KHTML, like Gecko) Version/4.0.4 Mobile/7B334b Safari/531.21.10

Note that the user agent string is slightly different for earlier Safari on iPhone OS releases. Listing 2-6 shows
the user agent string for an iPhone running iPhone OS 1.1.4 and earlier. Note that the platform string does
not contain the iPhone OS version number.

Listing 2-6 iPhone running iPhone OS 1.0 user agent string

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like
Gecko) Version/3.0 Mobile/1A543 Safari/419.3

Typically, you use the WebKit build number to test for supported WebKit HTML tags and CSS properties. The
Safari family version, or marketing version, is included in the user agent string for Safari on the desktop, too.
Therefore, you can use it to track usage statistics across all Safari platforms.

Go to these websites to learn more about other recommended techniques for detecting Safari and WebKit:

 ■ webkit.org

http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit

Contains JavaScript sample code for detecting Safari on iPhone and iPod touch.

32 Using the Safari User Agent String
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit

 ■ developer.apple.com

http://developer.apple.com/internet/webcontent/objectdetection.html

http://developer.apple.com/internet/safari/faq.html#anchor2

Using the Safari User Agent String 33
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

http://developer.apple.com/internet/webcontent/objectdetection.html
http://developer.apple.com/internet/safari/faq.html#anchor2

34 Using the Safari User Agent String
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Optimizing Web Content

Safari on iPhone OS displays webpages at a scale that works for most web content originally designed for
the desktop. If these default settings don’t work for your webpages, it is highly recommended that you
change the settings by configuring the viewport. You especially need to configure the viewport if you are
designing webpages specifically for iPhone OS. Configuring the viewport is easy—just add one line of HTML
to your webpage—but understanding how viewport properties affect the presentation of your webpages
on iPhone OS is more complex. Before configuring the viewport, you need a deeper understanding of what
the visible area and viewport are on iPhone OS.

If you are already familiar with the viewport on iPhone OS, read “Using the Viewport Meta Tag” (page 42)
for details on the viewport tag and “Viewport Settings for Web Applications” (page 49) for web application
tips. Otherwise, read the sections in this chapter in the following order:

 ■ Read “Layout and Metrics on iPhone and iPod touch” (page 35) to learn about the available screen space
for webpages on small devices.

 ■ Read “What Is the Viewport?” (page 36) for a deeper understanding of the viewport on iPhone OS.

 ■ Read “Default Viewport Settings” (page 42) and “Using the Viewport Meta Tag” (page 42) for how to
use the viewport meta tag.

 ■ Read “Changing the Viewport Width and Height” (page 43) and “How Safari Infers the Width, Height,
and Initial Scale” (page 46) to understand better how setting viewport properties affects the way
webpages are rendered on iPhone OS.

 ■ Read “Viewport Settings for Web Applications” (page 49) if you are designing a web application for
iPhone OS.

See “Supported Meta Tags” for a complete description of the viewport meta tag.

Layout and Metrics on iPhone and iPod touch

Because Safari on iPhone OS adds controls above and below your web content, you don’t have access to the
entire screen real estate. In portrait orientation, the visible area for web content on iPhone and iPod touch
is 320 x 356 pixels as shown in Figure 1-1. In landscape orientation, the visible area is 480 x 208 pixels.

Layout and Metrics on iPhone and iPod touch 35
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-1 Layout and metrics in portrait orientation

480 pixels

Status bar: 20 pixels

URL text field: 60 pixels

Visible area: 320 x 356 pixels

Button bar: 44 pixels

Note that if the URL text field is not in use, it is anchored above the webpage and moves with the webpage
when the user pans. This adds 60 pixels to the height of the visible area. However, since the URL text field
can appear at any time, you should not rely on this extra real estate when designing your webpage. Video
playback uses the entire screen on small devices.

Read “Laying Out Forms” (page 57) in “Designing Forms” (page 57) for more metrics when the keyboard is
displayed for user input.

Note: Although it is helpful to know the metrics on small devices like iPhone and iPod touch, you should
avoid using these values in your code. Read “Using the Viewport Meta Tag” (page 42) for how to use the
viewport meta tag constants.

What Is the Viewport?

The viewport on the desktop and the viewport on iPhone OS are slightly different.

Safari on iPhone OS has no windows, scroll bars, or resize buttons as shown on the right in Figure 3-2. The
user pans by flicking a finger. The user zooms in by double-tapping and pinch opening, and zooms out by
pinch closing—gestures that are not available for Safari on the desktop. Because of the differences in the
way users interact with web content, the viewport on the desktop and on iPhone OS are not the same. Note
that these differences between the viewports may affect some of the HTML and CSS instructions on iPhone
OS.

36 What Is the Viewport?
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-2 Differences between Safari on iPhone OS and Safari on the desktop

Safari on the desktop Safari on iPhone

Safari on the Desktop Viewport

The viewport on the desktop is the visible area of the webpage as shown in Figure 3-3. The user resizes the
viewport by resizing the window. If the webpage is larger than the viewport, then the user scrolls to see
more of the webpage. When the viewport is resized, Safari may change the document’s layout—for example,
expand or shrink the width of the text to fit. If the webpage is smaller than the viewport, it is filled with white
space to fit the size of the viewport.

What Is the Viewport? 37
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-3 Safari on desktop viewport

Viewport

Safari on iPhone OS Viewport

For Safari on iPhone OS, the viewport is the area that determines how content is laid out and where text
wraps on the webpage. The viewport can be larger or smaller than the visible area.

When the user pans a webpage on iPhone OS, gray bars appear on the right and bottom sides of the screen
as visual feedback to show the user the size of the visible area as compared to the viewport (similar to the
length of scroll bars on the desktop). Using the double tap, pinch open, and pinch close gestures, users can
change the scale of the viewport but not the size. The only exception is when the user changes from portrait
to landscape orientation—under certain circumstances, Safari on iPhone OS may adjust the viewport width
and height, and consequently, change the webpage layout.

You can set the viewport size and other properties of your webpage. Mostly, you do this to improve the
presentation the first time iPhone OS renders the webpage.

Examples of Viewports on iPhone OS

The viewport on iPhone OS is best illustrated using a few examples. Figure 3-4 shows a webpage on iPhone,
containing a single 320 x 356 pixel image, that is rendered for the first time using the default viewport
settings.

38 What Is the Viewport?
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-4 Viewport with default settings

Viewport
default width = 980 pixels

Figure 3-5 shows the same webpage with the viewport set to the size of the visible area, which is also the
size of the image.

Figure 3-5 Viewport with width set to 320

Viewport
width = 320 pixels
scale = 1.0

However, the viewport can be larger or smaller than the visible area. If the viewport is larger than the visible
area, as shown in Figure 3-6, then the user pans to see more of the webpage.

What Is the Viewport? 39
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-6 Viewport with width set to 320 and scale set to 150%

Viewport
width = 320 pixels
scale = 1.5

Visible area

Figure 3-7 show the webpage when it is smaller than the viewport and filled with white space.

40 What Is the Viewport?
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-7 Viewport with width set to 320 and scale set to 50%

Viewport
width = 320 pixels
scale = 0.5

The user can also zoom in and out using gestures. When zooming in and out, the user changes the scale of
the viewport, not the size of the viewport. Consequently, panning and zooming do not change the layout
of the webpage. Figure 3-8 shows the same webpage when the user zooms in to see details.

Figure 3-8 Viewport with arbitrary user scale

User zoom, arbitrary scale

What Is the Viewport? 41
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Default Viewport Settings

Safari on iPhone OS sets the size and scale of the viewport to reasonable defaults that work well for most
webpages, as shown on the left in Figure 3-9. The default width is 980 pixels. However, these defaults may
not work well for your webpages, particularly if you are tailoring your website for a particular device. For
example, the webpage on the right in Figure 3-9 appears too narrow. Because Safari on iPhone OS provides
a viewport, you can change the default settings.

Figure 3-9 Default settings work well for most webpages

Works well Too narrow

Using the Viewport Meta Tag

Use the viewport meta tag to improve the presentation of your web content on iPhone OS. Typically, you
use the viewport meta tag to set the width and initial scale of the viewport. For example, if your webpage
is narrower than 980 pixels, then you should set the width of the viewport to fit your web content. If you are
designing an iPhone or iPod touch-specific web application, then set the width to the width of the device.
Refer to “Additional meta Tag Keys” in Safari HTML Reference for a detailed description of the viewport meta
tag.

Because iPhone OS runs on devices with different screen resolutions, you should use the constants instead
of numeric values when referring to the dimensions of a device. Use device-width for the width of the
device and device-height for the height in portrait orientation.

42 Default Viewport Settings
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

You do not need to set every viewport property. If only a subset of the properties are set, then Safari on
iPhone OS infers the other values. For example, if you set the scale to 1.0, Safari assumes the width is
device-width in portrait and device-height in landscape orientation. Therefore, if you want the width
to be 980 pixels and the initial scale to be 1.0, then set both of these properties.

For example, to set the viewport width to the width of the device, add this to your HTML file:

<meta name = "viewport" content = "width = device-width">

To set the initial scale to 1.0, add this to your HTML file:

<meta name = "viewport" content = "initial-scale = 1.0">

To set the initial scale and to turn off user scaling, add this to your HTML file:

<meta name = "viewport" content = "initial-scale = 2.3, user-scalable = no">

Use the Safari on iPhone OS console to help debug your webpages as described in “Debugging” (page 89).
The console contains tips to help you choose viewport values—for example, it reminds you to use the
constants when referring to the device width and height.

Changing the Viewport Width and Height

Typically, you set the viewport width to match your web content. This is the single most important optimization
that you can do for iPhone OS—make sure your webpage looks good the first time it is displayed on iPhone
OS.

The majority of webpages fit nicely in the visible area with the viewport width set to 980 pixels in portrait
orientation, as shown in Figure 3-10. If Safari on iPhone OS did not set the viewport width to 980 pixels, then
only the upper-left corner of the webpage, shown in gray, would be displayed. However, this default doesn’t
work for all webpages, so you’ll want to use the viewport meta tag if your webpage is different.

Changing the Viewport Width and Height 43
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-10 Comparison of 320 and 980 viewport widths

320 pixels

980 pixels

356 pixels

1090 pixels

If your webpage is narrower than the default width, as shown on the left in Figure 3-11, then set the viewport
width to the width of your webpage, as shown on the right in Figure 3-11. To do this, add the following to
your HTML file inside the <head> block, replacing 590 with the width of your webpage:

<meta name = "viewport" content = "width = 590">

44 Changing the Viewport Width and Height
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-11 Webpage is too narrow for default settings

Default width Custom width

980 pixels 590 pixels

It is particularly important to change the viewport width for web applications designed for devices with
smaller screens such as iPhone and iPod touch. Figure 3-12 shows the effect of setting the viewport width
to device-width. Read “Viewport Settings for Web Applications” (page 49) for more web application tips.

Changing the Viewport Width and Height 45
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-12 Web application page is too small for default settings

Default width Width set to device-width

980 pixels 320 pixels

Similarly you can set the viewport height to match your web content.

How Safari Infers the Width, Height, and Initial Scale

If you set only some of the properties, then Safari on iPhone OS infers the values of the other properties with
the goal of fitting the webpage in the visible area. For example, if just the initial scale is set, then the width
and height are inferred. Similarly, if just the width is set, then the height and initial scale are inferred, and so
on. If the inferred values do not work for your webpage, then set more viewport properties.

Since any of the width, height, and initial scale may be inferred by Safari on iPhone OS, the viewport may
resize when the user changes orientation. For example, when the user changes from portrait to landscape
orientation by rotating the device, the viewport width may expand. This is the only situation where a user
action might resize the viewport, changing the layout on iPhone OS.

Specifically, the goal of Safari on iPhone OS is to fit the webpage in the visible area when completely zoomed
out by maintaining a ratio equivalent to the ratio of the visible area in either orientation. This is best illustrated
by setting the viewport properties independently, and observing the effect on the other viewport properties.
The following series of examples shows the same web content with different viewport settings.

Figure 3-13 shows a typical webpage displayed with the default settings where the viewport width is 980
and no initial scale is set.

46 How Safari Infers the Width, Height, and Initial Scale
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-13 Default width and initial scale

default = 980 pixels

Figure 3-14 shows the same webpage when the initial scale is set to 1.0 on iPhone. Safari on iPhone OS infers
the width and height to fit the webpage in the visible area. The viewport width is set to device-width in
portrait orientation and device-height in landscape orientation.

Figure 3-14 Default width with initial scale set to 1.0

320 pixels

356 pixels

480 pixels

208 pixels

Similarly, if you specify only the viewport width, the height and initial scale are inferred. Figure 3-15 shows
the rendering of the same webpage when the viewport width is set to 320 on iPhone. Notice that the portrait
orientation is rendered in the same way as in Figure 3-14 (page 47), but the landscape orientation maintains
a width equal to device-width, which changes the initial scale and has the effect of zooming in when the
user changes to landscape orientation.

How Safari Infers the Width, Height, and Initial Scale 47
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-15 Width set to 320 with default initial scale

320 pixels

356 pixels

320 pixels

139 pixels

You can also set the viewport width to be smaller than the visible area with a minimum value of 200 pixels.
Figure 3-16 shows the same webpage when the viewport width is set to 200 pixels on iPhone. Safari on
iPhone OS infers the height and initial scale, which has the effect of zooming in when the webpage is first
rendered.

Figure 3-16 Width set to 200 with default initial scale

200 pixels

223 pixels

Finally, Figure 3-17 shows the same webpage when both the width and initial scale are set on iPhone. Safari
on iPhone OS infers the height by maintaining a ratio equivalent to the ratio of the visible area in either
orientation. Therefore, if the width is set to 980 and the initial scale is set to 1.0 on iPhone, the height is set
to 1091 in portrait and 425 in landscape orientation.

48 How Safari Infers the Width, Height, and Initial Scale
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-17 Width set to 980 and initial scale set to 1.0

Width = 980 pixels
Height = 1091 pixels
Initial scale = 1.0

Width = 980 pixels
Height = 425 pixels
Initial scale = 1.0

The minimum-scale and maximum-scale properties also affect the behavior when changing orientations.
The range of these property values is from >0 to 10.0. The default value for both these properties is 0.25.

Viewport Settings for Web Applications

If you are designing a web application specifically for iPhone OS, then the recommended size for your
webpages is the size of the visible area on iPhone OS. Apple recommends that you set the width to
device-width so that the scale is 1.0 in portrait orientation and the viewport is not resized when the user
changes to landscape orientation.

If you do not change the viewport properties, Safari on iPhone OS displays your webpage in the upper-left
corner as shown in Figure 3-18. Setting the viewport width should be the first task when designing web
applications for iPhone OS to avoid the user zooming in before using your application.

Viewport Settings for Web Applications 49
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Figure 3-18 Not specifying viewport properties

Viewport
width = 980 pixels

By setting the width to device-width in portrait orientation, Safari on iPhone OS displays your webpage
as show in Figure 3-19. Users can pan down to view the rest of the webpage if it is taller than the visible area.
Add this line to your HTML file to set the viewport width to device-width:

<meta name = "viewport" content = "width=device-width">

Figure 3-19 Width set to device-width pixels

Viewport
width = 320 pixels

50 Viewport Settings for Web Applications
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

You may not want users to scale web applications designed specifically for iPhone OS. In this case, set the
width and turn off user scaling as follows:

<meta name = "viewport" content = "user-scalable=no, width=device-width">

Viewport Settings for Web Applications 51
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

52 Viewport Settings for Web Applications
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Configuring the Viewport

Although configuring the viewport is an important way to optimize your web content for iPhone OS, style
sheets provide further techniques for optimizing. For example, use iPhone OS CSS extensions to control text
resizing and element highlighting. If you use conditional CSS, then you can use these settings without affecting
the way other browsers render your webpages.

Read “Optimizing Web Content” (page 29) for how to use conditional CSS and “CSS Basics” (page 101) for
how to add CSS to existing HTML. See Safari CSS Reference for a complete list of CSS properties supported
by Safari.

Leveraging CSS3 Properties

There are many CSS3 properties available for you to use in Safari on the desktop and iPhone OS. CSS properties
that begin with -webkit- are usually proposed CSS3 properties or Apple extensions to CSS. For example,
you can use the following CSS properties to emulate the iPhone OS user interface:

-webkit-border-image
Allows you to use an image as the border for a box. See "-webkit-border-image" in Safari CSS Reference
for details.

-webkit-border-radius
Creates elements with rounded corners. See “Customizing Form Controls” (page 59) for code samples.
See "-webkit-border-radius" in Safari CSS Reference for details.

Adjusting the Text Size

In addition to controlling the viewport, you can control the text size that Safari on iPhone OS uses when
rendering a block of text.

Adjusting the text size is important so that the text is legible when the user double-taps. If the user double-taps
an HTML block element—such as a <div> element—then Safari on iPhone OS scales the viewport to fit the
block width in the visible area. The first time a webpage is rendered, Safari on iPhone OS gets the width of
the block and determines an appropriate text scale so that the text is legible.

If the automatic text size-adjustment doesn’t work for your webpage, then you can either turn this feature
off or specify your own scale as a percentage. For example, text in absolute-positioned elements might
overflow the viewport after adjustment. Other pages might need a few minor adjustments to make them
look better. In these cases, use the -webkit-text-size-adjust CSS property to change the default settings
for any element that renders text.

Leveraging CSS3 Properties 53
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Customizing Style Sheets

Figure 4-1 compares a webpage rendered by Safari on iPhone OS with -webkit-text-size-adjust set
to auto, none, and 200%. On iPad, the default value for -webkit-text-size-adjust is none. On all other
devices, the default value is auto.

Figure 4-1 Comparison of text adjustment settings

Auto None 200%

To turn automatic text adjustment off, set -webkit-text-size-adjust to none as follows:

html {-webkit-text-size-adjust:none}

To change the text adjustment, set -webkit-text-size-adjust to a percentage value as follows, replacing
200% with your percentage:

html {-webkit-text-size-adjust:200%}

Listing 4-1 shows setting this property for different types of blocks using inline style in HTML.

Listing 4-1 Setting the text size adjustment property

<body style="-webkit-text-size-adjust:none">
<table style="-webkit-text-size-adjust:auto">
<div style="-webkit-text-size-adjust:200%">

Highlighting Elements

By default, when the user taps a link or a JavaScript clickable element, Safari on iPhone OS highlights the
area in a transparent gray color. Using the -webkit-tap-highlight-color CSS property, you can either
modify or disable this default behavior on your webpages.

The syntax for setting this CSS property is:

-webkit-tap-highlight-color:<css-color>

54 Highlighting Elements
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Customizing Style Sheets

This is an inherited property that changes the tap highlight color, obeying the alpha value. If you don’t specify
an alpha value, Safari on iPhone OS applies a default alpha value to the color. To disable tap highlighting,
set the alpha to 0 (invisible). If you set the alpha to 1.0 (opaque), then the element won’t be visible when
tapped.

Listing 4-2 uses an alpha value of 0.4 for the custom highlight color shown on the right in Figure 4-2.

Listing 4-2 Changing the tap highlight color

<html>
<head>
 <meta name = "viewport" content = "width=200">
</head>

<body>
default highlight color

<a href = "whatever0.html" style =
"-webkit-tap-highlight-color:rgba(200,0,0,0.4);">custom highlight color
</body>

</html>

Figure 4-2 Differences between default and custom highlighting

Default highlight Custom highlight

Note that changing this behavior does not affect the color of the information bubble when the user touches
and holds. Read “Handling Events” (page 63) for the definition of a clickable element. See
"-webkit-tap-highlight-color" in Safari CSS Reference to learn more about this property.

Highlighting Elements 55
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Customizing Style Sheets

56 Highlighting Elements
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Customizing Style Sheets

There are many adjustments you can make to your forms so that they work better on iPhone OS. The forms
should fit neatly on the iPhone OS screen, especially if you are designing a web application specifically for
iPhone OS. Web applications can have a rich user interface and even look like native applications to the user.
Consequently, the user may expect them to behave like native applications, too.

This chapter explains what you can do to make your forms work well on iPhone OS:

 ■ Take into account the available screen space when the keyboard is and isn’t displayed.

 ■ Use CSS extensions to create custom controls.

 ■ Control where automatic correction and capitalization are used.

See iPhone Human Interface Guidelines for Web Applications for more tips on laying out forms and designing
web applications for iPhone OS. Read “Hiding Safari User Interface Components” (page 76) for how to use
the full-screen like a native application.

Laying Out Forms

The available area for your forms changes depending on whether or not the keyboard is displayed on iPhone
OS. You should compute this area and design your forms accordingly.

Figure 5-1 shows the layout of Safari controls when the keyboard is displayed on iPhone. The status bar that
appears at the top of the screen contains the time and Wi-Fi indicator. The URL text field is displayed below
the status bar. The keyboard is used to enter text in forms and is displayed at the bottom of the screen. The
form assistant appears above the keyboard when editing forms. It contains the Previous, Next, and Done
buttons. The user taps the Next and Previous buttons to move between form elements. The user taps Done
to dismiss the keyboard. The button bar contains the back, forward, bookmarks, and page buttons and
appears at the bottom of the screen. The tool bar is not visible when the keyboard is visible. Your webpage
is displayed in the area below the URL text field and above the tool bar or keyboard.

Laying Out Forms 57
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

Figure 5-1 Form metrics when the keyboard is displayed

Status bar: 20 pixels

URL text field: 60 pixels

Form assistant: 44 pixels

Keyboard: 216 pixels

480 pixels

Table 5-1 contains the metrics for the objects that you need to be aware of, in both portrait and landscape
orientation, when laying out forms to fit on iPhone and iPod touch.

Table 5-1 Form metrics

Metrics in pixelsObject

Height = 20Status bar

Height = 60URL text field

Height = 44Form assistant

Portrait height = 216

Landscape height = 162

Keyboard

Portrait height = 44

Landscape height = 32

Button bar

Use this information to compute the available area for your web content when the keyboard is and isn't
displayed. For example, when the keyboard is not displayed, the height available for your web content on
iPhone is 480 - 20 - 60 - 44 = 356. Therefore, you should design your content to fit within 320 x 356 pixels in
portrait orientation. If the keyboard is displayed, the available area is 320 x 140 pixels on iPhone.

58 Laying Out Forms
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

iPhone OS Note: In iPhone OS 1.1.4 and earlier, the keyboard height in landscape orientation on iPhone
and iPod touch was 180 pixels.

Customizing Form Controls

Form controls in Safari on iPhone OS are resolution independent and can be styled with CSS specifically for
iPhone OS. You can create custom checkboxes, text fields, and select elements.

For example, you can create a custom checkbox designed for iPhone OS as shown in Figure 5-2 with the CSS
code fragment in Listing 5-1. This example uses the -webkit-border-radius property—an Apple extension
to WebKit. See Safari CSS Reference for details on more WebKit properties.

Figure 5-2 A custom checkbox

Listing 5-1 Creating a custom checkbox with CSS

{
 width: 100px;
 height: 100px;
 -webkit-border-radius:50px;
 background-color:purple;
}

Figure 5-3 shows a custom text field with rounded corners corresponding to the CSS code in Listing 5-2 (page
60).

Customizing Form Controls 59
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

Figure 5-3 A custom text field

Listing 5-2 Creating a custom text field with CSS

{
 -webkit-border-radius:10px;
}

Figure 5-4 shows a custom select control corresponding to the CSS code in Listing 5-3 (page 61).

Figure 5-4 A custom select element

60 Customizing Form Controls
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

Listing 5-3 Creating a custom select control with CSS

{
 background:red;
 border: 1px dashed purple;
 -webkit-border-radius:10px;
}

Configuring Automatic Correction and Capitalization

You can also control whether or not automatic correction or capitalization are used in your forms on iPhone
OS. Set the autocorrect attribute to on if you want automatic correction and the autocapitalize attribute
to on if you want automatic capitalization. If you do not set these attributes, then the browser chooses
whether or not to use automatic correction or capitalization. For example, Safari on iPhone OS turns the
autocorrect and autocapitalize attributes off in login fields and on in normal text fields.

For example, the following lines turn the autocorrect attribute on:

<input autocorrect = "on"/>
<input autocorrect>

The following line turns the autocorrect attribute off:

<input autocorrect = "off">

Configuring Automatic Correction and Capitalization 61
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

62 Configuring Automatic Correction and Capitalization
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Designing Forms

This chapter describes the events that occur when the user interacts with a webpage on iPhone OS. Forms
and documents generate the typical events in iPhone OS that you might expect on the desktop. Gestures
handled by Safari on iPhone OS emulate mouse events. In addition, you can register for iPhone OS-specific
multi-touch and gesture events directly. Orientation events are another example of an iPhone OS-specific
event. Also, be aware that there are some unsupported events such as cut, copy, and paste.

Gestures that the user makes—for example, a double tap to zoom and a flick to pan—emulate mouse events.
However, the flow of events generated by one-finger and two-finger gestures are conditional depending on
whether or not the selected element is clickable or scrollable as described in “One-Finger Events” (page 63)
and “Two-Finger Events” (page 66).

A clickable element is a link, form element, image map area, or any other element with mousemove,
mousedown, mouseup, or onclick handlers. A scrollable element is any element with appropriate overflow
style, text areas, and scrollable iframe elements. Because of these differences, you might need to change
some of your elements to clickable elements, as described in “Making Elements Clickable” (page 67), to get
the desired behavior in iPhone OS.

In addition, you can turn off the default Safari on iPhone OS behavior as described in “Preventing Default
Behavior” (page 71) and handle your own multi-touch and gesture events directly. Handling multi-touch
and gesture events directly gives developers the ability to implement unique touch-screen interfaces similar
to native applications. Read “Handling Multi-Touch Events” (page 68) and “Handling Gesture Events” (page
70) to learn more about DOM touch events.

If you want to change the layout of your webpage depending on the orientation of iPhone OS, read “Handling
Orientation Events” (page 72).

See “Supported Events” (page 73) for a complete list of events supported in iPhone OS.

It’s very common to combine DOM touch events with CSS visual effects. Read Safari CSS Visual Effects Guide
to learn more about CSS visual effects.

One-Finger Events

This section uses flow charts to break down gestures into the individual actions that might generate events.
Some of the events generated on iPhone OS are conditional—the events generated depend on what the
user is tapping or touching and whether they are using one or two fingers. Some gestures don’t generate
any events on iPhone OS.

One-finger panning doesn’t generate any events until the user stops panning—an onscroll event is
generated when the page stops moving and redraws—as shown in Figure 6-1.

One-Finger Events 63
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Figure 6-1 The panning gesture

Pan (no events)

Finger down

Finger stop

onscroll

Finger move

Displaying the information bubble doesn’t generate any events as shown in Figure 6-2. However, if the user
touches and holds an image, the image save sheet appears instead of an information bubble.

iPhone OS Note: The image save sheet appears on iPhone OS 2.0 and later.

Figure 6-2 The touch and hold gesture

Information bubble
(no events)

Finger down

Finger held down

Clickable element

Finally, a double tap doesn’t generate any events either as shown in Figure 6-3.

64 One-Finger Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Figure 6-3 The double-tap gesture

Finger down

Quick finger up

Double-tap zoom
(no events)

Quick finger down

Quick finger up

Mouse events are delivered in the same order you'd expect in other web browsers illustrated in Figure 6-4.
If the user taps a nonclickable element, no events are generated. If the user taps a clickable element, events
arrive in this order: mouseover, mousemove, mousedown, mouseup, and click. The mouseout event occurs
only if the user taps on another clickable item. Also, if the contents of the page changes on the mousemove
event, no subsequent events in the sequence are sent. This behavior allows the user to tap in the new content.

One-Finger Events 65
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Figure 6-4 One-finger gesture emulating a mouse

Content change

Finger down

Not a clickable
element

No events

Finger up
Clickable element

mouseover, mousemove No events

No content change

mousedown, mouseup, click

Two-Finger Events

The pinch open gesture does not generate any mouse events as shown in Figure 6-5.

Figure 6-5 The pinch open gesture

Fingers separate Pinch zoom
(no events)

Two fingers down

Figure 6-6 illustrates the mouse events generated by using two fingers to pan a scrollable element. The flow
of events is as follows:

 ■ If the user holds two fingers down on a scrollable element and moves the fingers, mousewheel events
are generated.

 ■ If the element is not scrollable, Safari on iPhone OS pans the webpage. No events are generated while
panning.

 ■ An onscroll event is generated when the user stops panning.

66 Two-Finger Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Figure 6-6 Two-finger panning gesture

Two fingers down

Scrollable element

Two fingers move

Not a scrollable element

mousewheel

Pan (no events)

Finger stop

onscroll

Form and Document Events

Typical events generated by forms and documents include blur, focus, load, unload, reset, submit,
change and abort. See “Supported Events” (page 73) for a complete list of supported events on iPhone
OS.

Making Elements Clickable

Because of the way Safari on iPhone OS creates events to emulate a mouse, some of your elements may not
behave as expected on iPhone OS. In particular, some menus that only use mousemove handlers, as in Listing
6-1, need to be changed because iPhone OS doesn’t recognize them as clickable elements.

Listing 6-1 A menu using a mouseover handler

<span onmouseover = "..."
 onmouseout = "..."

WHERE TO BUY

To fix this, add a dummy onclick handler, onclick = "void(0)", so that Safari on iPhone OS recognizes
the span element as a clickable element, as shown in Listing 6-2.

Form and Document Events 67
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Listing 6-2 Adding an onclick handler

<span onmouseover = "..."
 onmouseout = "..."
 onclick = "void(0)">

WHERE TO BUY

Handling Multi-Touch Events

You can use JavaScript DOM touch event classes available on iPhone OS to handle multi-touch and gesture
events in a way similar to the way they are handled in native iPhone OS applications.

If you register for multi-touch events, the system continually sends TouchEvent objects to those DOM
elements as fingers touch and move across a surface. These are sent in addition to the emulated mouse
events unless you prevent this default behavior as described in “Preventing Default Behavior” (page 71). A
touch event provides a snapshot of all touches during a multi-touch sequence, most importantly the touches
that are new or have changed for a particular target. The different types of multi-touch events are described
in TouchEvent in Safari DOM Additions Reference.

A multi-touch sequence begins when a finger first touches the surface. Other fingers may subsequently touch
the surface, and all fingers may move across the surface. The sequence ends when the last of these fingers
is lifted from the surface. An application receives touch event objects during each phase of any touch.

Touch events are similar to mouse events except that you can have simultaneous touches on the screen at
different locations. A touch event object is used to encapsulate all the touches that are currently on the
screen. Each finger is represented by a touch object. The typical properties that you find in a mouse event
are in the touch object, not the touch event object.

Note that a sequence of touch events is delivered to the element that received the original touchstart
event regardless of the current location of the touches.

Follow these steps to use multi-touch events in your web application.

1. Register handlers for multi-touch events in HTML as follows:

<div
 ontouchstart="touchStart(event);"
 ontouchmove="touchMove(event);"
 ontouchend="touchEnd(event);"
 ontouchcancel="touchCancel(event);"
></div>

2. Alternatively, register handlers in JavaScript as follows:

element.addEventListener("touchstart", touchStart, false);
element.addEventListener("touchmove", touchMove, false);
element.addEventListener("touchend", touchEnd, false);
element.addEventListener("touchcancel", touchCancel, false);

3. Respond to multi-touch events by implementing handlers in JavaScript.

68 Handling Multi-Touch Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

For example, implement the touchStart method as follows:

function touchStart(event) {
 // Insert your code here
}

4. Optionally, get all touches on a page using the touches property as follows:

var allTouches = event.touches;

Note that you can get all other touches for an event even when the event is triggered by a single touch.

5. Optionally, get all touches for the target element using the targetTouches property:

var targetTouches = event.targetTouches;

6. Optionally, get all changed touches for this event using the changedTouches property:

var changedTouches = event.changedTouches;

7. Access the Touch object properties—such as the target, identifier, and location in page, client, or screen
coordinates—similar to mouse event properties.

For example, get the number of touches:

event.touches.length

Get a specific touch object at index i:

var touch = event.touches[i];

Finally, get the location in page coordinates for a single-finger event:

var x = event.touches[0].pageX;
var y = event.touches[0].pageY;

You can also combine multi-touch events with CSS visual effects to enable dragging or some other user
action. To enable dragging, implement the touchmove event handler to translate the target:

function touchMove(event) {
 event.preventDefault();
 curX = event.targetTouches[0].pageX - startX;
 curY = event.targetTouches[0].pageY - startY;
 event.targetTouches[0].target.style.webkitTransform =
 'translate(' + curX + 'px, ' + curY + 'px)';
}

Typically, you implement multi-touch event handlers to track one or two touches. But you can also use
muti-touch event handlers to identify custom gestures. That is, custom gestures that are not already identified
for you by gesture events described in “Handling Gesture Events” (page 70). For example, you can identify
a two-finger tap gesture as follows:

1. Begin gesture if you receive a touchstart event containing two target touches.

2. End gesture if you receive a touchend event with no preceding touchmove events.

Handling Multi-Touch Events 69
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Similarly, you can identify a swipe gesture as follows:

1. Begin gesture if you receive a touchstart event containing one target touch.

2. Abort gesture if, at any time, you receive an event with >1 touches.

3. Continue gesture if you receive a touchmove event mostly in the x-direction.

4. Abort gesture if you receive a touchmove event mostly the y-direction.

5. End gesture if you receive a touchend event.

Handling Gesture Events

Multi-touch events can be combined together to form high-level gesture events.

GestureEvent objects are also sent during a multi-touch sequence. Gesture events contain scaling and
rotation information allowing gestures to be combined, if supported by the platform. If not supported, one
gesture ends before another starts. Listen for GestureEvent objects if you want to respond to gestures
only, not process the low-level TouchEvent objects. The different types of gesture events are described in
GestureEvent in Safari DOM Additions Reference.

Follow these steps to use gesture events in your web application.

1. Register handlers for gesture events in HTML:

<div
 ongesturestart="gestureStart(event);"
 ongesturechange="gestureChange(event);"
 ongestureend="gestureEnd(event);"
></div>

2. Alternatively, register handlers in JavaScript:

element.addEventListener("gesturestart", gestureStart, false);
element.addEventListener("gesturechange", gestureChange, false);
element.addEventListener("gestureend", gestureEnd, false);

3. Respond to gesture events by implementing handlers in JavaScript.

For example, implement the gestureChange method as follows:

function gestureChange(event) {
 // Insert your code here
}

4. Get the amount of rotation since the gesture started:

var angle = event.rotation;

The angle is in degrees, where clockwise is positive and counterclockwise is negative.

5. Get the amount scaled since the gesture started:

70 Handling Gesture Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

var scale = event.scale;

The scale is smaller if less than 1.0 and larger if greater than 1.0.

You can combine gesture events with CSS visual effects to enable scaling, rotating, or some other custom
user action. For example, implement the gesturechange event handler to scale and rotate the target as
follows:

onGestureChange: function(e) {
 e.preventDefault();
 e.target.style.webkitTransform =
 'scale(' + e.scale + startScale + ') rotate(' + e.rotation +
startRotation + 'deg)';
}

Preventing Default Behavior

iPhone OS Note: The preventDefault method applies to multi-touch and gesture input in iPhone OS 2.0
and later.

The default behavior of Safari on iPhone OS can interfere with your application’s custom multi-touch and
gesture input. You can disable the default browser behavior by sending the preventDefault message to
the event object.

For example, to prevent scrolling on an element in iPhone OS 2.0, implement the touchmove and touchstart
event handlers as follows :

function touchMove(event) {
 // Prevent scrolling on this element
 event.preventDefault();
 ...
}

To disable pinch open and pinch close gestures in iPhone OS 2.0, implement the gesturestart and
gesturechange event handlers as follows:

function gestureChange(event) {
 // Disable browser zoom
 event.preventDefault();
 ...
}

Preventing Default Behavior 71
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

Important: The default browser behavior may change in future releases.

Handling Orientation Events

An event is sent when the user changes the orientation of iPhone OS. By handling this event in your web
content, you can determine the current orientation of the device and make layout changes accordingly. For
example, display a simple textual list in portrait orientation and add a column of icons in landscape orientation.

Similar to a resize event, a handler can be added to the <body> element in HTML as follows:

<body onorientationchange="updateOrientation();">

where updateOrientation is a handler that you implement in JavaScript.

In addition, the window object has an orientation property set to either 0, -90, 90, or 180. For example,
if the user starts with the iPhone in portrait orientation and then changes to landscape orientation by turning
the iPhone to the right, the window’s orientation property is set to -90. If the user instead changes to
landscape by turning the iPhone to the left, the window’s orientation property is set to 90.

Listing 6-3 adds an orientation handler to the body element and implements the updateOrientation
JavaScript method to display the current orientation on the screen. Specifically, when an orientationchange
event occurs, the updateOrientation method is invoked, which changes the string displayed by the
division element in the body.

Listing 6-3 Displaying the orientation

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Orientation</title>
 <meta name = "viewport" content="width=320, user-scalable=0"/>

 <script type="text/javascript" language="javascript">

 function updateOrientation()
 {
 var displayStr = "Orientation : ";

 switch(window.orientation)
 {
 case 0:
 displayStr += "Portrait";
 break;

 case -90:
 displayStr += "Landscape (right, screen turned
clockwise)";
 break;

 case 90:

72 Handling Orientation Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

 displayStr += "Landscape (left, screen turned
counterclockwise)";
 break;

 case 180:
 displayStr += "Portrait (upside-down portrait)";
 break;

 }
 document.getElementById("output").innerHTML = displayStr;
 }
 </script>
 </head>
 <body onorientationchange="updateOrientation();">
 <div id="output"></div>
 </body>
</html>

Supported Events

Be aware of all the events that iPhone OS supports and under what conditions they are generated. Table 6-1
specifies which events are generated by Safari on iPhone OS and which are generated conditionally depending
on the type of element selected. This table also lists unsupported events.

iPhone OS Note: Although drag and drop are not supported, you can produce the same effect using touch
events as described in “Using Touch to Drag Elements” in Safari CSS Visual Effects Guide.

Table 6-1 Types of events

AvailableConditionalGeneratedEvent

iPhone OS 1.0 and later.YesYesmousemove

iPhone OS 1.0 and later.YesYesmousedown

iPhone OS 1.0 and later.YesYesmouseup

iPhone OS 1.0 and later.YesYesmouseover

iPhone OS 1.0 and later.YesYesmouseout

iPhone OS 1.0 and later.YesYesclick

iPhone OS 1.0 and later.NoYesblur

iPhone OS 1.0 and later.NoYesfocus

iPhone OS 1.0 and later.NoYesload

iPhone OS 1.0 and later.NoYesunload

iPhone OS 1.0 and later.NoYesreset

Supported Events 73
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

AvailableConditionalGeneratedEvent

iPhone OS 1.0 and later.NoYessubmit

iPhone OS 1.0 and later.NoYeschange

iPhone OS 1.0 and later.NoYesabort

N/ANocut

N/ANocopy

N/ANopaste

N/ANoselection

N/ANodrag

N/ANodrop

iPhone OS 1.1.1 and later.N/AYesorientationchange

iPhone OS 2.0 and later.N/AYestouchstart

iPhone OS 2.0 and later.N/AYestouchmove

iPhone OS 2.0 and later.N/AYestouchend

iPhone OS 2.0 and later.N/AYestouchcancel

iPhone OS 2.0 and later.N/AYesgesturestart

iPhone OS 2.0 and later.N/AYesgesturechange

iPhone OS 2.0 and later.N/AYesgestureend

74 Supported Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Handling Events

A web application is designed to look and behave in a way similar to a native application—for example, it
is scaled to fit the entire screen on iPhone OS. You can tailor your web application for Safari on iPhone OS
even further, by making it appear like a native application when the user adds it to the Home screen. You
do this by using settings for iPhone OS that are ignored by other platforms.

For example, you can specify an icon for your web application used to represent it when added to the Home
screen on iPhone OS, as described in “Specifying a Webpage Icon for Web Clip” (page 75). You can also
minimize the Safari on iPhone OS user interface, as described in “Changing the Status Bar Appearance” (page
76) and “Hiding Safari User Interface Components” (page 76), when your web application is launched from
the Home screen. These are all optional settings that when added to your web content are ignored by other
platforms.

Read “Viewport Settings for Web Applications” (page 49) for how to set the viewport for web applications
on iPhone OS.

Specifying a Webpage Icon for Web Clip

iPhone OS Note: The Web Clip feature is available in iPhone OS 1.1.3 and later. The
apple-touch-icon-precomposed.png filename is available in iPhone OS 2.0 and later.

You may want users to be able to add your web application or webpage link to the Home screen. These links,
represented by an icon, are called Web Clips. Follow these simple steps to specify an icon to represent your
web application or webpage on iPhone OS.

 ■ To specify an icon for the entire website (every page on the website), place an icon file in PNG format
in the root document folder calledapple-touch-icon.pngorapple-touch-icon-precomposed.png.
If you use apple-touch-icon-precomposed.png as the filename, Safari on iPhone OS won’t add any
effects to the icon.

 ■ To specify an icon for a single webpage or replace the website icon with a webpage-specific icon, add
a link element to the webpage, as in:

<link rel="apple-touch-icon" href="/custom_icon.png"/>

In the above example, replace custom_icon.png with your icon filename. If you don’t want Safari on
iPhone OS to add any effects to the icon, replace apple-touch-icon with
apple-touch-icon-precomposed.

See “Create an Icon for Your Web Application or Webpage” in iPhone Human Interface Guidelines for Web
Applications for webpage icon metrics.

Specifying a Webpage Icon for Web Clip 75
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Web Applications

Specifying a Startup Image

iPhone OS Note: Specifying a startup image is available in iPhone OS 3.0 and later.

On iPhone OS, similar to native applications, you can specify a startup image that is displayed while your
web application launches. This is especially useful when your web application is offline. By default, a screenshot
of the web application the last time it was launched is used. To set another startup image, add a link element
to the webpage, as in:

<link rel="apple-touch-startup-image" href="/startup.png">

In the above example, replace startup.png with your startup screen filename. On iPhone and iPod touch,
the image must be 320 x 460 pixels and in portrait orientation.

Hiding Safari User Interface Components

As part of optimizing your web application for Safari on iPhone OS, have it launch in full-screen mode to look
like a native application. When using full-screen mode, Safari is not used to display the web
content—specifically, there is no browser URL text field at the top of the screen or button bar at the bottom
of the screen. Only a status bar appears at the top of the screen. Read “Changing the Status Bar
Appearance” (page 76) for how to minimize the status bar.

Set the apple-mobile-web-app-capablemeta tag to yes to turn on this feature. For example, the following
HTML displays web content in full-screen mode.

<meta name="apple-mobile-web-app-capable" content="yes" />

You can determine whether a webpage is displayed in full-screen mode using the
window.navigator.standalone read-only Boolean JavaScript property.

Changing the Status Bar Appearance

If your web application displays in full-screen mode like that of a native application, you can minimize the
status bar that is displayed at the top of the screen on iPhone OS. Do so using the status-bar-style meta tag.

This meta tag has no effect unless you first specify full-screen mode as described in “Hiding Safari User
Interface Components” (page 76). Then use the status bar style meta tag,
apple-mobile-web-app-status-bar-style, to change the appearance of the status bar depending on
your application needs. For example, if you want to use the entire screen, set the status bar style to translucent
black.

For example, the following HTML sets the background color of the status bar to black:

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

76 Specifying a Startup Image
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Web Applications

Safari supports audio and video viewing in a webpage on the desktop and iPhone OS. You can use audio
and video HTML elements or use the embed element to use the native application for video playback. In
either case, you need to ensure that the video you create is optimized for the platform and different
bandwidths.

iPhone OS streams movies and audio using HTTP over EDGE, 3G, and Wi-Fi networks. iPhone OS uses a native
application to play back video even when video is embedded in your webpages. Video automatically expands
to the size of the screen and rotates when the user changes orientation. The controls automatically hide
when they are not in use and appear when the user taps the screen. This is the experience the user expects
when viewing all video on iPhone OS.

Safari on iPhone OS supports a variety of rich media, including QuickTime movies, as described in “Use
Supported iPhone OS Rich Media MIME Types” (page 24). Safari on iPhone OS does not support Flash so
don’t bring up JavaScript alerts that ask users to download Flash. Also, don’t use JavaScript movie controls
to play back video since iPhone OS supplies its own controls.

Safari on the desktop supports the same audio and video formats as Safari on iPhone OS. However, if you
use the audio and video HTML elements on the desktop, you can customize the play back controls. See
Safari DOM Additions Reference for more details on the HTMLMediaElement class.

Follow these guidelines to deliver the best web audio and video experience in Safari on any platform:

 ■ Follow current best practices for embedding movies in webpages as described in “Sizing Movies
Appropriately” (page 77), “Don’t Let the Bit Rate Stall Your Movie” (page 78), and “Using Supported
Movie Standards” (page 78).

 ■ Use QuickTime Pro to encode H.264/AAC at appropriate sizes and bit rates for EDGE, 3G, and Wi-Fi
networks, as described in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 78).

 ■ Use reference movies so that iPhone OS automatically streams the best version of your content for the
current network connection, as described in “Creating a Reference Movie” (page 79).

 ■ Use poster JPEGs (not poster frames in a movie) to display a preview of your embedded movie in
webpages, as described in “Creating a Poster Image for Movies” (page 80).

 ■ Make sure the HTTP servers hosting your media files support byte-range requests, as described in
“Configuring Your Server” (page 81).

 ■ If your site has a custom media player, also provide direct links to the media files. iPhone OS users can
follow these links to play those files directly.

Sizing Movies Appropriately

In landscape orientation on iPhone OS, the screen is 480 x 320 pixels. Users can easily switch the view mode
between scaled-to-fit (letterboxed) and full-screen (centered and cropped). You should use a size that preserves
the aspect ratio of your content and fits within a 480 x 360 rectangle. 480 x 360 is a good choice for 4:3 aspect

Sizing Movies Appropriately 77
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

ratio content and 480 x 270 is a good choice for widescreen content as it keeps the video sharp in full-screen
view mode. You can also use 640 x 360 or anamorphic 640 x 480 with pixel aspect ratio tagging for widescreen
content.

Don’t Let the Bit Rate Stall Your Movie

When viewing media over the network, the bit rate makes a crucial difference to the playback experience. If
the network cannot keep up with the media bit rate, playback stalls. Encode your media for iPhone OS as
described in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 78) and use a reference movie as described in
“Creating a Reference Movie” (page 79).

Using Supported Movie Standards

The following compression standards are supported:

 ■ H.264 Baseline Profile Level 3.0 video, up to 640 x 480 at 30 fps. Note that B frames are not supported
in the Baseline profile.

 ■ MPEG-4 Part 2 video (Simple Profile)

 ■ AAC-LC audio, up to 48 kHz

Movie files with the extensions .mov, .mp4, .m4v, and .3gp are supported.

Any movies or audio files that can play on iPod play correctly on iPhone.

If you export your movies using QuickTime Pro 7.2, as described in “Encoding Video for Wi-Fi, 3G, and
EDGE” (page 78), then you can be sure that they are optimized to play on iPhone OS.

Encoding Video for Wi-Fi, 3G, and EDGE

Because users may be connected to the Internet via wired or wireless technology, using either Wi-Fi, 3G, or
EDGE on iPhone OS, you need to provide alternate media for these different connection speeds. You can use
QuickTime Pro, the QuickTime API, or any Apple applications that provide iPhone OS exporters to encode
your video for Wi-Fi, 3G, and EDGE. This section contains specific instructions for exporting video using
QuickTime Pro.

Follow these steps to export video using QuickTime Pro 7.2.1 and later:

1. Open your movie using QuickTime Player Pro.

2. Choose File > Export for Web.

A dialog appears.

78 Don’t Let the Bit Rate Stall Your Movie
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

3. Enter the file name prefix, location of your export, and set of versions to export as shown in Figure 8-1.

Figure 8-1 Export movie panel

4. Click Export.

QuickTime Player Pro saves these versions of your QuickTime movie, along with a reference movie, poster
image, and ReadMe.html file to the specified location. See the ReadMe.html file for instructions on
embedding the generated movie in your webpage, including sample HTML.

Creating a Reference Movie

A reference movie contains a list of movie URLs, each of which has a list of tests, as show in Figure 8-2. When
opening the reference movie, a playback device or computer chooses one of the movie URLs by finding the
last one that passes all its tests. Tests can check the capabilities of the device or computer and the speed of
the network connection.

Creating a Reference Movie 79
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

Figure 8-2 Reference movie components

iPhone over EDGE

iPhone over WiFi

Computer desktop

80 kbit
foo-iPhone-cell.3gp

1 Mbit
foo-iPhone.m4v

Main Profile
foo-desktop.m4v

foo-ref.mov

If you use QuickTime Pro 7.2.1 or later to export your movies for iPhone OS, as described in “Encoding Video
for Wi-Fi, 3G, and EDGE” (page 78), then you already have a reference movie. Otherwise, you can use the
MakeRefMovie tool to create reference movies. You can download the tool from:

http://developer.apple.com/quicktime/quicktimeintro/tools

Also, refer to the MakeiPhoneRefMovie sample for a command-line tool that creates reference movies.

For more details on reference movies and instructions on how to set them up see “Applications and Examples”
in HTML Scripting Guide for QuickTime.

Creating a Poster Image for Movies

The video is not decoded until the user enters movie playback mode. Consequently, when displaying a
webpage with video, users may see a gray rectangle with a QuickTime logo until they tap the Play button.
Therefore, use a poster JPEG as a preview of your movie. If you use QuickTime Pro 7.2.1 or later to export
your movies, as described in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 78), then a poster image is
already created for you. Otherwise, follow these instructions to set a poster image.

If you are using the <video> element, specify a poster image by setting the poster attribute as follows:

<video poster="poster.jpg" src="movie.m4v" ...> </video>

If you are using an <embed> HTML element, specify a poster image by setting the image for src, the movie
for href, the media MIME type for type, and myself as the target:

<embed src="poster.jpg" href="movie.m4v" type="video/x-m4v" target="myself"
scale="1" ...>

Make similar changes if you are using the <object> HTML element or JavaScript to embed movies in your
webpage.

On the desktop, this image is displayed until the user clicks, at which time the movie is substituted.

80 Creating a Poster Image for Movies
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

http://developer.apple.com/quicktime/quicktimeintro/tools

For more information on including QuickTime Movies in webpages, see the tutorial Including QuickTime In
A Web Page.

Configuring Your Server

HTTP servers hosting media files for iPhone OS must support byte-range requests, which iPhone OS uses to
perform random access in media playback. (Byte-range support is also known as content-range or partial-range
support.) Most, but not all, HTTP 1.1 servers already support byte-range requests.

If you are not sure whether your media server supports byte-range requests, you can open the Terminal
application in Mac OS X and use the curl command-line tool to download a short segment from a file on
the server:

curl --range 0-99 http://example.com/test.mov -o /dev/null

If the tool reports that it downloaded 100 bytes, the media server correctly handled the byte-range request.
If it downloads the entire file, you may need to update the media server. For more information on curl, see
Mac OS X Man Pages.

Ensure that your HTTP server sends the correct MIME types for the movie filename extensions shown in Table
8-1.

Table 8-1 File name extensions for MIME types

MIME typeExtensions

video/quicktime.mov

video/mp4.mp4

video/x-m4v.m4v

video/3gpp.3gp

Be aware that iPhone OS supports movies larger than 2 GB. However, some older web servers are not able
to serve files this large. Apache 2 supports downloading files larger than 2 GB.

RTSP is not supported.

Configuring Your Server 81
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

http://www.apple.com/quicktime/tutorials/embed.html
http://www.apple.com/quicktime/tutorials/embed.html

82 Configuring Your Server
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Creating Video

There are several ways for a web application or website to store data on the client. You can use the JavaScript
database classes, described in Safari Client-Side Storage andOffline Applications ProgrammingGuide, for storing
application data or use the HTML5 application cache for storing resources on the client so webpages continue
to display offline when there is no network connection on the desktop and iPhone OS. You can also use the
application cache to load webpages faster when there is a slow network connection. This chapter describes
how to store data locally using this HTML5 application cache.

To store resources on the client first you create a manifest file specifying which resources to cache. You
declare the manifest file in the main HTML file. Then you manipulate the cache and handle related events
using JavaScript. Webpages that were previously loaded and contain the resources you specify continue to
display correctly when there is no network. The application cache also persists between browser sessions.
So, a web application that was previously used on the computer or device can continue to work offline—for
example, when iPhone OS has no network or is in airplane mode.

Creating a Manifest File

The manifest file specifies the resources—such as HTML, JavaScript, CSS, and image files —to downloaded
and store in the application cache. After the first time a webpage is loaded, the resources specified in the
manifest file are obtained from the application cache, not the web server.

The manifest file has the following attributes:

 ■ It must be served with type text/cache-manifest.

 ■ The first line must contain the text CACHE MANIFEST.

 ■ Subsequent lines may contain URLs for each resource to cache or comments.

 ■ Comments must be on a single line and preceded by the # character.

 ■ The URLs are file paths to resources you want to download and cache locally. The file paths should be
relative to the location of the manifest file—similar to file paths used in CSS—or absolute.

 ■ The HTML file that declares the manifest file, described in “Declaring a Manifest File” (page 84), is
automatically included in the application cache. You do not need to add it to the manifest file.

For example, Listing 9-1 shows a manifest file that contains URLs to some image resources.

Listing 9-1 Sample manifest file

CACHE MANIFEST

demoimages/clownfish.jpg
demoimages/clownfishsmall.jpg
demoimages/flowingrock.jpg
demoimages/flowingrocksmall.jpg

Creating a Manifest File 83
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Storing Data on the Client

demoimages/stones.jpg
demoimages/stonessmall.jpg

Declaring a Manifest File

After you create a manifest file you need to declare it in the HTML file. You do this by adding a manifest
attribute to the <html> tag as follows:

<html manifest="demo.manifest">

The argument to the manifest attribute is a relative or absolute path to the manifest file.

In most cases, creating a manifest file and declaring it is all you need to do to create an application cache.
After doing this, the resources are automatically stored in the cache the first time the webpage is displayed
and loaded from the cache by multiple browser sessions thereafter. Read the following sections if you want
to manipulate this cache from JavaScript.

Updating the Cache

You can wait for the application cache to update automatically or trigger an update using JavaScript. The
application cache automatically updates only if the manifest file changes. It does not automatically update
if resources listed in the manifest file change. The manifest file is considered unchanged if it is byte-for-byte
the same; therefore, changing the modification date of a manifest file also does not trigger an update. If this
is not sufficient for your application, you can update the application cache explicitly using JavaScript.

Note that errors can also occur when updating the application cache. If downloading the manifest file or a
resource specified in the manifest file fails, the entire update process fails. If the update process fails, the
current application cache is not corrupted—the browser continues to use the previous version of the
application cache. If the update is successful, webpages begin using the new cache when they reload.

Use the following JavaScript class to trigger an update to the application cache and check its status. There
is one application cache per document represented by an instance of the DOMApplicationCache class. The
application cache is a property of the DOMWindow object.

For example, you get the DOMApplicationCache object as follows:

cache = window.applicationCache;

You can check the status of the application cache as follows:

if (window.applicationCache.status == window.applicationCache.UPDATEREADY)...

If the application cache is in the UPDATEREADY state, then you can update it by sending it the update()
message as follows:

window.applicationCache.update();

If the update is successful, swap the old and new caches as follows:

window.applicationCache.swapCache();

84 Declaring a Manifest File
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Storing Data on the Client

The cache is ready to use when it returns to the UPDATEREADY state. See the documentation for
DOMApplicationCache for other status values. Again, only webpages loaded after an update use the new
cache, not webpages that are currently displayed by the browser.

iPhone OS Note: Using JavaScript to add and remove resources from the application cache is currently not
supported.

Handling Cache Events

You can also listen for application cache events using JavaScript. Events are sent when the status of the
application cache changes or the update process fails. You can register for these events and take the
appropriate action.

For example, register for the updateready event to be notified when the application cache is ready to be
updated. Also, register for the error event to take some action if the update process fails—for example, log
an error message using the console.

cache = window.applicationCache;
cache.addEventListener('updateready', cacheUpdatereadyListener, false);
cache.addEventListener('error', cacheErrorListener, false);

See the documentation for DOMApplicationCache for a complete list of event types.

Handling Cache Events 85
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Storing Data on the Client

86 Handling Cache Events
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Storing Data on the Client

iPhone OS Note: Geographic location classes are available in iPhone OS 3.0 and later.

Use the JavaScript classes described in this chapter to obtain or track the current geographic location of the
host device. These classes hide the implementation details of how the location information is obtained—for
example, using Global Positioning System (GPS), IP addresses, Wi-Fi, Bluetooth, or some other technology.
The classes allow you to get the current location or get continual updates on the location as it changes.

Geographic Location Classes

The Navigator object has a read-only Geolocation instance variable. You obtain location information
from this Geolocation object. The parameters to the Geolocation methods that get location information
are mostly callbacks, instances of PositionCallback or PositionErrorCallback. Because there may
be a delay in getting location information, it cannot be returned immediately by these methods. The callbacks
that you specify are invoked when the location information is obtained or an error occurs. If the location
information is obtained, the position callback is passed a position object describing the geographic location.
If an error occurs, the error callback is passed an instance of PositionError describing the error. The position
object represents the location in latitude and longitude coordinates.

Getting the Current Location

The most common use of the Geolocation class is to get the current location. For example, your web
application can get the current location and display it on a map for the user. Use the getCurrentPosition
method in Geolocation to get the current location from the Navigator object. Pass your callback function
as the parameter to the getCurrentPosition method as follows:

 // Get the current location
 navigator.geolocation.getCurrentPosition(showMap);

Your callback function—the showMap function in this example—should take a position object as the parameter
as follows:

 function showMap(position) {
 // Show a map centered at position
 }

Use the coords instance variable of the passed-in position object to obtain the latitude and longitude
coordinates as follows:

 latitude = position.coords.latitude;
 longitude = position.coords.longitude;

Geographic Location Classes 87
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Getting Geographic Locations

Tracking the Current Location

You can also track the current location. For example, if your web application displays the current location on
a map, you can register for location changes and continually scroll the map as the current location changes.
When you register for location changes, you receive a callback every time the location changes. The callbacks
are continual until you unregister for location changes.

Use the watchPosition method in the Geolocation class to register for location changes. Pass your
callback function as the parameter. In this example, the scrollMap function is invoked every time the current
location changes:

 // Register for location changes
 var watchId = navigator.geolocation.watchPosition(scrollMap);

The callback function should take a position object as the parameter as follows:

 function scrollMap(position) {
 // Scroll the map to center position
 }

Similar to “Getting the Current Location” (page 87), use the coords instance variable of the passed in position
object to obtain the latitude and longitude coordinates.

Use the clearWatch method in the Geolocation class to unregister for location changes. For example,
unregister when the user clicks a button or taps a finger on the map as follows:

 function buttonClickHandler() {
 // Unregister when the user clicks a button
 navigator.geolocation.clearWatch(watchId);
 }

Handling Location Errors

Your web application should handle errors that can occur when requesting location information. For example,
display a message to the user if the location cannot be determined due to poor network connectivity or
some other error.

When registering for location changes, you can optionally pass an error callback to the watchPosition
method in the Geolocation class as follows:

 // Register for location changes
 var watchId = navigator.geolocation.watchPosition(scrollMap, handleError);

The error callback should take a PositionError object as the parameter as in:

 function handleError(error) {
 // Update a div element with the error message
 }

88 Tracking the Current Location
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

Getting Geographic Locations

You should test your web content on both the desktop and various iPhone OS devices. If you do not have
iPhone OS devices for testing, you can use Simulator in the iPhone OS SDK. Because the screen is larger and
Safari behaves slightly differently on iPad, you should specifically test your content on an iPad device or by
setting the hardware device in Simulator to iPad. You can also simulate iPad-like behavior in Safari on the
desktop by changing the user agent string. When testing in Safari on any platform, you can use the Debug
Console to debug your web content.

Safari on iPhone OS provides a Debug Console that allows you to debug your web content and applications
in Simulator and the device. The console displays errors, warnings, tips, and logs for HTML, JavaScript, and
CSS. The console also shows uncaught JavaScript exceptions as errors. This chapter describes how to enable
the Debug Console, view the console messages, and print your own messages to the console.

For more tips on debugging web content in Safari, read Safari User Guide forWebDevelopers. Read the section
“Changing the User Agent String” in Safari UserGuide forWebDevelopers for how to simulate iPad-like behavior
in Safari on the desktop—select Other from the User Agent submenu and enter the iPad user agent string
described in “Using the Safari User Agent String” (page 31).

iPhone OS Note: The Debug Console is available in iPhone OS 1.1.1 and later.

Enabling the Safari Console

You turn on the Debug Console using the Developer Settings for Safari on iPhone OS as follows:

1. Click Settings on the main page.

2. Click Safari.

Enabling the Safari Console 89
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

3. Scroll down and select Developer as shown in Figure 11-1.

Figure 11-1 Selecting Developer settings

4. Switch Debug Console to ON as shown in Figure 11-2.

Figure 11-2 Enabling the Debug Console

90 Enabling the Safari Console
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

Viewing Console Messages

When the Debug Console is on, a banner appears above your webpage if there are messages in the console,
as shown in Figure 11-3. Click the banner to view the messages.

Figure 11-3 The message banner

The console displays the messages in the order in which they occur, as shown in Figure 11-4. Each message
description contains the type of message, the line number and filename of the document, and the text
message. The types of messages are log, info, warning, and error. Click the Clear button to remove all messages
from the console.

Viewing Console Messages 91
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

Figure 11-4 Messages in the console

You can also filter the list by HTML, JavaScript, and CSS messages by clicking the respective button at the
bottom of the screen. Figure 11-5 shows the HTML messages filtered on the left and the JavaScript messages
filtered on the right.

Figure 11-5 Filtered console messages

HTML messages JavaScript messages

92 Viewing Console Messages
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

Tips appear in the console if you don’t follow certain guidelines. For example, if you set the viewport width
to 320 instead of using the device-width constant, then an HTML tip appears in the console as shown in
Figure 11-6. A similar tip appears if you set the viewport height to 480 instead of using the device-height
constant.

Figure 11-6 Viewport width or height tip

For example, the following HTML fragment generates the first three HTML messages in the console shown
on the left side in Figure 11-5 (page 92). Syntax errors also generate messages.

<meta name = "viewport" content = "width = 320, height = 480, m = no">

The console catches JavaScript errors too. For example, the following JavaScript code causes a timeout—it
contains an infinite loop—and generates the error message shown in Figure 11-7.

<script>
while (true) a = 9;
</script>

Figure 11-7 JavaScript timeout message

Creating Messages in JavaScript

You can print your own messages to the console using JavaScript. You do this by using the console attribute
of the window object in JavaScript.

For example, the following code line prints the value of a variable to the console using the log() method:

console.log("x = " + x);

You can also create your own error and warning messages using the error() and warn() methods as in
this code fragment:

<script>
console.log("My log message goes here.");
console.warn("My warning message goes here.");

Creating Messages in JavaScript 93
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

console.error("My error message goes here.");
console.info("My information message goes here.");
</script>

This code fragment generates the console messages shown in Figure 11-8. The info() method is the same
as log()—it’s provided for backward compatibility.

Figure 11-8 Console messages from your JavaScript code

94 Creating Messages in JavaScript
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Debugging

HyperText Markup Language (HTML) is the fundamental mark-up language used to create web content. Your
HTML needs to be well structured and valid to work well with Safari on the desktop and Safari on iPhone OS.
Read this appendix to learn more about creating conforming HTML content.

See Safari HTML Reference for a complete guide to all the HTML elements supported by Safari.

What Is HTML?

HTML is the standard for content structure on the web. Its original intention of the designers was to provide
the structure required for web browsers to parse its content into a meaningful format. This structure could
define entire documents, complete with headings, text, lists, data tables, images, and more. As the web
flourished, it also began to incorporate style and multimedia aspects as well.

Arguably the most important feature of HTML is the ability to "hyperlink" text. This gives content providers
the ability to assign the URI of other content on the web to a block of text, allowing it to be clicked and
followed by the user of the content.

The most recent revisions of the HTML standard are returning to the "old days" of separating the structure
of web content (HTML) from the presentation of the content (using a technology called Cascading Style
Sheets, or CSS). You can learn more about creating effective web content style in the “CSS Basics” (page 101)
appendix.

This appendix, conversely, covers only the structure of HTML and how to properly format a document for a
variety of clients. It does not discuss advanced HTML features or proper webpage layout and design.

Basic HTML Structure

There are a few basic structure blocks that make up the core of an HTML document. The blocks are described
in the context of the HTML code shown in Listing A-1.

Listing A-1 Basic HTML document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
 "http://www.w3.org/TR/REC-html40/strict.dtd">
<html>
 <head>
 <title>HTML Sample Code</title>
 </head>
 <body>
 <div>

 </div>

What Is HTML? 95
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

 <h1>Big Heading</h1>
 <p>This is our HTML sample code. It shows many elements:</p>

 The HTML document block.
 The HEAD and title of the page.
 A paragraph.
 An unordered list.

 </body>
</html>

The html document block: The <html> document block is the entirety of the HTML code for a webpage. In
the example, the tags defining this block—<html> and </html>—are located towards the top and bottom
of the document. The document is prefaced with a DOCTYPE declaration, which tells browsers which
specification to parse your webpage against. If you are following the strict conventions of the HTML
specification, you should use the declaration shown above. Otherwise it can be left off, but it defaults to a
"quirks" mode. Refer to the HTML 4.01 Specification for more on document validation types.

The head block: The <head> block defines a block of metadata about the webpage. In this case, you can
see the webpage has a <title> element within it. The title is the text that is displayed at the top of a web
browser window. The <head> block also can contain a variety of other metadata, such as externally linked
CSS style sheets (using the link tag) and sets of JavaScript functions. This block should always contain at
least the title, and should always be external to the body content.

The body block: This block defines the entire body of the document—it should encompass the visible content
of the webpage itself. The body block itself is not designed for inline content. Rather, you should define other
block elements (such as paragraphs, divisions, and headers) and embed content within them. The <body>
block should be used to specify style parameters for the entirety of the content.

Other block elements: There are a number of other fundamental block elements enclosed within the content's
<body> block. They include:

 ■ Heading. Specified in this case by the <h1> and </h1> tags, this defines the header for a following block
of content. The headers can be of six different sizes, ranging from a very large first-level heading (defined
with the <h1> and </h1> tags) down to a small sixth-level heading (defined with the <h6> and </h6>
tags). It should contain only brief text—other content such as large text blocks, images, and movies
should be embedded in other appropriate block elements such as paragraphs and divisions.

 ■ Paragraph. Specified by the <p> and </p> tags, this is one of the fundamental block elements for web
content. Each individual paragraph should contain the inline text content that defines the readable
content of a webpage and should not enclose any other block elements. Generally, paragraph blocks
are for text only. An alternative to the paragraph is the division, and that is the most appropriate block
element for other media types such as images and movies.

 ■ Division/Section. Specified by the <div> and </div> tags, the division is designed to contain all kinds
of content, including text, images, and other multimedia. It also can encompass other block elements
such as paragraphs, though enclosing divisions within other divisions is generally not recommended.
Generally, division blocks are used to define unified styles for blocks of content. In the example above,
the division block contains the heading image for the webpage.

 ■ List. HTML supports two basic kinds of lists, the ordered list (specified by the and tags) and
the unordered list (specified by the and tags), as in the example above. An ordered list tags
each list element (specified by the and tags) with an incremental number (1, 2, 3, and so
on). An unordered list tags each list element with a bullet, though this marker can be changed using
CSS styling.

96 Basic HTML Structure
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

http://www.w3.org/TR/REC-html40/

Now you've learned some of the fundamental skeleton elements of HTML structure. Block elements such as
paragraphs and divisions are the core of the content—by themselves they are invisible, but they contain
inline elements such as text, images, and movies. The next section takes you a little deeper into some features
of HTML content.

Creating Effective HTML Content

You've learned about the fundamental elements that define HTML structure, but a webpage is useless without
any kind of content in it. Now that you've laid down the foundation for the webpage, you should place some
content to create a rich experience for your users. This appendix discusses some basic inline HTML elements;
for all the elements supported by Safari and WebKit, refer to Safari HTML Reference.

The most common web content contains a lot of text and a few images. Think of a travel journal, for example,
that has a discussion of the day's events alongside a few photos from the journey. As the Internet has matured,
you may have seen more in the way of movies, animations, and other "rich" forms of content introduced to
the web. But the most common media is still a combination of text and images.

Displaying text is a simple thing in HTML. Once you've established the surrounding block element—a
paragraph, for example, as discussed in the previous section—the text can just be placed inline. An example
from the fictional travel journal might be as shown in Listing A-2:

Listing A-2 Adding a paragraph

<p>
Today, we arrived in Cupertino, California. We visited the Apple campus. It was
 a bright sunny day and exhibited none of the fog that was so prevalent during
 our stay in San Francisco.
</p>

It's a simple textual entry, but there's not much else to it. A good travel journal also marks the date and time
of each entry, so you should add that to the content, as well. Listing A-3 shows the time and date added as
a heading.

Listing A-3 Adding a heading

<h1>Friday, May 20, 2005 - 4:40PM</H1>
<p>
Today, we arrived in Cupertino, California. We visited the Apple campus. It was
 a bright sunny day and exhibited none of the fog that was so prevalent during
 our stay in San Francisco.
</p>

It's still a simple textual entry, but at least you've provided your reader with a little extra information. But
what if your reader has no idea what Apple is? One of the great features of HTML is the ability to "hyperlink"
documents—create links to external webpages. Using the <a> and hyperlink tags, you can link your
reader to the Apple website as shown in Listing A-4.

Listing A-4 Creating a hyperlink

<h1>Friday, May 20, 2005 - 4:40PM</H1>
<p>
Today, we arrived in Cupertino, California. We visited the Apple campus. It was a

Creating Effective HTML Content 97
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

 bright sunny day and exhibited none of the fog that was so prevalent during
our stay in San Francisco.
</p>

Notice that the word "Apple" is now surrounded by this hyperlink element. The element describes two
particular attributes:

 ■ The href attribute: This links to the URL of the webpage you want to link to. If you specified a relative
URL, such as "myPage.html" or "/pages/myPage.html", the link would point to a file within the same
folder as your code, or in a separate folder, respectively. In this example, the value is a fully qualified
URL, so it simply links to that site (the Apple homepage).

 ■ The title attribute: This is an optional attribute, but one you should get into the habit of using. The
title attribute provides an alternate description of the link. In Safari, holding the mouse over the
hyperlink for a couple of seconds reveals this value as a tooltip. It's a great way to provide information
about a link before the user clicks it, letting them decide if they want to leave your webpage or not.
Additionally, this information is used by screen readers and other accessibility devices, so by using this
attribute, you help extend your content to a larger community.

With this hyperlink in place, the word "Apple" in the travel journal is now displayed as a clickable link. Clicking
the word redirects the user to the Apple homepage.

So far the travel journal reads great. But to really capture the attention of your readers, you might want to
include an image. An image in HTML is specified by the tag. It's important to note that an image is
an inline element, so needs to be placed within a block element such as a paragraph. It is also a little different
from some other inline elements in that it doesn't require a closing tag. Listing A-5 shows how to add an
image to the travel journal entry.

Listing A-5 Adding an image

<h1>Friday, May 20, 2005 - 4:40PM</h1>
<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
 bright sunny day and exhibited none of the fog that was so prevalent during
our stay in San Francisco.
</p>

Notice that the image definition looks a lot like the hyperlink definition. The src attribute defines the URL
to the image (with the same rules for relative versus absolute URLs as in the hyperlink), and the alt attribute
defines a block of alternate text—this text can also be read by screen readers, or can be shown by some
browsers when images are turned off in the browser.

Another small element we added was the
 line break element. Remember that an image is an inline
element, just like text. Without a forced line break, the image would display and the text would follow directly
after, left to right, one after the other. That's a little awkward for a travel journal, but useful when you have
small images (like mathematical equations) that you want integrated into the text. Add the line break to
force the next line of text to a new line.

Now you've learned about actual web content—the inline text and media that defines what a user reads
and views when they visit your webpage. This section is by no means an exhaustive discussion on the content
you can provide to your users. For more information on the content that Safari and WebKit support, refer to
Safari HTML Reference.

98 Creating Effective HTML Content
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

Using Other HTML Features

This section discusses a few more features of HTML that you may want to use in your web content.

One other common block element is the <table> block. You can add a <table> block to display any kind
of tabular data. To the previous example, let's add a table of temperatures that the journal writer experienced
on his or her day in Cupertino. For the information to be useful, you'll also want to add something about the
time at which the temperature was recorded. Both the time and temperature can be labeled using table
headers, specified by the <th> and </th> tags. Notice that the order of the table headers and table cells
(specified by the <TD> and </TD> tags) match within their particular row (specified by the <tr> and </tr>
tags) in Listing A-6.

Listing A-6 Creating a table

<h1>Friday, May 20, 2005 - 4:40PM</h1>
<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
 bright sunny day and exhibited none of the fog that was so prevalent during
our stay in San Francisco.
</p>

<table border="1" cellpadding="5" cellspacing="5">
 <tr>
 <th>Time</th>
 <th>Temperature</th>
 </tr>
 <tr>
 <td>9:00AM</td>
 <td>65 degrees</td>
 </tr>
 <tr>
 <td>12:00PM</td>
 <td>76 degrees</td>
 </tr>
 <tr>
 <td>3:00PM</td>
 <td>78 degrees</td>
 </tr>
</table>

The table definition itself contains some special attributes. The border attribute defines the width of the
border surrounding the table. The cellpadding attribute defines the width of the space between the cell
border and the content within. The cellspacing attribute defines the width of the spacing between
individual cells.

Another useful feature is the ability to integrate JavaScript—an interpreted language processed by web
browsers—within HTML. JavaScript can do a variety of tasks, many of which are addressed in WebKit DOM
Programming Topics. The JavaScript code can be embedded in external files, within the <script> block of
the webpage's <head> block, or even inline with the elements, using the various JavaScript delegates provided
by the browser. For example, if you want to display an alert when the user clicks a button, add the code (or
the function call, if the code is defined elsewhere) to the button's onClick delegate:

Using Other HTML Features 99
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

<input type="button" value="Click Me!" onClick="alert('This is an alert!')">

If you are new to JavaScript, read Apple JavaScript Coding Guidelines.

100 Using Other HTML Features
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

HTML Basics

Cascading Style Sheets (CSS) separates the presentation details from the HTML content, allowing you to
create style sheets for different platforms. If you are optimizing your web content for Safari on iPhone OS,
you need to use CSS to access some of the iPhone OS web content features. Read this appendix to learn how
to add CSS to existing HTML content.

See Safari CSS Reference for a complete guide to all the CSS properties supported by Safari.

What Is CSS?

CSS is an extension to standard HTML content that allows you to fine-tune the presentation of web content.
With CSS you can change a variety of style attributes of the content you are designing, such as the font for
a block of text, the background color of a table, or the leading (line spacing) between lines of text.

CSS allows you to cater to different clients and preferences, because you can change the style of a webpage
on the fly without ever editing the HTML structure. Instead of embedding style within the HTML structure,
such as using the bgcolor attribute for the webpage body, you should place CSS style definitions in a
separate block outside of it. In fact, your webpages are more maintainable if you separate your HTML and
CSS code into different files. This way, you can use one style sheet (which holds your style definitions) across
multiple webpages, dramatically simplifying your code.

The various ways you can define style for an HTML element within your webpages are described in the
remaining sections of this appendix.

Inline CSS

Using inline CSS—where style definitions are written directly into the HTML element definition—is perhaps
the easiest way to define style for an element. You can do this using the style attribute for the element.
For example, start with this paragraph:

<p>The quick brown fox jumped over the lazy dog.</p>

Without any style definitions, this renders in the default paragraph font and style for the browser rendering
it. But let's say you wanted to change the style of the paragraph to display in a boldface. You can do this
with the CSS font-weight property. To change the style for this one paragraph, add the font-weight key
and the value for the style you want directly to the paragraph's style attribute:

<p style="font-weight: bold;">The quick brown fox jumped over the lazy dog.</p>

This changes the font style of that paragraph to boldface. There are some downsides to using the style
definitions inline with the HTML, though:

What Is CSS? 101
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

CSS Basics

 ■ The definition is not reusable. For each paragraph that you want displayed in boldface, you have to type
the same style definition—one for each paragraph. If you wanted to change the bold style to an italic
style, for example, you would have to change the definition for each and every paragraph, as well.

 ■ The code can get cluttered. Most of the time, you won't have a single style definition. For a particular
paragraph, you may want to have it display in boldface, indent it 20 pixels from the left margin, and give
it a blue background color with a black border. At minimum, this requires four CSS style definitions for
each paragraph you want to match this style.

One of the big advantages of CSS is the ability to separate the style from the structure, but that advantage
is lost with this method. Other methods of using CSS in your content preserve the advantage, as explained
in the following sections.

Head-Embedded CSS

Near the beginning of every HTML document is a <head> block, which defines invisible metadata about the
content. Within this section you can define a variety of CSS definitions that you can then reuse within the
actual body content.

In the previous section there was an example of a paragraph in boldface with a blue background and a black
border, all indented 20 pixels from the left margin. The definitions for that style look like this:

font-weight: bold;
background-color: blue;
border: 1px solid black;
margin-left: 20px;

But how do you embed these definitions within HTML elements without typing them directly into the HTML?
First, you need to define them within the style section of the <head> block for the webpage. Second, you
need an identifier to isolate that particular set of style definitions from any others in the <style> block.
Using the identifier notebox, the style definition looks like this:

...
<head>
 <style type="text/css">
 .notebox {
 font-weight: bold;
 background-color: blue;
 border: 1px solid black;
 margin-left: 20px;
 }
 </style>
</head>
...

Notice that the definitions are bound by braces, and that the identifier (notebox) is preceded by a period.
The latter allows you to use this set of style definitions for any element within your HTML content. If you
want to limit its use only to paragraph elements, change the identifier to:

P.notebox

102 Head-Embedded CSS
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

CSS Basics

This tells the browser to use the definitions only if they are defined within a <p> paragraph element. If you
want to use these styles for all paragraphs, then you don't need the custom identifier. Change the identifier
to p.

You've learned how to define the custom styles in the <head> block of your content. But how do you actually
tell the browser which paragraphs should use these styles? Here are two paragraphis of text in HTML:

<p>This is some plain boring text.</p>
<p class="notebox">This is a finely styled paragraph!</p>

There’s a new attribute in the second paragraph: class. This is how you specify the style definition that a
particular element should render itself with. The top paragraph in the example above would render as usual,
in the default paragraph style for the browser. But with the style class of the second paragraph set to your
new notebox, it will render with a bold font, a blue background color, a 1-pixel solid black border, all 20
pixels from the left margin. For any paragraph (or any element, since we didn't specify an explicit element
it could be assigned to), simply use that class attribute to name the identifier of your style definition.

There is however one disadvantage to this method of embedding CSS in a webpage. Though the definitions
are reusable within the webpage—you can now specify as many notebox paragraphs as you want—they
are not reusable across multiple webpages. If you want the paragraph's text to be rendered in an italic style
instead of a bold one, you'd have to change that definition on each webpage where you integrated it. The
next section describes the most scalable way to use CSS within your web content.

External CSS

If you want to use a particular style across multiple webpages, there's only one way to do it: externally linked
style sheets. Since each webpage has to know about the style definitions you created, placing all of them
into an external file and then linking each webpage to that file seems like a reasonable way to inform them.
That way, if you want to change boldface to italic, you only have to change it once—in the external file.

An external style sheet is almost exactly the same as the <style> block that you defined in the last section,
but it’s not embedded in HTML. All the browser needs are the style definitions themselves. Listing B-1 shows
a new file, called styles.css, that contains all the style definitions for the webpage.

Listing B-1 The styles.css file

.bordered {
 font-weight: bold;
 background-color: blue;
 border: 1px solid black;
 margin-left: 20px;
}

.emphasized {
 font-style: italic;
}

For good measure, there is another style definition—one that simply sets the font style of the element's text
to an italic style. Now you have to somehow let the HTML content know about this external style sheet. You
won't have any more embedded style definitions, so you can remove the <style> block altogether. In its
place—still in the <head> block of the webpage—you'll add a <link> element that links the external style
sheet to the document:

External CSS 103
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

CSS Basics

<link rel="stylesheet" href="styles.css" type="text/css">

This line tells the browser to link to this external style sheet. Note that the URL specified by href is relative—for
this particular line to link the style sheet correctly, styles.css must be in the same folder as the HTML
linking to it.

Once you've included this line, you can use the HTML class attribute just as in the previous section:

<p>This is some plain boring text.</p>
<p class="emphasized">This is some italic text.</p>
<p class="bordered">This is a finely styled paragraph!</p>

You've learned how to integrate CSS style into your web content. For information on what kinds of CSS
properties and features are supported by Safari and WebKit, refer to Safari CSS Reference.

104 External CSS
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX B

CSS Basics

This table describes the changes to Safari Web Content Guide.

NotesDate

Made changes related to iPad throughout.2010-03-24

Minor edits.2010-01-20

Updated the iPhone OS resource limits again.2009-09-09

Updated the iPhone OS resource limits.2009-08-11

Changed the title from "Safari Web Content Guide for iPhone OS" and applied
minor edits throughout.

2009-06-08

Minor edits throughout.2009-03-05

Minor edits throughout.2009-01-30

Moved appendix to separate book called Apple URL Scheme Reference. Removed
redundant reference now included in the Safari HTML Reference and Safari DOM
Extensions Reference books.

2009-01-06

Added the chapter "Storing Data on the Client."2008-11-17

Minor edits throughout.2008-10-15

Updated for iPhone OS 2.1.2008-09-09

Updated for iPhone OS 2.0.2008-07-15

Updated book link in "Specifying a Webpage Icon for Web Clip".2008-02-05

Added section on specifying a web clip icon.2008-01-15

Added instructions for exporting movies for iPhone using Quicktime Pro 7.2.1.2007-10-31

Added figures to the "Customizing Style Sheets" and "Debugging" articles.
Removed the "Configuring Keyboard" section from "Designing Forms" because
using the lang property to select keyboard languages is deprecated.

2007-10-11

Changed the title from Safari Web Content Guide. Completely revised to describe
how to create web content for Safari on the desktop and Safari on iPhone using
Web 2.0 technologies.

2007-09-27

Corrected typos.2005-08-11

105
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

New document that discusses creating effective web content for Safari and the
Web Kit.

2005-06-04

106
2010-03-24 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Safari Web Content Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Creating Compatible Web Content
	Use Standards
	Follow Good Web Design Practices
	Use Security Features
	Avoid Framesets
	Use Columns and Blocks
	Know iPhone OS Resource Limits
	Checking the Size of Webpages

	Use the Select Element
	Use Supported JavaScript Windows and Dialogs
	Use Supported Content Types and iPhone OS Features
	Use Canvas for Vector Graphics and Animation
	Use the HTML5 Audio and Video Elements
	Use Supported iPhone OS Rich Media MIME Types
	Don’t Use Unsupported iPhone OS Technologies

	Optimizing Web Content
	Using Conditional CSS
	Using the Safari User Agent String

	Configuring the Viewport
	Layout and Metrics on iPhone and iPod touch
	What Is the Viewport?
	Safari on the Desktop Viewport
	Safari on iPhone OS Viewport
	Examples of Viewports on iPhone OS

	Default Viewport Settings
	Using the Viewport Meta Tag
	Changing the Viewport Width and Height
	How Safari Infers the Width, Height, and Initial Scale
	Viewport Settings for Web Applications

	Customizing Style Sheets
	Leveraging CSS3 Properties
	Adjusting the Text Size
	Highlighting Elements

	Designing Forms
	Laying Out Forms
	Customizing Form Controls
	Configuring Automatic Correction and Capitalization

	Handling Events
	One-Finger Events
	Two-Finger Events
	Form and Document Events
	Making Elements Clickable
	Handling Multi-Touch Events
	Handling Gesture Events
	Preventing Default Behavior
	Handling Orientation Events
	Supported Events

	Configuring Web Applications
	Specifying a Webpage Icon for Web Clip
	Specifying a Startup Image
	Hiding Safari User Interface Components
	Changing the Status Bar Appearance

	Creating Video
	Sizing Movies Appropriately
	Don’t Let the Bit Rate Stall Your Movie
	Using Supported Movie Standards
	Encoding Video for Wi-Fi, 3G, and EDGE
	Creating a Reference Movie
	Creating a Poster Image for Movies
	Configuring Your Server

	Storing Data on the Client
	Creating a Manifest File
	Declaring a Manifest File
	Updating the Cache
	Handling Cache Events

	Getting Geographic Locations
	Geographic Location Classes
	Getting the Current Location
	Tracking the Current Location
	Handling Location Errors

	Debugging
	Enabling the Safari Console
	Viewing Console Messages
	Creating Messages in JavaScript

	Appendix A: HTML Basics
	What Is HTML?
	Basic HTML Structure
	Creating Effective HTML Content
	Using Other HTML Features

	Appendix B: CSS Basics
	What Is CSS?
	Inline CSS
	Head-Embedded CSS
	External CSS

	Revision History

