
Safari User Guide for Web Developers
Tools

2010-06-21

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Dashcode, iPhone, iPod,
iPod touch, Mac, Mac OS, and Safari are
trademarks of Apple Inc., registered in the
United States and other countries.

iPad is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Safari Developer Tools 7

At a Glance 7
Enable the Developer Tools in Safari Preferences 8
Speed Up Prototyping by Interactively Testing for Errors 8
Debug Your HTML and CSS Interactively Using the Web Inspector 9
Use the Web Inspector and Console to Debug JavaScript Interactively 9
Get Help with Cookies, Local Storage, and HTML5 Client-Side Databases 10
It Works—Now Make It Fly 10
Be a Power User 11
Enable, Build, and Debug Extensions 11

See Also 12

Chapter 1 Overview of Developer Tools for Safari 13

Developing Websites with the Developer Tools 13
Differences Between Safari on the Desktop, Safari on iPhone OS, and WebKit 13
Enabling Developer Tools in Safari on the Desktop 14
The Develop Menu Command Summary 14
Enabling Developer Tools in WebKit-Based Applications Other Than Safari 16
Enabling and Using Developer Tools in Safari on iPhone OS 16

Chapter 2 Prototyping Your Website 19

The Prototyping Process, Improved 19
Using the Snippet Editor 20
Using the Error Console 20

Opening the Error Console 21
Viewing Errors 21
Using the Error Console to Prototype JavaScript 22

Changing the User Agent String 22
Switching To Another Application 23

Chapter 3 Debugging Your Website 25

Use Cases 25
Debugging HTML and CSS Using the Web Inspector 26

Inspecting and Editing DOM Attributes 27
Inspecting and Editing Styles 28
Inspecting and Editing Metrics 29
Inspecting Listener Functions 31

Debugging JavaScript Using the Web Inspector 31

3
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

Using the Console to Debug JavaScript 34
Entering JavaScript Interactively 35
The Command Line API 35
Safari JavaScript Console API 36

Analyzing Client-Side Storage, Databases, and Cookies 38

Chapter 4 Optimizing Your Website 43

Optimizing Download Time 43
Optimizing Loading, Scripting, and Rendering Times 45
Optimizing JavaScript 46

Chapter 5 Keyboard and Mouse Shortcuts 49

General Shortcuts 49
Web Inspector Shortcuts 49
Console Shortcuts 49
Elements Panel Shortcuts 50
Styles Pane Shortcuts 50
Debugger Shortcuts 51

Document Revision History 53

4
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Introduction About Safari Developer Tools 7

Figure I-1 The Safari Develop menu and Web Inspector 7
Figure I-2 Showing the Develop menu 8

Chapter 1 Overview of Developer Tools for Safari 13

Figure 1-1 Safari preferences 14
Figure 1-2 The Develop menu 15
Figure 1-3 Safari iPhone settings 16
Figure 1-4 The Debug Console report 17
Figure 1-5 The Debug Console 17

Chapter 2 Prototyping Your Website 19

Figure 2-1 The Snippet Editor 20
Figure 2-2 The Error Console 21
Figure 2-3 An example of the User Agent submenu 23

Chapter 3 Debugging Your Website 25

Figure 3-1 Editing DOM attributes 27
Figure 3-2 Nodal context menu 28
Figure 3-3 Viewing styles 28
Figure 3-4 Editing style properties 29
Figure 3-5 Editing metric attributes 30
Figure 3-6 Editing metrics directly 30
Figure 3-7 Event Listeners 31
Figure 3-8 The Scripts pane 32
Figure 3-9 A paused script 33
Figure 3-10 Popover 34
Figure 3-11 Inspecting cookies 39
Figure 3-12 Inspecting databases 40
Figure 3-13 An SQL query 41

Chapter 4 Optimizing Your Website 43

Figure 4-1 The Resources pane 43
Figure 4-2 Inspecting resources 45
Figure 4-3 Timeline 46
Figure 4-4 The Profiles pane 47

5
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

6
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

FIGURES

Safari 4.0 and later includes built-in tools to help you prototype, analyze, debug, and optimize websites and
web applications. Safari 5.0 and later has additional tools you can use to enable, develop, test and debug
Safari extensions.

Figure I-1 The Safari Develop menu and Web Inspector

If you develop websites, web applications, or browser extensions, you should learn about Safari’s built-in
developer tools.

At a Glance

Safari has tools for prototyping HTML, CSS, and JavaScript, tools for interactively inspecting and debugging
elements, attributes, properties, and styles, an integrated JavaScript debugger, and optimization tools such
as a latency and download timeline and a JavaScript profiler.

These tools are built into Safari on the desktop (Mac OS X and Windows) and you can enable them in other
Webkit-based applications. A subset of the tools are available in Safari on iPhone OS (iPhone, iPad, and iPod
touch).

At a Glance 7
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

Enable the Developer Tools in Safari Preferences

You enable the developer tools Safari Preferences, as illustrated in Figure I-1.

Figure I-2 Showing the Develop menu

 ■ On Mac OS X or Windows, use Safari Preferences to show the Develop menu in Safari, with the full set
of developer tools available from the menu.

 ■ On iPhone OS, use Safari Preferences to add an error console to Safari. For details, see “Enabling and
Using Developer Tools in Safari on iPhone OS” (page 16).

 ■ You can add the developer tools to other Webkit-based applications as a contextual menu by modifying
the application’s .plist file. For details, see “Enabling Developer Tools in WebKit-Based Applications
Other Than Safari” (page 16).

Speed Up Prototyping by Interactively Testing for Errors

Show the Error Console while prototyping your website to quickly spot HTML and JavaScript structure and
syntax errors. The Error Console shows you errors and warnings, highlights the line number of the problem
in your source file, and tells you how Safari dealt with the error (by ignoring an extra closing tag, for example).
For details, see “Using the Error Console” (page 20), “Viewing Errors” (page 21), and “Using the Error Console
to Prototype JavaScript” (page 22).

Safari also comes with a Snippet Editor, where you can type in HTML and JavaScript snippets and see them
evaluated interactively. No more having to create a dummy HTML page to test an element or a JavaScript
function—just type in the part you’re working on and see the results. When it works as you want it to, copy
and paste into your actual webpage. For details, see “Using the Snippet Editor” (page 20).

8 At a Glance
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

If your website has different code paths for different browsers, have Safari give different user-agent strings
to test the code branches—verify the behavior changes for Safari, Internet Explorer, Opera, Chrome, or Safari
on iPhone OS without having to switch browsers, operating systems, or devices. When you’re ready to open
your website in another application, make the switch from inside Safari, without having to quit, open another
application, and navigate to your site. For details, see “Changing the User Agent String” (page 22) and
“Switching To Another Application” (page 23).

Relevant Chapter: “Prototyping Your Website” (page 19)

Debug Your HTML and CSS Interactively Using the Web Inspector

The Error Console finds and identifies syntax and structural errors, but sometimes your website doesn’t look
or behave as you want, even though all the syntax and structure is legal. That’s when you need the Web
Inspector. The Web Inspector shows you the DOM as it exists in memory—for a static HTML page, that’s often
identical to the page source, but for websites that modify the DOM using JavaScript and CSS, it can be very
different.

 ■ Find Things Fast

Hover over an element in the DOM and it’s highlighted in the browser window. Control-click or right-click
on something in the browser window, choose Inspect Element from the contextual menu, and the
element is highlighted in the DOM.

 ■ Change Things on the Fly

Click an element in the DOM and see its attributes, styles, metrics, and properties, as well any event
listener functions attached to it. Double click the element to add, delete, or edit attributes interactively.
Click the value of a style, property, or metric to modify or disable it. Increment or decrement numeric
values using the cursor keys, in steps of 0.1, 1, or 10. Right-click or control-click to edit the DOM as if it
were HTML in a text editor. Any changes you make are shown immediately in the browser window.

 ■ Get it Working in the Browser Before You Change the Source

Make changes without affecting your website, or modify any website inside the browser to better
understand how it works or how you could adapt it to your needs. Find problems and fix them on a live
website without making a copy to a new site or modifying your production site’s source code. Copy and
paste the modified code into your source after it’s fully tested and works exactly the way you want it to.

Relevant Section: For details, see “Debugging HTML and CSS Using the Web Inspector” (page 26).

Use the Web Inspector and Console to Debug JavaScript Interactively

The Web Inspector and the Console work together to help you find and fix problems in your JavaScript—set
breakpoints, pause, inspect variable values, see the call stack, log messages and data to the console, set
variable values and continue, enter JavaScript on the fly to test it—all with auto-completion of function,
property, and variable names to speed you along.

 ■ See It All

At a Glance 9
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

The Web Inspector shows all the JavaScript sources—inline functions in the HTML, included .js files,
output from server-side scripts, and code generated on the fly by other code. All the resources are listed.
Click a resource in the list to see the working code.

 ■ Pause Execution When You Want

Click in the gutter anywhere in the code display to set a breakpoint, without having to edit the source.
Set conditional breakpoints. Disable breakpoints and re-enable them with a click. Pause any time with
a mouse click, without setting a breakpoint.

 ■ Continue When and How You Like

Check the call stack, examine variable values, and change values while paused, enter and execute test
code, then continue, optionally stepping through the code function by function. Step over functions or
step out of a function at will.

 ■ Use the Interactive Console

Safari implements the same Console API as the popular Firebug debugger. Add test code to your scripts
to log branches in the code or print variable values on the fly, without pausing or setting breakpoints.
You can have multiple independent consoles to monitor interaction between windows or tabs. Type
commands in the console, with helpful auto-completion, and see the results immediately.

Relevant Sections: “Debugging JavaScript Using the Web Inspector” (page 31), “Using the Console to Debug
JavaScript” (page 34).

Get Help with Cookies, Local Storage, and HTML5 Client-Side
Databases

Use the Web Inspector’s Storage panel to inspect cookies, local key/value storage, and even client-side
relational databases created with HTML5. All local data is displayed in editable data grids. You can perform
actions or enter data in the webpage and see the results in the grid, or enter data interactively in the grid
itself. Issue SQL queries right from the Web Inspector, with auto-completion of SQL functions and database
field names.

Relevant Section: “Analyzing Client-Side Storage, Databases, and Cookies” (page 38)

It Works—Now Make It Fly

Once your site is working as it should, you may be understandably reluctant to make changes to optimize
performance. Fear not. The Web Inspector’s Resource and Timeline panels show you exactly where time is
spent, so you know where bottlenecks are before you change anything.

Once you know exactly where the bottlenecks are, you can make changes interactively without leaving Safari,
optimizing your site—and fixing any problems that may cause—before you modify your working source.

The Resources panel shows all the resources your site uses—HTML files, JavaScript files, CSS stylesheets,asp
output, images, and media files—in a timeline view, showing when each resource was requested, the latency
for each request, when the first byte of the resource arrived, and when the resource finished loading. See at

10 At a Glance
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

a glance if your website is being hung up by a slow server script, bandwidth-choking file sizes, network
latency problems, or unexpected dependencies such as a resource that is not requested until after a script
executes.

The Timeline panel lets you profile your website in real time, showing not only the latency and load time for
each resource, but the time spent executing scripts and rendering the output. Complex interactions—a script
that changes the DOM, causing a resource to load, and a table to be re-rendered, for example—are laid out
in a clear and easy to understand fashion.

Relevant Sections: “Optimizing Download Time” (page 43), “Optimizing Loading, Scripting, and Rendering
Times” (page 45).

If the timeline shows that significant time is being spent in your scripts, use the Profiles panel to see where
in your script the time is being spent. Moving a single function call from the inside of a loop to the outside
of the loop can sometimes have a tremendous impact. Running a profile takes the guesswork out of optimizing
JavaScript. A profile shows you how much time is spent in each function, including dependent functions,
and how many times each function is called.

See the output in milliseconds or percent of execution time. Sort by execution time. Then spend your effort
optimizing code that you know is going to make a significant difference—modify only functions that take a
proportionally long time to execute or functions that are called many times.

Relevant Section: “Optimizing JavaScript” (page 46)

Be a Power User

The Safari developer tools include dozens of keyboard and mouse shortcuts to speed up common operations,
from opening the Web Inspector to cycling through auto-completion suggestions. See the shortcuts table
in “Keyboard and Mouse Shortcuts” (page 49) to give your productivity a boost.

Enable, Build, and Debug Extensions

Extensions are a new feature in Safari 5.0. Because they’re so new, they are disabled by default, and are
enabled in the Develop menu—making them a developer feature for Safari 5.0.

Once you enable extensions, you can use Extension Builder to create them. You need to join the Safari
Developer Program to create extensions—you can’t install an extension without a signed certificate. Go to
developer.apple.com to join the program.

When you’re ready to build an extension, read Safari Extensions Development Guide, and refer to Safari
ExtensionsReference. If you’ve already developed extensions for other browsers, see Safari ExtensionsConversion
Guide for time-saving tips.

Once you’ve built and installed an extension, you can use the Web Inspector to debug and optimize it.

 ■ Injected scripts and stylesheets are inspected and debugged exactly as if they were downloaded from
the webpage’s host.

 ■ Extension bars can be inspected and debugged by right-clicking or control-clicking on the extension
bar and using the contextual menu.

At a Glance 11
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

http://developer.apple.com

 ■ A global HTML page can be inspected and debugged by clicking Inspect Global Page in Extension Builder
(the button is present only if the selected extension is installed and has a global page).

Each webpage, extension bar, and global page has its own console. The full set of developer tools for
inspecting, modifying, and optimizing HTML, CSS, and JavaScript works on extensions.

Note: When inspecting storage, remember that the domain for the global page or extension bars is the
extension, but the domain of injected scripts is the domain of the webpage the script is injected into.

See Also

 ■ Safari ExtensionsDevelopmentGuide—step-by-step directions for creating Safari extensions using Extension
Builder

 ■ Safari Extensions Reference—the JavaScript classes, methods, and properties you can access from Safari
extensions

 ■ Safari HTML Reference—the supported HTML tags for Safari

 ■ Safari CSS Reference—the supported CSS tags for Safari

 ■ Safari Web Content Guide—guidance for developing web content for the iPhone

 ■ Web Page Development: Best Practices—Apple recommendations for webpage development

 ■ WebKit DOM Programming Topics—articles on using and modifying the Document Object Model

 ■ WebKit DOM Reference—syntax rules for working with the DOM for Safari and other WebKit-based
applications

12 See Also
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Safari Developer Tools

http://developer.apple.com/internet/webcontent/bestwebdev.html

There are developer tools built into Safari on the desktop (Mac OS X and Windows), Safari on iPhone OS, and
in other WebKit-based applications. These tools can help you to prototype, debug, and optimize your website.
This chapter gives a quick overview of how to enable and use these developer tools.

Developing Websites with the Developer Tools

The development process for websites can be accelerated by the Safari toolset at several points. The usual
process of development is as follows:

 ■ Prototype—Determine what combination of HTML, JavaScript, CSS, and database deliver the functionality
you need, testing snippets of code interactively.

 ■ Write—Author the website, typically using tools such as Dashcode and HTML editors.

 ■ Test and debug—Test using several browsers and platforms (Mac, Windows, iPhone), track down errors
and correct them.

 ■ Optimize—Make your website more responsive, shorten load times, and improve JavaScript execution.

Once you’ve enabled and familiarized yourself with the developer tools, you can use the Snippet Editor to
streamline prototyping, the Error Console and Web Inspector for testing and debugging, and the Web
Inspector’s timeline view and JavaScript profiler to help you optimize your website.

Differences Between Safari on the Desktop, Safari on iPhone OS,
and WebKit

Safari on iPhone OS (iPhone, iPad, and iPod touch) contains a simple Debug Console that you can enable to
help you debug websites and web applications directly from the mobile device.

The toolset for Safari on the desktop (Mac OS X or Windows) is far more extensive. It includes a Develop
menu with several commands and a number of interactive tools.

The toolset for WebKit-based applications is essentially the same as for Safari on the desktop, but you enable
the tools differently, and the Develop menu is a contextual menu.

Developing Websites with the Developer Tools 13
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

Enabling Developer Tools in Safari on the Desktop

You enable the developer tools in Safari on the desktop (Mac OS X or Windows) by turning on the Develop
menu. In Safari preferences, click Advanced, then select "Show Develop menu in menu bar," as shown in
Figure 1-1.

Figure 1-1 Safari preferences

Selecting this option adds a Develop menu to your menu bar (Figure 1-2 (page 15)). The Safari developer
tools are now enabled.

The Develop Menu Command Summary

The Develop menu contains a set of tools to assist you in prototyping, debugging, and optimizing your
website.

14 Enabling Developer Tools in Safari on the Desktop
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

Figure 1-2 The Develop menu

 ■ Open Page With—Open the current webpage in another application.

 ■ User Agent—Browsers send a user agent string that identifies the browser type and version to the server.
The same string is sent in response to a JavaScript request for the user agent string. Use this menu item
to modify the user agent string Safari sends.

 ■ Enable Extensions—Extensions are a new feature of Safari. Because they are new in Safari 5.0, they are
disabled by default, and thy can be turned on only in the Develop menu. For the time being, they are a
developer feature. For details, see Safari Extensions Development Guide.

 ■ Show Web Inspector—Open the Web Inspector window to inspect or modify the DOM, HTML attributes,
and CSS properties.

 ■ Show Error Console—Open the Error Console window to see any HTML or JavaScript errors and any
corrective actions taken by Safari.

 ■ Show Snippet Editor—Open the Snippet Editor window to interactively prototype HTML, CSS, or JavaScript
snippets.

 ■ Show Extension Builder—Open Extension Builder to install, modify, create, or uninstall a Safari extension.
For more information, see Safari Extensions Development Guide.

 ■ Start Debugging JavaScript—Turn on the interactive JavaScript debugger to set breakpoints, inspect
variables, and so on.

 ■ Start Profiling JavaScript—Turn on the JavaScript profiler to see how many times each function is called,
how long it takes, and so on.

 ■ Disable Caches—Turn off caching to see how a website loads the first time.

 ■ Disable Images—Turn off image display and view websites as text only.

 ■ Disable Styles—Turn off CSS style properties to view the page purely as HTML and JavaScript.

 ■ Disable JavaScript—View websites with the JavaScript interpreter disabled.

 ■ Disable Runaway JavaScript Timer—Do not prematurely terminate JavaScript functions, no matter how
long they take.

 ■ Disable Site Specific Hacks—If Apple engineers have modified Safari specifically to work around a problem
with your website, use this to disable the modifications to Safari and test your site for correct operation.

The Develop Menu Command Summary 15
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

Enabling Developer Tools in WebKit-Based Applications Other Than
Safari

Applications make use of a .plist file, a set of key-value pairs in the preferences folder, that are used to
configure the application. To enable the developer tools in a WebKit-based application other than Safari, set
the WebKitDeveloperExtras key to the Boolean value True in the .plist file.

From the command console, type:

defaults write com.myApp WebKitDeveloperExtras bool true

replacing myApp with the bundle identifier of your application.

You must also enable contextual menus in your application. Once this is done, launch the application. The
Develop menu can now be accessed by a control-click or right-click from within the application.

Enabling and Using Developer Tools in Safari on iPhone OS

You can enable a Debug Console in Safari on iPhone or iPod touch, which allows you to see HTML, CSS, and
JavaScript errors directly on the iPhone or iPod touch. To enable the console, tap the Settings icon, then tap
Safari and scroll down to the bottom of the screen, then tap Developer. From here you can turn the console
on or off, as shown in Figure 1-3

Figure 1-3 Safari iPhone settings

Once the Debug Console is enabled, Safari records any errors it encounters when accessing a website. A
Debug Console report appears at the top of all displayed webpages, as illustrated in Figure 1-4.

16 Enabling Developer Tools in WebKit-Based Applications Other Than Safari
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

Figure 1-4 The Debug Console report

If there are no errors, the words “No Errors” are displayed. If any errors are encountered in the HTML, JavaScript,
or CSS, the number of errors is displayed, followed by a right-pointing arrow. Tapping the carat brings up
the Debug Console.

Figure 1-5 The Debug Console

Enabling and Using Developer Tools in Safari on iPhone OS 17
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

A scrollable list of errors is displayed. You can choose to see all errors or limit the display to only the HTML,
JavaScript, or CSS errors. The line number on which the error occurred is displayed, along with a brief
description of the error.

If you choose to see JavaScript errors, you also see JavaScript log events. All output from the JavaScript
functions console.log(), console.info(), console.warn(), and console.error() are logged to
the Debug Console. By judiciously placing log entries into your JavaScript, you can trace the code path that
executes on an iPhone or iPod touch.

Note: Currently, long log entries are truncated to fit the space available on the Debug Console. For best
results when using the Debug Console to track JavaScript log events in Safari on iPhone or iPod touch, keep
your log entries terse.

18 Enabling and Using Developer Tools in Safari on iPhone OS
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Developer Tools for Safari

The first step in designing a website is primarily esthetic—how do you want it to look and feel? The next
several steps are technical—can you achieve what you want using a given combination of HTML, CSS, and
JavaScript? Does a particular JavaScript function do what you need? How does applying a specific CSS style
affect the page? Does the combined set work on the browsers and platforms you want to support?

The Safari developer tools can help you answer the technical questions in a streamlined and efficient manner.

The Prototyping Process, Improved

It’s common to prototype a website by creating a combination of HTML, style sheets, and scripts, load the
combination into a browser, see problems, modify the source—or multiple sources—then reload the page
to see the results. It's a cumbersome and sometimes painful process.

It’s inefficient to create a complete webpage before you can test any part of it, then test it using several
browsers, rewriting and reloading the page each time you find an error, going back and forth between your
HTML, CSS, and JavaScript sources. If your webpage contains a hidden error, and different browsers deal
with the error differently, it can be frustrating to find the problem.

Safari can help.

 ■ Use the Snippet Editor to interactively test elements of your page in a sandbox, debugging your syntax
and testing different atributes and elements without going through the process of creating a whole
website. Test the snippets first—set an HTML attribute, apply a CSS style, call a JavaScript function—and
see the results immediately, then build your prototype website using a combination of parts that you
already know work.

 ■ Once you have a prototype, load it in Safari and use the Error Console to spot hidden errors that Safari
is dealing with for you—other browsers may deal with them differently, resulting in a different experience.
Correct the errors to maximize your chances of compatibility.

 ■ If you use the user agent string to execute different code branches that are intended to execute on
different browsers, choose User Agent String from the Develop menu to modify the user agent string
and invoke the different branches, making sure that each browser is being shown what you intend.
Resolve the question of proper code branch versus browser differences in advance.

 ■ Finally, you can test your prototype using other browsers or web applications by invoking them directly
from the Develop menu in Safari.

The Prototyping Process, Improved 19
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

Using the Snippet Editor

Choose Show Snippet Editor from the Develop menu to open the Snippet Editor. The Snippet Editor contains
an upper pane, in which you can type any combination of HTML, CSS, or JavaScript, and a lower pane that
shows how it displays in Safari (or any WebKit-based application), as shown in “The Snippet Editor.”

Figure 2-1 The Snippet Editor

The Snippet Editor provides an interactive interface for quickly prototyping or debugging your HTML, CSS,
and JavaScript without having to create complete HTML pages and open them in a browser, or to switch
between your editor and browser repeatedly to edit the code and refresh the browser display. Simply type
in fragments of code and the display refreshes immediately. When your code produces the effect you want,
you can copy and paste it into a working document.

If the "Update after typing" option is selected, the display pane is updated each time you press a key. This is
ideal for working with short snippets of HTML or debugging the syntax in a line of JavaScript. For longer
snippets, where the display of unfinished code would be distracting, deselect the option and click the Update
Now button to refresh the display when you are ready.

Using the Error Console

The Error Console is the most basic tool for debugging a website, so it’s an appropriate tool for prototyping.
The Error Console notifies you of any syntax or structural errors that Safari detects in your HTML, CSS, or
JavaScript, gives you the location of the error, including the source file and line number, and includes a brief
description of how Safari dealt with the error (such as by ignoring an extra closing tag).

20 Using the Snippet Editor
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

Note: Safari on iPhone OS also has an Error Console, although it is more limited. If you are testing content
on the iPhone, enable the Error Console as described in “Enabling Developer Tools in Safari on iPhone and
iPod Touch” (page 16).

Opening the Error Console

There are several ways to open the Error Console. You can choose Show Error Console from the Develop
menu, or, if the Web Inspector is open, you can click the Console button (greater-than sign and horizontal
lines), press the Esc key, or click the error or warning button in the bottom bar.

The Error Console opens at the bottom of the Web Inspector, as shown in Figure 2-2.

Figure 2-2 The Error Console

To close the Error Console again, click the Console button in the bottom bar.

Viewing Errors

If any errors or warnings are encountered when loading a website, the number of each is displayed in the
bottom bar. Clicking the error or warning button opens the Error Console and displays all of the errors and
warnings.

Using the Error Console 21
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

Errors and warnings are shown with a URL link to the resource that generated the problem, the line number
(where applicable), and a brief description of how Safari dealt with the problem.

Click the link in the error listing to open the source in the upper pane. The error or warning is also displayed
in the source.

Using the Error Console to Prototype JavaScript

Like the Snippet Editor, the Error Console allows you to enter JavaScript interactively and see the results
immediately. In addition, a number of console functions can be used to log data to the Error Console (see
“Safari JavaScript Console API” (page 36)).

The console has auto-completion support for JavaScript. As you type, JavaScript variables, properties, and
function names are suggested in gray. Pressing the Right Arrow key accepts the current suggestion. If multiple
selections begin with the same prefix, you can cycle through the suggestions using the Tab key. If there is
only one suggestion, the Tab key accepts it.

Typing a variable name and pressing Enter displays the variable’s current value.

Any changes you make to the DOM using JavaScript from the console are immediately displayed in the Web
Inspector’s Elements pane, as well as in the browser window.

Changing the User Agent String

Every browser has a user agent string that identifies its type and version number. The browser sends this
string to the server. Your website can also read the user agent string using JavaScript. This is one way to
determine what version of which browser a user is running. You can choose what Safari reports as its user
agent from the User Agent submenu.

22 Changing the User Agent String
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

This can be useful to quickly test your code to see if it is reacting to various user agents as you expect, without
having to actually load the page in multiple versions of multiple browsers. An example of the User Agent
submenu is shown in Figure 2-3.

Note: The browser versions listed in the submenu are updated frequently to reflect current availability.

Figure 2-3 An example of the User Agent submenu

You can choose the common versions of most popular browsers from the submenu. Note that the list includes
the versions of Safari found on iPhone, iPad, and iPod touch.

The Other... menu item opens a sheet showing the default user agent string, which you can inspect and edit
to any string you like.

If your website has different code branches for different browsers, and loading the site in a given browser
reveals problems, one of the first questions is whether the code has actually branched as expected. By
changing the user agent string in Safari, you can isolate the code branch from the browser differences. You
can also log the code branch to the console and check for it using Safari’s Error Console.

Switching To Another Application

When first testing a website, you typically open it in several browsers, such as Safari, Internet Explorer, and
Firefox, to make sure that it works correctly in all cases. The Open Page With command is a convenient way
to open the current webpage in another browser, without having to leave Safari, open the other browser,
and navigate to the page.

Choose Open Page With from the Develop menu. A submenu is displayed listing all the applications known
to the operating system that can open the page.

Switching To Another Application 23
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

24 Switching To Another Application
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Prototyping Your Website

Safari has a number of tools for finding and correcting problems with your website. The best tool for the job
depends on what kind of problems you’re experiencing. Basic testing with the Error Console will reveal most
syntax and structural problems. More complex problems can usually be resolved using the Web Inspector.

Use Cases

Here are some common cases and the best ways to deal with them.

1. You have a new website that you’re ready to start testing, or a half-finished website that you’re
developing.

See the section on “Prototyping Your Website” (page 19). It includes basic testing.

2. You have a website designed for Internet Explorer on Windows, and you are having trouble making
it work in Safari on the desktop or iPhone OS.

Use the Error Console to see if Safari detects any syntax or structural errors in your HTML, CSS, or JavaScript,
and if so, what corrective action it is taking. This will also reveal use of extensions that may be proprietary
to Explorer.

Note: If Safari reports a tag that works in Explorer as an error, it is not a standard tag, and you need to
use an equivalent tag instead, or include a branch in your code that uses one tag for Explorer and another
tag for other browsers.

See “Using the Error Console” (page 20) for a description of basic testing. Start by correcting the reported
errors. In most cases, that will solve the problem. If no errors are reported, or you correct the reported
errors and problems persist, see the following use cases.

3. Your website doesn’t work on iPhone, but the Error Console shows no errors.

Enable the Error Console for iPhone or iPod touch (see “Enabling and Using Developer Tools in Safari on
iPhone OS” (page 16)) and check for errors on the device itself. See SafariWebContent Guide for guidance
on specific design considerations for iPhone web content.

4. Your website doesn’t look or behave as you expect, but the Error Console shows no errors.

See the sections in this chapter, “Debugging HTML and CSS Using the Web Inspector” (page 26) and
“Debugging JavaScript Using the Web Inspector” (page 31), to learn how to use the developer tools to
analyze and debug website behavior.

5. You are having problems with an HTML5 client-side database.

See the last section in this chapter, “Analyzing Client-Side Database Storage” (page 38).

Use Cases 25
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

6. Your website works, but is sluggish or unresponsive.

See the next chapter, “Optimizing Your Website” (page 43).

Debugging HTML and CSS Using the Web Inspector

If your website doesn’t look or act as you expect, and the Error Console doesn’t report any errors, analyze
your site using the Web Inspector.

Choose Show Web Inspector from the Develop Menu. This opens the Web Inspector window. Click the
Elements button on the Web Inspector toolbar.

In the Elements pane, the left half of the Web Inspector contains the DOM of the current webpage, as a
collapsable and expandable structure of nested elements. Click the disclosure triangle to expand or collapse
the view of a given element and its contents. A breadcrumb path is added to the bottom bar, allowing you
to see where you are in the DOM hierarchy. You can click a breadcrumb to move back up the hierarchy.

The DOM displayed is the symbolic structure of the webpage that Safari has constructed in memory. In a
simple static webpage with no errors, the DOM is identical to the HTML source. In websites where the DOM
changes interactively, the Elements pane gives you the current state of the DOM. If there are errors in the
webpage, the Elements pane shows you the DOM that Safari has constructed, which may differ significantly
from the source.

When you hover over an element in the DOM, the corresponding element is highlighted in the browser
window. If you control-click in the browser window, a contextual menu is displayed with an “Inspect Element”
choice. Choosing Inspect Element highlights the corresponding element in the DOM. This makes it easy to
zoom in on a given element and find its location in the source, even in a complex website.

Note: Another way to get from an element in the browser display to its definition in the DOM is to click the
magnifying glass button in the bottom bar, then move the cursor over the browser window. Elements are
highlighted as the mouse passes over them. Clicking an element zooms the DOM tree to the element’s
definition and highlights it.

The right side of the pane displays the styles, metrics, and properties of the currently selected element.

Using the DOM view along with the styles, metrics, and properties, you can inspect and interactively modify
any element on a webpage. More significantly, you can quickly grasp the inheritance structure that gives
each element its appearance, placement, and behavior.

When debugging a webpage, it’s typically best to control-click on the part of the page that looks wrong in
Safari’s browser window. Then look at the highlighted element in the DOM panel of the Web Inspector to
see how the element is defined. You can interactively modify the HTML parameters in the Web Inspector to
see how that changes the behavior in the browser window. If the HTML attributes seem correct, check the
applied CSS styles by selectively disabling them or modifying them in the Web Inspector. The effects are
immediately visible in the browser window. If this solves the problem, copy the modified HTML or CSS and
paste it into your source. If not, the problem may be caused by an errant script. See “Debugging JavaScript
Using the Web Inspector” (page 31).

If you know the name of an element in the DOM that you want to inspect (for example, to find all instances
of a particular class), use the search bar in the upper right corner of the Inspector.

26 Debugging HTML and CSS Using the Web Inspector
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Note: In the Elements pane, the search field accepts Xpath and CSS selectors as well as plain text. For example,
searches can be conducted as plain text, with an Xpath query using document.evaluate(), and with a
CSS selector using document.querySelectorAll(). All search results are highlighted in the DOM tree,
with the first match revealed and selected.

The following subsections show how to inspect and modify HTML and CSS using the Web Inspector.

Inspecting and Editing DOM Attributes

The left pane shows the DOM attributes associated with the currently selected element. Double-click an
element name, attribute name, or attribute value to edit it interactively, as shown in “Editing DOM attributes.”

Figure 3-1 Editing DOM attributes

Use the tab key and shift-tab key combination to traverse the attributes.

You can edit values using the letter and number keys as you would expect. For numerical values, you can
also use the arrow keys to increment or decrement the value by 1. Holding down the option or alt key
increments or decrements the value by 0.1, while holding down the shift key increments or decrements by
10.

Right-click or control-click the element to bring up a contextual menu, as shown in Figure 3-2 (page 28).

Debugging HTML and CSS Using the Web Inspector 27
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-2 Nodal context menu

You can add a new attribute to the element, edit the DOM as if it were an HTML file in a text editor, copy the
HTML for the element and all its children to the clipboard, of delete the element and all of its children.
Choosing Inspect Element in this context allows you to inspect the Web Inspector itself.

Inspecting and Editing Styles

Click Styles in the list on the right, to see the CSS styles that are applied to the currently selected element,
as shown in “Viewing styles.”

Figure 3-3 Viewing styles

The first section of text in the right pane shows the computed style for the selected element, which is the
sum of all inherited and overridden styles specified for that element and its containers. This section is followed
by the sections containing the CSS specifications that apply to the element, in hierarchical order. Select the
“Show inherited” option to see the inherited default styles being applied as well.

28 Debugging HTML and CSS Using the Web Inspector
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Hovering over an editable style brings up a series of check boxes. Unchecking a box disables the application
of that style property. The results are immediately displayed in the browser window. The style is then displayed
in strikethrough text, as shown in “Editing style properties.” Re-checking the box enables the style property
again.

Figure 3-4 Editing style properties

Double-clicking a style allows you to edit it on the fly and immediately see the difference in your browser
window. You can edit properties in a few different ways:

 ■ Pressing Delete with the property selected deletes the property, if allowed.

 ■ You can edit the property values using the keyboard.

 ■ For numerical values, you can use the arrow keys to increment or decrement the value by 1. Holding
down the option or alt key increments or decrements the value by 0.1, while holding down the shift key
increments or decrements by 10.

 ■ You can add style attributes by clicking in the white space or tabbing past the last attribute, or by
appending a semicolon to the end of a line and typing in new style attributes.

 ■ You can edit a selector by double-clicking it.

 ■ You can create a new rule by choosing “Add New Style Rule” from the gear menu.

 ■ You can cycle through different color representations—such as white, #ffffff, or rgb(255,255,255),
for example—by clicking on the color swatch beside a color value.

Because style properties are interactively editable, you can modify them until you have exactly the effect
you want, before you change a line of source.

Inspecting and Editing Metrics

Click Metrics to see the spatial metrics for a given element—its height and width, along with the height and
width of any borders, margins, or padding. Double-click the value of a metric attribute to edit it interactively,
as shown in Figure 3-5.

Debugging HTML and CSS Using the Web Inspector 29
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-5 Editing metric attributes

Alternatively, double-click a metric value displayed on the right to edit it directly, as shown in Figure 3-6

Figure 3-6 Editing metrics directly

30 Debugging HTML and CSS Using the Web Inspector
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Inspecting Listener Functions

If any JavaScript functions have been added as event listeners, you can inspect them by clicking Event
Listeners in the right hand pane, as shown in Figure 3-7.

Figure 3-7 Event Listeners

The gear menu gives you the choice of seeing event listeners that have been added to any node or only
those added to the currently selected node.

Debugging JavaScript Using the Web Inspector

Choose Start Debugging JavaScript from the Develop menu. Open the Web Inspector and click Scripts in the
toolbar to view the Scripts pane

If you do not have JavaScript debugging enabled, you see a prompt to enable debugging when you click
the Scripts button. You can toggle debugging on and off by clicking the checkmark button in the bottom
bar.

The pause button in the bottom bar causes the debugger to pause on exceptions. The icon turns blue when
pause-on-exceptions is active.

Once debugging is active, a pop-up menu of JavaScript sources is displayed, above a listing of the currently
selected source, as shown in .

Debugging JavaScript Using the Web Inspector 31
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-8 The Scripts pane

When the source of the script is a JavaScript file, the filename is listed. If the source is in-line JavaScript in an
HTML file, the URL of the HTML is listed. If the JavaScript is the result of a string passed through eval() or
another anonymous source, the resource is listed as “(program)”.

Choosing a source from the pop-up menu displays the listing for that source in the left pane. If the script is
not paused, the right pane shows headings for the call stack, breakpoints, watch expressions, and scope
variables, but no content is displayed.

You can set a breakpoint in any script by clicking in the gutter by the line number. The script will pause at
the breakpoint. The script name, line number, and text of the breakpoint appear in the Breakpoints section
on the right of the Web Inspector—clicking a breakpoint on the right jumps the text on the left to the line
with the breakpoint. A checkbox allows you to enable and disable the breakpoint without removing it.

Right-click or control-click in the gutter to bring up a contextual menu:

If choose Add Conditional Breakpoint, you are prompted to enter an expression. When execution reaches a
conditional breakpoint, the script pauses only if the expression evaluates as true, non-zero, or not null.

Clicking the pause icon in the toolbar above the right pane also pauses the script. When the script is paused,
the line of JavaScript last executed is highlighted and the call stack, breakpoints, watch expressions, and
scope variables are displayed, as illustrated in .

32 Debugging JavaScript Using the Web Inspector
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-9 A paused script

Note: The pause/play button on the upper right pauses or resumes the script. The pause button in the
bottom bar cycles the debugger through three states:

 ■ Black—Do not pause on exceptions.

 ■ Blue—Pause on exceptions.

 ■ Purple—Pause on uncaught exceptions.

The Web Inspector has a unique feature regarding in-scope variables: It shows closures, “with” statements,
and event-related scope objects separately. This gives you a clearer picture of where your variables are coming
from and why things might be breaking (or even working correctly by accident).

The pause icon changes to a continue icon when the script is paused. The toolbar above the call stack display
has additional controls, allowing you to step past the next function, step into the next function, or step out
of the current function. These controls allow you to step through any script, function by function, skipping
functions as needed, and examine the call stack and variables at each point.

While the script is paused, if you hover over an expression in a script, a popover appears showing the
evaluation of the expression, typically the properties of the object, as illustrated in Figure 3-10

Debugging JavaScript Using the Web Inspector 33
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-10 Popover

You can also use the console to assist in debugging JavaScript.

Using the Console to Debug JavaScript

Click the Console icon to open the Console panel. You have the choice of viewing all console messages, just
errors, just warnings, or just log entries.

Note: You can have multiple independent consoles open—one for each window or tab being inspected, as
well as consoles for each component of a Safari extension being inspected, such as extension bars, injected
scripts, and the global page.

You can use the console to debug JavaScript in two distinct ways:

 ■ You can enter JavaScript interactively in the console and see the results immediately.

 ■ You can include various console functions in your JavaScript to log data to the Error Console while the
script is running. These functions use the same syntax as the popular Firebug debugger.

34 Using the Console to Debug JavaScript
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Entering JavaScript Interactively

You can enter JavaScript in the terminal interactively to help debug your script. For example, you can call
functions defined in the script and see the results; you can evaluate expressions that include variables or
functions declared in your script; and you can query the values of variables directly.

This is particularly helpful when used in combination with breakpoints in your code, allowing you to pause
and inspect the script interactively at any point.

The console has auto-completion support when entering JavaScript. As you type, JavaScript variables,
properties, and function names are suggested in gray. Pressing the Right Arrow key accepts the current
suggestion. If multiple selections begin with the same prefix, you can cycle through the suggestions using
the Tab key. If there is only one suggestion, the Tab key accepts it.

Typing a variable name and pressing Enter displays the variable’s current value.

Any changes you make to the DOM using JavaScript from the console are immediately displayed in the
Elements pane, as well as in the browser window.

The Command Line API

In addition to the usual JavaScript methods, and the functions and variables defined in your script, you can
enter some Firebug command line API’s interactively at the console. The following commands are supported
interactively:

 ■ $0-$4

Variables that contain the current and previous three selected nodes in the Web Inspector.

 ■ $(id)

Returns the element with the specified ID. Similar to getElementById().

 ■ $$(selector)

Returns the array of elements that match the given CSS selector. Similar to querySelectorAll.

 ■ $x(xpath)

Returns the array of elements that match the given XPath expression.

 ■ clear()

Clears the console.

 ■ debug(functionName)

Adds a breakpoint to the first line of a function.

 ■ dir(object)

Prints an interactive listing of all properties of the object. Similar to the popover from hovering over an
object when a script is paused.

 ■ dirxml(node)

Prints the XML source tree of an HTML or XML element. This looks identical to the view that you would
see in the Elements panel of the Web Inspector. You can click on any node to inspect it in the Web
Inspector.

Using the Console to Debug JavaScript 35
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

 ■ inspect(),

Takes an element, database, or storage area as an argument and automatically jumps to the appropriate
panel to display the relevant information.

 ■ keys(object)

Returns an array containing the names of all properties of the object. (Properties are key/value pairs; the
name of a property is the key.)

 ■ monitor(functionName)

Turns on logging for all calls to a function.

 ■ monitorEvents(object[, types])

Turns on logging for all events dispatched to an object. The optional argument types may specify a
specific family of events to log. The most commonly used values for types are "mouse" and "key".

The full list of available types includes "composition", "contextmenu", "drag", "focus", "form", "key", "load",
"mouse", "mutation", "paint", "scroll", "text", "ui", and "xul".

 ■ profile([title])

Turns on the JavaScript profiler. The optional title is a label for the profile.

 ■ profileEnd()

Stops a running profile.

 ■ unmonitor(functionName)

Stops logging calls to a function.

 ■ unmonitorEvents(object[, types])

Stops logging events, optionally events of a particular type, that are dispatched to an object.

 ■ values(object)

Returns an array containing the values of all properties of the object. The values are returned in the same
order as the keys in keys(object).

To make working with these APIs easier, they are included in the Console’s auto-completion capability.

Safari JavaScript Console API

Safari supports several JavaScript console functions for debugging. As an alternative to setting breakpoints,
you can log branches in your code path, print variable values, and so on, using console functions. Safari
supports many of the same console functions used in the Firebug API.

Note: You type the Firebug command line APIs interactively in the console. You insert the Firebug console
functions into your scripts.

Many console functions take a message-object as a parameter. This message-object is logged to the error
console. When Safari logs a message-object, it appends a hyperlink to the line in the source code where the
logging console function appears. A message-object can contain a string, one or more variables, or a
combination. You can use printf-style string substitution using numeric or string variable values. If variables
are included, but not used for string substitution, the variable values are logged, space delimited.

36 Using the Console to Debug JavaScript
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Examples of valid message-objects:

"It got this far..."

"Item and count:", item, count

"Item: %s Count: %d", item, count

"Item: %s Count:", item, count

count

The following console functions are supported in Safari:

 ■ console.assert(expression, message-object)

If expression evaluates false, logs the message.

 ■ console.count([title])

Logs the number of times this line of code has executed, and an optional title.

 ■ console.debug([message-object])

Logs the message object.

 ■ console.dir(object)

Logs the current properties of the object.

 ■ console.dirxml(node)

Logs the DOM tree of an HTML or XML element.

 ■ console.error(message-object)

Logs an “error” icon followed by a color-coded message object.

 ■ console.group(message-object)

Logs the message object and begins an indented block for further log entries.

 ■ console.groupEnd()

Ends an indented block of log entries.

 ■ console.info(message-object)

Logs the message object.

 ■ console.log(message-object)

Logs the message-object.

 ■ console.log(message-object)

Logs the message-object.

 ■ console.profile([title])

Begins profiling JavaScript—tracking the number of times each function is called, the time spent in that
function, and the time spent in nested groups of functions. If a title is provided, the profile is named.
See “Optimizing JavaScript” (page 46).

 ■ console.profileEnd([title])

Using the Console to Debug JavaScript 37
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Ends one or more JavaScript profiles. If a title is provided and a running profile has a matching title, only
the current run of that profile is ended. Otherwise, the current run of all profiles is ended.

 ■ console.time(name)

Starts a timer and gives it a name.

 ■ console.markTimeline("string")

Adds a label to the timeline view marking when the point when the method was called.

 ■ console.trace()

Logs a JavaScript stack trace at the moment the function is called. The stack trace lists the functions on
the call stack (functions that have been called and have not yet finished executing and returned) and
the values of any arguments passed to those functions.

 ■ console.warn(message-object)

Logs a “warning” icon followed by a color-coded message-object.

Note: The functions console.log, console.info, console.warn, console.debug, and console.error
all log a message. The only difference between the functions is the color-coding of the log entry and the
inclusion of marker icons for warnings and errors.

Analyzing Client-Side Storage, Databases, and Cookies

You can use the Web Inspector’s Storage pane to inspect HTML5 client-side databased, local storage, session
storage, and cookies.

Local storage and session storage are displayed as an editable data grid of key/value pairs.

Cookies show the name, value, domain, path, expiration date, and size of each cookie, as shown in Figure
3-11.

38 Analyzing Client-Side Storage, Databases, and Cookies
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-11 Inspecting cookies

When inspecting cookies, you can see httpOnly cookies and cookies that are sent only over HTTPS in the
rightmost columns. Clicking the X in the bottom bar deletes the cookie.

Open databases are shown in the sidebar. Clicking a database’s disclosure triangle shows the database’s
tables. Selecting a database table displays a data grid containing all the columns and rows for that table, as
shown in Figure 3-12.

Analyzing Client-Side Storage, Databases, and Cookies 39
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-12 Inspecting databases

In addition to inspecting HTML 5 databases, you can interact with them by issuing SQL queries against any
of the displayed databases. Select a database in the sidebar to see an interactive console for evaluating SQL
queries. The input to this console has auto-completion and tab-completion for table names in the database,
as well as for common SQL words and phrases, as illustrated in “An SQL query.”

40 Analyzing Client-Side Storage, Databases, and Cookies
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

Figure 3-13 An SQL query

Analyzing Client-Side Storage, Databases, and Cookies 41
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

42 Analyzing Client-Side Storage, Databases, and Cookies
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Debugging Your Website

The final step in website development is optimization—making your website load and your scripts run as
quickly and responsively as possible. Safari has two tools designed to help you: a visual download analyzer
and a JavaScript profiler.

Optimizing Download Time

Open the Web Inspector. Click Resources in the toolbar to see a list of resources that make up the website:
HTML, CSS, and JavaScript files, images, XMLHttpRequests, and so on, as shown in .

Figure 4-1 The Resources pane

Note: If resource tracking is not enabled, you are prompted to enable it, either for this session only or always.
You can toggle resource tracking on and off by clicking the checkmark button in the bottom bar.

All the resources used in the website are shown in a list on the left. On the right, they are displayed graphically
and color-coded by type—documents are blue, style sheets are green, images are purple, XHR resources are
yellow, and so on.

Optimizing Download Time 43
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

The graph shows you when each resource was requested, the combined network and server delay, and the
load time for each resource.

The blue line is when the DOMContentReady event is dispatched. The red line is when the body onload
event is dispatched.

You can display the resources graphically by size or time. If displayed by size, they are sorted from largest to
smallest. You can choose to sort by the transfer size (Transfer) or uncompressed size (Size), as some resources
by be compressed for transmission.

If displayed by time, you can sort in several ways:

 ■ Start time—the time at which the resource is requested.

 ■ Response time—the time at which the first byte of the resource is received.

 ■ End time—the time at which the last byte of the resource is received.

 ■ Duration—the length of time the resource takes to load.

 ■ Latency—the delay between requesting the resource and getting the first byte.

No matter which way you sort, each resource appears as a lozenge whose left edge shows the request time.
The lozenge is translucent during the latency, then opaque for the duration (from the response time to the
end time).

If your website is slow to appear, use this pane to see why. You can see immediately if the delay is caused
by a server-side script that is not responding promptly, a large resource that takes a long time to load, or a
script that takes a long time to execute prior to requesting another resource.

You can also use this pane to scan for resources that are not loading at all, such as missing style sheets or
requested resources that are misspelled.

You can click any resource in the list to inspect that resource more closely. Exactly what you see depends on
the type of resource.

Clicking a document resource, such as a CSS, HTML, or JavaScript document, displays the source code for
the document with line numbers. Resources that are not documents, such as XMLHttpRequests, display the
data that was delivered to the browser with line numbers.

You can choose to view the contents of the resource or the header information. If you choose Headers, the
number of request and response headers associated with the resource is listed. You can choose to display
the request and response headers by clicking the disclosure triangle, as shown in “Inspecting resources.”

44 Optimizing Download Time
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

Figure 4-2 Inspecting resources

Clicking an image resource displays the image, its dimensions, file size, and MIME type. The request and
response headers are also enumerated and inspectable.

Note: Values sent in XHR requests are also shown here; you may find this useful when debugging AJAX sites.

Optimizing Loading, Scripting, and Rendering Times

Not all of the time taken to display a webpage is used to load resources. Considerable time can be spent
rendering the webpage and running scripts. There can be complex interactions where a resource needs to
load before a script executes, modifying the DOM before it can be rendered.

To get a detailed look at exactly where time is being spent on your website, including dependencies, select
Timeline in the Web Inspector.

Capturing a timeline is similar to capturing a JavaScript profile. Click the black record button in the botom
bar to start recording events, then click it again to stop recording. The recorded events are shown in a timeline,
with time spent loading, scripting, and rendering broken out separately. For an example, see Figure 4-3.

Optimizing Loading, Scripting, and Rendering Times 45
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

Figure 4-3 Timeline

The window has a TIMELINES section and a RECORDS section. Click and drag in the TIMELINES section to
zoom in on the records for that period of time.

Clicking a record shows a popup with its name and details. Each record includes a disclose triangle if it
contains sub-records. For example, a request event might wait for a reply, and a parse event might have to
recalculate styles—waiting for the reply and recalculating styles would be dependent sub-records. The solid
portion of a record is the time spent at the top level—the translucent portion shows time spent in the cascade
of dependent events.

The blue tool in the bottom bar toggles visibility of records that are under 15 msec.

Optimizing JavaScript

Clicking the Profiles button in the Web Inspector opens the Profiles pane. This pane allows you to see where
execution time is being spent in your JavaScript. Use the Profiles pane to find bottlenecks in your scripts and
optimize their performance.

Note: If profiling is not enabled, you are prompted to enable it, either for this session only or always. You
can toggle profile enabling on and off by clicking the checkmark button in the bottom bar.

To use the Profiles pane, you must start profiling, either manually or by including a console.profile()
call in your script. To start profiling manually, click the record button (black circle) in the bottom bar. The
record button turns red. To stop the profile, click the record button again. No profile is displayed until you
stop profiling, either manually or through a call to console.profileEnd(). Each time you begin and end
profiling, another profile is captured.

46 Optimizing JavaScript
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

The Web Inspector’s JavaScript profiler is fully compatible with the Firebug functions console.profile()
and console.profileEnd(), but in Safari you can optionally specify a title in console.profileEnd()
to stop a specific profile if multiple profiles are being recorded.

Once you have captured one or more profiles, they are listed on the left side of the Web Inspector. Manual
profiles are named sequentially (Profile 1, Profile 2, and so on). Profiles created by calls to console.profile()
are named with the title of the profile provided in the script. If multiple profiles are captured under the same
name, a disclosure triangle reveals multiple runs within the profile.

The time spent in each function executed during the profile is displayed, as well as the number of times each
function is called, as shown in “The profiles pane.” The time can be displayed either as a percentage of total
time or in milliseconds, toggled by the % button in the bottom bar.

Figure 4-4 The Profiles pane

Clicking a profile name displays the functions that were executed during the profile, the time spent in each
function, and the number of times each function was called. The time spent is broken down into three
categories: Self, the total time spent in the function itself; Total, the total time spent in the function and any
subordinate functions it calls in turn; and Average, the average time spent in the function itself during each
call (the Self time divided by the number of calls).

You can toggle between absolute time or percentage of total time in the profile by clicking the percent
button in the bottom bar.

If a function is declared with a name, the function name is displayed. If a function is created programmatically
by an eval() statement or inline <script> </script> tagset, it is labeled (program) in the profile. Other
unnamed functions, for example a function defined within a variable declaration, are labeled (anonymous
function).

Note: To assist yourself in debugging, assign a displayName to this kind of otherwise anonymous function.
The displayName is used as the function name in profiles.

Where applicable, the source URL and line number of the function declaration is shown in grey to the right
of the function name. The source URL is a link. Clicking it opens the source in the Resources pane, scrolled
to the line number where the function is declared.

Optimizing JavaScript 47
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

There are two ways to view a profile: bottom up (heavy) or top down (tree). Each view has its own advantages.
The heavy view shows you which functions have the most performance impact and the calling paths to those
functions. The tree view gives you an overall picture of the script’s calling structure, starting at the top of the
call stack.

Below the profile is a pair of data-mining controls to facilitate the dissection of profile information. The focus
button (eye icon) filters the profile to show only the selected function and its callers. The exclude button (X
icon) removes the selected function from the profile and charges its callers with the excluded function’s
execution time. While any of these data-mining features are active, a reload button is available that restores
the profile to its original state.

The Profiles pane supports plain text searches of function names and resource URLs. Numeric searches are
also supported that match rows in the profile’s Self, Total, and Calls columns. To facilitate powerful numeric
searching, there are a few operators and units that work to extend or limit your results. For example you can
search for “> 2.5ms” to find all the functions that took longer than 2.5 milliseconds to execute. In addition
to ms, the other supported units are s, for time in seconds, and %, for percentage of time. The other supported
operators are < , <=, >= and =. When no units are specified, the Calls column is searched.

48 Optimizing JavaScript
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Optimizing Your Website

There are a number of mouse and keyboard shortcuts in the Web Inspector. These can be significant time
savers if you use the Web Inspector frequently.

General Shortcuts

WindowsMac

Ctrl-Alt-IOption-Command-IShow Web Inspector

Ctrl-Alt-COption-Command-CShow Console

Ctrl-Alt-POption-Shift-Command-PStart Profiling JavaScript

Web Inspector Shortcuts

WindowsMac

Ctrl-]Command-]Next Panel

Ctrl-[Command-[Previous Panel

escescToggle Console

Ctrl-FCommand-FFocus Search Box

Ctrl-GCommand-GFind Next

Ctrl-Shift-GShift-Command-GFind Previous

Console Shortcuts

WindowsMac

TabTabNext Suggestion (auto-completion)

Shift-TabShift-TabPrevious Suggestion (auto-completion)

General Shortcuts 49
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Keyboard and Mouse Shortcuts

Right ArrowRight ArrowAccept Suggestion (auto-completion)

Down ArrowDown ArrowNext Line / Command

Up ArrowUp ArrowPrevious Line / Command

Ctrl-NNext Command

Ctrl-PPrevious Command

Ctrl-LCommand-K or Ctrl-LClear History

EnterReturnExecute

Elements Panel Shortcuts

WindowsMac

Up and Down ArrowsUp and Down ArrowsNavigate

Left and Right ArrowsLeft and Right ArrowsExpand / Collapse

EnterReturnsEdit Node

Double-click tagDouble-click tagExpand

Double-click attribute or tab to next
attribute

Double-click attribute or tab to next
attribute

Edit Attribute

Tab past last attributeTab past last attributeAdd Attribute

Styles Pane Shortcuts

WindowsMac

Double-clickDouble-clickEdit Rule

Tab / Shift-TabTab / Shift-TabNext / Prev Property

Double-click whitespaceDouble-click whitespaceInsert New Property

Up and Down ArrowsUp and Down ArrowsIncrement / Decrement Value

Shift-Up and Shift-Down Arrows,
PgUp and PgDn

Shift-Up and Shift-Down Arrows.
PgUp and PgDn

Increment / Decrement by 10

Shift-PgUp and Shift-PgDnShift-PgUp and Shift-PgDnIncrement / Decrement by 100

50 Elements Panel Shortcuts
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Keyboard and Mouse Shortcuts

Alt-Up and Alt-Down ArrowsOption-Up / Option-DownIncrement / Decrement by 0.1

Debugger Shortcuts

WindowsMac

Ctrl-.Ctrl-.Next Call Frame

Ctrl-,Ctrl-,Prev Call Frame

F8F8Continue

F10F10Step Over

F11F11Step Into

Shift-F11Shift-F11Step Out

Ctrl-Shift-EShift-Command-EEvaluate Selection

Click line numberClick line numberToggle Breakpoint Condition

Right-click line numberRight-click line numberEdit Breakpoint Condition

Debugger Shortcuts 51
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Keyboard and Mouse Shortcuts

52 Debugger Shortcuts
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Keyboard and Mouse Shortcuts

This table describes the changes to Safari User Guide for Web Developers.

NotesDate

Updated for Safari 5.02010-06-21

Added description of JavaScript 'console' API.2010-01-20

Revised to be task-oriented, with sections on prototyping, debugging, and
optimizing websites.

2009-11-17

Revised and expanded for Safari 4.0.2009-06-01

Added description of Safari Mobile debug console.2009-01-06

Corrected typos.

Corrected minor typos and adjusted for style and consistency.2008-10-15

Describes hidden developer tools introduced in Safari 3.12008-09-09

53
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
2010-06-21 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Safari User Guide for Web Developers
	Contents
	Figures
	Introduction
	Overview of Developer Tools for Safari
	Developing Websites with the Developer Tools
	Differences Between Safari on the Desktop, Safari on iPhone OS, and WebKit
	Enabling Developer Tools in Safari on the Desktop
	The Develop Menu Command Summary
	Enabling Developer Tools in WebKit-Based Applications Other Than Safari
	Enabling and Using Developer Tools in Safari on iPhone OS

	Prototyping Your Website
	The Prototyping Process, Improved
	Using the Snippet Editor
	Using the Error Console
	Opening the Error Console
	Viewing Errors
	Using the Error Console to Prototype JavaScript

	Changing the User Agent String
	Switching To Another Application

	Debugging Your Website
	Use Cases
	Debugging HTML and CSS Using the Web Inspector
	Inspecting and Editing DOM Attributes
	Inspecting and Editing Styles
	Inspecting and Editing Metrics
	Inspecting Listener Functions

	Debugging JavaScript Using the Web Inspector
	Using the Console to Debug JavaScript
	Entering JavaScript Interactively
	The Command Line API
	Safari JavaScript Console API

	Analyzing Client-Side Storage, Databases, and Cookies

	Optimizing Your Website
	Optimizing Download Time
	Optimizing Loading, Scripting, and Rendering Times
	Optimizing JavaScript

	Keyboard and Mouse Shortcuts
	General Shortcuts
	Web Inspector Shortcuts
	Console Shortcuts
	Elements Panel Shortcuts
	Styles Pane Shortcuts
	Debugger Shortcuts

	Revision History

