
WebKit DOM Programming Topics
User Experience

2010-01-20

Apple Inc.
© 2004, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, Objective-C, Quartz, and Safari are
trademarks of Apple Inc., registered in the
United States and other countries.

WebScript is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to WebKit DOM Programming Topics 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

About JavaScript and the DOM 9

About JavaScript 9
About the Document Object Model (DOM) 10

Using the Document Object Model From JavaScript 11

Accessing a Document’s Structure with the DOM 11
Using the Document Object Model 12
Other Resources 14

Using the Canvas 15

Introduction to the Canvas 15
Defining the Canvas 15
Drawing on a Canvas 16
Accessing and Manipulating Canvas Data 17

Using the Pasteboard From JavaScript 19

Introduction to JavaScript Pasteboard Operations 19
Adding Pasteboard Handlers to Elements 19
Manipulating Pasteboard Data 20

Using Drag and Drop From JavaScript 21

Introduction to JavaScript Drag and Drop 21
Adding Handlers to Elements 22
Making an Element Draggable 22
Manipulating Dragged Data 23
Changing Drag Effects 23
Changing the Appearance of Dragged Elements 24

Changing the Snapshot With CSS 24
Specifying a Custom Drag Image 25

Cross-Browser Compatibility 26
Complete Example 26

3
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects 29

Introduction to XMLHttpRequest 29
Defining an XMLHttpRequest Object 29
XMLHttpRequest Responses 30
Security Considerations 31

Using XMLHttpRequest for Cross-Site Requests 31
Access Control Request Headers 33
Access Control Response Headers 33

Cross-Document Messaging 35

Posting a Message to a Window 35
Receiving a Message Posted to a Window 36
A Service Discovery Example: Message Boxes 36
Security Considerations 43

Calling Objective-C Methods From JavaScript 45

How to Use Objective-C in JavaScript 45
A Sample Objective-C Class 45
For More Information 47

Document Revision History 49

4
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Using the Document Object Model From JavaScript 11

Table 1 Commonly used JavaScript DOM types 11
Table 2 Commonly used JavaScript DOM methods 12

Using the Canvas 15

Figure 1 The World Clock canvas region 15

Using Drag and Drop From JavaScript 21

Table 1 Values for -webkit-user-drag attribute 22
Table 2 Options for dragging and dropping an element 24

Cross-Document Messaging 35

Listing 1 Cross-document messaging example: index.html 37
Listing 2 Cross-document messaging example: msg_contents.html 39

5
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

6
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Note: This document was previous titled Safari JavaScript Programming Topics.

Important: This is a preliminary document. Although it has been reviewed for technical accuracy, it is not
final. Apple is supplying this information to help you adopt the technologies and programming interfaces
described herein. This information is subject to change, and software implemented according to this document
should be vetted against final documentation. For information about updates to this and other developer
documentation, you can check the ADC Reference Library Revision List. To receive notification of
documentation updates, you can sign up for a free Apple Developer Connection Online membership and
receive the bi-weekly ADC News e-mail newsletter. See http://developer.apple.com/products/for more details
about ADC membership.)

JavaScript is a powerful interpreted scripting language designed for embedding into web-based applications.
You can use the JavaScript Document Object Model (DOM) in Safari and the WebKit framework to help
provide dynamic content to your users, whether you are designing web content, Dashboard widgets, or
Cocoa applications.

Who Should Read This Document?

This document is designed for a number of different audiences:

 ■ If you are a web content developer—developing web sites and embedded JavaScript applications—you
should read about Safari’s JavaScript support and how scripts operate within WebKit-based applications.

 ■ If you are a Cocoa and WebKit developer, you should read about how to integrate JavaScript into your
WebKit views and how to enhance your user experience in doing so.

 ■ If you are a Dashboard developer, you should read about integrating JavaScript into your widgets to
provide a better user experience and more advanced features to your users.

Organization of This Document

The topic contains the following articles:

 ■ “About JavaScript and the DOM” (page 9) describes the JavaScript language and its implementation
in Safari and WebKit.

 ■ “Using the Document Object Model From JavaScript” (page 11) discusses the Document Object Model
and how to use it from JavaScript.

Who Should Read This Document? 7
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Introduction to WebKit DOM Programming
Topics

http://developer.apple.com/products/

 ■ “Using the Canvas” (page 15) describes the canvas object, a critical part of Dashboard but also useful
within other WebKit applications.

 ■ “Using the Pasteboard From JavaScript” (page 19) describes how to implement copy and paste
functionality within embedded JavaScript applications.

 ■ “Using Drag and Drop From JavaScript” (page 21) describes how to use Mac OS X drag and drop
functionality from within Safari and WebKit windows.

 ■ “Using XMLHttpRequest Objects” (page 29) describes how to request data from network resources using
the XMLHttpRequest object.

 ■ “Calling Objective-C Methods From JavaScript” (page 45) describes how to use Objective-C in the
JavaScript scripting environment, either within a WebKit object or by using a custom browser plug-in.

See Also

 ■ Safari HTML Reference provides descriptions of HTML tags, attributes, and other markup.

 ■ Safari CSS Reference provides descriptions of CSS properties and constants.

 ■ Safari Web Content Guide provides information about designing web content for iPhone.

 ■ Dashboard ProgrammingTopics provides information on the technologies available to you when creating
a Dashboard widget. Additional Dashboard documents and sample code can be found in the Reference
Library > Apple Applications > Dashboard.

 ■ Apple JavaScript Coding Guidelines provides general tips about the JavaScript programming language.

 ■ The Reference Library > Apple Applications > Safari section of the ADC Reference Library provides useful
information on WebKit, the technology that provides Apple’s JavaScript runtime.

8 See Also
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Introduction to WebKit DOM Programming Topics

JavaScript is a platform-independent, object-oriented scripting language designed for the web, originally
created by Netscape Communications (though the name is a trademark of Sun Microsystems). It was designed
to add interactivity to web sites and has since grown into a fundamental tool for web content developers.
JavaScript programs—called scripts—are usually embedded in HTML. Features like dynamic typing and event
handling, and its interface with a web page’s Document Object Model (DOM), all make JavaScript a very
useful extension to HTML.

About JavaScript

JavaScript is not a compiled language; rather, it is interpreted during the parsing of an HTML page by a web
client—it is not interpreted on the server side. Despite their similar names, JavaScript has no functional
equivalence to the Java language; however, technologies like LiveConnect create interoperability between
the two.

Scripts can be placed anywhere within an HTML file, but most commonly are placed in the <head> section,
where the page’s title and stylesheet definitions usually reside:

<head>
 <title>My Page</title>
 <!-- a script in another file -->
 <script language="JavaScript" TYPE="text/javascript"
 src="myscript.js"></script>

 <!-- a script inline -->
 <script language="JavaScript" TYPE="text/javascript"><!--

 function myFunction() {
 ...
 }
 // -->
 </script>
</head>

The script’s content is enclosed in an HTML comment by convention. The <script> tag is notably the only
tag in HTML whose contents are not supposed to be treated as content to display. Putting comments around
these inline scripts ensures that older browsers (and non-browser tools) that do not understand the <script>
tag do not mistake that content for ordinary text.

About JavaScript 9
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

About JavaScript and the DOM

Warning: In XHTML, data within the <script> tag is treated as parsed character data (PCDATA) instead
of raw character data (CDATA). This means that special characters are parsed like ordinary HTML, and
thus must be properly entity encoded. For example, instead of using &, you must use &.

Because entity encoding makes scripts difficult to read, as a general rule, you should generally use
external script files when working in XHTML. (As an added bonus, using separate script files reduces
network bandwidth and improves page load performance because the scripts are cached independently.)

Apple’s WebKit framework, and the Safari web browser based on it, both support the latest versions of
JavaScript. Since the support is built into the framework, you can use all the features of JavaScript within
anything that uses WebKit, including Safari, Dashboard, and any WebKit-based OS X application.

About the Document Object Model (DOM)

The Document Object Model (DOM) is a standardized software interface that allows code written in JavaScript
and other languages to interact with the contents of an HTML document. The Document Object Model
consists of a series of classes that represent HTML elements, events, and so on, each of which contains
methods that operate on those elements or events.

With the Document Object Model, you can manipulate the contents of an HTML document in any number
of ways, including adding, removing, and changing content, reading and altering the contents of a form,
changing CSS styles (to hide or show content, for example), and so on.

By taking advantage of the Document Object Model, you can create much more dynamic websites that adapt
as the user takes actions, such as showing certain form fields depending on selections in other fields, organizing
your content based on what pages the viewer has recently visited, adding dynamic navigation features such
as pull-down menus, and so on.

10 About the Document Object Model (DOM)
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

About JavaScript and the DOM

The JavaScript Document Object Model implements the Document Object Model (DOM) specification,
developed by the World Wide Web Consortium. This specification provides a platform and language-neutral
interface that allows programs and scripts to dynamically access and change the content, structure and style
of a document —usually HTML or XML—by providing a structured set of objects that correspond to the
document’s elements.

The Level 2 DOM specification in particular added the ability to create object trees from style sheets, and
manipulate the style data of document elements.

The Document Object Model is already implemented in a wide variety of languages, most notably JavaScript.
Each declaration in the JavaScript DOM was created using the Interface Definition Language (IDL) files from
the W3C.

By taking advantage of the DOM, you can:

 ■ Rearrange sections of a document without altering their contents

 ■ Create and delete existing elements as discrete objects

 ■ Search and traverse the document tree and the subtrees of any element on the tree

 ■ Completely isolate the document’s structure from its contents

Accessing a Document’s Structure with the DOM

The primary function of the Document Object Model is to view, access, and change the structure of an HTML
document separate from the content contained within it. You can access certain HTML elements based on
their id identifier, or allocate arrays of elements by their tag or CSS class type. All transformations are done
according to the most recent HTML specification. More importantly, they happen dynamically—any
transformation will happen without reloading the page.

The DOM tree is completely comprised of JavaScript objects. Some of the fundamental and most
commonly-used ones are listed in Table 1.

Table 1 Commonly used JavaScript DOM types

DefinitionDOM object

Returns the document object for the page. Represents the root node of the DOM tree, and
actions on it will affect the entirety of the page.

document

Represents an instance of most structures and sub-structures in the DOM tree. For example,
a text block can be an element, and so can the entire body section of an HTML document.

element

Accessing a Document’s Structure with the DOM 11
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Document Object Model From
JavaScript

DefinitionDOM object

A nodeList is equivalent to an array, but it is an array specific to storing elements. You can
access items in a nodeList through common syntax like myList[n], where n is an integer.

nodeList

There are a number of JavaScript methods specified by the DOM which allow you to access its structure.
Some of the fundamental and most commonly-used ones are listed in Table 2.

Table 2 Commonly used JavaScript DOM methods

DefinitionParent class(es)DOM method

Returns the element uniquely identified by its id
identifier.

document,
element

element getElementById(id)

Returns a nodeList of any elements that have a
given tag (such as p or div), specified by name.

document,
element

nodeList
getElementsByTagName(name)

Creates an element with the type specified by type
(such as p or div)

elementelement createElement(type)

Appends the node specified by node onto the
receiving node or element.

element, nodevoid appendChild(node)

Returns the style rules associated with an element,
in string form. You can also use this to set the style
rules, by calling something like
div.style.margin = "10px";

elementstring style

Returns the HTML that contains the current
element and all the content within it. You can also
use this to set the innerHTML of an element, by
using something like element.innerHTML =
"<p>test</p>";

elementstring innerHTML

Adds (or changes) an attribute of the receiving
element, such as its id or align attribute.

elementvoid setAttribute(name,
value)

Returns the value of the element attribute specified
by name.

elementstring getAttribute(name)

The entire DOM reference can be found in “Other Resources” (page 14).

Using the Document Object Model

This section introduces some code examples to familiarize you with the Document Object Model.

To work with DOM code examples, you need to create a sample HTML file. The code below represents the
HTML file you will use in the following examples:

12 Using the Document Object Model
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Document Object Model From JavaScript

<html>
<head>
 <title>My Sample HTML file</title>
 <script language="javascript" type="text/javascript"><!--
 // Insert JavaScript
 // commands here.

 // Do not delete this comment. -->
 </script>
</head>
<body>
 <div id="allMyParas" style="border-top: 1px #000 solid;">
 <p id="firstParagraph">
 This is my first paragraph.
 </p>
 <p id="secondParagraph">
 This is my second paragraph.
 </p>
 </div>
</body>
</html>

Now that you have an HTML document to work with, you’re ready to add some DOM transformations into
the script area. This first example appends a paragraph to the DOM tree, following the firstParagraph
and secondParagraph elements:

var parasDiv = document.getElementById("allMyParas");
var thirdPara = document.createElement("p");
thirdPara.setAttribute("id", "thirdParagraph");
parasDiv.appendChild(thirdPara);

Of course, the paragraph has no text in it right now. Using the DOM, you can even add text to that new
paragraph:

thirdPara.innerHTML = "This is my third paragraph.";

You may also want to add a bottom margin to the enclosing div element, where there is currently only a
top margin. You could do that with setAttribute, but you would have to copy the existing style attribute
with getAttribute, append to it, and then send it back using setAttribute. Instead, use the style block:

parasDiv.style.borderBottom = "1px #000 solid";

Finally, maybe you want to change the style on all the paragraph elements within the enclosing div element.
You can use the nodeList-generating getElementsByTagName method to get an array of the paragraph
elements, and then cycle through them. In this example, we’ll add a gray background to all the paragraphs:

var parasInDiv = parasDiv.getElementsByTagName("p");
for (var i = 0; i < parasInDiv.length; i++) {
 parasInDiv[i].style.backgroundColor = "lightgrey";
}

When you get done, the HTML effectively looks like this:

<html>
<head>
 <title>My Sample HTML file</title>
</head>
<body>

Using the Document Object Model 13
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Document Object Model From JavaScript

 <div id="allMyParas" style="border-top: 1px #000 solid; border-bottom: 1px #000
 solid;">
 <p id="firstParagraph" style="backgroundColor: lightgrey">
 This is my first paragraph.
 </p>
 <p id="secondParagraph" style="backgroundColor: lightgrey">
 This is my second paragraph.
 </p>
 <p id="thirdParagraph" style="backgroundColor: lightgrey">
 This is my third paragraph.
 </p>
 </div>
</body>
</html>

Note: For illustration purposes, in the above block of HTML, the styles shown include the changes made to
the CSS style for the elements. In actuality, the text content of the each element’s style attribute remains
unchanged, though the effect is equivalent.

The combination of the JavaScript Document Object Model with WebKit-based applications or Dashboard
widgets is powerful. By tying these scripts to mouse events or button clicks, for example, you can create very
dynamic and fluid content on your web page or within your WebKit-based applications, including Dashboard
widgets.

Other Resources

The following resources will help you use the JavaScript Document Object Model:

 ■ WebKit DOM Reference is Apple’s reference for the JavaScript functions and properties supported by
Safari and WebKit.

 ■ Mozilla Gecko DOM Reference is one of the most comprehensive references for the JavaScript DOM.

14 Other Resources
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Document Object Model From JavaScript

https://developer.mozilla.org/en/Gecko_DOM_Reference

Safari, Dashboard, and WebKit-based applications support the JavaScript canvas object. The canvas allows
you to easily draw arbitrary content within your HTML content.

Introduction to the Canvas

A canvas is an HTML tag that defines a custom drawing region within your web content. You can then access
the canvas as a JavaScript object and draw upon it using features similar to Mac OS X’s Quartz drawing system.
The World Clock Dashboard widget (available on all Apple machines running Mac OS X version 10.4 or later)
shows a good example , though using a canvas is by no means exclusive to Dashboard.

There are two steps to using a canvas in your web page: defining a content area, and drawing to the canvas
object in the script section of your HTML.

Defining the Canvas

To use a canvas in your web page you first set up the drawing region. The World Clock Dashboard widget
designates this region with the following code:

<canvas id="myCanvas" width='172' height='172'></canvas>

In this context, the attributes of <canvas> worth noting are id, width, and height.

The id attribute is a custom identifier used to target a particular canvas object when drawing. The width
and height attributes specify the size of the canvas region.

Within the World Clock widget, this area is defined to be the canvas:

Figure 1 The World Clock canvas region

Now that the canvas region has been defined, it is ready to be filled.

Introduction to the Canvas 15
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Canvas

Drawing on a Canvas

Once you have defined the canvas area, you can write code to draw your content. Before you can do this,
you need to obtain the canvas and its drawing context. The context handles the actual rendering of your
content. The World Clock widget does this in its drawHands() function:

function drawHands (hoursAngle, minutesAngle, secondsAngle)
{
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This function draws the hour, minute, and second hands on the face of the World Clock. As parameters, it
takes the angles at which the three hands should be rotated as passed in by its caller.

You first query the JavaScript environment for the previously defined canvas, using its unique identifier: the
id attribute in the <canvas> tag.

Once your script has acquired the canvas, you need to obtain its context. Using the getContext("2d")
method, assign the canvas’ draw context it to the context variable. From this point on, you call all operations
intended for the canvas on context.

The first operation you perform empties the canvas. As the drawHands() function is called every second, it
is important to empty it each time, so that the previously drawn configuration doesn’t simply draw on top
of the new configuration. The entire region, as defined by standard coordinates in the <canvas> tag, is
cleared:

 context.clearRect(0, 0, 172, 172);

Next, you save the state of the original context space so that you can restore later. In the original context,
the origin (the 0,0 coordinate) of the canvas is in the top left corner. Upon completion of the upcoming
drawing code, you want to return to this context. Use the context’s save method to do so:

 context.save();

Since you want the hands of the clock to rotate around the center of the clock, translate the origin of the
context space to the center of the canvas:

 context.translate(172/2, 172/2);

Then draw the hour hand on the face of the clock. You copy the current context (with the origin at the center
of the clock face), so that it can restored later. Then, you rotate the entire context, so that the y-axis aligns
itself with the angle that the hour hand should point towards. Next, you draw the hour hand image (created
in the code as a JavaScript Image object). The method drawImage() has five parameters: the image to be
drawn, the x and y coordinate for the bottom left hand corner of the image, and the width and height of the
image. Remember that while you draw the image as going straight up within the graphics context, you
rotated the context to be at the correct angle for the hour hand:

 context.save();
 context.rotate(hoursAngle);
 context.drawImage(hourhand, -4, -28, 9, 25);
 context.restore();

Once you draw the hand, you restore the last saved context. This means that the context that you saved four
lines prior, with its origin at the center of the canvas but not yet rotated, will be the active context again.

16 Drawing on a Canvas
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Canvas

Use a similar procedure to draw the minute hand on the face of the clock. The differences this time are in
the angle you rotate the context to and the size of the minute hand. Note that you save and rotate the context
again, and then you restore it to its previous state, so that you can draw the next element independent of
the rotation needed for the minute hand:

 context.save();
 context.rotate (minutesAngle);
 context.drawImage (minhand, -8, -44, 18, 53);
 context.restore();

Finally, draw the second hand. Note that this time, the context should not be saved and restored. Since this
is the last time anything will be drawn in this particular context (with the origin at the center of the canvas),
it is not necessary for you to save and restore again:

 context.rotate (secondsAngle);
 context.drawImage (sechand, -4, -52, 8, 57);
 context.restore();
}

Now that the clock face has been drawn, you should restore the context to its original state, as saved before
any drawing occurred. This prepares the canvas for any future drawing that will occur, and gives you a
consistent origin (the top-left corner of the canvas) to work from.

Remember, all of these techniques can be applied to a canvas object within any WebKit-based application.
For more information on the canvas see Canvas.

Accessing and Manipulating Canvas Data

Safari 4.0 and later support direct manipulation of the pixels of a canvas. You can obtain the raw pixel data
of a canvas with the getImageData() function and create a new buffer for manipulated pixels with the
createImageData() function:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");
var currentPixels = context.getImageData(0, 0, canvas.width, canvas.height);
var newPixels = context.createImageData(canvas.width, canvas.height);

The getImageData() and createImageData() functions both return an ImageData object that contains
pixel information in its data property. The data property is an array that contains four values between 0
and 255 for every pixel in the canvas. These values correspond to the red, green, blue, and alpha components
of the pixel. The following example loops through the data array of the currentPixels variable. For each
pixel, it subtracts each color component’s value from 255 and assigns the result to the corresponding cell in
the data array of the newPixels variable, thus creating an inverted copy of the image. The alpha value of
every pixel is copied over without any manipulation. Finally, the newPixels variable is passed to the
putImageData() function, which applies the new pixel values to the canvas.

for (var y = 0; y < newPixels.height; y += 1) {
 for (var x = 0; x < newPixels.width; x += 1) {
 for (var c = 0; c < 3; c += 1) {
 var i = (y*newPixels.width + x)*4 + c;
 newPixels.data[i] = 255 - currentPixels.data[i];
 }
 var alphaIndex = (y*newPixels.width + x)*4 + 3;

Accessing and Manipulating Canvas Data 17
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Canvas

 newPixels.data[alphaIndex] = currentPixels.data[alphaIndex];
 }
}
context.putImageData(newPixels, 0, 0);

You can also obtain a data URL representation of the image of a canvas with the toDataURL() function.
This function returns a PNG encoding of the image when no parameters are passed. You can obtain other
image formats by passing in a string indicating the desired format, such as image/jpg or image/gif.

18 Accessing and Manipulating Canvas Data
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Canvas

Safari, Dashboard, and WebKit-based applications include support to let you handle cut, copy, and paste
operations of your HTML content.

Introduction to JavaScript Pasteboard Operations

Support for pasteboard operations is implemented in JavaScript and may be applied to any element of your
HTML page. To handle these operations, you provide functions to handle any of six JavaScript events:

 ■ onbeforecut

 ■ oncut

 ■ onbeforecopy

 ■ oncopy

 ■ onbeforepaste

 ■ onpaste

You can provide handlers for the oncut, oncopy, and onpaste events if you want to define custom behavior
for the corresponding operations. You can also provide handlers for the onbeforecut, onbeforecopy, and
onbeforepaste events if you want to manipulate the target data before it is actually cut, copied, or pasted.

If your oncut, oncopy, and onpaste handlers do the actual work of cutting, copying, or pasting the data,
your handler must call the preventDefault method of the event object. This method takes no parameters
and notifies WebKit that your handler takes care of moving the data to or from the pasteboard. If you do not
call this method, WebKit takes responsibility for moving the data. You do not need to call preventDefault
if you simply want to be notified when the events occur.

Adding Pasteboard Handlers to Elements

You can add handlers for pasteboard events to any element in a web page. When a pasteboard operation
begins, WebKit looks for the appropriate handler on the element that is the focus of the operation. If that
element does not define a handler, WebKit walks up the list of parent elements until it finds one that does.
(If no element defines a handler, WebKit applies the default behavior.) To demonstrate this process, suppose
you have the following basic HTML in a web page:

<body oncut="MyBodyCutFunction()"
 oncopy="MyBodyCopyFunction()"
 onpaste="MyBodyPasteFunction()">
 Cut, copy, or paste here.
</body>

Introduction to JavaScript Pasteboard Operations 19
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Pasteboard From JavaScript

If a user initiates a cut or copy operation on the text in the span tag, WebKit calls MyBodyCutFunction or
MyBodyCopyFunction to handle the event. However, if the user tries to paste text into the span tag, WebKit
calls the MySpanPasteFunction to handle the event. The MyBodyPasteFunction function would be called
only if the paste operation occurred outside of the span tag.

Manipulating Pasteboard Data

When an event occurs, your handler uses the clipboardData object attached to the event to get and set
the clipboard data. This object defines the clearData, getData, and setData methods to allow you to
clear, get, and set the clipboard data.

Note: For security purposes, the getDatamethod can be called only from within the onpaste event handler.

WebKit’s pasteboard implementation supports data types beyond those that are typically found in HTML
documents. When you call either getData or setData, you specify the MIME type of the target data. For
types it recognizes, including standard types found in HTML documents, WebKit maps the type to a known
pasteboard type. However, you can also specify MIME types that correspond to any custom data formats
your application understands. For most pasteboard operations, you will probably want to work with simple
data types, such as plain text or a list of URIs.

WebKit also supports the ability to post the same data to the pasteboard in multiple formats. To add another
format, you simply call setData once for each format, specifying the format’s MIME type and a string of data
that conforms to that type.

To get a list of types currently available on the pasteboard, you can use the types property of the
clipboardData object. This property contains an array of strings with the MIME types of the available data.

20 Manipulating Pasteboard Data
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using the Pasteboard From JavaScript

Safari, Dashboard, and WebKit-based applications include support for customizing the behavior of drag and
drop operations within your HTML pages.

Note: This technology is supported only on desktop versions of Safari. For iPhone OS, use DOM Touch,
described in Handling Events (part of Safari Web Content Guide) and Safari DOM Additions Reference.

Introduction to JavaScript Drag and Drop

Support for Drag and Drop operations is implemented in JavaScript and may be applied to individual elements
of your HTML page. For drag operations, an element can handle the following JavaScript events:

 ■ ondragstart

 ■ ondrag

 ■ ondragend

The ondragstart event initiates the drag operation. You can provide a handler for this event to initiate or
cancel drag operations selectively. To cancel a drag operation, call the preventDefault method of the
event object. To handle an event, assign a value to the effectAllowed property and put the data for the
drag in the dataTransfer object, which you can get from the event object. See “Changing Drag Effects” (page
23) for information on the effectAllowed property. See “Manipulating Dragged Data” (page 23) for
information on handling the drag data.

Once a drag is under way, the ondrag event is fired continuously at the element to give it a chance to perform
any tasks it wants to while the drag is in progress. Upon completion of the operation, the element receives
the ondragend event. If the drag was successful, the ondrop handler for the drop target element is also
called (before the ondragend handler is called).

While a drag is in progress, events are sent to elements that are potential drop targets for the contents being
dragged. Those elements can handle the following events:

 ■ ondragenter

 ■ ondragover

 ■ ondragleave

 ■ ondrop

Introduction to JavaScript Drag and Drop 21
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

The ondragenter and ondragleave events let the element know when the user’s mouse enters or leaves
the boundaries of the element. You can use these events to change the cursor or provide feedback as to
whether a drop can occur on an element. The ondragover event is sent continuously while the mouse is
over the element to give it a chance to perform any needed tasks. If the user releases the mouse button, the
element receives an ondrop event, which gives it a chance to incorporate the dropped content.

If you implement handlers for the ondragenter and ondragover events, you should call the
preventDefault method of the event object. This method takes no parameters and notifies WebKit that
your handler will act as the receiver of any incoming data. If you do not call this method, WebKit receives
the data and incorporates it for you. You do not need to call preventDefault if you simply want to be
notified when the events occur.

Note: You must, at minimum, implement ondragover and call the preventDefault method on the event
object. If you do not do this, you will not receive any of these four events.

Adding Handlers to Elements

You can add handlers for drag and drop events to any element in a web page. When a drag or drop operation
occurs, WebKit looks for the appropriate handler on the element that is the focus of the operation. If that
element does not define a handler, WebKit walks up the list of parent elements until it finds one that does.
If no element defines a handler, WebKit applies the default behavior. To demonstrate this process, suppose
you have the following basic HTML in a web page:

<body ondragstart="BodyDragHandler()"
 ondragend="BodyDragEndHandler()">
 Drag this text.
</body>

If a user initiates a drag operation on the text in the span tag, WebKit calls SpanDragHandler to handle
the event. When the drag operation finishes, WebKit calls the BodyDragEndHandler to handle the event.

Making an Element Draggable

WebKit provides automatic support to let users drag common items, such as images, links, and selected text.
You can extend this support to include specific elements on an HTML page. For example, you could mark a
particular div or span tag as draggable.

To mark an arbitrary element as draggable, add the -webkit-user-drag attribute (previously
-khtml-user-drag) to the style definition of the element. Because it is a cascading style sheet (CSS) attribute,
you can include it as part of a style definition or as an inline style attribute on the element tag. The values
for this attribute are listed in Table 1.

Table 1 Values for -webkit-user-drag attribute

DescriptionValue

Do not allow this element to be dragged.none

22 Adding Handlers to Elements
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

DescriptionValue

Allow this element to be dragged.element

Use the default logic for determining whether the element should be dragged. (Images, links,
and text selections can be dragged but all others cannot.) This is the default value.

auto

The following example shows how you might use this attribute in a span tag to permit the dragging of the
entire tag. When the user clicks on the span text, WebKit identifies the span as being draggable and initiates
the drag operation.

draggable
text

Manipulating Dragged Data

When an event occurs, your handler uses the dataTransfer object attached to the event to get and set
the clipboard data. This object defines the clearData, getData, and setData methods to allow you to
clear, get, and set the data on the dragging pasteboard.

Note: For security purposes, the getDatamethod can be called only from within the ondrop event handler.

Unlike many other browsers, the WebKit drag-and-drop implementation supports data types beyond those
that are found in HTML documents. When you call either getData or setData, you specify the MIME type
of the target data. For types it recognizes, WebKit maps the type to a known pasteboard type. However, you
can also specify MIME types that correspond to any custom data formats your application understands. For
most drag-and-drop operations, you will probably want to work with simple data types, such as plain text
or a list of URIs.

Like applications, WebKit supports the ability to post the same data to the pasteboard in multiple formats.
To add another format, you simply call the setData method with a different MIME type and a string of data
that conforms to that type.

To get a list of types currently available on the pasteboard, you can use the types property of the
dataTransfer object. This property contains an array of strings with the MIME types of the available data.

Changing Drag Effects

When dragging content from one place to another, it might not always make sense to move that content
permanently to the destination. You might want to copy the data or create a link between the source and
destination documents instead. To handle these situations, you can use the effectAllowed and dropEffect
properties of the dataTransfer object to specify how you want data to be handled.

The effectAllowed property tells WebKit what types of operation the source element supports. You would
typically set this property in your ondragstart event handler. The value for this property is a string, whose
value can be one of those listed in Table 2.

Manipulating Dragged Data 23
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

Table 2 Options for dragging and dropping an element

DescriptionValue

No drag operations are allowed on the element.none

The contents of the element should be copied to the destination only.copy

The contents of the element should be shared with the drop destination using a link back to
the original.

link

The element should be moved to the destination only.move

The element can be copied or linked.copyLink

The element can be copied or moved. This is the default value.copyMove

The element can be linked or moved.linkMove

The element can be copied, moved, or linked.all

The dropEffect property specifies the single operation supported by the drop target (copy, move, link,
or none). When an element receives an ondragenter event, you should set the value of this property to
one of those values, preferably one that is also listed in the effectAllowed property. If you do not specify
a value for this property, WebKit chooses one based on the available operations (as specified in
effectAllowed). Copy operations have priority over move operations, which have priority over link
operations.

When these properties are set by the source and target elements, WebKit displays feedback to the user about
what type of operation will occur if the dragged element is dropped. For example, if the dragged element
supports all operations but the drop target only supports copy operations, WebKit displays feedback indicating
a copy operation would occur.

Changing the Appearance of Dragged Elements

During a drag operation, WebKit provides feedback to the user by displaying an image of the dragged content
under the mouse. The default image used by WebKit is a snapshot of the element being dragged, but you
can change this image to suit your needs.

Changing the Snapshot With CSS

The simplest way to change the drag-image appearance is to use cascading style sheet entries for draggable
elements. WebKit defines the -webkit-drag (formerly -khtml-drag) pseudoclass, which you can use to
modify the style definitions for a particular class during a drag operation. To use this pseudoclass, create a
new empty style-sheet class entry with the name of the class you want to modify, followed by a a colon and
the string -webkit-drag. In the style definition of this new class, change or add attributes to specify the
differences in appearance between the original element and the element while it is being dragged.

24 Changing the Appearance of Dragged Elements
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

The following example shows the style-sheet definition for an element. During normal display, the appearance
of the element is determined by the style-sheet definition of the divSrc4 class. When the element is dragged,
WebKit changes the background color to match the color specified in the divSrc4:-webkit-drag
pseudoclass.

#divSrc4 {
 display:inline-block;
 margin:6;
 position:relative;
 top:20px;
 width:100px;
 height:50px;
 background-color:rgb(202,232,255);
}

#divSrc4:-webkit-drag {
 background-color:rgb(255,255,154)
}

Specifying a Custom Drag Image

Another way to change the drag image for an element is to specify a custom image. When a drag operation
begins, you can use the setDragImagemethod of the dataTransfer object. This method has the following
definition:

function setDragImage(image, x, y)

The image parameter can contain either a JavaScript Image object or another element. If you specify an
Image object, WebKit uses that image as the drag image for the element. If you specify an element, WebKit
takes a snapshot of the element you specify (including its child elements) and uses that snapshot as the drag
image instead.

The x and y parameters of setDragImage specify the point of the image that should be placed directly
under the mouse. This value is typically the location of the mouse click that initiated the drag, with respect
to the upper-left corner of the element being manipulated.

Unfortunately, obtaining this information in a cross-browser fashion is easier said than done. There is no
standard way to determine the position of the mouse relative to the document because different browsers
implement the standard event values in subtly incompatible ways.

For the purposes of Safari and WebKit, clientX and clientY are document relative, as are pageX and
pageY (which are thus always equal to clientX and clientY). For other browsers, Evolt.org has an article
that describes how to obtain the mouse position in a cross-browser fashion, including sample code, at
http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/index.html.

Obtaining the position of the element under the mouse is somewhat easier. QuirksMode has a page (with
code samples) on the subject at http://www.quirksmode.org/js/findpos.html.

Changing the Appearance of Dragged Elements 25
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/index.html
http://www.quirksmode.org/js/findpos.html

Cross-Browser Compatibility

The drag-and-drop functionality built into WebKit and Safari works similarly to support in Microsoft Internet
Explorer. The functionality built into FireFox and other Gecko-based browsers is very different, however.

In currently released versions of FireFox, this form of drag and drop is not generally supported from ordinary
webpages (signed XUL applications notwithstanding) because you cannot register a drop target without
loading an XPCOM component. Thus, with the exception of dropping things onto text areas (which are
already drop targets), drag and drop must be emulated on this browser using mouse event handlers such
as onmouseup.

As a result of differences in browser support, most web developers who need drag-and-drop support use
libraries that mask browser differences. Some of these include the Dojo Toolkit, DOM-Drag, ToolMan, Rico,
and others.

Complete Example

No description of drag and drop would be complete without a working example. Save this into an HTML file
and open it in Safari. You should see a very simple set of boxes containing words. If you drag each word box
into the blue “target” box, the box will disappear and the word will appear in its correct place to form the
phrase “This is a test”.

<html>
<head>

<script language="javascript" type="text/javascript"><!--
 var dragitem = undefined;

 function setdragitem(item, evt) {
 dragitem=item;
 // alert('item: '+item);
 // item is an HTML DIV element.
 // evt is an event.

 // If the item should not be draggable, enable this next line.
 // evt.preventDefault();

 return true;
 }
 function cleardragitem() {
 dragitem=undefined;
 // alert('item: '+item);
 }
 function dodrag() {
 // alert('item: '+dragitem);
 }

 // This is required---used to tell WebKit that the drag should
 // be allowed.
 function handledragenter(elt, evt) {
 evt.preventDefault();
 return true;

26 Cross-Browser Compatibility
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

http://www.dojotoolkit.org/
http://youngpup.net/projects/dom-drag/
http://tool-man.org/
http://openrico.org/

 }
 function handledragover(elt, evt) {
 evt.preventDefault();
 return true;
 }

 function handledragleave(elt, evt) {

 }

 function handledrop(elt, evt) {
 // alert('drop');
 dragitem.style.display="none";
 var newid=dragitem.id + '_dest';
 var dest = document.getElementById(newid);
 dest.innerHTML = dragitem.innerHTML;
 }

// --></script>

<style type="text/css"><!--

 .wordbox { border: 1px solid black; text-align: center; width: 50px; float:
 left; -webkit-user-drag: element; -webkit-user-select: none; }
 .spacer { clear: both; }
 .target { margin-top: 30px; padding: 30px; width: 70px; border: 1px solid
black; background: #c0c0ff; margin-bottom: 30px; -webkit-user-drop: element; }
 .word { margin: 30px; min-height: 30px; border-bottom: 1px solid black;
width: 50px; float: left; }

--></style>

</head>
<body>

<p>Drop words onto target area to put them in their places.</p>

<div class='wordbox' id='this' ondragstart='setdragitem(this, event);'
ondrag='dodrag();' ondragend='cleardragitem();'>This</div>
<div class='wordbox' id='is' ondragstart='setdragitem(this, event);'
ondrag='dodrag();' ondragend='cleardragitem();'>is</div>
<div class='wordbox' id='a' ondragstart='setdragitem(this, event);'
ondrag='dodrag();' ondragend='cleardragitem();'>a</div>
<div class='wordbox' id='test' ondragstart='setdragitem(this, event);'
ondrag='dodrag();' ondragend='cleardragitem();'>test</div>

<div class='spacer'></div>
<div class='target' ondragenter='handledragenter(this, event);'
ondragover='handledragover(this, event);' ondragleave='handledragleave(this,
event);' ondrop='handledrop(this, event);'>TARGET</div>

<div class='words'>
<div class='word' id='this_dest'></div>
<div class='word' id='is_dest'></div>
<div class='word' id='a_dest'></div>
<div class='word' id='test_dest'></div>

Complete Example 27
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

</div>

</body>
</html>

28 Complete Example
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

Safari, Dashboard, and WebKit-based applications support the JavaScript XMLHttpRequest object.
XMLHttpRequest (often abbreviated as XHR) allows you to easily fetch content from a server and use it
within your webpage or widget without requiring a page reload.

For example, you can use XHR to update a store search page so that when the user enters a Zip code, your
site can display stores within a reasonable distance. Clicking on a store could then fill a particular content
div with details on that store.

Of course, you could do any of these things without XHR (by requiring a full page load or by including
information about every store in the country in a single page), but XHR provides a way to do this more
efficiently with less bandwidth.

Introduction to XMLHttpRequest

XMLHttpRequest is a JavaScript object provided by WebKit that fetches data via HTTP for use within your
JavaScript code. It’s tuned for retrieving XML data but can be used to perform any HTTP request. XML data
is made available in a DOM object that lets you use standard DOM operations, as discussed in “Using the
Document Object Model From JavaScript” (page 11), to extract data from the request response.

Typically, you define an XMLHttpRequest object’s options and provide an onload or onreadystatechange
handler, then send the request. When the request is complete, you work with either the request’s response
text or its response XML, as discussed in “XMLHttpRequest Responses” (page 30).

Defining an XMLHttpRequest Object

To create a new instance of the XMLHttpRequest object, call the object’s constructor with the new keyword
and save the result in a variable, like this:

var myRequest = new XMLHttpRequest();

Note: If you are writing a webpage, you should be aware that most versions of Microsoft Internet Explorer
on Windows do not support creating an XMLHttpRequest object in this way. Jibbering.com has cross-browser
sample code at http://jibbering.com/2002/4/httprequest.html if you need to support Internet Explorer prior
to version 7.

After you have created a new XMLHttpRequest object, call open to initialize the request:

myRequest.open("GET", "http://www.apple.com/");

Introduction to XMLHttpRequest 29
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

http://jibbering.com/2002/4/httprequest.html

The open method requires two arguments: the HTTP method and the URI of the data to fetch. It also can
take three more arguments: an asynchronous flag, a username, and a password. By default, XMLHttpRequest
executes asynchronously.

After you open the request, use setRequestHeader to provide any optional HTTP headers for the request,
like this:

myRequest.setRequestHeader("Cache-Control", "no-cache");

Note: This particular header asks web caches between the browser and the server to not serve the request
from a cache. Not all caches respect these flags, however, and some browsers do not consistently respect it,
either.

This can be problematic if, for example, you send a request in an onChange handler on a form field. If that
request can be cached, any request that changes the field back to a previous value won’t ever reach the
server, resulting in the UI not matching the actual values stored on the server.

Thus, if it is absolutely essential that a request not be served from a cache, you should err on the side of
caution by adding a timestamp or other nonrecurring value to the end of each URL. For example:
http://mysite.mydomain.top/file.html?junktimevalue=1187999959.

To handle the different states of a request, set a handler function for the onreadystatechange event:

myRequest.onreadystatechange = myReadyStateChangeHandlerFunction;

If the only state you’re concerned about is the loaded state (state 4), try using the onload event instead:

myRequest.onload = myOnLoadHandlerFunction;

If you are sending a cross-site request (see “Using XMLHttpRequest for Cross-Site Requests” (page 31) for
more information) and want cookies or authentication information to be sent to the remote server, you need
to enable credentials:

myRequest.withCredentials = "true";

When the request is ready, use the send method to send it:

myRequest.send();

If your request is sending content, like a string or DOM object, pass it in as the argument to the sendmethod.

XMLHttpRequest Responses

Once your send your request, you can abort it using the abort method:

myRequest.abort();

If you provided an onreadystatechange handler, you can query your request to find its current state using
the readyState property:

var myRequestState = myRequest.readyState;

A readyState value of 4 means that content has loaded. This is similar to providing an onload handler,
which is called when a request’s readyState equals 4.

30 XMLHttpRequest Responses
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

When a request is finished loading, you can query its HTTP status using the status and statusText
properties:

var myRequestStatus = myRequest.status;
var myRequestStatusText = myRequest.statusText;

Also, you can fetch the request’s HTTP response headers using the getResponseHeader method:

var aResponseHeader = myRequest.getResponseHeader("Content-Type");

To obtain a list of all of the response headers for a request, use getAllResponseHeaders:

var allResponseHeaders = myRequest.getAllResponseHeaders();

To obtain the request’s response XML as a DOM object, use the responseXML property:

var myResponseXML = myRequest.responseXML;

This object responds to standard DOM methods, like getElementsByTagName. If the response is not in a
valid XML format, use the responseText property to access the raw text response:

var myResponseText = myRequest.responseText;

Security Considerations

Within Safari, the XMLHttpRequest object can only make requests to http and https URIs in the same
domain as the webpage.

As an exception, however, beginning with Safari 4.0, a website can allow content served by other websites
to request data from specific http and https URLs on their servers.

Note: To enable this behavior, the site must send specific response headers conforming to the Cross-Origin
Resource Sharing specification, defined by the Web Applications Working Group. It is not possible to make
HTTP requests to arbitrary sites without the cooperation of those sites.

Using XMLHttpRequest for Cross-Site Requests

For the most part, the XMLHttpRequest object works the same way when used in a cross-site fashion. There
are a few exceptions, however.

 ■ cookies—Because the JavaScript code is not in the same domain, it is not possible to set or read cookies
for that domain.

Note: Although the cookie fields of the XMLHttpRequest object are ignored for cross-site requests,
cookies can still be sent and received if you specifically set the withCredentials attribute on the
request object to "true". See “Defining an XMLHttpRequest Object” (page 29) for more information.

 ■ authentication tokens—As with cookies, it is not possible to add or read authentication information for
the remote domain.

Security Considerations 31
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

Note: Although authentication information cannot be provided by the script, authenticated HTTP
requests are allowed; the user is asked to enter login credential information upon initial connection just
as though the user had connected to the site manually.

In order for a request to be sent using any login credentials, however, you must explicitly set the
withCredentials attribute on the request object to "true". See “Defining an XMLHttpRequest
Object” (page 29) for more information.

 ■ Referer header—Because it can contain confidential path information, the Referer header is not sent
to the remote site. You can, however, check the Origin header to determine the domain name of the
referring page.

 ■ other headers—Most HTTP headers are explicitly scrubbed both when sending and receiving. The only
headers that are sent are:

 ❏ Accept—a comma-separated list of Internet Media Type values (as defined in RFC 1590) that are
acceptable as a response for the request. These may be tagged with quality values to indicate a
preference for one type over another.

For example, Accept: text/html, text/plain;q=.5 indicates that the caller prefers HTML data
with an implied quality of 1, but will also accept plain text data with an explicit quality of 0.5

The second field may be replaced with an asterisk (*) wildcard character (Accept: text/*, for
example). The first field may also be a wildcard if and only if the second field contains a wildcard
(Accept: */*).

 ❏ Accept-Language—a comma-separated list of natural languages preferred by the user, optionally
tagged with quality values for each language. The language tag values are defined by RFC 1766.

For example, Accept-Language: de, en-gb;q=.5, es indicates the user prefers German or
Spanish with implied quality of 1, but will tolerate British English with an explicit quality of 0.5.

 ❏ Content-Language—the natural language of the content of the request (en-US, for example), as
defined by RFC 1766.

 ❏ Content-Type—the Internet Media Type for the data in the request (Content-Type: text/html,
for example), as defined in RFC 1590.

 ❏ Origin—sent by the browser to indicate the domain from which the request was sent. This field
contains the non-path portion of the URL (http://example.com, for example).

Note: The Origin header is only sent when requesting the specified URI. If the cross-origin request
returns a redirect to a different URI, when fetching the subsequent location or locations, the Origin
header is set to null and the Referer header field is set to the previous location in the redirect chain.

The only headers your script can expect to receive from the server (after the browser filters them) are:

 ❏ Host—provides the host name and port number of the server sending a response.

 ❏ Cache-Control—provides caching policy information.

 ❏ Content-Language—a comma-separated list of natural language of the content (en-US, for
example), as defined by RFC 1766.

 ❏ Content-Type—the Internet Media Type for the data in the response (Content-Type: text/html,
for example), as defined in RFC 1590.

32 Security Considerations
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

http://www.ietf.org/rfc/rfc1590.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1590.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1590.txt

 ❏ Expires—the date and time at which any cache of this data should be discarded. The date format
is specified by RFC 1123.

 ❏ Last-Modified—the most recent date and time when the document’s contents were modified.
The date format is specified by RFC 1123.

 ❏ Pragma—used for optional implementation-specific directives that may apply to intermediate web
caches, the browser, and so on.

All other headers may be scrubbed.

Warning: Data requested from a remote site should be treated as untrusted. For example, you should
not execute JavaScript code retrieved from a remote site without thoroughly checking it for validity.

Access Control Request Headers

Before performing the actual request, the browser first sends an OPTIONS query to the server to ask if it is
allowed to send the actual request. The following headers are sent by the browser as part of this query and
may be used by scripts on the remote web server when deciding whether or not to allow the request:

Origin
Contains the non-path portion of the resource making the request (for example,
http://example.com).

Access-Control-Request-Method
Contains the method that the actual request will use (GET or POST, for example).

Access-Control-Request-Headers
Indicates which HTTP headers will be sent in the actual request.

Access Control Response Headers

Before performing the actual request, the browser first sends an OPTIONS query to the server to ask if it is
allowed to send the actual request. The following headers may be sent by the remote web server (or scripts
running on that server) in response to this request to control cross-site access policies:

Access-Control-Allow-Origin
Indicates that a particular origin can access the resource. The value may be either a specific origin
(http://example.com, for example) or an asterisk (*) wildcard, which allows any domain to access
the resource.

Access-Control-Max-Age
Indicates how long a browser should continue to cache the site’s acceptance of requests from other
domains. If your site only allows requests from other domains after some specific handshake by a
user, for example, you might set this to a short value.

Access-Control-Allow-Credentials
Indicates that the request may be made with credentials. The only allowable value is true. To disallow
credentials, omit this header.

Security Considerations 33
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1123.txt

Access-Control-Allow-Methods
Provides a request method that the script may use for future requests (GET or POST, for example).
The valid methods are defined in RFC 2616. This field may be specified more than once to allow
multiple methods.

Access-Control-Allow-Headers
Provides a header field name that the client has permission to use in the actual request.

34 Security Considerations
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Using XMLHttpRequest Objects

http://www.ietf.org/rfc/rfc2616

As a general rule, scripts loaded by web content served from one origin (host and domain) cannot access
web content served by a different origin. This is an important security feature that prevents a multitude of
different security attack vectors. However, it also makes it difficult for scripts to interact with one another
across these boundaries.

To make communication between documents from different origins easier, the HTML 5 specification adds
cross-document messaging. This feature is supported in Safari 4.0 and later.

Posting a Message to a Window

To post a message, you must first obtain the Window object of the document you want to message. In effect,
this means that you can post messages only to:

 ■ other frames or inline frames within your document window (or their descendants if all intermediate
frames or inline frames were served from the same origin).

var iFrameObj = document.getElementById('myId');
var windowObj = iFrameObj.contentWindow;

 ■ windows that your document explicitly opened through JavaScript calls.

var windowObj = window.open(...);

 ■ the window that contains your document window, the window that contains that window, and so on
up to the root window.

var windowObj = window.parent;

 ■ the window that opened your document.

var windowObj = window.opener;

Once you have obtained the Window object for the target document, you can send it a message with the
following code:

windowObj.postMessage('test message', 'http://example.com');

The first parameter is an arbitrary message.

The second parameter is the target origin value. An origin value is just a URL with the path part removed.
For example, the origin of a local file is file://. By specifying a target origin, you are saying that that your
message should only be delivered if the target window’s current contents came from that origin.

Posting a Message to a Window 35
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

Although you may specify an asterisk (*) wildcard for the target origin (to allow the message to be sent
regardless of where the contents of the target window came from), you should do so only if you are certain
that it would not be harmful if your message were received by content originating from a different website.

Receiving a Message Posted to a Window

To receive messages, you must add an event listener for the message event type to your document’s window
object. To do this, use the following code:

function messageReceive(evt) {
 if (evt.origin == 'http://example.com') {
 // The message came from an origin that
 // your code trusts. Work with the message.
 alert('Received data '+evt.data);

 // Send a message back to the source:
 evt.source.postMessage('response', evt.origin);
 } else {
 alert('unexpected message from origin '+evt.origin);
 }
}
window.addEventListener('message', messageReceive, false);

The message event you receive has three properties of interest:

 ■ data—the message contents.

 ■ origin—the domain from which the message was sent (http://example.com in this case).

 ■ source—the window from which the message was sent.

A Service Discovery Example: Message Boxes

This section contains two code listings: index.html and msg_contents.html that, when combined,
implement basic service discovery and data relaying on top of the cross-document messaging architecture.

To use this code, you must first do the following things:

 ■ Install Safari 4.0 or later, or install a recent WebKit nightly.

 ■ Save the contents of the two code listings in separate files.

 ■ In the file msg_contents.html, modify the variable allowed_origins to contain a list of origins from
which you plan to serve the index.html or msg_contents.html file.

For example, if you intend to place this file at
http://www.example.org/message_test/msg_contents.html, you should make sure that
'http://www.example.org' (enclosed in quotes) is a key in the allowed_origins object.

If you only have one machine, turn on web sharing, then use http://localhost as one origin and
file:// as the other.

36 Receiving a Message Posted to a Window
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 ■ In the file msg_contents.html, optionally change the variable root_origin to the actual expected
origin of the top level HTML page.

 ■ Place a copy of the modified msg_contents.html file on the desired server or servers.

 ■ In the file index.html, replace the allowed_origins declaration with the one from your
msg_contents.html file. Then, update the boxes object to provide the URLs for the
msg_contents.html files you just put on your servers.

If you only have one machine, use a file:// URL pointing to the path of the msg_contents.html
file. For example, if you placed the file in
/Library/WebServer/Documents/message_test/msg_contents.html, the local URL would be
file:///Library/WebServer/Documents/message_test/msg_contents.html.

 ■ Place this modified index.html file on one of the servers and navigate to the URL, or open it as a local
file on disk.

Once you have completed these steps, you should see several boxes, one per entry in the boxes object. Each
of these boxes should contain a small form with a text input box, a series of checkboxes (one for each of the
outer boxes), and a submit button.

If you type something into the text box, check one of the checkboxes, and click submit, the text should
appear at the bottom of the window whose name corresponds with the checkbox.

Listing 1 Cross-document messaging example: index.html

<html><head>
<script language='javascript' type='text/javascript'><!--
/*global alert, navigator, document, window */

var window_list = [];
var origin_list = [];

var boxes = {
 local: "http://host1.domain1.top/messages2/msg_contents.html",
 remote: "http://host2.domain2.top/messages2/msg_contents.html",
 third: "http://host3.domain3.top/messages2/msg_contents.html"
};

var allowed_origins = {
 'http://host1.domain1.top': 1,
 'http://host2.domain2.top': 1,
 'http://host3.domain3.top': 1
};

function smartsplit(string, pattern, count)
{
 // alert('string '+string);
 // alert('pattern "'+pattern+'"');
 // alert('count '+count);

 var lastpos = count - 1;

 var arr = string.split(/ /);
 // alert('AC: '+arr.length+" "+string);
 if (arr.length > lastpos) {
 var temparr = [];

A Service Discovery Example: Message Boxes 37
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 for (var i=lastpos; i<arr.length; i++) {
 temparr[i-lastpos] = arr[i];
 arr[i] = undefined;
 }
 arr[lastpos] = temparr.join(pattern);
 }
 return arr;
}

function listWindows()
{
 var retstring = "";
 for (var i in origin_list) {
 if (origin_list.hasOwnProperty(i)) {
 // alert('UUID: '+i+' Origin: '+origin_list[i]);
 retstring += i+' '+origin_list[i]+'\n';
 }
 }
 return retstring;
}

function messageReceive(evt) {
 var windowlist;

 if (evt.origin === null || evt.origin in allowed_origins) {
 var arr = smartsplit(evt.data, " ", 2);

 if (arr[0] == 'sendto') {
 // usage: sendto UUID remote_origin message
 arr = smartsplit(evt.data, " ", 4);
 var remote_window = window_list[arr[1]];
 remote_window.postMessage('sendto_output '+arr[3], arr[2]);
 } else if (arr[0] == 'register') {
 // usage register UUID
 var name = arr[1];

 if (window_list[name]) {
 // name conflict.
 var add=1;
 while (window_list[name+'_'+add]) {
 add++;
 }
 name = name+'_'+add;
 evt.source.postMessage("register_newid "+name, evt.origin);
 }

 window_list[name] = evt.source;
 origin_list[name] = evt.origin;
 windowlist = listWindows();
 for (var windowid in window_list) {
 if (window_list.hasOwnProperty(windowid)) {
 // alert('windowid: '+windowid);
 window_list[windowid].postMessage("list_output "+windowlist,
origin_list[windowid]);
 }
 }
 } else if (arr[0] == 'list') {

38 A Service Discovery Example: Message Boxes
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 // usage list
 windowlist = listWindows();
 evt.source.postMessage("list_output "+windowlist, evt.origin);
 } else {
 alert('unknown command '+arr[0]);
 }
 } else {
 alert('unexpected message from origin '+evt.origin);
 }
}

function dosetup()
{
 if (navigator.userAgent.match(/Safari/)) {
 var version = parseFloat(navigator.userAgent.replace(/.*AppleWebKit\//,
 "").replace(/[^0-9.].*$/, ""));

 if (version < 528) {
 alert('WebKit version '+version+' does not support this
application.');
 }

 }
 // for (var i=0; i<nchannels; i++) {
 // alert('setup channel '+i);
 // channel[i] = new MessageChannel();
 // }
 window.addEventListener('message', messageReceive, false);

 var boxstr = "";
 for (var i in boxes) {
 if (boxes.hasOwnProperty(i)) {
 boxstr += "<iframe height='600' id='"+i+"'
src='"+boxes[i]+"'></iframe>\n";
 }
 }
 var boxlistdiv = document.getElementById('boxlist');
 boxlistdiv.innerHTML = boxstr;
}

dosetup();

--></script>
</head>
<body onload='dosetup();'>
<div id='boxlist'>
</div>
</body>
</html>

Listing 2 Cross-document messaging example: msg_contents.html

<html><head>
<script language='javascript' type='text/javascript'><!--
/*global alert, document, window, navigator */

var allowed_origins = {
 'http://stavromula-beta.apple.com': 1,

A Service Discovery Example: Message Boxes 39
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 'http://holst.apple.com': 1
};

var received_root_origin = '';

var root_origin = '*';

function smartsplit(string, pattern, count)
{
 // alert('string '+string);
 // alert('pattern "'+pattern+'"');
 // alert('count '+count);

 var lastpos = count - 1;

 var arr = string.split(/ /);
 // alert('AC: '+arr.length+" "+string);
 if (arr.length > lastpos) {
 var temparr = [];
 for (var i=lastpos; i<arr.length; i++) {
 temparr[i-lastpos] = arr[i];
 arr[i] = undefined;
 }
 arr[lastpos] = temparr.join(pattern); }
 return arr;
}

function mkcheckbox(inpstr)
{
 var str = "";

 var arr = inpstr.split("\n");
 for (var entid in arr) {
 if (arr.hasOwnProperty(entid)) {
 var ent = arr[entid];
 if (ent !== "") {
 // alert('ent: '+ent);
 var bits = smartsplit(ent, " ", 2);
 str += "<input type=checkbox name='"+ent+"'>"+bits[0]+"</input>\n";
 }
 }
 }
 return str;
}

function messageReceive(evt) {
 if (evt.origin === null || evt.origin in allowed_origins) {

 // The message came from an origin that
 // your code trusts. Work with the message.

 // alert('Received data: '+evt.data);
 // var tmp = 'Test this, please';
 // var x = smartsplit(tmp, " ", 2);
 // alert('x[0] = '+x[0]);
 // alert('x[1] = '+x[1]);
 // alert('x[2] = '+x[2]);

40 A Service Discovery Example: Message Boxes
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 var arr = smartsplit(evt.data, " ", 2);
 if (arr[0] == 'list_output') {
 if (evt.origin == root_origin || root_origin == '*') {
 var div2 = document.getElementById('temp2');
 div2.innerHTML = mkcheckbox(arr[1]);
 received_root_origin = evt.origin;
 // alert('arr[1] = '+arr[1]);
 } else {
 alert('received list_output message from unexpected origin: '+evt.origin);
 }
 } else if (arr[0] == 'sendto_output') {
 // alert('Received data: '+evt.data);
 var div3 = document.getElementById('temp3');
 div3.innerHTML += arr[1]+'
\n';
 } else if (arr[0] == 'register_newid') {
 var mydiv = document.getElementById('temp');
 mydiv.innerHTML = arr[1]+" box";
 }

 // Send a message back to the source:
 // evt.source.postMessage('response', evt.origin);
 } else {
 alert('unexpected message from origin '+evt.origin);
 }
}

function setup_listener()
{
 window.addEventListener('message', messageReceive, false);
}

function setup()
{
 var mydiv = document.getElementById('temp');

 // mydiv.innerHTML = 'Test';
 // mydiv.innerHTML = ' '+bigdoc;

 // If we can access the document object, we are locally loaded and should
 // talk to the remotely-loaded window. Otherwise, the reverse
 // is true.

 var myid = '';
 if (window.parent.document) {
 myid = 'local';
 } else {
 myid = 'remote';
 }

 mydiv.innerHTML = myid+" box";
 // window.addEventListener('message', messageReceive, false);
 setup_listener();

 var topwindow = window;
 while (topwindow.parent && (topwindow.parent != topwindow)) { topwindow =
topwindow.parent; }

 topwindow.postMessage('register '+myid, root_origin);

A Service Discovery Example: Message Boxes 41
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

 // window.parent.postMessage('list', '*');

}

function sendmsg()
{
 var message = document.getElementById('sendtext').value;
 var mydiv2 = document.getElementById('temp2');
 var checkboxes = mydiv2.children;

 // alert('checkboxes: '+checkboxes);
 var topwindow = window;
 while (topwindow.parent && (topwindow.parent != topwindow)) { topwindow =
topwindow.parent; }

 for (var boxid in checkboxes) {
 if (checkboxes.hasOwnProperty(boxid)) {
 var checkbox = checkboxes[boxid];

 // alert('checkbox: '+checkbox);
 if (checkbox.tagName == "INPUT") {
 // alert('input');
 if (checkbox.checked) {
 // alert('checked');
 var arr = smartsplit(checkbox.name, " ", 2);
 var uuid = arr[0];
 var origin = arr[1];
 // alert('send to: '+uuid+' origin '+origin);

 // alert('topwindow is '+topwindow);
 topwindow.postMessage('sendto '+uuid+' '+origin+' '+message,
received_root_origin);
 }
 }
 }
 }

 return false;
}

--></script>
</head><body onload='setup();'>
<div id='temp'></div>
<form onsubmit='return false;'>
<input type='text' id='sendtext'></input>
<input type='submit' value='submit' onclick='sendmsg();'></input>
<div id='temp2'></div>
</form>
<div id='temp3'></div>

</body></html>

You can create numerous interesting extensions on top of this sort of design. For example, you might add
a command message that asks the window at the other end what commands it supports, then communicate
with it if you share a common set of commands. The possibilities are limitless.

42 A Service Discovery Example: Message Boxes
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

Security Considerations

There are several key things you should be aware of when using cross-document messaging:

 ■ Obtaining Window objects for other windows is not always easy. Scripts running in a window, frame, or
iframe element served from one origin cannot access the DOM tree of documents served from a different
origin, and thus cannot get access to the Window objects of other iframe elements within such a window.

Among other things, this means that two iframe elements from different domains cannot directly
obtain each other’s Window objects because one or the other is (by definition) from a different origin
than the document containing the iframe elements. In this situation, there are two possible solutions.

The easiest solution is to have both windows discover each other using the parent window as a
communications hub. This solution is also the most general solution because it works even if neither
window can see the element containing the other window.

Alternatively, the window with access to the parent window’s DOM tree could discover the other one
and initiate communication. By doing so, the second window receives the first window’s Window object
by way of the source field in the event object.

Note: The postMessage function does not allow you to pass an object to other windows. This means
that if you need to communicate between windows that cannot obtain one another’s Window objects,
you must handle all communication using relay code at the top level of the window hierarchy.

 ■ Sending data to other windows can be dangerous, particularly if that information contains login
information or other sensitive data. You should almost always take advantage of the target origin field
when sending messages to avoid interception by content served by other sites. You should only use the
wildcard asterisk (*) target origin value if you are absolutely sure that the data is harmless.

 ■ Receiving data from other windows can also be dangerous. You should generally check the origin field
when receiving messages to make sure that the data was sent from a website that you trust to some
degree.

Where possible, you should also check any received data for validity before using it. In particular, you
should generally avoid executing JavaScript code received from another window (with the possible
exception of JSON objects after careful validity checking).

As with any software, for maximum reliability and security, you should write your output code carefully to
minimize the risk of causing problems for other code, and you should write your code under the assumption
that other code is maliciously trying to attack your code, and thus you should perform type, bounds, and
other sanity checks accordingly.

Security Considerations 43
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

44 Security Considerations
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Cross-Document Messaging

The web scripting capabilities of WebKit permit you to access Objective-C properties and call Objective-C
methods from the JavaScript scripting environment.

An important but not necessarily obvious fact about this bridge is that it does not allow any JavaScript script
to access Objective-C. You cannot access Objective-C properties and methods from a web browser unless a
custom plug-in has been installed. The bridge is intended for people using custom plug-ins and JavaScript
environments enclosed within WebKit objects (for example, a WebView).

How to Use Objective-C in JavaScript

The WebScripting informal protocol, defined in WebScriptObject.h, defines methods that you can
implement in your Objective-C classes to expose their interfaces to a scripting environment such as JavaScript.
Methods and properties can both be exposed. To make a method valid for export, you must assure that its
return type and all its arguments are Objective-C objects or basic data types like int and float. Structures
and non object pointers will not be passed to JavaScript.

Method argument and return types are converted to appropriate types for the scripting environment. For
example:

 ■ JavaScript numbers are converted to NSNumber objects or basic data types like int and float.

 ■ JavaScript strings are converted to NSString objects.

 ■ Other JavaScript objects are wrapped as WebScriptObject instances.

Instances of all other classes are wrapped before being passed to the script, and unwrapped as they return
to Objective-C.

As an exception, JavaScript arrays cannot be cleanly mapped to NSArray objects because they are a hybrid
between a numerically-indexed array and an associative array. To avoid loss of data during the mapping,
you must instead use thewebScriptValueAtIndex: andsetWebScriptValueAtIndex:value:methods.

A Sample Objective-C Class

Let’s look at a sample class. In this case, we will create an Objective-C address book class and expose it to
JavaScript. Let’s start with the class definition:

@interface BasicAddressBook: NSObject {
}
+ (BasicAddressBook *)addressBook;
- (NSString *)nameAtIndex:(int)index;
@end

How to Use Objective-C in JavaScript 45
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Calling Objective-C Methods From JavaScript

Now we’ll write the code to publish a BasicAddressBook instance to JavaScript:

BasicAddressBook *littleBlackBook = [BasicAddressBook addressBook];

id win = [webView windowScriptObject];
[win setValue:littleBlackBook forKey:@"AddressBook"];

Once you expose these methods to JavaScript (described at the end of this section), you should be able to
access your basic address book from the JavaScript environment and perform actions on it using standard
JavaScript functions.

Now, let’s make an example showing how you can use the BasicAddressBook class instance in JavaScript.
In this case, we’ll print the name of a person at a certain index in our address book:

function printNameAtIndex(index) {
 var myaddressbook = window.AddressBook;
 var name = myaddressbook.nameAtIndex_(index);
 document.write(name);
}

You may have noticed one oddity in the previous code example. There is an underscore after the JavaScript
call to the Objective-C nameAtIndex method. In JavaScript, it is called nameAtIndex_. This is an example
of the default method renaming scheme in action.

Unless you implement webScriptNameForSelector to return a custom name, the default construction
scheme is used. It is your responsibility to ensure that the returned name is unique to the script invoking this
method. If your implementation of webScriptNameForSelector returns nil or you do not implement it,
the default name for the selector will be constructed as follows:

 ■ Any colon (“:”) in the Objective-C selector is replaced by an underscore (“_”).

 ■ Any underscore in the Objective-C selector is prefixed with a dollar sign (“$”).

 ■ Any dollar sign in the Objective-C selector is prefixed with another dollar sign.

The following table shows example results of the default method name constructor:

Default script name for selectorObjective-C selector

setFlag_setFlag:

setFlag_forKey_withAttributes_setFlag:forKey:withAttributes:

propertiesForExample$_Object_propertiesForExample_Object:

set$_$$_forKey_withDictionary_set_$:forKey:withDictionary:

Since the default construction for a method name can be confusing depending on its Objective-C name, you
would benefit yourself and the users of your class if you implement webScriptNameForSelector and
return more human-readable names for your methods.

Getting back to the BasicAddressBook, now we’ll implement webScriptNameForSelector and
isSelectorExcludedFromWebScript for our nameAtIndex method. In our BasicAddressBook class
implementation, we’ll add this:

+ (NSString *) webScriptNameForSelector:(SEL)sel

46 A Sample Objective-C Class
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Calling Objective-C Methods From JavaScript

{
 ...

 if (sel == @selector(nameAtIndex:))
 name = @"nameAtIndex";

 return name;
}

+ (BOOL)isSelectorExcludedFromWebScript:(SEL)aSelector
{
 if (sel == @selector(nameAtIndex:)) return NO;
 return YES;
}

Now we can change our JavaScript code to reflect our more logical method name:

function printNameAtIndex(index) {
 var myaddressbook = window.AddressBook;
 var name = myaddressbook.nameAtIndex(index);
 document.write(name);
}

Important: For security reasons, no methods or KVC keys are exposed to the JavaScript environment by
default. Instead a class must implement these methods:

+ (BOOL)isSelectorExcludedFromWebScript:(SEL)aSelector;
+ (BOOL)isKeyExcludedFromWebScript:(const char *)name;

The default is to exclude all selectors and keys. Returning NO for some selectors and key names will expose
those selectors or keys to JavaScript. This is described further in WebKit Plug-In Programming Topics.

For More Information

For more information about using Objective-C from JavaScript and vice versa, see the following documents:

 ■ CallJS sample code—shows how to call JavaScript from Objective-C and vice versa.

 ■ Birthdays sample code—shows how to use a WebKit plug-in from JavaScript.

 ■ WebKitObjective-CFrameworkReference—provides more information on excluding methods and properties
from the JavaScript environment.

 ■ WebKit Plug-In Programming Topics—tells more about writing WebKit plug-ins in general.

For More Information 47
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Calling Objective-C Methods From JavaScript

48 For More Information
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Calling Objective-C Methods From JavaScript

This table describes the changes to WebKit DOM Programming Topics.

NotesDate

Minor edits.2010-01-20

Added coverage for credentials, drag-and-drop example.2009-06-08

Added additional cross references and clarified a few things.2009-04-29

Updated for Safari 4.0.2009-02-05

Minor edits throughout.2008-10-15

Added additional tips for cross-browser development.2007-09-04

Refreshed references to other documents.2007-07-10

Retitled document from Safari JavaScript Programming Topics. Includes new
article on the XMLHttpRequest object.

2007-06-11

Corrected typos.2006-05-23

Corrected typos.2006-02-07

Corrected typos.2006-01-10

Corrected typos.2005-11-09

Corrected typos.2005-08-11

Corrected typos.

Added link to the canvas API.

Corrected typos and clarified the argument types for some methods.2005-06-04

Added article on using Objective-C from JavaScript.2005-04-29

First version of Safari JavaScript Programming Topics.2004-11-02

49
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Document Revision History

50
2010-01-20 | © 2004, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	WebKit DOM Programming Topics
	Contents
	Figures, Tables, and Listings
	Introduction
	About JavaScript and the DOM
	About JavaScript
	About the Document Object Model (DOM)

	Using the Document Object Model From JavaScript
	Accessing a Document’s Structure with the DOM
	Using the Document Object Model
	Other Resources

	Using the Canvas
	Introduction to the Canvas
	Defining the Canvas
	Drawing on a Canvas
	Accessing and Manipulating Canvas Data

	Using the Pasteboard From JavaScript
	Introduction to JavaScript Pasteboard Operations
	Adding Pasteboard Handlers to Elements
	Manipulating Pasteboard Data

	Using Drag and Drop From JavaScript
	Introduction to JavaScript Drag and Drop
	Adding Handlers to Elements
	Making an Element Draggable
	Manipulating Dragged Data
	Changing Drag Effects
	Changing the Appearance of Dragged Elements
	Changing the Snapshot With CSS
	Specifying a Custom Drag Image

	Cross-Browser Compatibility
	Complete Example

	Using XMLHttpRequest Objects
	Introduction to XMLHttpRequest
	Defining an XMLHttpRequest Object
	XMLHttpRequest Responses
	Security Considerations
	Using XMLHttpRequest for Cross-Site Requests
	Access Control Request Headers
	Access Control Response Headers

	Cross-Document Messaging
	Posting a Message to a Window
	Receiving a Message Posted to a Window
	A Service Discovery Example: Message Boxes
	Security Considerations

	Calling Objective-C Methods From JavaScript
	How to Use Objective-C in JavaScript
	A Sample Objective-C Class
	For More Information

	Revision History

