
Address Book Programming Guide for
Mac OS X
Data Management: Contact Data

2010-08-03

Apple Inc.
© 2002, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, iChat,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

MobileMe is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

About the Address Book 9

How Address Book Handles Individuals and Groups 9
How Address Book Manages Individual Search Queries 10
Other Features 10

Managing Address Book Records 11

Accessing the Address Book 11
Adding and Removing Person and Group Records 11
Managing Groups 12
Accessing the User’s Record 12
Saving Your Changes 12
Notification of Changes 12
An Example 13

Accessing Address Book Records 15

Using Property Lists 15
Using Multivalue Lists 16
The Picture Associated with a Person 16
Getting Localized Names for Properties and Labels 17
An Example 17
Using the People Picker 18
People Picker Example 18

Searching an Address Book 21

Creating a Search Element for a Single Property 21
Creating a Search Element for Multiple Properties 21
Finding Records That Match a Search Element 22
Search Examples 22

3
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Using Address Book Groups as Distribution Lists 25

Adding Properties to Address Book Records 27

Creating and Using Address Book Action Plug-ins 29

Importing and Exporting Person and Group Records 31

Using the Address Book C API 33

Document Revision History 35

4
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Tables and Listings

Accessing Address Book Records 15

Table 1 The documentation for property-list constants 15
Listing 1 Changing a person’s address 17

Searching an Address Book 21

Listing 1 A simple search 22
Listing 2 A complex search 22

Creating and Using Address Book Action Plug-ins 29

Table 1 Action methods for an Address Book action plug-in 29

Using the Address Book C API 33

Listing 1 A simple search, in Objective-C 34
Listing 2 A simple search, in C 34

5
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

6
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Address Book is a technology that encompasses a centralized database for contact and group information,
an application for viewing that information, and a programmatic interface for accessing that information in
your own applications. The database contains information such as user names, street addresses, email
addresses, phone numbers, and distribution lists. Applications that use the Address Book framework can
share this contact information with other applications, including Mail and iChat, or extend it to include
application-specific information.

The Address Book framework provides two APIs: one for Objective-C and one for C. Both are equally functional,
but the majority of the code samples in this document are printed in Objective-C only. Where it is appropriate,
this document addresses fundamental differences between the two. Developers using the C programming
interface should refer to “Using the Address Book C API” (page 33) and Address Book C Framework Reference
for Mac OS X for information about mapping the Objective-C code to C.

Who Should Read This Document?

This document is designed for anyone who wants to leverage the abilities of the Mac OS X Address Book
technology in their application. You should read it to learn how to access a user’s address book, add new
properties to the address book database, and create action plug-ins for the Address Book application.

It is expected that you are already familiar with Xcode and the basics of Mac OS X application development.

Note: Developers who have used the Address Book technology on iOS should be aware that the programming
interface for this technology is different on Mac OS X.

Organization of This Document

The document contains the following articles:

 ■ “About the Address Book” (page 9) describes what’s in the Address Book database and what you can
do with it.

 ■ “Managing Address Book Records ” (page 11) describes how to add and remove people and groups,
how to arrange people into groups, and how to find the record for the logged-in user.

 ■ “Accessing Address Book Records” (page 15) describes how to access data in a person or group record.

 ■ “Searching an Address Book” (page 21) describes how to perform searches on a user’s address book.

 ■ “Using Address Book Groups as Distribution Lists” (page 25) describes how to set up a group so you can
use it as a mailing list, or other type of distribution list.

Who Should Read This Document? 7
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Introduction

 ■ “Adding Properties to Address Book Records” (page 27) describes how to customize an address book
for your own applications by adding properties to it.

 ■ “Creating and Using Address Book Action Plug-ins” (page 29) describes how to create action plug-ins
which allow users to perform custom actions on address book data viewed within the Address Book
application.

 ■ “Importing and Exporting Address Book People and Groups” (page 31) describes how to import and
export person records by using the vCard standard.

 ■ “Using the Address Book C API” (page 33) contains special information for those using the Address Book
C API.

See Also

 ■ Sync Services Programming Guide discusses the data synchronization engine built-in to Mac OS X.

 ■ Identity Services ProgrammingGuide discusses a way to manage groups of users on a local system, including
standard login accounts and sharing accounts.

8 See Also
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Introduction

The Address Book framework uses a centralized database for contact and other personal information for
people. Users only need to enter this information once, instead of entering it repeatedly whenever it is used.
Applications that support the Address Book framework share this contact information with other applications,
including Apple’s Mail and iChat. Every user on the computer has one and only one address book. Every
application shares the address book for the currently logged-in user.

How Address Book Handles Individuals and Groups

The Address Book framework supports two fundamental kinds of records: ABPerson, for individuals, and
ABGroup, for groups. Both are subclasses of the same root class, ABRecord, and they can be used
interchangeably in some places.

An ABPerson record contains properties such as the person’s name, company, addresses, email addresses,
phone numbers, instant messaging IDs, and a comments field.

An ABGroup object can contain any number of people and other groups; a person can be in any number of
groups. For example, suppose you are a consultant who works with two companies, Acme Co. and Ajax Inc.
You could set up an Acme employees group and an Ajax employees group, and make each company’s
employees members of their respective group. You could then set up a Professionals group that includes
the Acme group, the Ajax group, all well as some additional people who aren’t in either group.

In addition, group and person records have these characteristics:

 ■ Each group and person has a unique identifier. It’s set when the record is created, and guaranteed
never to change even if a user changes the group’s or person’s name or other information. Use this
identifier if your application needs to store a reference to a group or person. For more information, see
the ABRecord method uniqueId.

 ■ The groups and people are stored in an extensible form. As such, you can add custom properties to
Address Book records that other applications will ignore, without worrying about data corruption or
usability issues. For more information, see “Adding Properties to Address Book Records” (page 27).

 ■ Some of these properties can contain multiple values. For example, a person can have any number
of street addresses, phone numbers, and email addresses. For more information, see “Using Multivalue
Lists” (page 16).

How Address Book Handles Individuals and Groups 9
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

About the Address Book

How Address Book Manages Individual Search Queries

The Address Book framework manages individual search queries using ABSearchElement objects, which
can be created using class methods of ABGroup and ABPerson. This has an important implication—because
the search objects are created using the these particular classes, a custom subclass of ABRecord will not
contain the required methods to create such an object. For this reason, you are advised not to subclass
ABRecord.

For more information about searching Address Book records, see “Searching an Address Book” (page 21).

Other Features

The Address Book framework:

 ■ Provides transparent record locking. If two applications try to change the same property within a
record at the same time, the application that saved its change last will succeed. The database will not
be corrupted. If two applications change different properties of the same record, both changes are
expected to succeed.

 ■ Does not provide any security above what’s provided by Mac OS X. Anyone who has read and write
access to a user’s home folder can also read and write that user’s address book. For that reason, the
Address Book may not be an appropriate place to store confidential information, such as credit card
numbers.

 ■ Provides localized versions of the built-in property names and labels. If you add properties or labels,
you must provide your own way for localizing them.

 ■ Syncs its records using Sync Services. The Address Book framework syncs the data stored in the default
properties using Sync Services; applications should not try to sync this data. If your application depends
on custom properties being synced, it must sync them and may use Sync Services to do so. See “Adding
Properties to Address Book Records” (page 27).

Important: Attempting to sync parts of the Address Book database other than custom properties using
Sync Services is unpredictable and may result in data loss.

10 How Address Book Manages Individual Search Queries
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

About the Address Book

You can manage the people and groups within a user’s address book. This article explains how to obtain the
user’s address book, add and remove people and groups from that address book, manage groups, find the
record that corresponds to the logged-in user, and save your changes.

Accessing the Address Book

There are two ways to get a copy of the address book. The preferred way is to use the ABAddressBook
method addressBook. The address book object that it returns should only be used on the same thread that
it was created on, and can be used with the ABPerson method initWithAddressBook:.

If you're just making one-off lookups and edits, the ABAddressBook method sharedAddressBook may be
used. However, this method can cause a significant decrease in performance, especially in a tight loop.

For example, you can replace code such as the following:

for (id item in someDataStructure) {
 ABPerson* person = [[ABPerson alloc] init];
 // Populate the person from the item
}
[[ABAddressBook sharedAddressBook] save];

With code like the following, yielding a significant performance increase:

ABAddressBook* tempBook = [ABAddressBook addressBook];
for (id item in someDataStructure) {
 ABPerson* person = [[ABPerson alloc] initWithAddressBook:tempBook];
 // Populate the person from the item
}
[tempBook save];

Adding and Removing Person and Group Records

The ABAddressBook class provides methods for accessing, adding, and removing group and person records.
For example, use the groups method to get an array of all the group records in the database, or the people
method to get all the person records.

Adding a new person or group record takes the following steps:

 ■ Get the address book. The preferred way to do this is with the ABAddressBook method addressBook.

 ■ Create the person or group record . You must allocate and initialize the respective ABPerson or ABGroup
object. The preferred initializer is initWithAddressBook:.

Accessing the Address Book 11
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Managing Address Book Records

 ■ Add the record to the Address Book using the ABAddressBook method addRecord:.

To remove a person or group, use the ABAddressBook method removeRecord:.

Managing Groups

The Address Book framework lets you add people and subgroups to groups, as well as find out all groups
that a person or subgroup is in.

To add and remove people from a group, use the addMember: and removeMember: methods. A person
record can only be added to a group after it has been saved to the address book. To get a list of all the groups
a person is in, use the parentGroups methods.

You can also add groups to a group. For example, a user could have a group called Pet Lovers that contains
the groups Dog Lovers and Cat Lovers. To add and remove groups from another group, use the addSubgroup:
and removeSubgroup: methods. You cannot create a cycle. For example, if Dog Lovers is a subgroup of Pet
Lovers, then Pet Lovers cannot be a subgroup of Dog Lovers, directly or indirectly. To get a list of all groups
that another group is a subgroup of, use the parentGroups methods.

To get lists of what’s in a group, use the members and subgroups methods.

Accessing the User’s Record

The currently logged-in user can specify a record that contains information about himself or herself. That
lets your application find the name, address, or phone number of the user, so you can use it when filling out
forms, for example. To get the logged-in user’s record, use the ABAddressBook method me. To set the
logged-in user’s record, use the ABAddressBook setMe: methods.

Saving Your Changes

When you modify the Address Book database, those changes are made in memory, and not to the database
itself. Unless you save those changes, they will be lost.

To save your changes to the database, use the ABAddressBook method save or saveAndReturnError:.
To test whether there are unsaved changes, use the ABAddressBook method hasUnsavedChanges.

Notification of Changes

The Address Book posts notifications if any application, including your own, makes changes to the database.
Typically, you observe these notifications to update any dependent view or model objects in your application.
The Address Book framework sends two notifications: kABDatabaseChangedNotification to indicate
that the current process has made a change, and kABDatabaseChangedExternallyNotification to

12 Managing Groups
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Managing Address Book Records

indicate that another process has made a change. Use NSNotificationCenter to register for the notifications
you are interested in. Note that these notifications are not sent until after the sharedAddressBook method
of the ABAddressBook class or the C function ABGetSharedAddressBook has been invoked.

If your application is using the shared address book object (returned by the sharedAddressBook method),
the changes have already been merged in automatically and are available immediately when you receive
the change notification. Non-shared address book objects (returned by theaddressBook method) are
generally used only for short time, and do not process change notifications automatically.

An Example

This Objective-C example adds a person named John Doe to the current user’s address book. Take note of
how the code accesses the shared address book and how it allocates a new ABPerson object. Also note the
properties used (in this case, just first name and last name), and the final save, which sends the changes to
the user’s address book:

ABAddressBook *addressBook;
ABPerson *newPerson;

addressBook = [ABAddressBook sharedAddressBook];

newPerson = [[[ABPerson alloc] init] autorelease];

[newPerson setValue:@"John"
 forProperty:kABFirstNameProperty];

[newPerson setValue:@"Doe"
 forProperty:kABLastNameProperty];

[addressBook addRecord:newPerson];
[addressBook save];

An Example 13
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Managing Address Book Records

14 An Example
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Managing Address Book Records

After you have a record, you can retrieve the data within it. This chapter shows you how the data is organized
and how to access it. It shows how to access properties from a records property list, how to handle properties
that can have more than one value (such as addresses and phone numbers), how to get localized names for
properties and labels, and how to associate a picture with a person.

Using Property Lists

Both groups and people store their data in property lists. This lets your application add properties to the
Address Book records that other applications will ignore. See “Adding Properties to Address Book
Records” (page 27).

 ■ To get data from a record, such as a group’s description or a person’s first name, use the
valueForProperty: method or the C function ABRecordCopyValue. For example, to get the first
name for aPerson, use:

[aPerson valueForProperty:kABFirstNameProperty];

 ■ To set data, use the setValue:forProperty: method. For example, to set the name of aGroup, use:

[aGroup setValue:@"Book Club" forProperty:kABGroupNameProperty];

 ■ To find the names of the default properties, refer to Table 1.

Table 1 The documentation for property-list constants

LanguageClassDocumentation

Objective-CABRecord“Default Record Properties” in Address Book Objective-C Constants Reference

Objective-CABPerson“Default Person Properties” in Address Book Objective-C Constants Reference

Objective-CABGroup“Default Group Properties” in Address Book Objective-C Constants Reference

Procedural CABPersonRef“Constants” in ABPerson C Reference

Procedural CABGroupRef“Constants” in ABGroup C Reference

Using Property Lists 15
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

Using Multivalue Lists

Many properties can have multiple values. For example, a person can have several addresses, including work,
home, summer home, and mailing addresses. These properties are stored as multivalue lists, of type
ABMultiValue. Each item in a multivalue list has a numeric index, a unique identifier, a string label (such
as Home or Work), and a value. Every value in the multivalue list must be of the same type. The label does
not need to be unique; after all, someone could have more than one home or work address.

 ■ To add an item to a multivalue list, use the addValue:withLabel: or
insertValue:withLabel:atIndex: method.

 ■ To retrieve an item, use the valueAtIndex: or labelAtIndex: method.

 ■ To remove an entry in a multivalue list, use the removeValueAndLabelAtIndex: method.

 ■ To replace values and labels, use the replaceLabelAtIndex:withLabel: or
replaceValueAtIndex:withValue: methods.

You use the numeric index to access items in a multivalue list, but these indices may change as the user adds
and removes values. If you want to save a reference to a specific value, use the unique identifier, which is
guaranteed not to change. You can convert back and forth between indices and unique identifiers:

 ■ To get the unique identifier for a value at a particular index, use the identifierAtIndex: method.

 ■ To get the index for a identifier, use the indexForIdentifier: method.

Each multivalue list also has a primary value, which is the item the user most strongly associates with that
person. For example, friends may have both home and work addresses, but the home address is their primary
address. And coworkers may have both home and work phone numbers, but the work number is their primary
number.

 ■ To get the identifier for a multivalue list’s primary value, use the primaryIdentifier method.

 ■ To set the multivalue list’s primary value, use the setPrimaryIdentifier: method.

The Picture Associated with a Person

A person may also have an associated picture or image. The image is not actually stored in the Address Book
database (a property list)—it’s stored in a separate image file. This means you need to use different methods
to access the image data. You can set a person’s image using the setImageData: method, or get an image
using the imageData method. Use the NSImage initWithData: method to convert the NSData object
returned by the imageData method to an NSImage object.

The Address Book framework locates images through a specific search hierarchy, in this order:

1. Check for an image set specifically by the user.

2. Check Directory Services for the local user’s login picture.

3. Check for an image in /Network/Library/Images/People/email, where email is the user’s primary
email address.

16 Using Multivalue Lists
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

4. Check for an image from the user’s MobileMe account, first against the cache at
~/Library/Caches/com.apple.AddressBook/email and then against the MobileMe servers.

Image files may be local or remote. Local images are any images in .../Library/Images/People and any
images the user has set using the Address Book application. Remote images are images stored on the network.
Remote images take time to download, so an asynchronous API for fetching remote images is provided.

Use the beginLoadingImageDataForClient:method if an image file is not local and you want to perform
an asynchronous fetch. You pass a client object that implements the ABImageClient protocol as an argument
to this method. The beginLoadingImageDataForClient: method returns an image tracking number. A
consumeImageData:forTag: message is sent to your client object when the fetch is done. Implement this
method to handle the new fetched image. Use the cancelLoadingImageDataForTag: class method if
you want to cancel an asynchronous fetch.

Use the beginLoadingImageDataForClient:method if an image file is not local and you want to perform
an asynchronous fetch:

1. Pass a client object that implements the ABImageClient protocol as an argument to this method.

2. The beginLoadingImageDataForClient: method returns an image tracking number.

3. A consumeImageData:forTag:message is sent to your client object when the fetch is done. Implement
this method to handle the new fetched image.

4. Use the cancelLoadingImageDataForTag: class method if you want to cancel an asynchronous fetch.

Getting Localized Names for Properties and Labels

You can find the localized name for any of the default property names and labels that are listed in Address
Book Objective-C Constants Reference. The functions ABLocalizedPropertyOrLabel and
ABCopyLocalizedPropertyOrLabel returned a name that is localized for the user’s selected language.

You must handle the localization of the names for the properties and labels you create; the Address Book
framework does not provide any specific support for this.

An Example

Listing 1 is an Objective-C code sample that retrieves the country for the primary address of the logged-in
user. If the country is a null string, it sets the country to USA.

Listing 1 Changing a person’s address

ABPerson *aPerson = [[ABAddressBook sharedAddressBook] me];
ABMutableMultiValue *anAddressList =
 [[aPerson valueForProperty:kABAddressProperty] mutableCopy];
NSUInteger primaryIndex =
 [anAddressList indexForIdentifier:[anAddressList primaryIdentifier]];
NSMutableDictionary *anAddress =

Getting Localized Names for Properties and Labels 17
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

 [[anAddressList valueAtIndex:primaryIndex] mutableCopy];
NSString *country =
 (NSString*) [anAddress objectForKey:kABAddressCountryKey];
if ([country isEqualToString:@""]) {
 [anAddress setObject:@"USA" forKey:kABAddressCountryKey];
 [anAddressList replaceValueAtIndex:primaryIndex withValue:anAddress];
 [aPerson setValue:anAddressList forProperty:kABAddressProperty];
 [[ABAddressBook sharedAddressBook] save];
}

Using the People Picker

The people picker is a view that provides access to the contents of a user’s address book from any application.
It offers a searchable, selectable list of people and groups that can be customized for your application.

To use a people picker in a Cocoa application, drag it from the library palette into your window. If you need
to, you can create an instance of ABPeoplePickerView programmatically instead. There are two ways to
set up the behavior of the people picker view—from Interface Builder and programmatically.

To set up the behavior from Interface Builder, open the Get Info panel. The attributes you can set include
which columns are displayed by the view, whether or not multiple selections are allowed, whether or not
group selections are allowed, and the autosave name for the view. These changes are reflected immediately
within Interface Builder. Using the Test Interface feature of Interface Builder, a people picker view will display
the address book of the logged-in user.

To set up the behavior programmatically, create an outlet of the type ABPeoplePickerView from your
controller and connect it to the people picker view. Then use the appropriate instance methods to change
attributes of the picker.

For Cocoa applications, the people picker also provides methods for using autosave data, so that it can retain
the filter selections and column positions. Use the ABPeoplePickerView methods autosaveName and
autosaveName.

Using the C API, the people picker is available only in a window form and cannot be used as a custom view.
It must be created with ABPickerCreate and made visible with ABPickerSetVisibility, as follows:

ABPickerRef peoplePicker = ABPickerCreate();
ABPickerSetVisibility(peoplePicker, TRUE);

People Picker Example

The code from this example should be placed in the window controller for the people picker. Developers
using the C API should refer to the ABPicker Reference for C to construct the analogue for their applications;
most of the functions are named similarly. Instead of using notifications, you will need to register event
handlers to handle changes to the window.

The following listing shows how you can set the attributes of a people picker programmatically. This code
is typically part of the awakeFromNib method. All of these settings are also available in the attributes
inspector, in Interface Builder.

18 Using the People Picker
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

 // Disallow multiple selections in the name list.
 [peoplePicker setAllowsMultipleSelection:NO];

 // Add the e-mail and telephone properties to the view.
 // By default, the people picker displays only the
 // Name column.
 [peoplePicker addProperty:kABEmailProperty];
 [peoplePicker addProperty:kABPhoneProperty];

The following listing shows how to register for a notification when the user selects a person record in the
people picker. This code is typically part of the awakeFromNib method.

 NSNotificationCenter* center;
 center = [NSNotificationCenter defaultCenter];

 // Set up a responder for one of the four available notifications,
 // in this case to tell us when the selection in the people picker
 // has changed.
 [center addObserver:self
 selector:@selector(recordChanged:)
 name:ABPeoplePickerNameSelectionDidChangeNotification
 object:peoplePicker];

The following listing shows an example of how to respond to the user selecting a person record in the people
picker:

- (void)recordChanged:(NSNotification*)notification {
 NSArray *array;
 NSImage *personImage;
 NSString *personFirstName;
 NSString *personLastName;

 array = [peoplePicker selectedRecords];
 NSAssert([array count] == 1,
 @"Picker returned multiple selected records");
 ABPerson *person = [array objectAtIndex:0];

 personImage = [[NSImage alloc] initWithData:[person imageData]];
 personFirstName = [person valueForProperty:kABFirstNameProperty],
 personLastName = [person valueForProperty:kABLastNameProperty];

 /* ...do something with the image and name... */

 [personImage release];

People Picker Example 19
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

20 People Picker Example
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Accessing Address Book Records

You can quickly search a user’s address book, using arbitrarily complex criteria. For example, you can search
for all people named Smith, or for all people who work at Acme and live in San Francisco, or for all people
who work at Ajax and live in Seattle.

To perform the search, you encapsulate the criteria in a search element to pass it to the Address Book
framework. The framework performs the search on your behalf, and returns the results. Letting the framework
handle the search can yield significant performance benefits compared to performing the search inside your
application, because the framework is aware of the low-level layout of the underlying database, and it can
optimize disk access accordingly.

Note: You can only seach the user’s local Address Book database, not remote directories such as CardDAV
or Exchange.

Creating a Search Element for a Single Property

To create a search element for a person, use the ABPerson class method
searchElementForProperty:label:key:value:comparison:. To create a search element for a group,
use the ABGroup class method searchElementForProperty:label:key:value:comparison:.

If you want to search for people or groups that have a particular property set, regardless of the value it is set
to, pass nil as the value and kABNotEqual as the comparison. To search for people or groups that do not
have a property set, pass nil as the value and kABEqual as the comparison.

Creating a Search Element for Multiple Properties

To combine search elements, use the ABSearchElement class method
searchElementForConjunction:children:. This method takes two arguments:

 ■ conjunctionOperator describes how to combine the search elements. It can be kABSearchAnd or
kABSearchOr.

 ■ children is an NSArray of search elements. The search elements can be a simple elements that specifies
only one property, or complex elements that specifies several. This lets you create arbitrarily complex
search elements. You cannot combine search elements for groups with search elements for people.

Creating a Search Element for a Single Property 21
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Searching an Address Book

Finding Records That Match a Search Element

To search the address book for records that match a search element, use the ABAddressBook method
recordsMatchingSearchElement:, which returns an NSArray of records. Use the ABSearchElement
method matchesRecord: to test whether a specific record matches a query.

Search Examples

Listing 1 shows the code to find everyone whose last name is Smith.

Listing 1 A simple search

ABAddressBook *AB = [ABAddressBook sharedAddressBook];
ABSearchElement *nameIsSmith =
 [ABPerson searchElementForProperty:kABLastNameProperty
 label:nil
 key:nil
 value:@"Smith"
 comparison:kABEqualCaseInsensitive];
NSArray *peopleFound =
 [AB recordsMatchingSearchElement:nameIsSmith];

Listing 2 shows the code to find everyone who lives in San Francisco and works for Acme, or who lives in
Seattle and works for Ajax. Note that the addresses are searched using the kABHomeLabel label—we only
want to know if they live in the city we are searching, not if they work in the same city.

Listing 2 A complex search

ABAddressBook *AB = [ABAddressBook sharedAddressBook];
ABSearchElement *inSF =
 [ABPerson searchElementForProperty:kABAddressProperty
 label:kABHomeLabel
 key:kABAddressCityKey
 value:@"San Francisco"
 comparison:kABEqualCaseInsensitive];
ABSearchElement *atAcme =
 [ABPerson searchElementForProperty:kABOrganizationProperty
 label:nil
 key:nil
 value:@"Acme"
 comparison:kABContainsSubStringCaseInsensitive];
ABSearchElement *inSeattle =
 [ABPerson searchElementForProperty:kABAddressProperty
 label:kABHomeLabel
 key:kABAddressCityKey
 value:@"Seattle"
 comparison:kABEqualCaseInsensitive];
ABSearchElement *atAjax =
 [ABPerson searchElementForProperty:kABOrganizationProperty
 label:nil
 key:nil
 value:@"Ajax"

22 Finding Records That Match a Search Element
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Searching an Address Book

 comparison:kABContainsSubStringCaseInsensitive];
ABSearchElement *inSFAndAtAcme =
 [ABSearchElement searchElementForConjunction:kABSearchAnd
 children:[NSArray arrayWithObjects:
 inSF, atAcme, nil]];
ABSearchElement *inSeattleAndAtAjax =
 [ABSearchElement searchElementForConjunction:kABSearchAnd
 children:[NSArray arrayWithObjects:
 inSeattle, atAjax, nil]];
ABSearchElement *inSFAndAtAcmeOrInSeattleAndAtAjax =
 [ABSearchElement searchElementForConjunction:kABSearchOr
 children:[NSArray arrayWithObjects:
 inSFAndAtAcme, inSeattleAndAtAjax,
 nil]];
NSArray *peopleFound =
 [AB recordsMatchingSearchElement:inSFAndAtAcmeOrInSeattleAndAtAjax];

Search Examples 23
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Searching an Address Book

24 Search Examples
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Searching an Address Book

An Address Book group can be used as a distribution list. For example, suppose you lead a book discussion
club on the weekends. You can use a group to keep a list of all the people in the group. For multivalue
properties such as telephone number and email address, the distribution list lets the you indicate which
value should be used when sending a message to this group.

Generally, users will want to use the value marked as primary as the distribution identifier, but in some cases
they will want to make an exception. For example, for coworkers, their primary email addresses are probably
their work address. But messages about your weekend book club should be sent to their home addresses.
This is accomplished by setting distribution identifier for the Book Club group to their home addresses.

To choose the value of a multivalue property that a group should use, use the ABGroup method
setDistributionIdentifier:forProperty:person:. Every group can use a different value for each
person. Users can also edit this from the Address Book application, by selecting Edit Distribution List from
the Edit menu.

To get a group’s chosen value for a multivalue property, use the ABGroup method
distributionIdentifierForProperty:person:. If a distribution identifier is not set, this method returns
the multivalue’s primary identifier. If either the property or the person is nil, the method returns nil. the
method also returns nil if the property is not a multivalue list property, or if the person is not a member of
the group. Use theABMultiValuemethodvalueForIdentifier: to get the value from with the distribution
identifier.

25
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Using Address Book Groups as Distribution
Lists

26
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Using Address Book Groups as Distribution Lists

You can add your own properties to the people and groups in the address book. For example, if you’re
creating a small application to manage a dog club, you could add properties to each person that specify the
name and breed of that person’s dog. Or if you’re creating an application to manage business contacts, you
could add a property that lists all the meetings and phone calls a user has had with that person. These
properties are stored in the Address Book database. Applications that don’t know about the new properties
aren’t affected by them and don’t modify them.

Note: Data stored in custom properties are not synced across MobileMe. If your application depends on this
data being synced on multiple computers, it needs to sync the data itself. See Sync Services Programming
Guide for more details on syncing.

Do not sync any of the data stored in the default properties. The Address Book framework already syncs this
data, and attempting to sync it from your application may lead to data loss.

When deciding whether to add a property to the Address Book record, keep these issues in mind:

 ■ Avoid properties for confidential information, such as credit card numbers. The Address Book framework
does not provide any security above what’s provided by Mac OS X. Anyone who has read and write
access to a user’s home folder can also read and write that user’s address book.

 ■ Avoid properties that are not useful for everyone in the address book database. If you want to store
information for just the logged-in user, for Cocoa applications refer to NSUserDefaults Class Reference,
and for C-based applications refer to Preferences Utilities Reference.

 ■ Use a multivalue list if you think a person may have more than one of that property. Your new multivalue
list has the same capabilities as the other multivalue lists in the address book. The user can choose a
primary value in the list and can create distribution lists for it.

To add properties to every person or group, use the ABPerson or ABGroup class method
addPropertiesAndTypes:. These procedures take a dictionary, in which the keys are the names of the
new properties and the values are their types. Note that the property names must be unique. You may want
to use reverse-DNS style names for your properties, to make sure no one else uses the same name; for example,
org.dogclub.dogname or com.mycompany.buildingNumber. The type can be one of the types or a
multivalue list of one of the types listed in “Property Types” in Address Book Objective-C Constants Reference.

The following code listing adds a custom property, and then removes it:

 NSNumber* stringProperty = [NSNumber numberWithInteger:kABStringProperty];
 NSString* testProperty = @"com.apple.devpubs.testProperty";
 NSDictionary* dict = [NSDictionary dictionaryWithObject:stringProperty
 forKey:testProperty];

 NSInteger result = [ABPerson addPropertiesAndTypes:dict];
 NSLog(@"Added %d properties.", result);

 result = [ABPerson removeProperties:[NSArray arrayWithObject:testProperty]];
 NSLog(@"Removed %d properties.", result);

27
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Adding Properties to Address Book Records

28
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Adding Properties to Address Book Records

A unique aspect of the Address Book application is its ability to act on data contained within a person's card.
You can install your own custom plug-ins to add additional actions to a given record. An example of an
existing action is the Large Type action, which works on any phone number entry. When selected from its
contextual menu, it displays the number in large type across the screen.

Each action plug-in can implement only one action. Actions can only apply to items with labels. An action
can display a simple window in the Address Book application. If your action actions needs to do anything
else, it should launch your own application to perform the action.

The ABActionDelegate protocol, which must be followed for the Address Book application to recognize
the plug-in, is summarized in Table 1. See ABActionDelegate Protocol Reference for full details. C-based actions
must implement a function named ABActionRegisterCallbacks, as described in Address Book Actions
Reference.

Table 1 Action methods for an Address Book action plug-in

PurposeMethod

Returns the NSString constant identifying the property that the
action applies to.

actionProperty

Returns the title of the menu item for the action. This method
should not return nil.

titleForPerson: identifier:

Performs the appropriate action for the plug-in. Each plug-in can
only have one action.

performActionForPerson:
identifier:

Returns YES if the action is applicable and NO otherwise. This
allows your plug-in to enable and disable its menu item.
(Optional.)

shouldEnableActionForPerson:
identifier:

To create a plug-in, use the Address Book action plug-in template from the Xcode New Project window. The
template creates an action plug-in designed to create a contextual menu item on any phone number. When
the menu item is selected, the sample plug-in uses Mac OS X’s speech synthesis framework to speak the
phone number. Replace this sample code with the code you need for your new plug-in. After you build your
project, place the completed bundle in .../Library/Address Book Plug-Ins.

After an action plug-in has been loaded, its menu item is displayed in the contextual menu with the title
returned from the titleForPerson:identifier:method; this method should not return nil. The plug-in
can enable and disable this menu item using the shouldEnableActionForPerson:identifier:method.

29
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Creating and Using Address Book Action
Plug-ins

30
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Creating and Using Address Book Action Plug-ins

You can import and export person records using the vCard format. To create a vCard representation of a
person, use the ABPerson method vCardRepresentation. This method creates an NSData structure that
you can use in your program or save to a file. To enable drag and drop for this data, use a file promise as
described in “Dragging Files”.

To create a person record from a vCard representation, use the ABPerson method
initWithVCardRepresentation:.

31
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Importing and Exporting Person and Group
Records

32
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Importing and Exporting Person and Group Records

For the most part, the Objective-C API has close method and syntax parity with the C API. This makes it easy
to determine, for example, which function corresponds to a given Objective-C method.

There are a couple of primary differences that developers need to be aware of when using the Address Book
C API:

 ■ The people picker comes only in window form and does not have a C API for setting an accessory view.
In addition, changes in selection and displayed properties are sent via Carbon Events.

 ■ When creating a C-based action plug-in, your bundle must implement a function called
ABActionRegisterCallbacks, which will return an ABActionCallbacks structure. The structure
needs to be formed according to this type definition:

typedef struct {
 // The version of this struct is 0
 CFIndex version;

 // A pointer to a function that returns the AddressBook
 // property this action applies to.
 ABActionPropertyCallback property;

 // A pointer to a function that returns the AddressBook
 // property this action applies to. Only items with labels
 // may have actions at this time.
 ABActionTitleCallback title;

 // A pointer to a function which returns YES if the action
 // should be enabled for the passed ABPersonRef and item
 // identifier. The item identifier will be NULL for single value
 // properties. This field may be NULL. Actions with NULL enabled
 // callbacks will always be enabled.
 ABActionEnabledCallback enabled;

 // A pointer to a function which will be called when the user
 // selects this action. It's passed an ABPersonRef and item
 // identifier. The item identifier will be NULL for single
 // value properties.
 ABActionSelectedCallback selected;

} ABActionCallbacks

To access the user’s shared address book using the C programming interface, you need to use the value
returned by ABGetSharedAddressBook.

ABAddressBookRef addressBook = ABGetSharedAddressBook();

Compare this with the corresponding code using the Objective-C programming interface, noting the mapping
between corresponding method and function names.

33
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Using the Address Book C API

ABAddressBook *addressBook = [ABAddressBook sharedAddressBook];

This example from “Searching an Address Book” (page 21), Listing 1, searches for anyone named Smith in
the current user’s address book and returns an array of results.

Listing 1 A simple search, in Objective-C

ABAddressBook *AB = [ABAddressBook sharedAddressBook];

ABSearchElement *nameIsSmith =
 [ABPerson searchElementForProperty:kABLastNameProperty
 label:nil
 key:nil
 value:@"Smith"
 comparison:kABEqualCaseInsensitive];

NSArray *peopleFound =
 [AB recordsMatchingSearchElement:nameIsSmith];

Listing 2 performs the same search using the C API. Again, note the mapping between corresponding method
and function names.

Listing 2 A simple search, in C

ABAddressBookRef AB = ABGetSharedAddressBook();

ABSearchElementRef nameIsSmith =
 ABPersonCreateSearchElement(kABLastNameProperty,
 NULL,
 NULL,
 CFSTR("Smith"),
 kABEqualCaseInsensitive);

CFArrayRef peopleFound =
 ABCopyArrayOfMatchingRecords(AB, nameIsSmith);

For more details about using the C API for the Address Book framework, refer to Address Book C Framework
Reference for Mac OS X.

34
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Using the Address Book C API

This table describes the changes to Address Book Programming Guide for Mac OS X.

NotesDate

Minor editorial changes throughout.2010-08-03

Updated the sections Using the People Picker, Searching an Address Book, Using
Address Book Groups as Distribution Lists, and Creating and Using Address Book
Action Plug-in. Added sample code to Adding Properties to Address Book
Records. Formatting and editorial changes throughout.

2010-02-24

Minor changes throughout.2009-08-07

Made minor updates to searching and drag-and-drop exporting.2009-05-28

Made minor editorial corrections throughout.2006-04-04

Made minor sample code changes. Added important note about syncing with
Sync Services to the introduction.

2005-04-29

Added major updates. New sections include “Creating and Using Address Book
Action Plug-ins” (page 29), “Using the People Picker” (page 18), and “Using the
Address Book C API” (page 33) for Carbon developers. Other sections have new
sample code and more detailed content.

2004-04-21

Made minor correction in “Search Examples” (page 22).2003-10-30

Added revision history, which records changes to the content of Address Book.2003-08-21

35
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Document Revision History

36
2010-08-03 | © 2002, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	Address Book Programming Guide for Mac OS X
	Contents
	Tables and Listings
	Introduction
	About the Address Book
	How Address Book Handles Individuals and Groups
	How Address Book Manages Individual Search Queries
	Other Features

	Managing Address Book Records
	Accessing the Address Book
	Adding and Removing Person and Group Records
	Managing Groups
	Accessing the User’s Record
	Saving Your Changes
	Notification of Changes
	An Example

	Accessing Address Book Records
	Using Property Lists
	Using Multivalue Lists
	The Picture Associated with a Person
	Getting Localized Names for Properties and Labels
	An Example
	Using the People Picker
	People Picker Example

	Searching an Address Book
	Creating a Search Element for a Single Property
	Creating a Search Element for Multiple Properties
	Finding Records That Match a Search Element
	Search Examples

	Using Address Book Groups as Distribution Lists
	Adding Properties to Address Book Records
	Creating and Using Address Book Action Plug-ins
	Importing and Exporting Person and Group Records
	Using the Address Book C API
	Revision History

