
Authorization Services Programming Guide
Security

2009-01-06

Apple Inc.
© 2002, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
Panther are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Authorization Services Programming Guide 7

Organization of This Document 7
See Also 8

Chapter 1 Authorization Concepts 9

Authorization 9
Authentication 11
The Security Server 12
Rights 13
The Policy Database 14
The Credentials Cache and the Authentication Dialog 15
Scenarios 16

Simple, Self-Restricted Applications 17
Factored Applications 17
Installers 20

Chapter 2 Authorization Services Tasks 23

Authorizing in a Simple, Self-Restricted Application 23
Creating an Authorization Reference Without Rights 23
Requesting Authorization 24
Releasing an Authorization Reference 28

Authorizing in a Factored Application 28
Using Authorization Services in a Factored Application 28
Using Authorization Services in a Helper Tool 31

Calling a Privileged Installer 34

Document Revision History 37

Glossary 39

3
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

4
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Authorization Concepts 9

Figure 1-1 An example of the System Preferences application as seen by an unauthorized user
10

Figure 1-2 An example of the System Preferences application as seen by a preauthorized user
11

Figure 1-3 An example of authentication in the System Preferences application 12
Figure 1-4 Flow chart for a simple, self-restricted application 17
Figure 1-5 Flow chart for the application part of a factored application 18
Figure 1-6 Flow chart for a helper tool 18
Figure 1-7 Flow chart for a self-repairing helper tool 20
Figure 1-8 Flow chart of an application to call a privileged installer 21
Figure 1-9 Flow chart of an installer’s Authorization Services calls. 21
Table 1-1 A comparison of the steps involved in authorization and the immigration processes

12
Table 1-2 Rule attributes and descriptions 14

Chapter 2 Authorization Services Tasks 23

Listing 2-1 Creating an authorization reference without rights 24
Listing 2-2 Creating an authorization item array 25
Listing 2-3 Creating a set of authorization rights 25
Listing 2-4 Specifying authorization options for authorization 26
Listing 2-5 Specifying authorization options for partial authorization 26
Listing 2-6 Authorizing rights 26
Listing 2-7 Authorizing partial rights 27
Listing 2-8 Creating an authorization reference with rights 27
Listing 2-9 A one-time authorization call 27
Listing 2-10 Releasing an authorization item array 28
Listing 2-11 Releasing an authorization reference 28
Listing 2-12 Specifying authorization options for preauthorization 30
Listing 2-13 Creating an external authorization reference 30
Listing 2-14 Retrieving an authorization reference 31
Listing 2-15 Executing a helper tool with root privileges 33
Listing 2-16 Setting the setuid bit 34
Listing 2-17 Calling a privileged installer 34

5
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

6
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Performing Privileged Operations With Authorization Services.

Authorization Services defines a programming interface that facilitates fine-grain control of privileged
operations, such as accessing restricted areas of the operating system and self-restricted parts of your Mac
OS X application. This document describes how to use Authorization Services to control these privileged
operations.

Performing Privileged Operations With Authorization Services explains the concepts behind authorization and
provides examples of how to use Authorization Services.

Types of products that benefit from using Authorization Services include

 ■ applications that call system-restricted tools

 ■ software that restricts access to its own tools

 ■ software installers that install privileged tools or require access to restricted areas of the operating system

For example, you can use Authorization Services to restart background processes or to gain access to restricted
directories, such as the /Applications directory. Using Authorization Services properly in these situations
greatly minimizes the possibility of your software inadvertently damaging restricted areas of the operating
system, or allowing an unauthorized user access to these areas.

Your application can benefit from Authorization Services if it includes tools or performs operations to which
you want only administrative users to have access.

Authorization Services uses the authentication mechanism in Mac OS X. If future versions of Mac OS X support
additional authentication mechanisms, adopting Authorization Services now will enable your application to
take advantage of these mechanisms with no change to your code.

Organization of This Document

“Authorization Concepts” (page 9) introduces you to authorization in Mac OS X and describes the difference
between authorization and authentication. This chapter explores scenarios that use Authorization Services.
Read this chapter to better understand whether your software could benefit from using Authorization Services.

“Authorization Services Tasks” (page 23) explains in detail how to use Authorization Services in self-restricting
applications, system-restricting applications, and privileged installers.

“Glossary” (page 39) defines new terms introduced in this book.

Organization of This Document 7
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Authorization Services
Programming Guide

See Also

A companion volume to Performing Privileged Operations With Authorization Services is Authorization Services
Reference, which provides a detailed explanation of every function, data type, and constant defined by
Authorization Services for use by your application.

8 See Also
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Authorization Services Programming Guide

This chapter covers concepts rather than implementation or programming details. See “Authorization Services
Tasks” (page 23) for information about using specific Authorization Services functions in your application.

You should understand the basics of permissions and ownership in BSD and Mac OS X before reading this
chapter. See Chapter 13, “Installation and Integration”, of Inside Mac OS X: System Overview for a brief
introduction to these concepts. For definitions of terms, see the “Glossary” (page 39).

This chapter contains the following sections:

 ■ “Authorization” (page 9) provides a conceptual overview of the policy-based authorization used by
Mac OS X.

 ■ “Authentication” (page 11) describes how authorization uses authentication.

 ■ “The Security Server” (page 12) describes how you use Authorization Services in your application to
interact with the Security Server.

 ■ “Rights” (page 13) describes how to name your own rights.

 ■ “The Policy Database” (page 14) explains how the Security Server uses a policy database to make
authorization decisions.

 ■ “The Credentials Cache and the Authentication Dialog” (page 15) explains how the Security Server
determines whether to display an authentication dialog.

 ■ “Scenarios” (page 16) describes different scenarios that use Authorization Services.

Authorization

The underlying BSD portion of the Mac OS X kernel provides a user-and-owner-security model. Each file
system object, such as a file or directory, has an owner and a set of permissions, or attributes, specifying
what the owner, one group, and all others are able to do with the object.

There are cases where the BSD security model doesn’t fit situations faced by Mac OS X users. For example,
if you want to create a grades-and-transcripts application, you’ll want teachers and school registrars to use
the application, but you may want to restrict the creation of transcripts to just the registrars.

You may need to protect the user from accidentally making important changes that the underlying BSD
security model allows. For example, you may want a user to authenticate as an administrator before changing
application-specific preferences. Authorization Services can also be used to perform operations as root—also
known as the superuser—such as restarting a daemon.

In these cases, a policy-based security model, used in addition to the BSD permissions, provides additional
important features for your application. In a policy-based system, a user requests authorization—the act
of granting a right or privilege—to perform a privileged operation. Authorization is performed through an
agent so the user doesn’t have to trust the application with a password. The agent is the user interface—

Authorization 9
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

operating on behalf of the Security Server—used to obtain the user’s password or other form of identification,
which also ensures consistency between applications. The Security Server—a Core Services daemon in Mac
OS X that deals with authorization and authentication—determines whether no one, everyone, or only certain
users may perform a privileged operation.

Authorization offers you fine-grained control over granting users privileges to perform administrative tasks
and other privileged operations. Using Authorization Services allows you to restrict parts of your application,
add extra security precautions, and still satisfy the BSD security model. You should avoid bypassing the BSD
security model—for example, don’t run processes as root—unless you have no alternative, in which case
you should limit the amount of code involved.

Note: It is your responsibility, in a policy-based system, to request authorization for your users. Your application
should authorize immediately before every privileged operation.

In some circumstances it is valuable to determine if the user is authorized to perform privileged operations
well before your application actually needs to perform those operations. For example, when the System
Preferences application is locked, it requires a user to provide a name and password before it will allow the
user to change any settings. When the user clicks on the lock button (see Figure 1-1), the System Preferences
application performs preauthorization. Preauthorization determines a user’s rights before authorization is
required. By preauthorizing, System Preferences prevents users from customizing and selecting options for
an operation they are not authorized to perform.

Figure 1-1 An example of the System Preferences application as seen by an unauthorized user

Figure 1-2 shows the window the user sees after successfully preauthorizing. However, the System Preferences
application still performs authorization immediately before carrying out any privileged operation.

10 Authorization
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

Figure 1-2 An example of the System Preferences application as seen by a preauthorized user

Authentication

Authentication is the act of verifying the identity of the user. A common misconception is that authorization
and authentication are one and the same; however, authentication is only part of the authorization process.
As discussed in “Authorization” (page 9), after the user is authenticated, the authorization process involves
determining what rights or privileges that user has.

Figure 1-3 shows an example of authentication in the System Preferences application.

Authentication 11
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

Figure 1-3 An example of authentication in the System Preferences application

Typically today, the user types in a user name and password to be authenticated. In future releases of Mac
OS X, the user might produce a smart card, use a biometric identifier, such as a fingerprint or retinal scan,
or use a combination of authentication methods.

When your application requests authorization of the user, you can set an option that allows the Security
Server to interact with the user. Doing so tells the Security Server to request proof of identity from the user
for authentication purposes, as needed.

The Security Server

The Security Server processes authorization requests in a manner analogous to how an immigration official
processes visas. Table 1-1 compares the two processes.

Table 1-1 A comparison of the steps involved in authorization and the immigration processes

AuthorizationImmigration

The application provides the authorization reference,
authorization rights set, and authorization options to
the Security Server.

The immigrant provides a passport and visa to the
immigration official.

The Security Server uses the authorization reference
to access credentials.

The immigration official uses the visa number to
access information about the immigrant.

12 The Security Server
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

AuthorizationImmigration

The Security Server asks the user to provide a user
name and password for authentication.

The immigration official uses the picture in the
passport to validate the identity of the immigrant.

The Security Server uses the rights in the authorization
rights set to look up the rules in the policy database.

The immigration official uses the privileges
requested in the visa to look up the laws in the
policy book.

The Security Server uses the credentials and
authorization options to determine if the user
complies with the rules and should be granted the
rights requested in the authorization rights set.

The immigration official uses the credentials to
determine if the immigrant complies with the laws
and should be granted the privileges requested in
the visa.

The Security Server returns a result granting or
denying the authorization rights.

The immigration official informs the immigrant
whether or not he grants the privileges requested
in the visa.

To initiate an authorization session between your application and the Security Server, you create an
authorization reference. The Security Server uses the authorization reference to access the authorization
session. You pass the authorization reference to almost every Authorization Services function.

When you request authorization, you send instructions to the Security Server in the form of authorization
options. The authorization options tell the Security Server how to proceed with the authorization request.
For example, you can specify that the call is for authorization, partial authorization, or preauthorization. You
can also specify whether you want to allow the Security Server to interact with the user to perform
authentication.

To authorize a user, you must pass the Security Server an authorization rights set that contains rights a user
needs, such as the right to create a transcript or restart a daemon. A right is a named privilege that the
application requests on behalf of a user.

A credential is a token representing an authenticated user that the Security Server stores as part of the
authorization session. The Security Server uses these credentials as proof of authenticity. Credentials expire
after a set length of time. You can also force their expiration when freeing an authorization reference.

The Security Server uses a policy database that contains a set of rules. A rule is a set of attributes that
determine who should be authorized to perform a specific action. The Security Server compares the rules
with a user’s rights and authentication credentials to determine if the user is authorized to perform a privileged
operation.

Rights that are granted are not stored in the authorization session. Instead, every time authorization is
performed, the Security Server uses the credentials—or reauthenticates the user if the credentials have
expired—and consults the appropriate rule in the policy database to reevaluate the authorization.

Rights

When your application requests authorization, you pass the requested rights (an authorization rights set) to
the Security Server. The Security Server compares the rights you pass to the keys in the policy database.
When a match is found, the Security Server uses the rules associated with the key to determine authorization.
For more information about the policy database see “The Policy Database” (page 14).

Rights 13
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

You must create the rights your application uses. Rights use a hierarchical namespace. The right should begin
with the reverse domain name of your organization. The right should then specify the name of your application
and become more specific—for example, com.myOrganization.myProduct.myRight. Rights that are
specific to Mac OS X have right names that begin with system.

Note: Rights are case sensitive.

Your right should represent an individual action on one or a group of targets. For example, a right might
represent the individual action of restarting a daemon, such as
com.myOrganization.myProduct.inetd.restart to restart the Internet daemon, or
com.myOrganization.myProduct.daemons.restart to restart a group of daemons.

Because you can request multiple rights for the same user, there is no need to create rights that represent
combinations of actions. For example, in a grades-and-transcripts application, if you name a right
com.myOrganization.myProduct.transcripts.create and another right
com.myOrganization.myProduct.grades.edit, there is no need for a separate right
com.myOrganization.myProduct.createTranscriptsAndEditGrades.

The name you select for a right should make sense to the user. For example, system.finder.trash.empty
is more readily understood than system.finder.trashDirectory.deleteFiles.

The Policy Database

The policy database contains a set of rules the Security Server uses to authorize rights for a user. Each rule
consists of a set of attributes. The rules are preconfigured when Mac OS X is installed, but an application may
change them at any time. Because any application can change the rights in the database, your application
must take into account all possible scenarios. Table 1-2 describes the attributes defined for rules.

There are some specific rules in the policy database for Mac OS X applications. There is also a generic rule in
the policy database that the Security Server uses for any right that doesn’t have a specific rule.

Table 1-2 Rule attributes and descriptions

DescriptionGeneric rule
value

Rule
attribute

The key is the name of a rule. A key uses the same naming conventions as
a right. The Security Server uses a rule’s key to match the rule with a right.
Wildcard keys end with a ‘.’. The generic rule has an empty key value. Any
rights that do not match a specific rule use the generic rule.

key

The user must authenticate as a member of this group. This attribute can be
set to any one group.

admingroup

If this is set to true, then the Security Server marks the credentials used to
gain this right as shared. The Security Server may use any shared credentials
to authorize this right. For maximum security, set sharing to false so
credentials stored by the Security Server for one application may not be used
by another application.

trueshared

14 The Policy Database
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

DescriptionGeneric rule
value

Rule
attribute

The credential used by this rule expires in the specified number of seconds.
For maximum security where the user must authenticate every time, set the
timeout to 0. For minimum security, remove the timeout attribute so the
user authenticates only once per session.

300timeout

Your right always matches up with the generic rule unless a new rule is added to the policy database. Use
the AuthorizationRightSet function to add or edit a rule in the database. Use the
AuthorizationRightGet function to read the current rule. Use the AuthorizationRightRemove function
to delete a rule.

To lock out all privileged operations not explicitly allowed, change the generic rule by setting the timeout
attribute to 0. To allow all privileged operations once the user is authorized, remove the timeout attribute
from the generic rule. To prevent applications from sharing rights, set the shared attribute to false. To
require users to authenticate as a member of the staff group instead of the admin group, set the group
attribute to staff.

As an example of how the Security Server matches a right with a rule in the policy database, consider a
grades-and-transcripts application. The application requests the right
com.myOrganization.myProduct.transcripts.create. The Security Server looks up the right in the
policy database. Not finding an exact match, the Security Server looks for a rule with a wildcard key set to
com.myOrganization.myProduct.transcripts., com.myOrganization.myProduct.,
com.myOrganization., or com.—in that order—checking for the longest match. If no wildcard key matches,
then the Security Server uses the generic rule. The Security Server requests authentication from the user. The
user provides a user name and password to authenticate as a member of the group admin. The Security
Server creates a credential based on the user authentication and the right requested. The credential specifies
that other applications may use it, and the Security Server sets the expiration to five minutes.

Three minutes later, a child process of the application starts up. The child process requests the right
com.myOrganization.myProduct.transcripts.create. The Security Server finds the credential, sees
that it allows sharing, and uses the right. Two and a half minutes later, the same child process requests the
right com.myOrganization.myProduct.transcripts.create again, but the right has expired. The
Security Server begins the process of creating a new credential by consulting the policy database and
requesting user authentication.

The Credentials Cache and the Authentication Dialog

You might notice that when you call theAuthorizationCreate function or theAuthorizationCopyRights
function to obtain rights for a user, sometimes an authentication dialog appears and at other times the dialog
does not appear. The reason for this behavior is related to the settings in the policy database and the way
in which the Security Server caches user credentials.

A credential is something that the Security Server knows about a particular user, such as the fact that a
particular user has entered a valid user name and password.

The Credentials Cache and the Authentication Dialog 15
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

For each login session, the Security Server maintains a global credentials cache and a credentials cache per
authorization instance (that is, for each time a new authorization reference is created). The rule for each right
in the policy database indicates the group to which the authenticated user must belong and how long the
credential is considered valid. The rule might also indicate that the credential is to be shared.

When Authorization Services needs a credential in order to grant a right to a user, the Security Server attempts
to obtain the credential from a credentials cache. It first looks in the credentials cache associated with the
authorization instance. If the credential isn’t there and credentials are shared, it then looks in the global
credentials cache. Only if the Security Server can’t find the credential in a cache does it try to acquire the
credential, typically by displaying an authentication dialog. (In some cases, the Security Server might be able
to acquire the credential from another source, such as a smart card.)

If the Security Server successfully obtains a new credential, it stores it in the credentials cache associated
with the authorization instance and—if the rule specifies that the credential should be shared—in the global
credentials cache.

If the rule for the right has a timeout attribute, its value indicates how long (in seconds) a cached credential
is applicable for this right. A value of 0 means that the credential can only be used once (that is, it times out
immediately). If the timeout attribute is missing, the credential can be used to grant the right as long as the
login session lasts, unless the credential is explicitly destroyed.

When a user who is a member of the admin group logs on to the system, for example, the user’s credential
(that is, the fact that they have entered a valid admin user name and password) is saved in the global
credentials cache. Then when this user attempts to modify a system preference, Security Server finds the
credential in the cache and does not display an authentication dialog.

On the other hand, if a user logs on with a non-admin user name and password and tries to modify one of
the system preferences, Security Server cannot obtain the needed credential from a credentials cache.
Therefore, it displays the authentication dialog.

The same principle applies for any application that requires a credential: if the user has been authenticated
for one application and the credential has been shared, another application can use that credential.

Consequently, whether a call to AuthorizationCopyRights results in an authentication dialog depends
on whether the Security Server has already cached the required credential.

The only way to guarantee that a credential acquired when you request a right is not shared with other
authorization instances is to destroy the credential. To do so, call the AuthorizationFree function with
the flag kAuthorizationFlagDestroyRights.

Scenarios

There are three main scenarios that involve Authorization Services: simple self-restricted applications, factored
applications, and installers.

16 Scenarios
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

Simple, Self-Restricted Applications

A self-restricted application requires that certain features be accessible only by a specific group of users. In
a simple self-restricted application, this separation of features is done within the main application. You use
Authorization Services in this situation because this kind of fine-grain restriction cannot be controlled by
BSD permissions.

Consider a grades-and-transcripts application that allows only registrars to create transcripts, while the rest
of the application is available to both teachers and registrars. When a user attempts to create a transcript,
the application uses Authorization Services to decide if that user may perform the operation.

Figure 1-4 shows a flow chart of a simple, self-restricting application. The application creates an authorization
reference. The authorization reference refers to the authorization session with the Security Server. Immediately
before performing any privileged operation, such as creating a transcript, the application requests authorization
on behalf of the user. If required, the Security Server requests authentication of the user. If authorization
succeeds, the privileged operation is performed. The application releases the authorization reference when
it is no longer needed.

In most cases, it is beneficial to separate the privileged operations into a separate helper tool. See “Factored
Applications” (page 17) for more information on how to use Authorization Services with helper tools.

You can perform authorization without creating an authorization reference if you need to authorize just
once—for example, when your application first starts up. To do so you use the result of the authorization
call directly. Because in this case you did not create an authorization reference, you don’t have to release it.
One-time authorization is described in more detail in the section “Authorizing” (page 26).

Figure 1-4 Flow chart for a simple, self-restricted application

Perform
privileged operation

Create
authorization reference

Authorize

Succeed

Release
authorization reference

 Fail

Factored Applications

A factored application is an application that delegates specific tasks to smaller, separate tools. These tools
are sometimes referred to as helper tools. In a simple, self-restricted application, the privileged code is in
the application itself, whereas in a factored application, the privileged code is in the helper tool.

An operation that your application performs might be restricted by the BSD security model. Such an application
is a system-restricted application. For example, an application that requires restarting the Internet daemon
(inetd) must have root privileges, but it runs with the privileges of the user that started it.

Scenarios 17
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

It is recommended that you factor both self-restricted applications and system-restricted applications.
Factoring your application provides two benefits. The first is that it is easier to audit a factored application
because the privileged operation is performed in a separate process by the helper tool. The second is that a
factored application provides more security. In a nonfactored application, you not only have to trust that
there are no security holes in your code but also no holes in all of the code that you link to.

Figure 1-5 shows a flow chart for the application part of a factored application while the flow chart for the
helper tool is shown in Figure 1-6.

Figure 1-5 Flow chart for the application part of a factored application

Create external
authorization reference

Call helper tool

Release
authorization reference

Create
authorization reference

Preauthorize

Succeed

 Fail

The application begins by creating an authorization reference and requesting preauthorization from the
Security Server immediately before calling the helper tool. The application uses the results of preauthorization
to determine if the user has the right to perform the privileged operations in the helper tool. Performing
preauthorization ensures that resources and time aren’t wasted invoking a helper tool that the user does
not have the right to use.

Figure 1-6 Flow chart for a helper tool

Perform privileged
operation

Return to applicationAuthorize
 Fail

Succeed

Read external
authorization reference

The application needs to pass the authorization reference to the helper tool. Because you cannot transfer an
authorization reference itself between two processes, the application uses Authorization Services to create
an external, transferable form of the authorization reference to send to its helper tool.

18 Scenarios
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

The helper tool uses Authorization Services to create an authorization reference from the external authorization
reference. The helper tool requests authorization and uses the results to decide whether to continue with
the privileged operation.

You must pass the authorization reference to your helper tool so that the authorization dialog can show your
application’s path rather than the path to the helper tool and to allow the system to determine whether the
authorization dialog should have keyboard focus.

You must perform authorization immediately before any privileged operation, even if the user has already
successfully authorized. Rights can expire, thus it is your responsibility as a developer to ensure that the user
is up to date on all required rights. Any application can modify the policy database to set the length of time
a right is available (see “The Policy Database” (page 14)).

Note: The ability to perform a privileged operation is governed by the BSD security model, not Authorization
Services. The expiration of a right does not prevent a user with the proper BSD permissions from performing
certain privileged operations—you must build that prevention into your code by authorizing immediately
before privileged operations.

Some system-supplied utilities use Authorization Services. For example, the authopen utility uses Authorization
Services to open privileged files. If you call a utility like authopen, then it is unnecessary to write your own
helper tool.

Some privileged operations require special permissions. For example, an application that restarts the Internet
daemon must have root privileges. There are three possible ways to perform this operation, all with their
own problems:

 ■ Make the application run as root by calling itself with a special Authorization Services function.

 ■ Set the setuid bit of the application and change its owner to root, and then use the special Authorization
Services function.

 ■ Factor out the operation that performs the privileged operation and put it in a separate setuid tool—a
tool that has its setuid bit set—and set the setuid tool’s owner to root.

Both the first and second options are a security breach waiting to happen. When the privileged application
runs, it calls a special function that Authorization Services
provides—AuthorizationExecuteWithPrivileges (see “Calling a Helper Tool as Root” (page 32) for
more details). Calling this function executes any application or tool with root privileges, regardless of the
owner of the application or tool. This is very dangerous since parts of the application can be easily replaced.

The second option is to set the setuid bit of the privileged application and change its owner to root. The
setuid bit, when set, allows the process running it to masquerade as another user. Setting the setuid bit and
owner of the application to a different user, such as root, makes it more difficult to replace. However, running
code as root is very dangerous and should be done as seldom as possible. Setting the setuid bit on an entire
application is especially dangerous because you are trusting that your entire application, and the code your
application links to, is free of security holes.

The third scenario is by far the best. The application is split into an application that controls all of the graphical
user interface elements and nonprivileged operations, and a helper tool that performs only the operations
involved in restarting the Internet daemon. The helper tool’s setuid bit is set and the owner is set to root.
The proper Authorization Services functions are used as described previously. Factoring and setting the
setuid bit not only minimizes the risk but also makes it easier to audit your code for security holes.

Scenarios 19
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

One problem with the last scenario is that setuid bit settings are lost when a file is copied. Thus, if the user
copies your setuid tool, the setuid bit is no longer set. It is possible to reset the setuid bit in the setuid tool
itself. Figure 1-7 shows the flow chart of a setuid tool that repairs its own setuid bit. You may not want the
user to be able to copy the application. If that is the case, you don’t need to worry about repairing the setuid
bit, just let the user know that they need to reinstall the application.

Figure 1-7 Flow chart for a self-repairing helper tool

Perform privileged
operation

Recover
authorization reference

Repair setuid bit

Read external
authorization reference

Return to application

Call tool with root
privilege and

self-repair command

Authorize
 Fail

Succeed

Self-repair?
 No

Yes

Running
as root?

 No

Yes

When the self-repairing helper tool is run, it checks if the self-repair flag was passed. If the self-repair flag
was not passed, then it reads in the external authorization reference that the application passed.

The self-repairing setuid tool then checks if it is running as root. If it is running as root, then authorization is
performed and, based on the result, the privileged operation is performed. If the self-repairing setuid tool is
not running as root, then it calls itself with the AuthorizationExecuteWithPrivileges function and
passes itself the self-repair flag.

When the new self-repairing setuid tool process starts, it checks if the self-repair flag was passed. If the
self-repair flag was passed, then the self-repairing setuid tool recovers the authorization reference and repairs
the setuid bit. After the self-repairing setuid tool is running as root, it performs authorization and continues
as a normal helper tool.

Installers

Not all installers require authorization—only those that need special privileges to copy files to restricted
directories, make changes to restricted files, or set setuid bits.

An installer is a special case because unlike other applications, an installer is usually run only once. Due to
the limited use, Authorization Services provides a function to invoke your installer to run with root privileges.
It is up to the user to determine if the installer is from a trusted source.

20 Scenarios
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

Figure 1-8 shows a flow chart of an application using Authorization Services to call an installer. In this case,
the application creates the authorization reference and performs preauthorization. If the user successfully
preauthorizes, then you call the AuthorizationExecuteWithPrivileges function to execute your installer
with root privileges.

Figure 1-8 Flow chart of an application to call a privileged installer

Create
authorization reference

Preauthorize

Succeed

 Fail

Call installer

Release
authorization reference

Figure 1-9 shows a flow chart for the Authorization Services calls performed in the installer itself. Authorization
should be performed before any privileged operation.

Figure 1-9 Flow chart of an installer’s Authorization Services calls.

Perform privileged
operation

Recover
authorization reference

Return to applicationAuthorize
 Fail

Succeed

Scenarios 21
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

22 Scenarios
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Concepts

This chapter provides instructions and code samples for tasks you can accomplish with Authorization Services.
You can adapt these samples in your own application to

 ■ Restrict access to parts of your own application

 ■ Call system utilities

 ■ Edit privileged files

 ■ Install your privileged tools

A simple, self-restricting application needs to restrict a user from the application’s own operations with
minimal security concerns—for example, a grades-and-transcripts application might only allow the registrar
to create transcripts. Read “Authorizing in a Simple, Self-Restricted Application” (page 23) if you have a
self-restricting application.

If you have a factored application—for example, an application that must perform an operation as root, such
as restarting a daemon—you should read both “Authorizing in a Simple, Self-Restricted Application” (page
23) and “Authorizing in a Factored Application” (page 28).

If your installer must perform a privileged operation, read “Calling a Privileged Installer” (page 34) to see an
example of an installer using Authorization Services.

See http://developer.apple.com/samplecode/Sample_Code/Security.htm for sample applications that perform
system-restricted privileged operations.

Authorizing in a Simple, Self-Restricted Application

A simple, self-restricted application uses Authorization Services to perform the tasks described in the following
sections:

 ■ “Creating an Authorization Reference Without Rights” (page 23)

 ■ “Requesting Authorization” (page 24)

 ■ “Releasing an Authorization Reference” (page 28)

Creating an Authorization Reference Without Rights

The Security Server uses the authorization reference to access the state of the authorization session, which
includes any stored credentials. Your application needs only one authorization reference.

Authorizing in a Simple, Self-Restricted Application 23
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

http://developer.apple.com/samplecode/Sample_Code/Security.htm

You use the AuthorizationCreate function to allocate memory for the authorization reference. The code
fragment in Listing 2-1 shows a call to the AuthorizationCreate function that creates an authorization
reference without rights. An authorization reference without rights is useful if the rights are not needed
immediately, but the authorization reference is required so it can be used in different parts of the application.
For example, in the grades-and-transcripts application, the authorization reference might be created when
the application starts, but rights aren’t requested until the user attempts to create transcripts.

Note: Although you can create an authorization reference and assign rights in one call, keep in mind that
if authorization is denied, the reference is not created and subsequent attempts to use it will fail. Therefore,
it is often preferable to create the authorization reference without rights, as shown in Listing 2-1, and then
call theAuthorizationCopyRights function later to determine or change the rights, as shown in “Requesting
Authorization” (page 24).

Listing 2-1 Creating an authorization reference without rights

AuthorizationRef myAuthorizationRef;
OSStatus myStatus;
myStatus = AuthorizationCreate (NULL, kAuthorizationEmptyEnvironment,
 kAuthorizationFlagDefaults, &myAuthorizationRef);

The AuthorizationCreate function takes four parameters. The first is an authorization rights set. Since
NULL is passed, no rights are authorized at this time. The second parameter is the authorization environment,
which is not currently implemented; pass kAuthorizationEmptyEnvironment. The third parameter is the
authorization options. The constant kAuthorizationFlagDefaults is passed because the application is
not requesting any rights. The fourth parameter is the address of the authorization reference you declared.
On return, the authorization reference refers to the current authorization session. If the authorization reference
is created successfully, the function returns errAuthorizationSuccess.

“Requesting Authorization” (page 24) describes how to use the AuthorizationCopyRights and
AuthorizationCreate functions to request authorization. When your application is done with the
authorization reference, use the AuthorizationFree function as described in “Releasing an Authorization
Reference” (page 28).

Requesting Authorization

After you create an authorization reference, you can then request authorization. Your application should
perform authorization immediately before every privileged operation. In the case of the grades-and-transcripts
example, the application requests authorization immediately before creating a transcript.

When your application requests authorization, the Security Server may request the user to authenticate.
Authorization Services allows you to take full advantage of the Security Server’s authentication plug-in
architecture to deal with authentication for you. Instead of a user name and password, the authentication
may use fingerprints or smart cards, but your application code stays the same.

Figure 1-3 (page 12) shows the authentication dialog that the Security Server provides. The user enters an
administrator user name and password and clicks OK. The Security Server then uses the user name and
password to authenticate and authorize the user.

Authorization requires the creation of an authorization rights set and authorization options to use in a call
to the functions AuthorizationCopyRights or AuthorizationCreate. In your application, request
authorization by performing the tasks described in the following sections:

24 Authorizing in a Simple, Self-Restricted Application
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

 ■ “Creating an Authorization Rights Set” (page 25)

 ■ “Specifying Authorization Options ” (page 26)

 ■ “Authorizing” (page 26)

 ■ “Releasing an Authorization Item Array” (page 28)

Creating an Authorization Rights Set

To authorize a user for specific rights, you must create an authorization rights set to pass to the Security
Server through the AuthorizationCopyRights or AuthorizationCreate functions. The authorization
rights set consists of an authorization item array and the number of items in the authorization item array.
The authorization item array contains information about the rights that your application is requesting.

Each item in the authorization item array consists of four pieces of information:

 ■ The name of the right

 ■ A value that contains optional data pertaining to the right

 ■ The byte length of the value field

 ■ Optional flags

Listing 2-2 shows an example of an authorization item array. In most cases, when creating an item for a right,
you set the value field to NULL, and the valuelength and flags fields to 0. You should set the name field
to the name of the right you are requesting. For information on naming your own rights, see “Rights” (page
13).

Listing 2-2 Creating an authorization item array

AuthorizationItem myItems[2];

myItems[0].name = "com.myOrganization.myProduct.myRight1";
myItems[0].valueLength = 0;
myItems[0].value = NULL;
myItems[0].flags = 0;

myItems[1].name = "com.myOrganization.myProduct.myRight2";
myItems[1].valueLength = 0;
myItems[1].value = NULL;
myItems[1].flags = 0;

For example, a grades-and-transcripts application might request the right
com.myOrganization.myProduct.transcripts.create. The valueLength, value, and flags fields
would be unused and set to 0, NULL, and 0, respectively.

Listing 2-3 shows an example of an authorization rights set. In the authorization rights set, the count field
contains the number of rights in the authorization item array, while the items field points to the authorization
item array you created.

Listing 2-3 Creating a set of authorization rights

AuthorizationRights myRights;
myRights.count = sizeof (myItems) / sizeof (myItems[0]);
myRights.items = myItems;

Authorizing in a Simple, Self-Restricted Application 25
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

Specifying Authorization Options

You use the authorization options to instruct the Security Server how to proceed with the
AuthorizationCopyRights and AuthorizationCreate functions. By setting the authorization options,
you can use these functions to

 ■ Authorize partial rights

 ■ Authorize all rights

 ■ Preauthorize rights

You can include with these options the option to interact with the user. The Security Server requires user
interaction to perform authentication. The most common combination authorizes all rights and allows user
interaction. Listing 2-4 shows an example of the authorization options for authorization.

Listing 2-4 Specifying authorization options for authorization

AuthorizationFlags myFlags;
myFlags = kAuthorizationFlagDefaults |
 kAuthorizationFlagInteractionAllowed |
 kAuthorizationFlagExtendRights;

ThekAuthorizationFlagDefaults constant zeros the bit mask. ThekAuthorizationFlagExtendRights
constant instructs the Security Server to grant the rights. Without this flag, the AuthorizationCopyRights
and AuthorizationCreate functions would return the appropriate error code, but no rights would be
extended to the user.

If your application does not require all of the rights to be authorized, you can include the
kAuthorizationFlagPartialRights constant to request partial authorization. You can then determine
what to allow the user to do based on which rights the Security Server grants. Listing 2-5 shows an example
of setting the authorization options for partial authorization.

Listing 2-5 Specifying authorization options for partial authorization

myFlags = kAuthorizationFlagDefaults |
 kAuthorizationFlagInteractionAllowed |
 kAuthorizationFlagExtendRights |
 kAuthorizationFlagPartialRights;

See “Requesting Preauthorization” (page 29) to learn what authorization options to set for preauthorization.

Authorizing

The code fragment in Listing 2-6 shows a call to the AuthorizationCopyRights function based on the
authorization reference and authorization rights set you created and the authorization options you specified.
In the grades-and-transcripts example, the AuthorizationCopyRights function is used to authorize the
right to create a transcript.

Listing 2-6 Authorizing rights

myStatus = AuthorizationCopyRights (myAuthorizationRef, &myRights,
 kAuthorizationEmptyEnvironment, myFlags, NULL);

26 Authorizing in a Simple, Self-Restricted Application
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

The first parameter is the authorization reference created in “Creating an Authorization Reference Without
Rights” (page 23). The second parameter is the authorization rights set created in “Creating an Authorization
Rights Set” (page 25). The third parameter is the authorization environment. The authorization environment
is not currently implemented, so pass kAuthorizationEmptyEnvironment. The fourth parameter is the
authorization options set in “Specifying Authorization Options ” (page 26).

The fifth parameter is useful when authorizing partial rights as shown in Listing 2-7. This parameter points
to an empty authorized rights set you declare. On return, this consists of the rights that the Security Server
actually authorizes. If you create a pointer to an authorized rights set, then you should release it as described
in “Releasing an Authorization Item Array” (page 28).

Listing 2-7 Authorizing partial rights

AuthorizationRights *myAuthorizedRights;
myStatus = AuthorizationCopyRights (myAuthorizationRef, &myRights,
 kAuthorizationEmptyEnvironment, myFlags,
 &myAuthorizedRights);

The AuthorizationCopyRights function returns errAuthorizationSuccess if the Security Server grants
all the rights. You can use the return status to determine whether the user may perform the privileged
operation.

You can use an authorization rights set and authorization options to request authorization when you create
an authorization reference.

Note: Although you can create an authorization reference and assign rights in one call, as shown in Listing
2-8, keep in mind that if authorization is denied, the reference is not created and subsequent attempts to
use it will fail. Therefore, it is often preferable to create the authorization reference without rights, as shown
in Listing 2-1 (page 24), and then call the AuthorizationCopyRights function later to determine or change
the rights, as shown in the preceding code samples in this section.

Listing 2-8 shows an example combining authorization with the AuthorizationCreate function.

Listing 2-8 Creating an authorization reference with rights

myStatus = AuthorizationCreate (&myRights, kAuthorizationEmptyEnvironment,
 myFlags, &myAuthorizationRef);

You can also use the AuthorizationCreate function to authorize a user for a one-time privileged operation.
One-time authorization is useful if your application needs to authorize only once when it is run. Listing 2-9
shows an example of how to use an authorization rights set and authorization options with the
AuthorizationCreate function without producing an authorization reference. Pass NULL instead of an
authorization reference.

Listing 2-9 A one-time authorization call

myStatus = AuthorizationCreate (&myRights, kAuthorizationEmptyEnvironment,
 myFlags, NULL);

Authorizing in a Simple, Self-Restricted Application 27
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

Releasing an Authorization Item Array

When you finish with the authorization item set in Listing 2-7 (page 27), call the AuthorizationFreeItemSet
function, as shown in Listing 2-10, to release the memory it uses. Use this function only on authorization
item arrays that the Security Server allocates, such as those used in the AuthorizationCopyRights and
AuthorizationCopyInfo functions.

Listing 2-10 Releasing an authorization item array

myStatus = AuthorizationFreeItemSet (myAuthorizedRights);

Releasing an Authorization Reference

Before exiting your application, or at any time you want to end the current authorization session, call the
AuthorizationFree function to release the authorization reference. For example, the grades-and-transcripts
application would wait until the user quits the application before releasing the authorization reference. Using
the same authorization reference every time the user creates a transcript allows the Security Server to reuse
any shared credentials that haven’t expired. In contrast, an action such as the user clicking the open-lock
button in the Network preferences pane can trigger the release of the authorization reference, requiring the
user to reauthorize when she clicks the closed-lock button.

The code segment in Listing 2-11 shows an example of using the AuthorizationFree function. You must
pass the authorization reference and authorization options. For authorization options, pass the constant
kAuthorizationFlagDefaults if you want to revoke the credentials associated with the current process,
or pass the constant kAuthorizationFlagDestroyRights to release all shared credentials from all
processes that use them.

Listing 2-11 Releasing an authorization reference

myStatus = AuthorizationFree (myAuthorizationRef,
 kAuthorizationFlagDestroyRights);

Authorizing in a Factored Application

Factored applications, whether system-restricted or self-restricted, use an application to control the graphical
user interface and nonprivileged operations and use a separate helper tool to perform the privileged
operations.

Read “Using Authorization Services in a Factored Application” (page 28) for a description of using Authorization
Services in a factored application and “Using Authorization Services in a Helper Tool” (page 31) for a description
of using Authorization Services in a helper tool.

Using Authorization Services in a Factored Application

You can use Authorization Services in your factored application to perform the tasks described in the following
sections:

 ■ “Creating an Authorization Reference” (page 29)

28 Authorizing in a Factored Application
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

 ■ “Requesting Preauthorization” (page 29)

 ■ “Creating an External Authorization Reference” (page 30)

 ■ “Calling a Helper Tool” (page 30)

 ■ “Releasing an Authorization Reference” (page 31)

An example of a factored application is one that restarts the Internet daemon. The application performs all
the nonprivileged operations while the helper tool restarts the daemon. The application creates an
authorization reference and preauthorizes the right to restart the Internet daemon. The application uses the
result to determine whether to start the helper tool. The application creates an external version of the
authorization reference and passes it to the helper tool. When the authorization reference is no longer needed,
the application releases it.

Creating an Authorization Reference

Creating an authorization reference in a factored application is the same as in a simple, self-restricting
application. See “Creating an Authorization Reference Without Rights” (page 23) to learn how to create an
authorization reference.

Requesting Preauthorization

You should preauthorize rights before calling a helper tool. Using the results of preauthorization, you can
prevent an unauthorized user from invoking the helper tool. Doing so saves the time of starting a new process
and using resources as well as saving the user from preparing to perform an operation he doesn’t have
privileges to perform.

Preauthorization requires the creation of an authorization rights set and authorization options to use in a
call to the functions AuthorizationCopyRights or AuthorizationCreate. In your application, you
preauthorize a user by performing the steps described in the following sections:

 ■ “Creating a Preauthorization Rights Set” (page 29)

 ■ “Specifying Authorization Options for Preauthorization” (page 29)

 ■ “Preauthorizing” (page 30)

Creating a Preauthorization Rights Set

A preauthorization rights set is the same as an authorization rights set as described in “Creating an
Authorization Rights Set” (page 25).

Specifying Authorization Options for Preauthorization

Authorization options for preauthorization are similar to the authorization options for authorization and
partial authorization described in “Specifying Authorization Options ” (page 26). The only difference between
preauthorization and authorization is that you are not using the result to determine if a user can perform a
privileged operation. Instead, you should use the result to determine if the user can be authorized at a later
time.

Listing 2-12 shows an example of setting the authorization options for preauthorization. The
kAuthorizationFlagDefaults constant zeros out the bit mask. ThekAuthorizationFlagExtendRights
constant tells the Security Server to extend any rights granted to the user. The

Authorizing in a Factored Application 29
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

kAuthorizationFlagInteractionAllowed constant tells the Security Server that it may interact with
the user for authentication purposes. The kAuthorizationFlagPreAuthorize constant tells the Security
Server to preauthorize the rights requested.

Listing 2-12 Specifying authorization options for preauthorization

AuthorizationFlags myFlags;
myFlags = kAuthorizationFlagDefaults |
 kAuthorizationFlagExtendRights |
 kAuthorizationFlagInteractionAllowed |
 kAuthorizationFlagPreAuthorize;

Preauthorizing

Calling theAuthorizationCopyRightsorAuthorizationCreate function is the same for preauthorization
as it is for authorization. See Listing 2-6 (page 26) in the section “Authorizing” (page 26) for examples.

Creating an External Authorization Reference

After creating the authorization reference and preauthorizing rights, you need to pass the authorization
reference to your helper tool. Sharing the authorization reference allows the helper tool to use any credentials
that are part of the factored application’s authorization session. When you pass the authorization reference
to your helper tool, the authorization dialog can show your application’s path rather than the path to the
helper tool. It also enables the system to determine whether the authorization dialog should have keyboard
focus.

One problem with the authorization reference is that it is not in a form that can be transferred from one
process to another. To solve this problem, Authorization Services provides a function to translate the
authorization reference into an external authorization reference that you can pass to your helper tool.

To create an external authorization reference, declare a variable of type AuthorizationExternalForm
and pass it to the AuthorizationMakeExternalForm function along with the existing authorization
reference. On return, AuthorizationExternalForm is a transferable form of the authorization reference.
Listing 2-13 shows an example of creating an external authorization reference.

Listing 2-13 Creating an external authorization reference

AuthorizationExternalForm myExternalAuthorizationRef;
myStatus = AuthorizationMakeExternalForm (myAuthorizationRef,
 &myExternalAuthorizationRef);

Read “Retrieving an Authorization Reference” (page 31) to learn how to retrieve the authorization
reference from the external authorization reference in your helper tool.

Calling a Helper Tool

When you are ready to call your helper tool, pass the external authorization reference to the tool using some
form of interprocess communication, such as a communications pipe. For a sample application and
self-repairing helper tool, see http://developer.apple.com/samplecode/Sample_Code/Security.htm. For more
information on interprocess communications, see Inside Mac OS X: System Overview.

30 Authorizing in a Factored Application
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

http://developer.apple.com/samplecode/Sample_Code/Security.htm

Releasing an Authorization Reference

Releasing the authorization reference in a factored application is the same as described in “Releasing an
Authorization Reference” (page 28).

Using Authorization Services in a Helper Tool

You can use Authorization Services in your helper tool to perform the tasks described in the following sections:

 ■ “Retrieving an Authorization Reference” (page 31)

 ■ “Performing Authorization” (page 31)

 ■ “Executing the Privileged Operation” (page 32)

For example, a helper tool that restarts the Internet daemon retrieves the authorization reference from the
external authorization reference passed by the application. Then the helper tool requests authorization
immediately before restarting the Internet daemon.

If your helper tool is actually a self-repairing helper tool, you should also read “Repairing a Helper Tool” (page
32).

Retrieving an Authorization Reference

To share the authorization session, the factored application passes an external authorization reference to
the helper tool (see “Creating an External Authorization Reference” (page 30)). In the helper tool, you use
the AuthorizationCreateFromExternalForm function to retrieve an authorization reference from the
external authorization reference.

Listing 2-14 shows an example using the AuthorizationCreateFromExternalForm function. In this
example, the external authorization reference is read in from a communications pipe between the helper
tool process and the parent process. You then pass the external authorization reference to the function
AuthorizationCreateFromExternalForm. On return, myAuthorizationRef is the authorization
reference.

Listing 2-14 Retrieving an authorization reference

AuthorizationRef myAuthorizationRef;
AuthorizationExternalForm myExternalAuthorizationRef;
OSStatus myStatus;

/* *** You should read in the external authorization reference into
 myExternalAuthorizationRef here. *** */

myStatus = AuthorizationCreateFromExternalForm (&myExternalAuthorizationRef,
 &myAuthorizationRef);

Performing Authorization

Performing authorization in your helper tool is the same as it is for simple, self-restricted applications. See
“Requesting Authorization” (page 24) for more information.

Authorizing in a Factored Application 31
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

Executing the Privileged Operation

You should use the result of the authorization to determine whether the user is allowed to perform the
privileged operation. There are no Authorization Services functions required for actually executing the
privileged operation.

Repairing a Helper Tool

Important: For a newer and more secure alternative to the approach documented here, see the sample
code in Better Authorization Sample (BetterAuthorizationSample), which uses the launchd daemon to launch
the helper tool rather than setting the setuid bit.

If your helper tool needs to run as root to perform privileged operations, such as restarting the Internet
daemon, then it should have its setuid bit set. Tools that have the setuid bit set (sometimes referred to as
setuid tools) must be Mach-O binaries because CFM binaries don’t support the setuid or setgid (set group
identifier) bit. When you install your program, your installer should set the helper tool’s setuid bit, and set
its owner to root.

In Mac OS X v10.1 and earlier, when a user moves a setuid tool to another volume, or copies it from one place
to another, the setuid bit is reset by the file system and the group and owner change to match the user
moving the setuid tool. This is done purposely to reduce the security risk that a setuid tool poses by allowing
any user to run the setuid tool as root. On the other hand, most users expect that when they copy an
application or tool from one folder to another, it will still work. Thus, the setuid bit, group, and owner need
to be reset without editing the permissions in the terminal window. This section provides code to allow your
setuid tool to repair its own setuid bit when this problem occurs.

Note: In Mac OS X v10.1, setuid tools that are copied or moved lose their setuid bit. and the owner and
group are changed to match the permissions of the user performing the action. In later releases, users can
move setuid tools and preserve the permission set.

All setuid tools are potential security problems. This case poses a particular problem because the tool
self-repairs its setuid bit even if a user tampers with the setuid tool’s code. As added security, you might want
to display a warning to users whenever performing this action so they can decide to continue or cancel the
self-repair operation, or possibly force the user to reinstall the application from the installer.

You can repair the setuid bit on your helper tool by performing the tasks described in the following sections:

 ■ “Calling a Helper Tool as Root” (page 32)

 ■ “Setting the Setuid Bit” (page 33)

Calling a Helper Tool as Root

For your helper tool to set its own setuid bit, the tool must have root privileges. This is a circular problem,
since you can’t change permissions on your helper tool unless your helper tool is already running as root.
This is where the function AuthorizationExecuteWithPrivileges comes into play.

The AuthorizationExecuteWithPrivileges function executes any application as root through a special
security process. The code sample in Listing 2-15 demonstrates how a helper tool can recursively call itself
with root privileges so it can repair its own setuid bit.

32 Authorizing in a Factored Application
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

Note: The AuthorizationExecuteWithPrivileges function sets only the effective user ID (EUID) of the
tool to root. The real user ID (RUID) of the tool is that of the caller.

Important: Because of the security risk, calling the AuthorizationExecuteWithPrivileges function is
recommended only for special and infrequent use such as repairing setuid bits and installing your application.
In the most secure computer systems, the right this function requests times out immediately so every time
you call it, the user must authenticate.

Listing 2-15 Executing a helper tool with root privileges

FILE *myCommunicationsPipe = NULL;
char *myArguments[] = {"--self-repair", NULL};
char myPath[MAXPATHLEN];

/* *** You should determine the path of your tool here and put the result in
 myPath. *** */

myStatus = AuthorizationExecuteWithPrivileges (myAuthorizationRef,
 myPath, kAuthorizationFlagDefaults, myArguments,
 &myCommunicationsPipe);

The AuthorizationExecuteWithPrivileges function expects you to pass five parameters. The first
parameter is the authorization reference you retrieved as shown in “Retrieving an Authorization
Reference” (page 31). The authorization reference allows the helper tool to use any credentials that are part
of the factored application’s authorization session. The second parameter is the full POSIX pathname of the
helper tool—in this case, the setuid tool—that is being called. The third parameter is the authorization
options. In this function, this parameter is not implemented, so for now, set it to
kAuthorizationFlagDefaults. The fourth parameter is a null-terminated array of arguments for the tool
being called. You can use this parameter to pass any information you need from the parent process to the
child process. In this case, the string "--self-repair" is passed to indicate to the helper tool that it should
execute the code in Listing 2-16 (page 34). The fifth parameter is a communications pipe so the helper tool
can pass the data it received from the factored application to itself.

Important: You may be tempted to use the function AuthorizationExecuteWithPrivileges to perform
privileged operations rather than creating and calling your own setuid tool. Although this might seem like
an easy solution, using the AuthorizationExecuteWithPrivileges function without the rest of the
Authorization Services functions produces a severe security hole because the function indiscriminately runs
any tool as the root user. Setuid tools also have security risks, but they are far less severe than using the
function AuthorizationExecuteWithPrivileges for purposes other than those described in this
document. Read “Factored Applications” (page 17) for instructions on creating your own helper tool.

Setting the Setuid Bit

In Listing 2-15 (page 33), the helper tool recursively calls itself, passing the self-repair argument,
--self-repair. Therefore, in the same helper tool, you need to check for the self-repair argument and, if
it is found, fix the setuid bit. See the More Is Better sample code (MoreIsBetter) for a sample self-repairing
setuid tool.

Authorizing in a Factored Application 33
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

Note: The purpose of the self-repair code in the helper tool discussed here is to allow the tool to execute
as root after the user has moved or copied the tool, even if the file system has reset the setuid bit and changed
the owner and group to match the permissions of the user performing the action. This self-repair code (that
is, the call to the AuthorizationExecuteWithPrivileges function) works if the setuid bit has been
cleared, whether the tool is owned by root or by the user. If the tool has the setuid bit set and is owned by
root, the self-repair code is not called. However, if the setuid bit is set and the tool is owned by the user, the
call to the AuthorizationExecuteWithPrivileges function fails because the setuid bit is respected in
this case and the tool executes with the user’s privileges rather than root privileges. If you want your
self-repairing helper tool to handle this unlikely circumstance, you need to add code to clear the setuid bit
before you call the self-repair code.

When you call the AuthorizationExecuteWithPrivileges function, you need a way to retrieve the
authorization reference that is passed in the call. Listing 2-16 shows code using the
AuthorizationCopyPrivilegedReference function to retrieve the authorization reference. The only
time you use this function is to retrieve an authorization reference passed by a call to
AuthorizationExecuteWithPrivileges.

The first parameter of the call to the AuthorizationCopyPrivilegedReference function is an empty
authorization reference you declare. You should not call the AuthorizationCreate function. On return,
the authorization reference points to a copy of the original authorization reference. The second parameter
is not implemented, so set it to kAuthorizationFlagDefaults.

Listing 2-16 Setting the setuid bit

myStatus = AuthorizationCopyPrivilegedReference (&myAuthorizationRef,
 kAuthorizationFlagDefaults)

Calling a Privileged Installer

Occasionally, an installer must install files in directories that are not owned by the user running the installer.
This should be a rare case and you should avoid it if at all possible. In the event that it can’t be avoided, the
code in Listing 2-17 shows a tool that runs the /usr/bin/id utility with optional flag -un. By replacing the
utility path and including your own flags, you can use this sample code to call your installer with root privileges.
Your installer will then be able to perform any privileged operations it requires.

Listing 2-17 Calling a privileged installer

#include <Security/Authorization.h>
#include <Security/AuthorizationTags.h>

int read (long,StringPtr,int);
int write (long,StringPtr,int);

int main() {

 OSStatus myStatus;
// 1 AuthorizationFlags myFlags = kAuthorizationFlagDefaults;
// 2 AuthorizationRef myAuthorizationRef;

// 3 myStatus = AuthorizationCreate(NULL, kAuthorizationEmptyEnvironment,
 myFlags, &myAuthorizationRef);

34 Calling a Privileged Installer
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

 if (myStatus != errAuthorizationSuccess)
 return myStatus;

 do
 {
 {

// 4 AuthorizationItem myItems = {kAuthorizationRightExecute, 0,
 NULL, 0};

// 5 AuthorizationRights myRights = {1, &myItems};

// 6 myFlags = kAuthorizationFlagDefaults |
 kAuthorizationFlagInteractionAllowed |
 kAuthorizationFlagPreAuthorize |
 kAuthorizationFlagExtendRights;

// 7 myStatus = AuthorizationCopyRights (myAuthorizationRef,
 &myRights, NULL, myFlags, NULL);
 }

 if (myStatus != errAuthorizationSuccess) break;

 {
 char myToolPath[] = "/usr/bin/id";
 char *myArguments[] = { "-un", NULL };
 FILE *myCommunicationsPipe = NULL;
 char myReadBuffer[128];

// 8 myFlags = kAuthorizationFlagDefaults;
// 9 myStatus = AuthorizationExecuteWithPrivileges

 (myAuthorizationRef, myToolPath, myFlags, myArguments,
 &myCommunicationsPipe);

 if (myStatus == errAuthorizationSuccess)
 for(;;)
 {
 int bytesRead = read (fileno (myCommunicationsPipe),
 myReadBuffer, sizeof (myReadBuffer));
 if (bytesRead < 1) break;
 write (fileno (stdout), myReadBuffer, bytesRead);
 }
 }
 } while (0);

// 10 AuthorizationFree (myAuthorizationRef, kAuthorizationFlagDefaults);

 if (myStatus) printf("Status: %ld\n", myStatus);
 return myStatus;
}

Here are explanations of the numbered lines of code in Listing 2-17:

1. Declare a variable to store authorization options.

2. Declare an authorization reference.

3. Use the AuthorizationCreate function to initialize the authorization reference. See “Creating an
Authorization Reference Without Rights” (page 23) for more information.

Calling a Privileged Installer 35
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

4. Create an authorization item array. The user must have the right to execute to use the
AuthorizationExecuteWithPrivileges function. To create a right to execute authorization item,
set the name field to kAuthorizationRightExecute, the value fields to NULL, the valueLength
and flags fields to 0. See “Creating an Authorization Rights Set” (page 25) for more information.

5. Create an authorization rights set. Set the count field to the number of items in the authorization item
array, and set the items field to point to the authorization item array. See “Creating an Authorization
Rights Set” (page 25) for more information.

6. Set the authorization options to preauthorize the rights. See “Specifying Authorization Options for
Preauthorization” (page 29) for more information.

7. Use the AuthorizationCopyRights function to preauthorize the right to execute your installer as
root. In this case, there is no reason to continue if the user can’t preauthorize. See “Authorizing” (page
26) for more information.

8. Set the authorization options for the AuthorizationExecuteWithPrivileges function to
kAuthorizationFlagDefaults. Other authorization options, such as that specified by the
kAuthorizationFlagInteractionAllowed constant, are not necessary because the
AuthorizationExecuteWithPrivileges function interacts with the user whether you specify the
option or not.

9. Use the AuthorizationExecuteWithPrivileges function to invoke your installer. Pass the
authorization reference in the first parameter. Pass the installer’s full POSIX pathname in the second
parameter. Pass the authorization options default in the third parameter. Pass any arguments for the
installer in the fourth parameter. A communications pipe to the tool may be set up through the fifth
parameter. See “Calling a Helper Tool as Root” (page 32) for more information about the
AuthorizationExecuteWithPrivileges function.

10. Release the authorization reference using the AuthorizationFree function. See “Releasing an
Authorization Reference” (page 28) for more details.

36 Calling a Privileged Installer
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Authorization Services Tasks

This table describes the changes to Authorization Services Programming Guide.

NotesDate

Corrected minor errors. Changed the title from "Performing Privileged Operations
With Authorization Services."

2009-01-06

Added information about modifying the policy database file.2004-02-01

Added a description of the use of the credentials caches.

Updated screen shots for Panther.2003-10-01

Added information about AuthorizationExecuteWithPrivileges and the
setuid bit

Added information about the policy database file.2002-10-01

First version of this document.2002-06-01

37
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

38
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

administrator A user in the admin group. The user
who installs Mac OS X is automatically assigned to
the admin group. An administrator has fewer
privileges than root, but more privileges than a normal
user. An administrator cannot create, delete, or move
files in the system domain.

authentication The act of verifying identity with
something the user has, knows, or is. For example, a
user knows information such as a name and password.
The user may have something physical such as a smart
card. The identity can be something the user is—a
physical feature such as a fingerprint or retinal scan.
Authentication may require two or more forms of
identification.

authorization The act of granting a right. For
example, a user asks for the right to perform an
operation. The Security Server grants authorization
after the user fulfills the rules specified in the policy
database—such as providing a credential or
authenticating.

authorization option A parameter or field that
instructs the Security Server how to proceed with a
request. Options include requesting preauthorization,
requesting partial authorization, appending rights,
and interacting with the user.

authorization reference The Security Server uses
the authorization reference to access an authorization
session associated with a process.

Authorization Services An API that facilitates
fine-grain control of privileged operations, such as
accessing restricted areas of the operating system
and self-restricted parts of your Mac OS X application.
The Security Server uses policy-based decisions to
authorize rights for users.

biometric identifier A measurement of biological
matter used for identification—for example,
fingerprints, retinal scans, and face recognition.

credential Proof of user authentication. used by the
Security Server. When the Security Server
authenticates a user, it creates a credential as part of
the authorization session.

factored application An application that uses a
helper tool to perform specific tasks. Interprocess
communication mechanisms are used to
communicate between processes. In a factored
application that uses Authorization Services, factor
the code that performs privileged operations is
factored into a separate helper tool.

helper tool A tool that executes some of an
application’s functions as a separate process. In the
case of security, a helper tool performs privileged
operations for the application. See also setuid tool.

key The name of a rule. The Security Server uses a
rule’s key to match a right with a rule.

permissions In BSD, a set of attributes governing
who can read, write, and execute resources in the file
system. The output of the ls -l command represents
permissions as a nine-position code segmented into
three binary three-character subcodes; the first
subcode gives the permissions for the owner of the
file, the second for the group that the file belongs to,
and the last for everyone else. For example,
-rwsr-xr-- means that the owner of the file has
read, write, execute permissions (rwx); the group has
read and execute permissions (r-x); all others have
only read permissions. (The left-most position is
reserved for a special character that says if this is a
regular file (-), a directory (d), a symbolic link (l), or a
special pseudo file device.) The execute bit has a
different semantic for directories, meaning they are
searchable.

39
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

Glossary

policy-based system A system that requires
authorization to perform a privileged operations.

policy database A database containing the set of
rules the Security Server uses to determine
authorization.

preauthorization A form of authorization used
before performing the actual authorization.
Preauthorization is used to determine if a user has
the possibility of authorizing later.

privileged operation An operation that requires
special rights or permissions. For example, all
operations a user performs as root are privileged.

right A named privilege. The Security Server
authorizes rights for a user to perform a privileged
operation.

rule A set of attributes used to set security policies
for applications and for the system. See also policy
database.

root (1) The user with unlimited system privileges.
Also called the superuser. (2) The top directory in a
BSD-style directory hierarchy. Written as a slash (/), it
is the first element in every absolute pathname.

Security Server A Core Services application in Mac
OS X that deals with authorization and authentication
through interaction with the policy database and
Pluggable Authentication Modules (PAM).

self-restricted application An application that
restricts part of its features to specific users.

setuid bit The fourth bit in a resource’s permissions
code. When this bit is set to s, the system allows the
process running it to masquerade as another user.
For example, -r-sr-xr-x 1 root wheel
traceroute allows the process running the
traceroute utility to run as root.

setuid tool A tool that has its setuid bit set.

system-restricted application An application that
has a portion of its features restricted to specific users
because of the BSD permissions system.

40
2009-01-06 | © 2002, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

	Authorization Services Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Authorization Concepts
	Authorization
	Authentication
	The Security Server
	Rights
	The Policy Database
	The Credentials Cache and the Authentication Dialog
	Scenarios
	Simple, Self-Restricted Applications
	Factored Applications
	Installers

	Authorization Services Tasks
	Authorizing in a Simple, Self-Restricted Application
	Creating an Authorization Reference Without Rights
	Requesting Authorization
	Creating an Authorization Rights Set
	Specifying Authorization Options
	Authorizing
	Releasing an Authorization Item Array

	Releasing an Authorization Reference

	Authorizing in a Factored Application
	Using Authorization Services in a Factored Application
	Creating an Authorization Reference
	Requesting Preauthorization
	Creating a Preauthorization Rights Set
	Specifying Authorization Options for Preauthorization
	Preauthorizing

	Creating an External Authorization Reference
	Calling a Helper Tool
	Releasing an Authorization Reference

	Using Authorization Services in a Helper Tool
	Retrieving an Authorization Reference
	Performing Authorization
	Executing the Privileged Operation
	Repairing a Helper Tool
	Calling a Helper Tool as Root
	Setting the Setuid Bit

	Calling a Privileged Installer

	Revision History
	Glossary

