Scripting Bridge Framework Reference

Interapplication Communication

¢

2007-05-29



.

[

Apple Inc.

© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iTunes, Leopard,
Mac, Mac OS, and Objective-C are trademarks
of Apple Inc,, registered in the United States
and other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 5
Part | Classes 7
Chapter 1 SBApplication Class Reference 9

Chapter 2

Overview 9

Tasks 10

Class Methods 11
Instance Methods 13

SBElementArray Class Reference 21

Chapter 3

Overview 21
Tasks 22
Instance Methods 22

SBObject Class Reference 27

Part Il

Overview 27
Tasks 28
Instance Methods 29

Protocols 35

Chapter 4

SBApplicationDelegate Protocol Reference 37

Overview 37

Tasks 37

Instance Methods 37
Constants 38

Document Revision History 39

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CONTENTS

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



INTRODUCTION

Introduction

Framework /System/Library/Frameworks/ScriptingBridge.framework
Header file directories /System/Library/Frameworks/ScriptingBridge.framework/Headers
Declared in SBApplication.h

SBElementArray.h

SBObject.h

Scripting Bridge is a technology that lets you control scriptable Apple and third-party applications using
standard Objective-C syntax. Introduced in Mac OS X version 10.5 (Leopard), the Scripting Bridge framework
dynamically implements an Objective-C bridge to OSA-compliant applications—that is, applications having
a scripting interface (usually defined in a sdef file). As part of this implementation, it generates Objective-C
class implementations of the classes it finds in the scripting interface, including objects and methods
representing properties, elements, commands, and so on. The objects are derived from classes defined in
the Scripting Bridge framework.

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



INTRODUCTION

Introduction

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



PART |

Classes

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



PART |

Classes

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Inherits from SBObject : NSObject

Conforms to NSCoding
NSCoding (SBObject)
NSObject (NSObject)

Framework /System/Library/Frameworks/ScriptingBridge.framework

Declared in ScriptingBridge/SBApplication.h

Availability Available in Mac OS X v10.5 and later

Related sample code iChatStatusFromApplication
SBSetFinderComment
SBSystemPrefs
ScriptingBridgeFinder
ScriptingBridgeiCal

Overview

The SBApplication class provides a mechanism enabling an Objective-C program to send Apple events
to a scriptable application and receive Apple events in response. It thereby makes it possible for that program
to control the application and exchange data with it. Scripting Bridge works by bridging data types between
Apple event descriptors and Cocoa objects.

Although SBAppTication includes methods that manually send and process Apple events, you should
never have to call these methods directly. Instead, subclasses of SBApplication implement
application-specific methods that handle the sending of Apple events automatically.

For example, if you wanted to get the current iTunes track, you can simply use the currentTrack method
of the dynamically defined subclass for the iTunes application—which handles the details of sending the
Apple event for you—rather than figuring out the more complicated, low-level alternative:

[iTunes propertyWithCode: 'pTrk'];

If you do need to send Apple events manually, consider using the NSAppleEventDescriptor class.

Overview 9
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



Tasks

10

CHAPTER 1

SBApplication Class Reference

Subclassing Notes

You rarely instantiate SBApp1ication objects directly. Instead, you get the shared instance of a
application-specific subclass typically by calling one of the applicationWith... class methods, using a
bundle identifier, process identifier, or URL to identify the application.

Getting a Scriptable Application Instance

+ applicationWithBundleldentifier: (page 11)

Returns the shared instance representing the target application specified by its bundle identifier.
+ applicationWithProcessIdentifier: (page 12)

Returns the shared instance representing a target application specified by its process identifier.

+ applicationWithURL: (page 12)
Returns the shared instance representing a target application specified by the given URL.

Initializing a Scriptable Application Object

- initWithBundleldentifier: (page 15)
Returns an instance of an SBApp1ication subclass that represents the target application identified
by the given bundle identifier.

- initWithProcessldentifier: (page 16)

Returns an instance of an SBApp1ication subclass that represents the target application identified
by the given process identifier.

- initWithURL: (page 16)

Returns an instance of an SBApp1ication subclass that represents the target application identified
by the given URL.

Creating a Scripting Class

- classForScriptingClass: (page 13)
Returns a class object that represents a particular class in the target application.

Controlling the Application

- activate (page 13)

Moves the target application to the foreground immediately.
- isRunning (page 17)

Returns whether the target application represented by the receiver is running.
- launchFlags (page 17)

Returns the launch flags for the application represented by the receiver.

Tasks
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

- setlaunchFlags: (page 18)
Returns the launch flags for the application represented by the receiver.

- sendMode (page 18)
Returns the mode for sending Apple events to the target application.

- setSendMode: (page 19)
Sets the mode for sending Apple events to the target application.

- timeout (page 20)
Returns the period the application will wait to receive reply Apple events.

- setTimeout: (page 19)
Sets the maximum time the application will wait to receive reply Apple events.

Getting Class Names and Codes

- classNamesForCodes (page 14)
Returns a dictionary mapping four-character class codes to the names of their corresponding
Objective-C classes.

- codesForPropertyNames (page 14) Available in Mac OS X v10.5 through Mac OS X v10.5
Returns a dictionary mapping property keys to their corresponding four-character codes.

Managing the Delegate

- delegate (page 15)
Returns the error-handling delegate of the receiver.

- setDelegate: (page 18)
Returns the error-handling delegate of the receiver.

Class Methods

applicationWithBundleldentifier:

Returns the shared instance representing the target application specified by its bundle identifier.
+ (id)applicationWithBundleldentifier:(NSString *)ident

Parameters
ident

A bundle identifier specifying an application that is OSA-compliant.
Return Value

An instance of a SBApp1ication subclass that represents the target application whose bundle identifier is
ident.Returns ni1 if no such application can be found or if the application does not have a scripting interface.

Discussion
For applications that declare themselves to have a dynamic scripting interface, this method will launch the
application if it is not already running.

Class Methods n
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



12

CHAPTER 1

SBApplication Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- initWithBundleldentifier: (page 15)

Related Sample Code
SBSendEmail

SBSetFinderComment
SBSystemPrefs
ScriptingBridgeFinder
ScriptingBridgeiCal

Declared In
SBApplication.h

applicationWithProcessldentifier:

Returns the shared instance representing a target application specified by its process identifier.
+ (id)applicationWithProcessIdentifier:(pid_t)pid

Parameters
pid
The BSD process ID of a OSA-compliant application. Often you can get the process ID of a process
using the processIdentifier method of NSTask.
Return Value
An instance of an SBAppTication subclass that represents the target application whose process identifier
is pid.Returns ni1 if no such application can be found or if the application does not have a scripting interface.

Discussion

You should avoid using this method unless you know nothing about a target application but its process ID.
In most cases, it is better to use classForApplicationWithBundleldentifier: (page 11), which will
dynamically locate the application's path at runtime,or classForApplicationWithURL: (page 12), which
is not dependent on the target application being open at the time the method is called.

Availability
Available in Mac OS X v10.5 and later.

See Also
- initWithProcessIdentifier: (page 16)

Declared In
SBApplication.h

applicationWithURL:

Returns the shared instance representing a target application specified by the given URL.

+ (id)applicationWithURL: (NSURL *)ur]

Class Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Parameters
url
The Universal Resource Locator (URL) locating an OSA-compliant application.

Return Value
An SBApp1ication subclass from which to generate a shared instance of the target application whose URL
is url.Returns ni1 if no such application can be found or if the application does not have a scripting interface.

Discussion

For applications that declare themselves to have a dynamic scripting interface, this method will launch the
application if it is not already running. This approach to initializing SBApp1ication objects should be used
only if you know for certain the URL of the target application. In most cases, it is better to use
classForApplicationWithBundleldentifier: (page 11)which dynamically locates the target application
at runtime.

This method currently supports file URLs (fi1e:) and remote application URLs (eppc:). It checks whether a
file exists at the specified path, but it does not check whether an application identified via eppc: exists.

Availability
Available in Mac OS X v10.5 and later.

See Also
- initWithURL: (page 16)

Declared In
SBApplication.h

Instance Methods

activate

Moves the target application to the foreground immediately.
- (void)activate

Discussion
If the target application is not already running, this method launches it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

classForScriptingClass:

Returns a class object that represents a particular class in the target application.

- (Class)classForScriptingClass: (NSString *)className

Instance Methods 13
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



14

CHAPTER 1

SBApplication Class Reference

Parameters
className
The name of the scripting class.

Return Value
A Class object representing the scripting class.

Discussion

You invoke this method on an instance of a scriptable application. Once you have the class object, you may
allocate an instance of the class and appropriately the raw instance. Or you may use it in a call to
isKind0fClass: to determine the class type of an object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

classNamesForCodes

Returns a dictionary mapping four-character class codes to the names of their corresponding Objective-C
classes. (Available in Mac OS X v10.5 through Mac OS X v10.5.)

- (NSDictionary *)classNamesForCodes

Return Value
A dictionary whose keys are four-character class codes of the external application (as NSNumber objects),
and whose values are the names of the corresponding SBObject subclasses.

Discussion
The default implementation returns an empty dictionary. Application-specific subclasses return dictionaries
tailored to the types of objects they support.

You should never call this method directly.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
SBApplication.h

codesForPropertyNames
Returns a dictionary mapping property keys to their corresponding four-character codes. (Available in Mac
OS X v10.5 through Mac OS X v10.5.)

- (NSDictionary *)codesForPropertyNames

Return Value
A dictionary whose keys are the keys of properties of the external application, and whose values are the
corresponding four-character codes (as NSNumber objects).

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Discussion
The default implementation returns an empty dictionary. Application-specific subclasses return dictionaries
tailored to the types of objects they support.

You should never call this method directly.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
SBApplication.h

delegate

Returns the error-handling delegate of the receiver.
- (id)delegate

Return Value
The object acting as error-handling delegate of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setDelegate: (page 18)

Declared In
SBApplication.h

initWithBundleldentifier:

Returns an instance of an SBApp1ication subclass that represents the target application identified by the
given bundle identifier.

- (id)initWithBundleldentifier: (NSString *)ident

Parameters
ident
A bundle identifier specifying an application that is OSA-compliant.

Return Value

An initialized shared instance of an SBApp1ication subclass that represents a target application with the
bundle identifier of 7ident. Returns ni1 if no such application can be found or if the application does not
have a scripting interface.

Discussion

If you must initialize an SBApp1ication object explictly, you should use this initializer if possible; unlike
initWithProcessIdentifier: (page 16)and initWithURL: (page 16), this method is not dependent
on changeable factors such as the target application's path or process ID. Even so, you should rarely have to
initialize an SBApp1ication object yourself; instead, you should initialize an application-specific subclass
such as iTunesApplication.

Note that this method does not check whether an application with the given bundle identifier actually exists.

Instance Methods 15
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



16

CHAPTER 1

SBApplication Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithBundleldentifier: (page 11)

Declared In
SBApplication.h

initWithProcessldentifier:

Returns an instance of an SBApp1ication subclass that represents the target application identified by the
given process identifier.

- (id)initWithProcessldentifier:(pid_t)pid

Parameters
pid
A BSD process ID specifying an application that is OSA-compliant. Often you can get the process ID
of a process using the processIdentifier method of NSTask.
Return Value
An initialized SBApp1ication that you can use to communicate with the target application specified by the
process ID. Returns ni1 if no such application can be found or if the application does not have a scripting
interface.

Discussion

You should avoid using this method unless you know nothing about an external application but its PID. In
most cases, it is better to use initWithBundleldentifier: (page 15), which will dynamically locate the
external application's path at runtime, or initWithURL: (page 16), which is not dependent on the external
application being open at the time the method is called.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithProcessIdentifier: (page 12)

Declared In
SBApplication.h

initWithURL:

Returns an instance of an SBApp1ication subclass that represents the target application identified by the
given URL.
- (id)initWithURL: (NSURL *)url

Parameters
url
A Universal Resource Locator (URL) specifying an application that is OSA-compliant.

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Return Value

An initialized SBApp1ication that you can use to communicate with the target application specified by the
process ID. Returns ni1 if an application could not be found or if the application does not have a scripting
interface.

Discussion

This approach to initializing SBApp1ication objects should be used only if you know for certain the URL
of the target application. In most cases, it is better to use
classForApplicationWithBundleldentifier: (page 11)which dynamically locates the target application
at runtime. Even so, you should rarely have to initialize an SBApp1ication yourself.

This method currently supports file URLs (fi1e:) and remote application URLs (eppc:). It checks whether a
file exists at the specified path, but it does not check whether an application identified via eppc: exists.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithURL: (page 12)

Declared In
SBApplication.h

isRunning

Returns whether the target application represented by the receiver is running.
- (BOOL)isRunning

Return Value
YES if the application is running, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

launchFlags

Returns the launch flags for the application represented by the receiver.
- (LSLaunchFlags)TaunchFlags

Return Value
A mask specifying the launch flags that are used when the target application is launched. For more information,
see Launch Services Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setlaunchFlags: (page 18)

Instance Methods 17
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



18

CHAPTER 1

SBApplication Class Reference

Declared In
SBApplication.h

sendMode

Returns the mode for sending Apple events to the target application.
- (AESendMode)sendMode

Return Value

A mask specifying the mode for sending Apple events to the target application. For more information, see

Apple Event Manager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setSendMode: (page 19)

Declared In
SBApplication.h

setDelegate:

Returns the error-handling delegate of the receiver.
- (void)setDelegate:(id)delegate

Parameters

delegate
The object acting as delegate of the receiver.

Discussion
The delegate should implement the eventDidFail:withError: (page 37) method of the
SBApplicationDelegate informal protocol.

Availability
Available in Mac OS X v10.5 and later.

See Also
- delegate (page 15)

Declared In
SBApplication.h

setLaunchFlags:

Returns the launch flags for the application represented by the receiver.

- (void)setlLaunchFlags: (LSLaunchFlags)flags

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Parameters
flags

A mask specifying the launch flags that are used when the target application is launched. For more
information, see Launch Services Reference.

Discussion

The default SBApplication launch flags are kLSLaunchDontAddToRecents (so the target application is
not added to the Recent Items menu), kLSLaunchDontSwitch (so the target application launches in the
background), and kLSLaunchAndH1ide (so the target application is hidden as soon as it is launched).

Availability
Available in Mac OS X v10.5 and later.

See Also
- launchFlags (page 17)

Declared In
SBApplication.h

setSendMode:

Sets the mode for sending Apple events to the target application.
- (void)setSendMode: (AESendMode) sendMode

Parameters
sendMode

A mask specifying the mode for sending Apple events to the target application. For a list of valid
modes, see Apple Event Manager Reference.

Discussion
The default send mode is kAEWaitReply. If the send mode is something other than kAEWaitReply, the
receiver might not correctly handle reply events from the target application.

Availability
Available in Mac OS X v10.5 and later.

See Also
- sendMode (page 18)

Declared In
SBApplication.h

setTimeout:

Sets the maximum time the application will wait to receive reply Apple events.
- (void)setTimeout:(long)timeout

Parameters
timeout

The time in ticks that the receiver will wait to receive a reply Apple event from the target application
before giving up.

Instance Methods 19
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 1

SBApplication Class Reference

Discussion
The default timeout value is kAEDefaultTimeout, which is about a minute. If you want the receiver to wait
indefinitely for reply Apple events, use kNoTimeQut. For more information, see Apple Event Manager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
- timeout (page 20)

Declared In
SBApplication.h

timeout

Returns the period the application will wait to receive reply Apple events.
- (long)timeout

Return Value
The time in ticks that the receiver will wait to receive a reply Apple event from the target application before
giving up. For more information, see Apple Event Manager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setTimeout: (page 19)

Declared In
SBApplication.h

20 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 2

SBElementArray Class Reference

Inherits from NSMutableArray : NSArray : NSObject

Conforms to NSCoding (NSArray)
NSCopying (NSArray)
NSMutableCopying (NSArray)
NSFastEnumeration (NSArray)
)

NSObject (NSObject
Framework /System/Library/Frameworks/ScriptingBridge.framework
Availability Available in Mac OS X v10.5 and later.
Declared in ScriptingBridge/SBElementArray.h
Related sample code iChatStatusFromApplication
SBSetFinderComment
ScriptingBridgeFinder

ScriptingBridgeiCal

Overview

SBETementArray is subclass of NSMutab1eArray that manages collections of related SBObject objects.
For example, when you ask the Finder for a list of disks, or ask iTunes for a list of playlists, you get the result
back as an SBETementArray containing Scripting Bridge objects representing those items.

SBETementArray defines methods beyond those of NSArray for obtaining individual objects. In addition
toobjectAtIndex:, SBETementArray also defines objectWithName: (page 25), objectWithID: (page
24),and objectAtlLocation: (page 24).

Subclassing Notes

The SBETementArray class is not designed for subclassing.

Overview 21
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



Tasks

CHAPTER 2

SBElementArray Class Reference

Getting Objects in the Array

- objectWithName: (page 25)
Returns the object in the array with the given name.

- objectWithID: (page 24)
Returns the object in the array with the given identifier.

- objectAtlLocation: (page 24)
Returns the object at the given location in the receiver.

Getting the Referenced Array

- get (page 23)
Forces evaluation of the receiver, causing the real object to be returned immediately.

Filtering an Element Array

- arrayByApplyingSelector: (page 22)

Returns a array containing the results of sending the specified message to each object in the receiver.
- arrayByApplyingSelector:withObject: (page 23)

Returns a array containing the results of sending the specified message to each object in the receiver.

Instance Methods

22

arrayByApplyingSelector:

Returns a array containing the results of sending the specified message to each object in the receiver.
- (NSArray *)arrayByApplyingSelector:(SEL)selector

Parameters
selector
A selector identifying the message to be sent to each object in the array.

Return Value
A new array containing the results of sending the seector message to each object in the receiver, starting
with the first object and continuing through the element array to the last object.

Discussion

The method identified by selector must not take any arguments and must return an Objective-C object.
It should not have the side effect of modifying the receiving array. The order of the items in the result array
corresponds to the order of the items in the original array.

Tasks
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 2

SBElementArray Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- arrayByApplyingSelector:withObject: (page 23)

Declared In
SBETementArray.h

arrayByApplyingSelector:withObject:

Returns a array containing the results of sending the specified message to each object in the receiver.
- (NSArray *)arrayByApplyingSelector:(SEL)selector withObject:(id)argument

Parameters
selector
A selector identifying the message to be sent to each object in the array.

argument
The value for the parameter of the message identified by selector.

Return Value
A new array containing the results of sending the selector message to each object in the receiver, starting
with the first object and continuing through the element array to the last object.

Discussion

The method identified by se7ector must take a single argument—whose value is provided in argument—and
must return an Objective-C object. It should not have the side effect of modifying the receiving array. The
order of the items in the result array corresponds to the order of the items in the original array.

Availability
Available in Mac OS X v10.5 and later.

See Also
- arrayByApplyingSelector: (page 22)

Declared In
SBETementArray.h

get

Forces evaluation of the receiver, causing the real object to be returned immediately.
- (NSArray *)get

Return Value
The object referenced by the receiver.

Discussion

This method forces the evaluation of the current object reference (the receiver), resulting in the return of
the referenced object. By default, Scripting Bridge deals with references to objects until you actually request
some concrete data from them or until you call the get method.

Instance Methods 23
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



24

CHAPTER 2

SBElementArray Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBElementArray.h

objectAtLocation:

Returns the object at the given location in the receiver.
- (id) objectAtLocation:(id)Joc

Parameters

loc
An object that specifies the absolute position of the object within the array. It can be an integer index,
a list of coordinates, a URL, or other determinant. See the discussion for clarification.

Return Value
A reference to the SBObject object identified by 7oc or ni1 if the object couldn't be located.

Discussion

This method is a generalization of objectAtIndex: for applications where the "index" is not simply an
integer. For example, Finder can specify objects using a NSURL object as a location. In OSA this is known as
"absolute position," a generalization of the notion of “index” in Foundation—it could be an integer, but it
doesn't have to be. A single object may even have a number of different "absolute position" values depending
on the container.

Availability
Available in Mac OS X v10.5 and later.

See Also
- objectWithName: (page 25)

- objectWithID: (page 24)

Related Sample Code
SBSetFinderComment

Declared In
SBETementArray.h

objectWithID:

Returns the object in the array with the given identifier.
- (id)objectWithID:(id)identifier

Parameters
identifier
The identifier of one of the receiver's objects.

Return Value
A reference to the identified object or ni1 if could not be found.

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 2

SBElementArray Class Reference

Discussion

This method is provided as an alternative to objectAtIndex: for applications where an identifier is available
instead of (or in addition to) an index. A unique ID is generally more stable than an index. For example, it
may be more useful to identify a contact in Address Book by its identifier (which doesn't change over time)
than by its index in the list of contacts (which can change as contacts are added or removed).

Availability
Available in Mac OS X v10.5 and later.

See Also
- objectWithName: (page 25)

- objectAtlLocation: (page 24)

Declared In
SBETementArray.h

objectWithName:

Returns the object in the array with the given name.
- (id)objectWithName: (NSString *)name

Parameters
name
The name of one of the receiver's objects.

Return Value
A reference to the designated object or ni1 if the object couldn’t be found.

Discussion

This method is provided as an alternative toobjectAtIndex: for applications where a name is available
instead of (or in addition to) an index. A name is generally more stable than an index. For example, it is
typically more useful to identify a mailbox in Mail by its name than by its index in the list of mailboxes.

Availability
Available in Mac OS X v10.5 and later.

See Also
- objectWithID: (page 24)

- objectAtlLocation: (page 24)

Declared In
SBElementArray.h

Instance Methods 25
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 2

SBElementArray Class Reference

26 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 3

SBObject Class Reference

Inherits from NSObject
Conforms to NSCoding
NSObject (NSObject)
Framework /System/Library/Frameworks/ScriptingBridge.framework
Declared in ScriptingBridge/SBObject.h
Availability Available in Mac OS X v10.5
Related sample code iChatStatusFromApplication
SBSetFinderComment
ScriptingBridgeFinder
ScriptingBridgeiCal
Overview

The SBObject class declares methods that can be invoked on any object in a scriptable application. It defines
methods for getting elements and properties of an object, as well as setting a given object to a new value.

Each SBObject is built around an object specifier, which tells Scripting Bridge how to locate the object.
Therefore, you can think of an SBObject as a reference to an object in an target application rather than an
object itself. To bypass this reference-based approach and force evaluation, use the get (page 29) method.

Typically, rather than create SBOb ject instances explictly, you receive SBOb ject objects by calling methods
of an SBApp1ication subclass. For example, if you wanted to get an SBObject representing the current
iTunes track, you would use code like this (where i TunesTrack is a subclass of SBObject):

iTunesApplication *iTunes = [SBApplication
applicationWithBundleldentifier:@"com.apple.iTunes"];
iTunesTrack *track = [iTunes currentTrack];

You can discover the names of dynamically generated classes suchas i TunesApplicationand i TunesTrack
by examining the header file created by the sdp tool. Alternatively, you give these variables the dynamic
Objective-C type id.

Overview 27
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



Tasks

28

CHAPTER 3
SBODbject Class Reference

Initializing a Scripting Bridge Object

- init (page 29)
Initializes and returns an instance of an SBObject subclass.
- initWithData: (page 30)
Returns an instance of an SBObject subclass initialized with the given data.
- initWithProperties: (page 31)
Returns an instance of an SBObject subclass initialized with the specified properties.

- initWithElementCode:properties:data: (page 30) Available in Mac OS X v10.5 through Mac OS X
v10.5

Returns an instance of an SBObject subclass initialized with the specified properties and data and
added to the designated element array.

Getting Referenced Data

- get (page 29)
Forces evaluation of the receiver, causing the real object to be returned immediately.

Sending Apple Events

- sendEvent:id:parameters: (page 33)
Sends an Apple event with the given event class, event ID, and format to the target application.

- setTo: (page 33)
Sets the receiver to a specified value.

Getting Properties and Elements

- propertyWithClass:code: (page 32)

Returns an object of the designated scripting class representing the specified property of the receiver
- propertyWithCode: (page 32)

Returns an object representing the specified property of the receiver.
- elementArrayWithCode: (page 29)

Returns an array containing every child of the receiver with the given class-type code.

Tasks
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 3
SBODbject Class Reference

Instance Methods

elementArrayWithCode:

Returns an array containing every child of the receiver with the given class-type code.
- (SBETementArray *)elementArrayWithCode: (DescType)code

Parameters

code
A four-character code that identifies a scripting class.

Return Value
An SBETementArray object containing every child of the receiver whose class matches code.

Discussion
SBObject subclasses use this method to implement application-specific property accessor methods. You
should not need to call this method directly.

Availability
Available in Mac OS X v10.5 and later.

See Also
- propertyWithCode: (page 32)

Declared In
SBObject.h

get
Forces evaluation of the receiver, causing the real object to be returned immediately.
- (id)get

Return Value
The object referenced by the receiver.

Discussion

This method forces the current object reference (the receiver) to be evaluated, resulting in the return of the
referenced object. By default, Scripting Bridge deals with references to objects until you actually request
some concrete data from them or until you call the get method.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBObject.h

init

Initializes and returns an instance of an SBObject subclass.

Instance Methods 29
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



30

CHAPTER 3
SBODbject Class Reference

- (id)init

Return Value
An SBObject object or ni1 if the object could not be initialized.

Discussion
Scripting Bridge does not actually create an object in the target application until you add the object returned
from this method to an element array (SBETementArray).

Availability
Available in Mac OS X v10.5 and later.

See Also
- initWithProperties: (page 31)

- initWithData: (page 30)
- initWithElementCode:properties:data: (page 30)

Declared In
SBObject.h

initWithData:

Returns an instance of an SBObject subclass initialized with the given data.
- (id)initWithData:(id)data

Parameters

data
An object containing data for the new SBObject object. The data varies according to the type of
scripting object to be created.

Return Value
An SBObject object or ni1 if the object could not be initialized.

Discussion
Scripting Bridge does not actually create an object in the target application until you add the object returned
from this method to an element array (SBETementArray).

Availability
Available in Mac OS X v10.5 and later.

See Also

- init (page 29)

- initWithProperties: (page 31)

- initWithElementCode:properties:data: (page 30)

Declared In
SBObject.h

initWithElementCode:properties:data:

Returns an instance of an SBObject subclass initialized with the specified properties and data and added
to the designated element array.

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 3
SBODbject Class Reference

- (id)initWithElementCode: (DescType)code properties:(NSDictionary *)properties
data:(id)data

Parameters

code
A four-character code used to identify an element in the target application’s scripting interface. See
Apple Event Manager Reference for details.

properties
A dictionary with keys specifying the names of properties (that is, attributes or to-one relationships)
and the values for those properties. Pass ni 1 if you are initializing the object by data only.

data
An object containing data for the new SBObject object. The data varies according to the type of
scripting object to be created. Pass ni1 if you initializing the object by properties only.

Return Value
An SBObject object or ni1 if the object could not be initialized.

Discussion
Unlike the other initializers of this class, this method not only initializes the SBObject object but adds it to
a specified element array. This method is the designated initializer.

Availability
Available in Mac OS X v10.5 and later.

See Also

- init (page 29)

- initWithData: (page 30)

- initWithProperties: (page 31)

Declared In
SBObject.h

initWithProperties:

Returns an instance of an SBObject subclass initialized with the specified properties.
- (id)initWithProperties: (NSDictionary *)properties

Parameters

properties
A dictionary with keys specifying the names of properties (that is, attributes or to-one relationships)
and the values for those properties.

Return Value
An SBObject object or ni1 if the object could not be initialized.

Discussion
Scripting Bridge does not actually create an object in the target application until you add the object returned
from this method to an element array (SBETementArray).

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 31
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



32

CHAPTER 3
SBODbject Class Reference

See Also

- init (page 29)

- initWithData: (page 30)

- initWithElementCode:properties:data: (page 30)

Declared In
SBObject.h

propertyWithClass:code:

Returns an object of the designated scripting class representing the specified property of the receiver
- (SBObject *)propertyWithClass:(Class)class code: (AEKeyword)code

Parameters
class
The SBObject subclass with which to instantiate the object.
code
A four-character code that uniquely identifies a property of the receiver.

Return Value
An instance of the designated c7ass that represents the receiver’s property identified by code.

Discussion
SBObject subclasses use this method to implement application-specific property accessor methods. You
should not need to call this method directly.

Availability
Available in Mac OS X v10.5 and later.

See Also
- propertyWithCode: (page 32)

Declared In
SBObject.h

propertyWithCode:

Returns an object representing the specified property of the receiver.
- (SBObject *)propertyWithCode: (AEKeyword) code

Parameters
code
A four-character code that uniquely identifies a property of the receiver.

Return Value
An object representing the receiver’s property as identified by code.

Discussion
SBObject subclasses use this method to implement application-specific property accessor methods. You
should not need to call this method directly.

Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 3
SBODbject Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- propertyWithClass:code: (page 32)

- elementArrayWithCode: (page 29)

Declared In
SBObject.h

sendEvent:id:parameters:

Sends an Apple event with the given event class, event ID, and format to the target application.

- (id)sendEvent: (AEEventClass)eventClass id: (AEEventID)eventID
parameters: (DescType) firstParamCode, ...

Parameters

eventClass
The event class of the Apple event to be sent.

eventlID
The event ID of the Apple event to be sent.

firstParamCode, ...

A list of four-character parameter codes (DescType) and object values (i d) terminated by a zero.
Return Value
The target application's Apple event sent in reply; it is converted to a Cocoa object of an appropriate type.

Discussion

Scripting Bridge uses this method to communicate with target applications. If the target application responds
to this method by sending an Apple event representing an error, the receiver calls its delegate's
eventDidFail:withError: (page 37) method. If no delegate has been assigned, the receiver raises an
exception.

You should rarely have to call this method directly.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setTo: (page 33)

Declared In
SBObject.h

setTo:

Sets the receiver to a specified value.

- (void)setTo:(id)value

Instance Methods 33
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 3
SBODbject Class Reference

Parameters

value
The data the receiver should be set to. It can be an NSString, NSNumber, NSArray, SBObject, or
any other type of object supported by the Scripting Bridge framework.

Discussion
You should not call this method directly.

Availability
Available in Mac OS X v10.5 and later.

See Also
- sendEvent:id:parameters: (page 33)

Declared In
SBObject.h

34 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



PART Il

Protocols

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

35



36

PART Il

Protocols

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 4

SBApplicationDelegate Protocol Reference

Framework /System/Library/Frameworks/ScriptingBridge.framework
Availability Available in Mac OS X v10.6 and later.
Declared in ScriptingBridge/SBApplication.h

Overview

Tasks

This informal protocol defines a delegation method for handling Apple event errors that are sent from an
target application to an SBApplication object.

You must set a delegate for the SBApp1ication object using the setDelegate: (page 18) method. If you

do not set a delegate and have the delegate handle the error in some way, SBApp1ication raises an
exception.

Handling Errors

- eventDidFail:withError: (page 37)
Sent by an SBApp1ication object when a target application returns an error Apple event. (required)

Instance Methods

eventDidFail:withError:
Sent by an SBApp1ication object when a target application returns an error Apple event. (required)
- (void)eventDidFail:(const AppleEvent *)event withError:(NSError *)error

Parameters
event
A pointer to the Apple event sent to the target application causing the error.

Overview 37
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



CHAPTER 4

SBApplicationDelegate Protocol Reference

error
An object containing information about the error Apple event. Specific information may be included
in the useInfo dictionary of the error object. See “User Info Dictionary Keys” (page 38) for
a list of possible keys for this dictionary.

Availability

Available in Mac OS X v10.5 and later.

Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
SBApplication.h

Constants

38

User Info Dictionary Keys

The following describes the possible keys for the userInfo dictionary of the NSError object passed to the
delegate. Note that for some errors, the userInfo dictionary may not have any of these keys.

Constants
@"ErrorBriefMessage"
A short human-readble description of the error, as an NSString object.

@"ErrorExpectedType"
The type of data the target application expected, as an NSAppleEventDescriptor object.

@"ErrorOffendingObject”

The object that caused the error.
@"ErrorString”

A full human-readable description of the error, as an NSString object.
@"ErrorNumber”

The Apple event error number, as an NSNumber object.

Declared In
ScriptingBridge/SBApplication.h

Constants
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



REVISION HISTORY

Document Revision History

This table describes the changes to Scripting Bridge Framework Reference.

Date

Notes

2007-05-29

A new document that describes the Objective-C API that allows Cocoa
applications to communicate with scriptable applications.

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

39



40

REVISION HISTORY

Document Revision History

2007-05-29 | © 2007 Apple Inc. All Rights Reserved.



	Scripting Bridge Framework Reference
	Contents
	Introduction
	Part I: Classes
	SBApplication Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting a Scriptable Application Instance
	Initializing a Scriptable Application Object
	Creating a Scripting Class
	Controlling the Application
	Getting Class Names and Codes
	Managing the Delegate

	Class Methods
	applicationWithBundleIdentifier:
	applicationWithProcessIdentifier:
	applicationWithURL:

	Instance Methods
	activate
	classForScriptingClass:
	classNamesForCodes
	codesForPropertyNames
	delegate
	initWithBundleIdentifier:
	initWithProcessIdentifier:
	initWithURL:
	isRunning
	launchFlags
	sendMode
	setDelegate:
	setLaunchFlags:
	setSendMode:
	setTimeout:
	timeout


	SBElementArray Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting Objects in the Array
	Getting the Referenced Array
	Filtering an Element Array

	Instance Methods
	arrayByApplyingSelector:
	arrayByApplyingSelector:withObject:
	get
	objectAtLocation:
	objectWithID:
	objectWithName:


	SBObject Class Reference
	Overview
	Tasks
	Initializing a Scripting Bridge Object
	Getting Referenced Data
	Sending Apple Events
	Getting Properties and Elements

	Instance Methods
	elementArrayWithCode:
	get
	init
	initWithData:
	initWithElementCode:properties:data:
	initWithProperties:
	propertyWithClass:code:
	propertyWithCode:
	sendEvent:id:parameters:
	setTo:



	Part II: Protocols
	SBApplicationDelegate Protocol Reference
	Overview
	Tasks
	Handling Errors

	Instance Methods
	eventDidFail:withError:

	Constants
	User Info Dictionary Keys



	Revision History


