
QTKit Framework Reference
Audio & Video

2009-02-26

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, eMac, FireWire,
iChat, iSight, Mac, Mac OS, Objective-C, Quartz,
and QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Aperture, Numbers, and Shuffle are trademarks
of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction QuickTime Kit Framework Reference 11

Introduction 11

Part I Classes 13

Chapter 1 NSCoder QTKit Additions Reference 15

Overview 15
Tasks 15
Instance Methods 16

Chapter 2 NSValue QTKit Additions Reference 19

Overview 19
Tasks 19
Class Methods 20
Instance Methods 21

Chapter 3 QTCaptureAudioPreviewOutput Class Reference 23

Overview 23
Tasks 23
Instance Methods 24

Chapter 4 QTCaptureConnection Class Reference 27

Overview 27
Tasks 28
Instance Methods 28
Constants 32
Notifications 33

Chapter 5 QTCaptureDecompressedAudioOutput Class Reference 35

Overview 35
Tasks 35
Instance Methods 36
Delegate Methods 37

3
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

Chapter 6 QTCaptureDecompressedVideoOutput Class Reference 39

Overview 39
Tasks 39
Instance Methods 40
Delegate Methods 45

Chapter 7 QTCaptureDevice Class Reference 47

Overview 47
Tasks 48
Class Methods 49
Instance Methods 52
Constants 58
Notifications 63

Chapter 8 QTCaptureDeviceInput Class Reference 65

Overview 65
Tasks 65
Class Methods 66
Instance Methods 66

Chapter 9 QTCaptureFileOutput Class Reference 69

Overview 69
Tasks 69
Instance Methods 71
Delegate Methods 80
Constants 86

Chapter 10 QTCaptureInput Class Reference 89

Overview 89
Tasks 89
Instance Methods 89

Chapter 11 QTCaptureLayer Class Reference 91

Overview 91
Tasks 91
Class Methods 92
Instance Methods 92

4
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 12 QTCaptureMovieFileOutput Class Reference 95

Overview 95

Chapter 13 QTCaptureOutput Class Reference 97

Overview 97
Tasks 97
Instance Methods 97

Chapter 14 QTCaptureSession Class Reference 99

Overview 99
Tasks 99
Instance Methods 100
Constants 104

Chapter 15 QTCaptureVideoPreviewOutput Class Reference 107

Overview 107
Tasks 107
Instance Methods 108
Delegate Methods 111

Chapter 16 QTCaptureView Class Reference 113

Overview 113
Tasks 113
Instance Methods 114
Delegate Methods 118

Chapter 17 QTCompressionOptions Class Reference 121

Overview 121
Tasks 121
Class Methods 122
Instance Methods 123
Constants 124

Chapter 18 QTDataReference Class Reference 127

Overview 127
Tasks 127
Class Methods 129
Instance Methods 131
Constants 135

5
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 19 QTFormatDescription Class Reference 137

Overview 137
Tasks 137
Instance Methods 138
Constants 140

Chapter 20 QTMedia Class Reference 143

Overview 143
Tasks 143
Class Methods 144
Instance Methods 145
Constants 148

Chapter 21 QTMovie Class Reference 155

Overview 155
Tasks 156
Class Methods 163
Instance Methods 171
Delegate Methods 201
Constants 204
Notifications 224

Chapter 22 QTMovieLayer Class Reference 229

Overview 229
Tasks 229
Class Methods 230
Instance Methods 230

Chapter 23 QTMovieView Class Reference 233

Overview 233
Adopted Protocols 233
Tasks 234
Instance Methods 237
Constants 253

Chapter 24 QTSampleBuffer Class Reference 255

Overview 255
Tasks 255
Instance Methods 256
Constants 262

6
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 25 QTTrack Class Reference 265

Overview 265
Tasks 265
Class Methods 267
Instance Methods 268
Constants 277

Part II Functions 283

Chapter 26 QTKit Functions Reference 285

Overview 285
Functions by Task 285
Functions 287

Part III Data Types 297

Chapter 27 QTKit Data Types Reference 299

Overview 299
Data Types 299

Part IV Constants 301

Chapter 28 QTKit Constants Reference 303

Overview 303
Constants 303

Document Revision History 309

7
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

8
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 7 QTCaptureDevice Class Reference 47

Table 7-1 Media types supported by QTCaptureDevice 47

9
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

10
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

TABLES

Framework QTKit.framework

Header file directories QTKit/QTKit.h

Companion guide QuickTime Kit Programming Guide

Declared in QTCaptureAudioPreviewOutput.h
QTCaptureConnection.h
QTCaptureDecompressedAudioOutput.h
QTCaptureDecompressedVideoOutput.h
QTCaptureDevice.h
QTCaptureDeviceInput.h
QTCaptureFileOutput.h
QTCaptureInput.h
QTCaptureLayer.h
QTCaptureOutput.h
QTCaptureSession.h
QTCaptureVideoPreviewOutput.h
QTCaptureView.h
QTCompressionOptions.h
QTDataReference.h
QTError.h
QTFormatDescription.h
QTMedia.h
QTMovie.h
QTMovieLayer.h
QTMovieView.h
QTSampleBuffer.h
QTTime.h
QTTimeRange.h
QTTrack.h
QTUtilities.h

Introduction

The QuickTime Kit is a Objective-C framework (QTKit.framework) with a robust and evolving API for
manipulating time-based media. Introduced in Mac OS X v10.4, the QuickTime Kit provides a set of Objective-C
classes and methods designed for the basic manipulation of media, including movie playback, editing, import
and export to standard media formats, among other capabilities. With the release of Mac OS X v10.5 and the
latest iteration of QuickTime 7, the reach and capability of the framework have been extended. The QuickTime
Kit framework now includes the addition of 15 new classes, all designed to support professional-level video
and audio capture, as well as pro-grade recording of media. Two additional classes, which support Core
Animation layers for capture and movies, are also provided in the API.

Introduction 11
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

QuickTime Kit Framework Reference

Developers who work with the Cocoa Application Kit classes NSMovie and NSMovieView should move their
applications to the QuickTime Kit framework in order to take advantage of the power and enhanced
functionality of this API.

Note: The QuickTime Kit framework supports applications running in Mac OS X v10.3. Applications running
in Mac OS X v10.3 require QuickTime 7 or later, however.

Important: The issue of thread-safety has been addressed for developers in the release of the QuickTime
Kit framework available in Mac OS X v10.5. Five new methods belonging to the QTMovie class have been
added. These include the following class and instance methods that deal specifically with handling and
managing thread-safety operations of movie objects: enterQTKitOnThread,
enterQTKitOnThreadDisablingThreadSafetyProtection, exitQTKitOnThread,
attachToCurrentThread, and detachFromCurrentThread. For more information, refer to the QTMovie
Class Reference.

The new QTKit capture classes introduced in Mac OS X v10.5 generally have good thread-safety characteristics.
In particular, these classes can be used from any thread, except for QTCaptureView, which inherits from
NSView. Note, however, that although capture sessions and their inputs and outputs can be created, run,
and monitored from any thread, any method calls that mutate these objects or access mutable information
should be serialized, using locks or other synchronization mechanisms.

See Also

The following documents provide additional information about the QuickTime Kit framework:

 ■ QuickTime 7 Update Guide

 ■ QuickTime 7.1 Update Guide

 ■ QuickTime 7.1 Update Reference

 ■ QuickTime 7.2.1 Update Guide

 ■ QuickTime Movie Creation Guide

12 Introduction
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

QuickTime Kit Framework Reference

13
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

14
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTTime.h
QTKit/QTTimeRange.h

Availability Available in Mac OS X v10.4 and later.

Overview

The QuickTime Kit supports categories on the NSCoder class that allow you to encode and decode structures
of type QTTime and QTTimeRange, in addition to structures of type SMPTETime in Mac OS X v10.5.

Tasks

Encoding Time and Time Ranges

– encodeQTTime:forKey: (page 16)
Encodes a QTTime structure.

– encodeQTTimeRange:forKey: (page 17)
Encodes a QTTimeRange structure range.

– encodeSMPTETime:forKey: (page 17)
Encodes an SMPTETime for the given key.

Decoding Time and Time Ranges

– decodeQTTimeForKey: (page 16)
Decodes a QTTime structure.

– decodeQTTimeRangeForKey: (page 16)
Decodes a QTTimeRange structure.

– decodeSMPTETimeForKey: (page 16)
Decodes an SMPTETime structure encoded by the receiver for the given key.

Overview 15
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSCoder QTKit Additions Reference

Instance Methods

decodeQTTimeForKey:
Decodes a QTTime structure.

- (QTTime)decodeQTTimeForKey:(NSString *)key

Discussion
This method matches an encode QTTime message used during encoding.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTime.h

decodeQTTimeRangeForKey:
Decodes a QTTimeRange structure.

- (QTTimeRange)decodeQTTimeRangeForKey:(NSString *)key

Discussion
This method matches an encode QTTimeRange message used during encoding.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTimeRange.h

decodeSMPTETimeForKey:
Decodes an SMPTETime structure encoded by the receiver for the given key.

- (SMPTETime)decodeSMPTETimeForKey:(NSString *)key

Availability
Mac OS X v10.5 and later.

Declared In
QTTime.h

encodeQTTime:forKey:
Encodes a QTTime structure.

- (void)encodeQTTime:(QTTime)timeforKey
:(NSString *)key

16 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSCoder QTKit Additions Reference

Discussion
This method must be matched by a decode QTTime message.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTime.h

encodeQTTimeRange:forKey:
Encodes a QTTimeRange structure range.

- (void)encodeQTTimeRange:(QTTimeRange)rangeforKey
:(NSString *)key

Discussion
This method must be matched by a decode QTTimeRange message.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTimeRange.h

encodeSMPTETime:forKey:
Encodes an SMPTETime for the given key.

- (void)encodeSMPTETime:(SMPTETime)time
forKey:(NSString *)key

Availability
Mac OS X v10.5 and later.

Declared In
QTTime.h

Instance Methods 17
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSCoder QTKit Additions Reference

18 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

NSCoder QTKit Additions Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTTime.h
QTKit/QTTimeRange.h

Availability Available in Mac OS X v10.4 and later.

Overview

The QuickTime Kit supports categories in the Foundation framework’s NSValue class that allow you to get
QTTime and QTTimeRange structures as objects of type NSValue. In Mac OS X v10.5, QTKit defines extra
operations on the SMPTETime type. SMPTETime is defined in CoreAudio/CoreAudioTypes.h.

Tasks

Wrapping Time and Time Range Structures

+ valueWithQTTime: (page 20)
Creates an NSValue object that wraps the specified QTTime structure.

+ valueWithQTTimeRange: (page 20)
Creates an NSValue object that wraps the specified QTTimeRange structure.

+ valueWithSMPTETime: (page 20)
Returns a new NSValue object containing an SMPTETime.

– QTTimeValue (page 21)
Returns a QTTime structure that contains the time in an NSValue object.

– SMPTETimeValue (page 21)
Returns a SMPTETime structure contained in an NSValue.

– QTTimeRangeValue (page 21)
Returns a QTTimeRange structure that contains the range in an NSValue object.

Overview 19
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSValue QTKit Additions Reference

Class Methods

valueWithQTTime:
Creates an NSValue object that wraps the specified QTTime structure.

+ (NSValue *)valueWithQTTime:(QTTime)time

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitMovieShuffler

Declared In
QTTime.h

valueWithQTTimeRange:
Creates an NSValue object that wraps the specified QTTimeRange structure.

+ (NSValue *)valueWithQTTimeRange:(QTTimeRange)range

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTimeRange.h

valueWithSMPTETime:
Returns a new NSValue object containing an SMPTETime.

+ (NSValue *)valueWithSMPTETime:(SMPTETime)time

Availability
Mac OS X v10.5 and later.

Declared In
QTTime.h

20 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSValue QTKit Additions Reference

Instance Methods

QTTimeRangeValue
Returns a QTTimeRange structure that contains the range in an NSValue object.

- (QTTimeRange)QTTimeRangeValue

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTimeRange.h

QTTimeValue
Returns a QTTime structure that contains the time in an NSValue object.

- (QTTime)QTTimeValue

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIColorTracking
CIVideoDemoGL
QTAudioContextInsert
QTAudioExtractionPanel
QTKitMovieShuffler

Declared In
QTTime.h

SMPTETimeValue
Returns a SMPTETime structure contained in an NSValue.

- (SMPTETime)SMPTETimeValue

Availability
Mac OS X v10.5 and later.

Declared In
QTTime.h

Instance Methods 21
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSValue QTKit Additions Reference

22 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

NSValue QTKit Additions Reference

Inherits from QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureAudioPreviewOutput.h

Availability Available in Mac OS X v10.5 and later; QuickTime 7.2.1 and later.

Related sample code QTRecorder

Overview

This class represents an output destination for a QTCaptureSession that can be used to preview the audio
being captured. Instances of QTCaptureAudioPreviewOutput have an associated Core Audio output
device that can be used to play audio being captured by the capture session. Note that the unique ID of a
Core Audio device can be obtained from its kAudioDevicePropertyDeviceUID property. For more
information about Core Audio, refer to the Apple Core Audio Format Specification 1.0.

Tasks

Getting and Setting Core Audio Output Devices

– outputDeviceUniqueID (page 24)
Returns the unique ID of the Core Audio output device being used to play preview audio.

– setOutputDeviceUniqueID: (page 24)
Sets the unique ID of the Core Audio output device being used to play preview audio.

– setVolume: (page 24)
Sets the preview volume of the output.

– volume (page 25)
Returns the preview volume of the output.

Overview 23
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

QTCaptureAudioPreviewOutput Class
Reference

Instance Methods

outputDeviceUniqueID
Returns the unique ID of the Core Audio output device being used to play preview audio.

- (NSString *)outputDeviceUniqueID

Return Value
The unique ID of the Core Audio device used for preview, or NIL if the default system output device is being
used.

Availability
Mac OS X v10.4 and later; QuickTime 7.2.1 and later.

Declared In
QTCaptureAudioPreviewOutput.h

setOutputDeviceUniqueID:
Sets the unique ID of the Core Audio output device being used to play preview audio.

- (void)setOutputDeviceUniqueID:(NSString *)uniqueID

Parameters
uniqueID

The unique ID of the Core Audio device to be used for output, or NIL if the default system output
should be used.

Availability
Mac OS X v10.4 and later; QuickTime 7.2.1 and later.

Declared In
QTCaptureAudioPreviewOutput.h

setVolume:
Sets the preview volume of the output.

- (void)setVolume:(float)volume

Parameters
volume

The preview volume of the receiver, where 1.0 is the maximum volume and 0.0 is muted.

Availability
Mac OS X v10.4 and later; QuickTime 7.2.1 and later.

Declared In
QTCaptureAudioPreviewOutput.h

24 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

QTCaptureAudioPreviewOutput Class Reference

volume
Returns the preview volume of the output.

- (float)volume

Return Value
The preview volume of the receiver, where 1.0 is the maximum volume and 0.0 is muted.

Availability
Mac OS X v10.4 and later; QuickTime 7.2.1 and later.

Declared In
QTCaptureAudioPreviewOutput.h

Instance Methods 25
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

QTCaptureAudioPreviewOutput Class Reference

26 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

QTCaptureAudioPreviewOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureConnection.h

Availability Available in QuickTime 7.2.1 and later; QuickTime 7.2.1.

Related sample code AudioDataOutputToAudioUnit
MyRecorder
QTRecorder
StillMotion

Overview

This class represents a connection over which a single stream of media data is sent from a QTCaptureInput
to a QTCaptureSession and from a QTCaptureSession to a QTCaptureOutput.

Instances ofQTCaptureConnectionwrap individual media streams that can be provided byQTCaptureInput
objects and received by QTCaptureOutput objects. Connections can have a QuickTime media type, such
as QTMediaTypeVideo and QTMediaTypeSound, and a format description that describes the media sent
or received across the connection. Individual connections belonging to an input can be enabled or disabled
to restrict what media enters a capture session, while connections belonging to an output can be enabled
or disabled to restrict what media enters the output from the capture session. In addition, if a
QTCaptureConnection wraps a stream of audio media, it provides a number of attributes to control the
volume, mix, and enabled channels of the audio passing through it.

QTCaptureConnection objects can have extended attributes that applications can read using the
attributeForKey: and connectionAttributes methods. Some attributes, for which the
attributeIsReadOnly: method returns NO, can be edited using the setAttribute:forKey: and
setConnectionAttributes:methods. In addition to these explicit methods, applications can use key-value
coding to get and set extended attributes. For an object that supports a given attribute, valueForKey:will
be functionally identical to attributeForKey:, and setValue:forKey: will be identical to
setAttribute:forKey:. Applications wishing to observe changes for a given attribute can add a key-value
observer where the key path is the attribute key.

Overview 27
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Tasks

Getting and Setting Connection Attributes

– attributeForKey: (page 28)
Returns the current value of the connection attribute for key.

– attributeIsReadOnly: (page 29)
Returns a Boolean value indicating whether the given attribute for the connection cannot be modified.

– connectionAttributes (page 29)
Returns a dictionary of all attributes set for the receiver.

– formatDescription (page 29)
Returns the format description of the receiver.

– isEnabled (page 30)
Returns a Boolean value indicating whether the receiver is enabled.

– mediaType (page 30)
Returns the QuickTime media type of the receiver.

– owner (page 30)
Returns the QTCaptureInput or QTCaptureOutput object that owns the receiver.

– setAttribute:forKey: (page 31)
Sets a connection attribute for the given key.

– setConnectionAttributes: (page 31)
Sets the connection’s attributes from the key-value pairs specified in the given dictionary.

– setEnabled: (page 31)
Sets whether the receiver is enabled.

Instance Methods

attributeForKey:
Returns the current value of the connection attribute for key.

- (id)attributeForKey:(NSString *)attributeKey

Discussion
Use this method to get attributes of a connection. The keys that can be used with this method are described
in the Constants section. Applications using key-value coding can also get an attribute for a given key by
passing that key to the NSObject valueForKey: method.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Related Sample Code
QTRecorder

28 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Declared In
QTCaptureConnection.h

attributeIsReadOnly:
Returns a Boolean value indicating whether the given attribute for the connection cannot be modified.

- (BOOL)attributeIsReadOnly:(NSString *)attributeKey

Return Value
Returns YES if the attribute cannot be modified; otherwise, NO.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

connectionAttributes
Returns a dictionary of all attributes set for the receiver.

- (NSDictionary *)connectionAttributes

Discussion
Applications can use this method to determine what attributes a specific connection supports.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

formatDescription
Returns the format description of the receiver.

- (QTFormatDescription *)formatDescription

Discussion
This method returns the format description of the connection, allowing applications to monitor various
attributes of the media being sent or received by the connection (the display size of video media, for example).
Applications can be notified of changes to the connection’s format by registering to receive
QTCaptureConnectionFormatDescriptionWillChangeNotification and
QTCaptureConnectionFormatDescriptionDidChangeNotification notifications or by adding a
key-value observer to the connection for the key @"formatDescription".

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Related Sample Code
QTRecorder

Instance Methods 29
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Declared In
QTCaptureConnection.h

isEnabled
Returns a Boolean value indicating whether the receiver is enabled.

- (BOOL)isEnabled

Discussion
This method returns a Boolean indicating whether the receiver is enabled to send or receive media data.
Individual connections can be enabled or disabled using the setEnabled: method.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

mediaType
Returns the QuickTime media type of the receiver.

- (NSString *)mediaType

Return Value
A QuickTime media type, as defined in QTMedia.h.

Discussion
This method returns the QuickTime media type, such as QTMediaTypeVideo and QTMediaTypeSound, of
the receiver.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Related Sample Code
MyRecorder

Declared In
QTCaptureConnection.h

owner
Returns the QTCaptureInput or QTCaptureOutput object that owns the receiver.

- (id)owner

Return Value
A QTCaptureInput or QTCaptureOutput object that uses the receiver as a media connection.

Discussion
This method returns the input or output to which the receiver belongs. The returned input or output uses
the receiver as a connection for sending or receiving a media stream.

30 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

setAttribute:forKey:
Sets a connection attribute for the given key.

- (void)setAttribute:(id)attribute
forKey:(NSString *)key

Discussion
Use this method to set attributes of a capture connection. The keys that can be used with this method are
described in the Constants section. This method raises an NSInvalidArgumentException if the attribute is
read-only or not supported by the receiver. Applications using key-value coding can also set an attribute for
a given key by passing that key to the NSObject setValue:forKey: method.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

setConnectionAttributes:
Sets the connection’s attributes from the key-value pairs specified in the given dictionary.

- (void)setConnectionAttributes:(NSDictionary *)connectionAttributes

Discussion
This method allows application to set multiple attributes on a connection at once. This method raises an
NSInvalidArgumentException if any of the attributes in the dictionary are read-only or not supported by the
receiver. Applications using key-value coding can also set multiple attributes using the NSObject
setValuesForKeysWithDictionary: method using attribute keys as keys in the dictionary.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

setEnabled:
Sets whether the receiver is enabled.

- (void)setEnabled:(BOOL)enabled

Discussion
This method sets whether the receiver is enabled to send or receive media data.

Instance Methods 31
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureConnection.h

Constants

Audio Attributes
Applications can use the following constants to display audio level meters for specific connections and to
specify the volumes of audio channels. These string values can be used in key paths for key-value coding,
key-value observing, and bindings.

NSString * const QTCaptureConnectionAudioAveragePowerLevelsAttribute;
NSString * const QTCaptureConnectionAudioPeakHoldLevelsAttribute;
NSString * const QTCaptureConnectionAudioMasterVolumeAttribute;
NSString * const QTCaptureConnectionAudioVolumesAttribute;
NSString * const QTCaptureConnectionEnabledAudioChannelsAttribute;

Constants
QTCaptureConnectionAudioAveragePowerLevelsAttribute

An NSArray of NSNumbers that correspond to the average power, in decibels, of each audio stream
sent through the connection.

Applications that wish to display audio level meters for a specific connection can periodically check
the value of this attribute. Average power levels change quickly and appear jumpy on a level meter.
This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureConnection.h.

QTCaptureConnectionAudioPeakHoldLevelsAttribute
An NSArray of NSNumbers that correspond to the peak hold level, in decibels, of each audio channel
sent through the connection.

Applications that wish to display audio level meters for a specific connection can periodically check
the value of this attribute. Peak hold levels remain at the maximum volume for about a second, and
are often useful for displaying audio clipping. This string value can be used in key paths for key-value
coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureConnection.h.

QTCaptureConnectionAudioMasterVolumeAttribute
An NSNumber that specifies the master volume of all audio channels sent through the connection.

The values are between 0.0 and 1.0 for normal volume, or greater than 1.0 for boosting the audio
gain. This attribute determines the master volumes of all audio channels sent through the connection.
Applications that need to set the volumes of individual channels can set the
QTCaptureConnectionAudioVolumesAttribute attribute. This string value can be used in key
paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureConnection.h.

32 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

QTCaptureConnectionAudioVolumesAttribute
An NSArray of NSNumbers that specify the volumes of audio channels sent through the connection.

The values are between 0.0 and 1.0 for normal volume, or greater than 1.0 for boosting the audio
gain. This attribute determines the individual volumes of audio channels sent through the connection.
Applications that need to set the master volume of all channels can set the
QTCaptureConnectionAudioMasterVolumeAttribute attribute. This string value can be used
in key paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureConnection.h.

QTCaptureConnectionEnabledAudioChannelsAttribute
An NSIndexSet that specifies which audio channels should be sent through the connection. The
indices in the set should be between 0 and the number of volumes in
QTCaptureConnectionAudioVolumesAttribute. This attribute allows applications to selectively
disable certain audio channels from being sent through the connection. The value of this attribute
should be an NSIndexSet that contains only the channels that should be used. By default, all audio
channels are sent though a connection. This string value can be used in key paths for key-value coding,
key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureConnection.h.

Notifications

The following are notifications enabling you to change attributes, keys, and format descriptions.

QTCaptureConnectionAttributeDidChangeNotification
Posted when one of the connection’s attributes has changed.

The notification’s user info dictionary will contain the attribute key of the changed attribute for the key
QTCaptureConnectionChangedAttributeKey.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureConnection.h

QTCaptureConnectionAttributeWillChangeNotification
Posted when one of the connection’s attributes is about to change.

The notification’s user info dictionary will contain the attribute key of the changed attribute for the key
QTCaptureConnectionChangedAttributeKey.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureConnection.h

Notifications 33
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

QTCaptureConnectionChangedAttributeKey
Used as a key in the user info dictionary passed to
QTCaptureConnectionAttributeWillChangeNotification, and
QTCaptureConnectionAttributeDidChangeNotification to indicate the key of that attribute that
changed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureConnection.h

QTCaptureConnectionFormatDescriptionDidChangeNotification
Posted when the format description of a connection has changed.

Applications can be notified of changes to a connection’s format by registering to receive this notification.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureConnection.h

QTCaptureConnectionFormatDescriptionWillChangeNotification
Posted when the format description of a connection is about to change.

Applications can be notified of changes to a connection’s format by registering to receive this notification.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureConnection.h

34 Notifications
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

QTCaptureConnection Class Reference

Inherits from QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureDecompressedAudioOutput.h

Availability Available in QuickTime 7.6.3 and later.

Overview

This class represents an output destination for a QTCaptureSession object that can be used to process
audio sample buffers from the audio being captured. Instances of QTCaptureDecompressedAudioOutput
produce audio sample buffers suitable for custom high-quality realtime processing. Applications can access
the audio sample buffers via the captureOutput:didOutputAudioSampleBuffer:fromConnection:
 (page 37) delegate method. Clients can also create subclasses of QTCaptureDecompressedAudioOutput
to add custom capturing behavior.

Tasks

Decompressing Audio Output

– delegate (page 36)
Returns the receiver’s delegate.

– setDelegate: (page 36)
Sets the receiver’s delegate.

– outputAudioSampleBuffer:fromConnection: (page 36)
Called whenever the receiver outputs a new audio sample buffer.

– captureOutput:didOutputAudioSampleBuffer:fromConnection: (page 37) delegate method
Called whenever the audio data output outputs a new audio sample buffer.

Overview 35
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

QTCaptureDecompressedAudioOutput Class
Reference

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedAudioOutput.h

outputAudioSampleBuffer:fromConnection:
Called whenever the receiver outputs a new audio sample buffer.

- (void)outputAudioSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
sampleBuffer

A sample buffer containing the audio data and additional information about the buffer, such as its
presentation time.

connection
The connection from which the audio was received.

Discussion
This method should not be invoked directly. Subclasses can override this method to provide custom processing
behavior for each sample buffer. The default implementation calls the delegate’s
captureOutput:didOutputAudioSampleBuffer:fromConnection: (page 37) method.

Subclasses should not assume that this method will be called on the main thread. In addition, this method
is called periodically, so it must be efficient to prevent capture performance problems.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedAudioOutput.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

36 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

QTCaptureDecompressedAudioOutput Class Reference

Declared In
QTCaptureDecompressedAudioOutput.h

Delegate Methods

captureOutput:didOutputAudioSampleBuffer:fromConnection:
Called whenever the audio data output outputs a new audio sample buffer.

- (void)captureOutput:(QTCaptureOutput *)captureOutput
didOutputAudioSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
captureOutput

The QTCaptureDecompressedAudioOutput instance that output the frame.

sampleBuffer
A sample buffer containing the audio data and additional information about the buffer, such as its
presentation time.

connection
The connection from which the audio was received.

Discussion
Delegates receive this message whenever the output produces a new audio sample buffer. Delegates can
use the provided sample buffer for custom processing of captured audio.

Delegates should not assume that this method will be called on the main thread. In addition, this method is
called periodically, so it must be efficient to prevent capture performance problems.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedAudioOutput.h

Delegate Methods 37
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

QTCaptureDecompressedAudioOutput Class Reference

38 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

QTCaptureDecompressedAudioOutput Class Reference

Inherits from QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureDecompressedVideoOutput.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code StillMotion

Overview

This class represents an output destination for a QTCaptureSession object that can be used to process
decompressed frames from the video being captured. Instances of QTCaptureDecompressedVideoOutput
produce decompressed video frames suitable for high-quality processing. Because instances maintain
maximum frame quality and avoid dropping frames, using this output may result in reduced performance
while capturing. Applications that need to process decompressed frames but can tolerate dropped frames
or drops in decompression quality should use QTCaptureVideoPreviewOutput instead. Applications can
access the decompressed frames via the
captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: (page 45) delegate
method. Clients can also create subclasses of QTCaptureDecompressedVideoOutput to add custom
capturing behavior.

Tasks

Decompressing Video Output

– automaticallyDropsLateVideoFrames (page 40)
Returns whether the receiver discards video frames that are output before earlier frames have been
processed.

– delegate (page 41)
Returns the receiver’s delegate.

– setDelegate: (page 43)
Sets the receiver’s delegate.

– setMinimumVideoFrameInterval: (page 43)
Sets the minimum time interval between which the receiver should output consecutive video frames.

Overview 39
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class
Reference

– outputVideoFrame:withSampleBuffer:fromConnection: (page 41)
Called whenever the receiver outputs a new video frame.

– minimumVideoFrameInterval (page 41)
Returns the minimum time interval between which the receiver will output consecutive video frames.

– pixelBufferAttributes (page 42)
Returns the Core Video pixel buffer attributes previously set by setPixelBufferAttributes: that
determine what kind of pixel buffers are output by the receiver.

– setAutomaticallyDropsLateVideoFrames: (page 43)
Sets whether the receiver discards video frames that are output before earlier frames have been
processed.

– setPixelBufferAttributes: (page 44)
Sets the CoreVideo pixel buffer attributes that determine what kind of pixel buffers are output by the
receiver.

– captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45) delegate
method

Called once for each frame that is dropped when automaticallyDropsLateVideoFrames is set
to YES.

– captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: (page 45) delegate
method

Called whenever the video preview output outputs a new video frame.

Instance Methods

automaticallyDropsLateVideoFrames
Returns whether the receiver discards video frames that are output before earlier frames have been processed.

- (BOOL)automaticallyDropsLateVideoFrames

Return Value
This method returns YES if the receiver drops late video frames and returns NO otherwise.

Discussion
If this method returns YES, the receiver will discard frames that are queued up while the thread handling
existing frames is blocked in the outputVideoFrame:withSampleBuffer:fromConnection: (page
41) or the captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45)
delegate method. The delegate method
captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45) will be called
for each frame that is dropped. The default value is NO.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedVideoOutput.h

40 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

minimumVideoFrameInterval
Returns the minimum time interval between which the receiver will output consecutive video frames.

- (NSTimeInterval)minimumVideoFrameInterval

Return Value
An NSTimeInterval specifying the minimum interval between video frames. Returns 0 if there is no frame
rate limit set.

Discussion
This method returns the minimum amount of time that should separate consecutive frames output by the
receiver. This is equivalent to the inverse of the maximum frame rate. A value of 0 indicates an unlimited
maximum frame rate. The default value is 0.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedVideoOutput.h

outputVideoFrame:withSampleBuffer:fromConnection:
Called whenever the receiver outputs a new video frame.

- (void)outputVideoFrame:(CVImageBufferRef)videoFrame
withSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
videoFrame

A Core Video buffer containing the decompressed frame.

sampleBuffer
A sample buffer containing additional information about the frame, such as its presentation time.

connection
The connection from which the video was received.

Instance Methods 41
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

Discussion
This method should not be invoked directly. Subclasses can override this method to provide custom processing
behavior for each frame. The default implementation calls the delegate’s
captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: method. Subclasses
should not assume that this method will be called on the main thread. In addition, this method is called
periodically, so it must be efficient to prevent capture performance problems.

Special Considerations

In order to promptly reclaim memory resources, after this method returns, the sample data contained within
the QTSampleBuffer object will be released using its decrementSampleUseCount method. Clients that
reference the sample buffer and are interested in the sample data that it contains after this method returns
should call incrementSampleUseCount on the sample buffer within this method to ensure that the data
remains valid until they no longer need it (at which time they should call decrementSampleUseCount).
Clients that reference the sample buffer after this method returns, but only need access to its metadata, such
as duration, presentation time, and other attributes, need not call incrementSampleUseCount.

Note that to maintain optimal performance, some sample buffers directly reference pools of memory that
may need to be reused by the device system and other capture inputs. This is frequently the case for
uncompressed device native capture where memory blocks are copied as little as possible. If multiple sample
buffers reference such pools of memory for too long, inputs will no longer be able to copy new samples into
memory and those samples will be dropped. If your application is causing samples to be dropped by holding
on to sample data for too long using incrementSampleUseCount, but it needs access to the sample data
for a long period of time, consider copying the data into a new buffer and then calling
decrementSampleUseCount on the sample buffer so that the memory it references can be reused.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

pixelBufferAttributes
Returns the Core Video pixel buffer attributes previously set bysetPixelBufferAttributes: that determine
what kind of pixel buffers are output by the receiver.

- (NSDictionary *)pixelBufferAttributes

Return Value
A dictionary containing pixel buffer attributes for buffers output by the receiver. The keys in the dictionary
are described in CoreVideo/CVPixelBuffer.h. If the return value is NIL, then the receiver outputs buffers
using the fastest possible pixel buffer attributes.

Discussion
This method returns the pixel buffer attributes set by setPixelBufferAttributes: that clients can use
to customize the size and pixel format of the video frames output by the receiver. When the dictionary is
non-nil, the receiver will attempt to output pixel buffers using the attributes specified in the dictionary. A
non-nil dictionary also guarantees that the output CVImageBuffer is a CVPixelBuffer. When the value
for kCVPixelBufferPixelFormatTypeKey is set to an NSNumber, all image buffers output by the receiver
will be in that format. When the value is an NSArray, image buffers output by the receiver will be in the most
optimal format specified in that array. If the captured images are not in the one of the specified pixel formats,
then a format conversion will be performed. If the dictionary is NIL or there is no value for the
kCVPixelBufferPixelFormatTypeKey, then the receiver will output images in the most efficient possible

42 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

format given the input. For example, if the source is an iSight producing component Y'CbCr 8-bit 4:2:2 video
then Y'CbCr 8-bit 4:2:2 will be used as the output format in order to avoid any conversions. The default value
for the returned dictionary is NIL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

setAutomaticallyDropsLateVideoFrames:
Sets whether the receiver discards video frames that are output before earlier frames have been processed.

- (void)setAutomaticallyDropsLateVideoFrames:(BOOL)automaticallyDropsLateVideoFrames

Parameters
automaticallyDropsLateVideoFrames

Whether the receiver should drop late video frames.

Discussion
Setting this to YES will cause the receiver to discard frames that are queued up while the thread handling
existing frames is blocked in the outputVideoFrame:withSampleBuffer:fromConnection: or the
captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45) delegate
method. The delegate method
captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45) will be called
for each frame that is dropped. The default value is NO.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedVideoOutput.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

setMinimumVideoFrameInterval:
Sets the minimum time interval between which the receiver should output consecutive video frames.

- (void)setMinimumVideoFrameInterval:(NSTimeInterval)minimumVideoFrameInterval

Instance Methods 43
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

Parameters
minimumVideoFrameInterval

An NSTimeInterval specifying the minimum interval between video frames. A value of 0 indicates
that there should be no frame rate limit.

Discussion
This method sets the minimum amount of time that should separate consecutive frames output by the
receiver. This is equivalent to the inverse of the maximum frame rate. A value of 0 indicates an unlimited
maximum frame rate. The default value is 0.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedVideoOutput.h

setPixelBufferAttributes:
Sets the CoreVideo pixel buffer attributes that determine what kind of pixel buffers are output by the receiver.

- (void)setPixelBufferAttributes:(NSDictionary *)pixelBufferAttributes

Parameters
pixelBufferAttributes

A dictionary containing pixel buffer attributes for buffers that will be output by the receiver. The keys
in the dictionary are described in CoreVideo/CVPixelBuffer.h. If the dictionary is NIL, then the
receiver outputs buffers using the fastest possible pixel buffer attributes.

Discussion
This method sets the pixel buffer attributes that clients can use to customize the size and pixel format of the
video frames output by the receiver. When the dictionary is non-nil, the receiver will attempt to output pixel
buffers using the attributes specified in the dictionary. A non-nil dictionary also guarantees that the output
CVImageBuffer is a CVPixelBuffer. When the value for kCVPixelBufferPixelFormatTypeKey is set
to an NSNumber, all image buffers output by the receiver will be in that format. When the value is an NSArray,
image buffers output by the receiver will be in the most optimal format specified in that array. If the captured
images are not in the one of the specified pixel formats, then a format conversion will be performed. If the
dictionary is NIL or there is no value for the kCVPixelBufferPixelFormatTypeKey, then the receiver will
output images in the most efficient possible format given the input. For example, if the source is an iSight
producing component Y'CbCr 8-bit 4:2:2 video then Y'CbCr 8-bit 4:2:2 will be used as the output format in
order to avoid any conversions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

44 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

Delegate Methods

captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection:
Called once for each frame that is dropped when automaticallyDropsLateVideoFrames is set to YES.

- (void)captureOutput:(QTCaptureOutput *)captureOutput
didDropVideoFrameWithSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
captureOutput

The QTCaptureDecompressedVideoOutput instance that dropped the late video frame.

sampleBuffer
A QTSampleBuffer instance containing metadata about the dropped frame, such as its duration
and presentation time stamp. This sample buffer will contain none of the original video data, and
accessing its bytesForAllSamples method is invalid and will throw an exception.

connection
The connection from which the dropped video frame was received.

Discussion
When automaticallyDropsLateVideoFrames is set to YES, this method is called whenever a late video
frame is dropped. This method is called once for each dropped frame and may be called before the call to
the outputVideoFrame:withSampleBuffer:fromConnection: (page 41) or the
captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection: (page 45) delegate
method during which those frames were dropped returns. The QTSampleBuffer object passed to this
delegate method will contain metadata about the dropped video frame, such as its duration and presentation
time stamp, but will contain no actual video data. Delegates should not assume that this method will be
called on the main thread. Because this method may be called on the same thread that is responsible for
outputting video frames, it must be efficient to prevent further capture performance problems, such as
additional dropped video frames.

Availability
Mac OS X v10.5 and later; QuickTime 7.6.3.

Declared In
QTCaptureDecompressedVideoOutput.h

captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection:
Called whenever the video preview output outputs a new video frame.

- (void)captureOutput:(QTCaptureOutput *)captureOutput
didOutputVideoFrame:(CVImageBufferRef)videoFrame
withSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
captureOutput

The QTCaptureDecompressedVideoOutput instance that output the frame.

Delegate Methods 45
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

videoFrame
A Core Video image buffer containing the decompressed frame.

sampleBuffer
A sample buffer containing additional information about the frame, such as its presentation time.

connection
The connection from which the video was received.

Discussion
Delegates receive this message whenever the output decompresses and outputs a new video frame. Delegates
can use the provided video frame for a custom preview or for further image processing. Delegates should
not assume that this method will be called on the main thread. In addition, this method is called periodically,
so it must be efficient to prevent capture performance problems.

Special Considerations

In order to promptly reclaim memory resources, after this method returns, the sample data contained within
the QTSampleBuffer object will be released using its decrementSampleUseCount method. Clients that
reference the sample buffer and are interested in the sample data that it contains after this method returns
should call incrementSampleUseCount on the sample buffer within this method to ensure that the data
remains valid until they no longer need it (at which time they should call decrementSampleUseCount).
Clients that reference the sample buffer after this method returns, but only need access to its metadata, such
as duration, presentation time, and other attributes, need not call incrementSampleUseCount.

Note that to maintain optimal performance, some sample buffers directly reference pools of memory that
may need to be reused by the device system and other capture inputs. This is frequently the case for
uncompressed device native capture where memory blocks are copied as little as possible. If multiple sample
buffers reference such pools of memory for too long, inputs will no longer be able to copy new samples into
memory and those samples will be dropped. If your application is causing samples to be dropped by holding
on to sample data for too long using incrementSampleUseCount, but it needs access to the sample data
for a long period of time, consider copying the data into a new buffer and then calling
decrementSampleUseCount on the sample buffer so that the memory it references can be reused.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

46 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

QTCaptureDecompressedVideoOutput Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureDevice.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code LiveVideoMixer3
MyRecorder
QT Capture Widget
QTRecorder
StillMotion

Overview

This class represents an available capture device. Each instance of QTCaptureDevice corresponds to a
capture device that is connected or has been previously connected to the user’s computer during the lifetime
of the application. Instances of QTCaptureDevice cannot be created directly. A single unique instance is
created automatically whenever a device is connected to the computer and can be accessed using the
deviceWithUniqueID: (page 50) class method. An array of all currently connected devices can also be
obtained using the inputDevices (page 50) class method.

Devices can provide one or more stream of a given media type. Applications can search for devices that
provide media of a specific type using the inputDevicesWithMediaType: (page 51) and
defaultInputDeviceWithMediaType: (page 49) class methods. Table 7-1 details the media types
supported by QTCaptureDevice and examples of devices that support them:

Table 7-1 Media types supported by QTCaptureDevice

Example DevicesDescriptionMedia Type

iSight cameras (external and built-in); USB
and FireWire webcams

Media that only contains video
frames.

QTMediaTypeVideo

DV camerasMultiplexed media that may contain
audio, video, and other data in a
single stream.

QTMediaTypeMuxed

Overview 47
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Example DevicesDescriptionMedia Type

Built-in microphones and line-in jacks; the
microphone built-in to the external iSight;
USB microphones and headsets; any other
device supported by Core Audio.

Media that only contains audio
samples.

QTMediaTypeSound

QTCaptureDevice objects can have extended attributes that applications can read using the
attributeForKey: and deviceAttributes methods. Some attributes, for which the
attributeIsReadOnly: method returns NO, can be edited using the setAttribute:forKey: and
setDeviceAttributes: methods. In addition to these explicit methods, applications can use key-value
coding to get and set extended attributes. For an object that supports a given attribute, valueForKey: will
be functionally identical to attributeForKey:, and setValue:forKey: will be identical to
setAttribute:forKey:. Applications wishing to observe changes for a given attribute can add a key-value
observer where the key path is the attribute key.

Tasks

Finding Devices

+ defaultInputDeviceWithMediaType: (page 49)
Returns a QTCaptureDevice instance for the default device connected to the user’s system of the
given media type.

+ deviceWithUniqueID: (page 50)
Returns a QTCaptureDevice instance with the identifier device UID.

+ inputDevices (page 50)
Returns an array of devices currently connected to the computer that can be used as input sources.

+ inputDevicesWithMediaType: (page 51)
Returns an array of input devices currently connected to the computer that send a stream with the
given media type.

Using a Device

– close (page 52)
Releases application control over the device acquired in the open: method.

– isConnected (page 54)
Returns YES if the device is connected to the computer.

– isInUseByAnotherApplication (page 54)
Returns YES is the device is connected, but being exclusively used by another application.

– open: (page 56)
Attempts to give the application control over the device so that it can be used for capture.

– isOpen (page 55)
Returns YES if the device is open in the current application.

48 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Getting Information About a Device

– attributeForKey: (page 52)
Returns a device attribute for the given key.

– attributeIsReadOnly: (page 52)
Returns whether the given attribute for the device cannot be modified.

– deviceAttributes (page 53)
Returns a dictionary of the device’s current attributes.

– formatDescriptions (page 53)
Returns an array of stream formats currently in use by the device.

– hasMediaType: (page 54)
Returns whether the receiver sends a stream with the given media type.

– setAttribute:forKey: (page 57)
Sets a device attribute for the given key.

– setDeviceAttributes: (page 57)
Sets attributes on the device from the key-value pairs in the given dictionary.

– localizedDisplayName (page 55)
Returns a localized human-readable name for the receiver’s device.

– modelUniqueID (page 56)
Returns the unique ID of the model of the receiver’s device.

– uniqueID (page 57)
Returns the unique ID of the receiver’s device.

Class Methods

defaultInputDeviceWithMediaType:
Returns a QTCaptureDevice instance for the default device connected to the user’s system of the given
media type.

+ (QTCaptureDevice *)defaultInputDeviceWithMediaType:(NSString *)mediaType

Parameters
mediaType

The media type, such asQTMediaTypeVideo,QTMediaTypeSound, orQTMediaTypeMuxed, supported
by the returned device.

Return Value
The default device with the given media type on the user’s system, or NIL if no device with that media type
exists.

Discussion
This method returns the default device of the given media type connected to the user’s system. For example,
for QTMediaTypeSound, this method will return the default sound input device selected in the Sound
Preference Pane. If there is no device for the given media type, this method will return nil.

Media types are defined in QTMedia.h.

Class Methods 49
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit
MyRecorder
QT Capture Widget
QTCompressionOptionsWindow
StillMotion

Declared In
QTCaptureDevice.h

deviceWithUniqueID:
Returns a QTCaptureDevice instance with the identifier device UID.

+ (QTCaptureDevice *)deviceWithUniqueID:(NSString *)deviceUID

Parameters
deviceUID

The unique identifier of the device instance to be returned.

Return Value
If a device with unique identifier deviceUID was connected to the computer at some point during the
lifetime of the application, this method returns a QTCaptureDevice instance for that identifier. Otherwise,
this method returns NIL.

Discussion
Every capture device available to the computer is assigned a unique identifier that persists on one computer
across device connections and disconnections, as well as across reboots of the computer. This method can
be used to recall or track the status of a specific device, even if it has been disconnected.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

inputDevices
Returns an array of devices currently connected to the computer that can be used as input sources.

+ (NSArray *)inputDevices

Return Value
An NSArray of QTCaptureDevice instances for each connected device. If there are no available devices, the
returned array will be empty.

50 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Discussion
This method queries the device system and builds an array of QTCaptureDevice instances for input devices
currently connected and available for capture. The returned array contains all devices that are available when
the method is called. Applications should observe QTCaptureDeviceWasConnectedNotification and
QTCaptureDeviceWasDisconnectedNotification to be notified when the list of available devices has
changed.

Availability
Mac OS X v10.5 and later.

Related Sample Code
LiveVideoMixer3

Declared In
QTCaptureDevice.h

inputDevicesWithMediaType:
Returns an array of input devices currently connected to the computer that send a stream with the given
media type.

+ (NSArray *)inputDevicesWithMediaType:(NSString *)mediaType

Parameters
mediaType

The media type, such asQTMediaTypeVideo,QTMediaTypeSound, orQTMediaTypeMuxed, supported
by each returned device.

Return Value
An array of QTCaptureDevice instances for each connected device with the given media type. If there are
no available devices, the returned array will be empty.

Discussion
This method queries the device system and builds an array of QTCaptureDevice instances for input devices
that are currently connected and output streams of the given media type.

Media types are defined in QTMedia.h.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTRecorder

Declared In
QTCaptureDevice.h

Class Methods 51
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Instance Methods

attributeForKey:
Returns a device attribute for the given key.

- (id)attributeForKey:(NSString *)attributeKey

Discussion
Use this method to get attributes of a device. The keys that can be used with this method are described in
the Constants section. Applications using key-value coding can also get an attribute for a given key by passing
that key to the NSObject valueForKey: method.

Availability
Mac OS X v10.5 and later.

Related Sample Code
LiveVideoMixer3
QTRecorder

Declared In
QTCaptureDevice.h

attributeIsReadOnly:
Returns whether the given attribute for the device cannot be modified.

- (BOOL)attributeIsReadOnly:(NSString *)attributeKey

Return Value
Returns YES if the attribute cannot be modified; otherwise, NO.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

close
Releases application control over the device acquired in the open: method.

- (void)close

Discussion
This method should be called to match each invocation of open: when an application no longer needs to
use a device for capture. If a device is disconnected or turned off while it is open it will be closed automatically.
Applications should check if a device has not been closed automatically by registering to receive
QTCaptureDeviceWasDisconnectedNotification or by checking isOpen before manually closing the
device using this method.

52 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Applications can use key value coding with the @"connected" and @"inUseByAnotherApplication"
keys to be notified of changes.

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit
QT Capture Widget
QTRecorder
StillMotion

Declared In
QTCaptureDevice.h

deviceAttributes
Returns a dictionary of the device’s current attributes.

- (NSDictionary *)deviceAttributes

Return Value
An dictionary of attributes supported by the device.

Discussion
Applications can use this method to determine what attributes a specific device supports.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

formatDescriptions
Returns an array of stream formats currently in use by the device.

- (NSArray *)formatDescriptions

Return Value
An array of QTFormatDescription objects describing the current stream formats of the device.

Discussion
Applications can use this method to determine what kind of media the receiver outputs. Applications can
be notified of format changes by registering to receive
QTCaptureDeviceFormatDescriptionsWillChangeNotification and
QTCaptureDeviceFormatDescriptionsDidChangeNotification notifications or by adding a key value
observer for the key @"formatDescriptions" .

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 53
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Declared In
QTCaptureDevice.h

hasMediaType:
Returns whether the receiver sends a stream with the given media type.

- (BOOL)hasMediaType:(NSString *)mediaType

Parameters
mediaType

A media type, such as QTMediaTypeVideo, QTMediaTypeSound, or QTMediaTypeMuxed.

Return Value
Returns YES if the device outputs the given media type, NO otherwise.

Discussion
Media types are defined in QTMedia.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

isConnected
Returns YES if the device is connected to the computer.

- (BOOL)isConnected

Return Value
Returns YES if the device is connected and available to applications; otherwise, NO.

Discussion
This method checks whether the receiver’s device is currently connected to the computer and available for
use by applications.

Applications can use key value coding with the @"connected" and @"inUseByAnotherApplication"
keys to be notified of changes.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

isInUseByAnotherApplication
Returns YES is the device is connected, but being exclusively used by another application.

- (BOOL)isInUseByAnotherApplication

54 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Return Value
Returns YES if another process has exclusive control over a connected device; otherwise, NO.

Discussion
If the device can only be accessed by one process at a time, this method checks if the process has exclusive
control over the current process.

Applications can use key value coding with the @"connected" and @"inUseByAnotherApplication"
keys to be notified of changes.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

isOpen
Returns YES if the device is open in the current application.

- (BOOL)isOpen

Return Value
Returns YES if the device was previously opened by the receiver’s open: method. Returns NO otherwise.

Discussion
The method checks if the device was previously successfully opened with the receiver’s open: method. If
this method returns YES, the device can be used immediately for capture.

Applications can use key value coding with the @"connected" and @"inUseByAnotherApplication"
keys to be notified of changes.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

localizedDisplayName
Returns a localized human-readable name for the receiver’s device.

- (NSString *)localizedDisplayName

Return Value
The localized name of the receiver’s device.

Discussion
This method can be used when displaying the name of a capture device in the user interface.

Availability
Mac OS X v10.5 and later.

Instance Methods 55
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Declared In
QTCaptureDevice.h

modelUniqueID
Returns the unique ID of the model of the receiver’s device.

- (NSString *)modelUniqueID

Return Value
The unique identifier of the model of device corresponding to the receiver.

Discussion
The unique identifier returned by this method is unique to all devices of the same model. The value is
persistent across device connections and disconnections, and across different computers.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

open:
Attempts to give the application control over the device so that it can be used for capture.

- (BOOL)open:(NSError **)errorPtr

Parameters
errorPtr

If not equal to NIL, points to an NSError describing why the device could not be opened, or points
to NIL if the device was opened successfully.

Return Value
Returns YES if the device was opened successfully; otherwise, NO.

Discussion
This method attempts to open the device for control by the current application. If the device is connected
and no other processes have exclusive control over it, then the application starts using the device immediately,
taking exclusive control of it if necessary. Otherwise, this method returns NO and sets errorPtr to point to an
error describing why the device could not be opened. Applications that call open: should also call the close
method to relinquish access to the device when it is no longer needed. Multiple calls to this method can be
nested. Each call to this method must be matched by a call to close. Applications that capture from a device
using QTCaptureDeviceInput must call this method before creating the QTCaptureDeviceInput to be
used with the device. If a device is disconnected or turned off while it is open, it will be closed automatically.

Applications can use key value coding with the @"connected" and @"inUseByAnotherApplication"
keys to be notified of changes.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit

56 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

MyRecorder
QT Capture Widget
QTRecorder
StillMotion

Declared In
QTCaptureDevice.h

setAttribute:forKey:
Sets a device attribute for the given key.

- (void)setAttribute:(id)attributeforKey
:(NSString *)attributeKey

Discussion
Use this method to set attributes of a device. The keys that can be used with this method are described in
the Constants section. This method raises an NSInvalidArgumentException if the attribute is read-only or not
supported by the receiver. Applications using key value coding can also set an attribute for a given key by
passing that key to the NSObject setValue:forKey: method.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
QTRecorder

Declared In
QTCaptureDevice.h

setDeviceAttributes:
Sets attributes on the device from the key-value pairs in the given dictionary.

- (void)setDeviceAttributes:(NSDictionary *)deviceAttributes

Discussion
This method allows application to set multiple attributes on a device at once. This method raises an
NSInvalidArgumentException if any of the attributes in the dictionary are read-only or not supported by the
receiver. Applications using key-value coding can also set multiple attributes using the NSObject
setValuesForKeysWithDictionary: method using attribute keys as keys in the dictionary.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

uniqueID
Returns the unique ID of the receiver’s device.

Instance Methods 57
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

- (NSString *)uniqueID

Return Value
The unique identifier of the device corresponding to the receiver.

Discussion
The unique identifier returned by this method is persistent on one computer across device connections and
disconnections, as well as across reboots of the computer. It can be passed to the deviceWithUniqueID:
class method to get the QTCaptureDevice instance for the device with that unique identifier.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDevice.h

Constants

Device Attributes
Constants for different device attributes.

NSString * const QTCaptureDeviceChangedAttributeKey;
NSString * const QTCaptureDeviceAvailableInputSourcesAttribute;
NSString * const QTCaptureDeviceInputSourceIdentifierAttribute;
NSString * const QTCaptureDeviceInputSourceIdentifierKey;
NSString * const QTCaptureDeviceInputSourceLocalizedDisplayNameKey;
NSString * const QTCaptureDeviceSuspendedAttribute;
NSString * const QTCaptureDeviceLinkedDevicesAttribute;
NSString * const QTCaptureDeviceLegacySequenceGrabberAttribute;
NSString * const QTCaptureDeviceAVCTransportControlsAttribute;
NSString * const QTCaptureDeviceAVCTransportControlsSpeedKey;
NSString * const QTCaptureDeviceAVCTransportControlsPlaybackModeKey;

Constants
QTCaptureDeviceChangedAttributeKey

Indicates the key of the attribute that changed. Used as a key in the userInfo dictionary passed to
QTCaptureDeviceAttributeWillChangeNotification, and
QTCaptureDeviceAttributeDidChangeNotification to indicate the key of the attribute that
changed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAvailableInputSourcesAttribute
For devices with multiple possible input sources, returns an array of dictionaries describing each
available input source. Some devices can capture data from one of multiple input sources (different
input jacks on the same audio device, for example). The value is an NSArray of NSDictionary
objects. The keys in each dictionary are described in Input Source Dictionary Keys. This string value
can be used in key paths for key value coding, key value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

58 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceInputSourceIdentifierAttribute
Used to get and set the currently used input source for the device. Some devices can capture data
from one of multiple input sources (different input jacks on the same audio device, for example). The
value is an object returned by the QTCaptureDeviceInputSourceIdentifierKey key in one of
the dictionaries returned by QTCaptureDeviceAvailableInputSourcesAttribute. This string
value can be used in key paths for key value coding, key value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceInputSourceIdentifierKey
An object representing a unique ID for the input source. This ID is not guaranteed to persist between
device connections or changes in device configuration. To set the input source for a device, set
QTCaptureDeviceInputSourceIdentifierAttribute to the value returned by this key. This
string value can be used in key paths for key value coding, key value observing, and bindings.

This key, along with theQTCaptureDeviceInputSourceLocalizedDisplayNameKey key, comprises
the NSDictionary objects describing input sources returned by
QTCaptureDeviceAvailableInputSourcesAttribute.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceInputSourceLocalizedDisplayNameKey
The localized display name of an input source, suitable for display in a user interface. This string value
can be used in key paths for key value coding, key value observing, and bindings.

This key, along with the QTCaptureDeviceInputSourceIdentifierKey key, comprises the
NSDictionary objects describing input sources returned by
QTCaptureDeviceAvailableInputSourcesAttribute.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceSuspendedAttribute
Returns whether or not data capture on the device is suspended due to a feature on the device. For
example, this attribute is YES for the external iSight when its privacy iris is closed, or for the internal
iSight on a notebook when the notebook’s display is closed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceLinkedDevicesAttribute
Returns an array of QTCaptureDevice objects that, although they are separate devices on the system,
are a part of the same physical device as the receiver. For example, for the external iSight camera,
this attribute returns an array containing a QTCaptureDevice for the external iSight microphone.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

Constants 59
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceLegacySequenceGrabberAttribute
An NSValue interpreted as a ComponentInstance for the legacy sequence grabber component used
by the device. Some older devices are opened and controlled by legacy Sequence Grabber components.
Applications that need to configure legacy devices directly through the Sequence Grabber configuration
dialog can access an open component instance with this attribute.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

If the device is being used in a capture session, do not modify properties of the returned Sequence
Grabber component (by displaying the configuration dialog, for example) while the session is running.
Doing so will prevent the capture session from capturing more frames.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsAttribute
For AVC devices that read data from linear media, such as tapes, specifies the mode and speed at
which that media is playing.

The value is an NSDictionary with keys and values described under QTCaptureDeviceAVC Transport
Controls.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsSpeedKey
Specifies the approximate rate at which the device runs through linear media. The value is an
NSNumber interpreted as a QTCaptureDeviceAVCTransportControlsSpeed. This is one of the
keys that comprise the NSDictionary that specifies the linear media playback mode and rate given
by the QTCaptureDeviceAVCTransportControlsAttribute.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsPlaybackModeKey
A value provided with the QTCaptureDeviceAVCTransportControlsPlaybackModeKey key that
specifies whether the device previews audio and displays video while it is running through linear
media. QTCaptureDeviceAVCTransportControlsNotPlayingMode is equivalent to the Play
mode on most cameras and tape decks, while
QTCaptureDeviceAVCTransportControlsPlayingMode is equivalent to Stop on most cameras
and tape decks. If the device is connected to a session, the video at the current location on the device’s
media will only be captured if this attribute is set to
QTCaptureDeviceAVCTransportControlsNotPlayingMode.

enum {
 QTCaptureDeviceAVCTransportControlsNotPlayingMode = 0,
 QTCaptureDeviceAVCTransportControlsPlayingMode = 1
};

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

60 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceAVCTransportControlsSpeed
A value provided with the QTCaptureDeviceAVCTransportControlsSpeedKey key that specifies
whether the device previews audio and displays video while it is running through linear media. The
actual speed at which the media is run for a given value will depend on the manufacturer and model
of the device, as well as the value of QTCaptureDeviceAVCTransportControlsPlaybackModeKey
(in general, when QTCaptureDeviceAVCTransportControlsPlaybackModeKey is set to
QTCaptureDeviceAVCTransportControlsNotPlayingMode, the media will run faster than when
it is set to QTCaptureDeviceAVCTransportControlsPlayingMode).

Enumerations
These are the values for the dictionary passed to QTCaptureDeviceAVCTransportControlsAttribute.
For most cameras and tape decks, different speeds will affect the media speed.

enum {
 QTCaptureDeviceAVCTransportControlsFastestReverseSpeed = -19000,
 QTCaptureDeviceAVCTransportControlsVeryFastReverseSpeed = -16000,
 QTCaptureDeviceAVCTransportControlsFastReverseSpeed = -13000,
 QTCaptureDeviceAVCTransportControlsNormalReverseSpeed = -10000,
 QTCaptureDeviceAVCTransportControlsSlowReverseSpeed = -7000,
 QTCaptureDeviceAVCTransportControlsVerySlowReverseSpeed = -4000,
 QTCaptureDeviceAVCTransportControlsSlowestReverseSpeed = -1000,
 QTCaptureDeviceAVCTransportControlsStoppedSpeed = 0,
 QTCaptureDeviceAVCTransportControlsSlowestForwardSpeed = 1000,
 QTCaptureDeviceAVCTransportControlsVerySlowForwardSpeed = 4000,
 QTCaptureDeviceAVCTransportControlsSlowForwardSpeed = 7000,
 QTCaptureDeviceAVCTransportControlsNormalForwardSpeed = 10000,
 QTCaptureDeviceAVCTransportControlsFastForwardSpeed = 13000,
 QTCaptureDeviceAVCTransportControlsVeryFastForwardSpeed = 16000,
 QTCaptureDeviceAVCTransportControlsFastestForwardSpeed = 19000,
};

Constants
QTCaptureDeviceAVCTransportControlsFastestReverseSpeed

Media runs in reverse at greater than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsVeryFastReverseSpeed
Media runs in reverse at greater than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsFastReverseSpeed
Media runs in reverse at greater than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsNormalReverseSpeed
Media runs in reverse at normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

Constants 61
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceAVCTransportControlsSlowReverseSpeed
Media runs in reverse at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsVerySlowReverseSpeed
Media runs in reverse at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsSlowestReverseSpeed
Media runs in reverse at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsStoppedSpeed
Media is paused.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsSlowestForwardSpeed
Media runs forward at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsVerySlowForwardSpeed
Media runs forward at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsSlowForwardSpeed
Media runs forward at less than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsNormalForwardSpeed
Media runs forward at normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsFastForwardSpeed
Media runs forward at greater than than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

QTCaptureDeviceAVCTransportControlsVeryFastForwardSpeed
Media runs forward at greater than than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

62 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceAVCTransportControlsFastestForwardSpeed
Media runs forward at greater than than normal speed.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureDevice.h.

Notifications

QTCaptureDeviceWasConnectedNotification
Posted when a device is connected or turned on.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

QTCaptureDeviceWasDisconnectedNotification
Posted when a device is disconnected or turned off.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

QTCaptureDeviceFormatDescriptionsWillChangeNotification
Posted when the device's formats that are returned by the formatDescriptions method are about to
change.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

QTCaptureDeviceFormatDescriptionsDidChangeNotification
Posted when the device’s formats that are returned by the formatDescriptionsmethod have just changed.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

Notifications 63
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

QTCaptureDeviceAttributeWillChangeNotification
Posted when one of the device's attributes is about to change.

The notification’s user info dictionary will contain the attribute key of the changed attribute for the key
QTCaptureDeviceChangedAttributeKey.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

QTCaptureDeviceAttributeDidChangeNotification
Posted when the one of device’s attributes has changed.

The notification’s user info dictionary will contain the attribute key of the changed attribute for the key
QTCaptureDeviceChangedAttributeKey.

Availability
QuickTime 7.2.1 and later

Declared In
QTCaptureDevice.h

64 Notifications
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

QTCaptureDevice Class Reference

Inherits from QTCaptureInput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureDeviceInput.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code AudioDataOutputToAudioUnit
LiveVideoMixer3
MyRecorder
QT Capture Widget
QTRecorder

Overview

This class represents the input source for media devices, such as cameras and microphones. Instances of
QTCaptureDeviceInput are input sources for QTCaptureSession that provide media data from devices
connected to the computer. Devices used with QTCaptureDeviceInput can be found using the
QTCaptureDevice class. A QTCaptureDevicemust be successfully opened using the open:method before
being used in a QTCaptureDeviceInput.

Tasks

Capturing Device Input

– device (page 66)
Returns the device associated with the receiver.

– initWithDevice: (page 67)
Returns an instance of QTCaptureDeviceInput associated with the given device.

+ deviceInputWithDevice: (page 66)
Returns an autoreleased instance of QTCaptureDeviceInput associated with the given device.

Overview 65
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

QTCaptureDeviceInput Class Reference

Class Methods

deviceInputWithDevice:
Returns an autoreleased instance of QTCaptureDeviceInput associated with the given device.

+ (id)deviceInputWithDevice:(QTCaptureDevice *)device

Parameters
device

A QTCaptureDevice for the device to be associated with the receiver. The device must have been
previously opened using the open:method or this method will throw an NSInvalidArgumentException.

Return Value
A QTCaptureDeviceInput instance associated with the device.

Availability
Mac OS X v10.5 and later.

Related Sample Code
LiveVideoMixer3

Declared In
QTCaptureDeviceInput.h

Instance Methods

device
Returns the device associated with the receiver.

- (QTCaptureDevice *)device

Return Value
If there is a device associated with the receiver, returns a corresponding instance of QTCaptureDevice.
Otherwise returns NIL.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget
QTRecorder

Declared In
QTCaptureDeviceInput.h

66 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

QTCaptureDeviceInput Class Reference

initWithDevice:
Returns an instance of QTCaptureDeviceInput associated with the given device.

- (id)initWithDevice:(QTCaptureDevice *)device

Parameters
device

A QTCaptureDevice object for the device to be associated with the receiver. The device must have
been previously opened using the open: method, or else this method will throw an
NSInvalidArgumentException.

Return Value
A QTCaptureDeviceInput instance associated with the device.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDeviceInput.h

Instance Methods 67
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

QTCaptureDeviceInput Class Reference

68 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

QTCaptureDeviceInput Class Reference

Inherits from QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureFileOutput.h

Availability Available in QuickTime 7.2.1 and later; QuickTime 7.2.1.

Related sample code MyRecorder
QT Capture Widget
QTCompressionOptionsWindow
QTRecorder

Overview

This is an abstract superclass output destination for QTCaptureSession that writes captured media to files.
This superclass defines the interface for outputs that record media samples to files. File outputs are designated
a recording output file using the recordToOutputFileURL: (page 76) and
recordToOutputFileURL:bufferDestination: (page 76) methods. On successive invocations of these
methods, the output file can by changed dynamically without losing media samples. A file output can also
be set to not record incoming frames (the default behavior when an output is first initialized) by passing NIL
as the output file URL. Because files are recorded in the background, applications will generally need to set
a delegate for a file output so that they can be notified when recorded files are started and finished. The file
output delegate can also be used to control recording for exact media samples by implementing the
captureOutput:didOutputSampleBuffer:fromConnection: (page 81) method. Currently, the only
concrete subclass of this class is QTCaptureMovieFileOutput.

Tasks

Recording File Outputs

– outputFileURL (page 74)
Returns the file URL of the file to which the receiver is currently recording incoming buffers.

– recordToOutputFileURL: (page 76)
Calls recordToOutputFileURL:bufferDestination: with a buffer destination of
QTCaptureFileOutputBufferDestinationNewFile.

Overview 69
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

– recordToOutputFileURL:bufferDestination: (page 76)
Sets the file written to by the receiver, specifying where the sample buffer currently in flight should
be recorded.

– recordedDuration (page 75)
Returns the duration of the media recorded by the receiver.

– recordedFileSize (page 75)
Returns the size, in bytes, of the data recorded by the receiver to output files.

– maximumRecordedDuration (page 73)
Returns the maximum duration of the media that should be recorded by the receiver.

– setMaximumRecordedDuration: (page 78)
Sets the maximum duration of the media that should be recorded by the receiver.

– maximumRecordedFileSize (page 73)
Returns the maximum file size, in bytes, of the file that should be recorded by the receiver.

– setMaximumRecordedFileSize: (page 79)
Sets the maximum file size, in bytes, of the file that should be recorded by the receiver.

– compressionOptionsForConnection: (page 71)
Returns the options the receiver uses to compress media on the given connection as it is being
captured.

– setCompressionOptions:forConnection: (page 77)
Sets the options the receiver uses to compress media on the given connection as it is being captured.

– delegate (page 72)
Returns the receiver’s delegate.

– setDelegate: (page 78)
Sets the receiver’s delegate.

Methods That Control Recording

– isRecordingPaused (page 72)
Returns whether recording to the current output file is paused.

– pauseRecording (page 75)
Pauses recording to the current output file.

– resumeRecording (page 77)
Resumes recording to the current output file after it was previously paused using pauseRecording.

– maximumVideoSize (page 73)
Returns the maximum dimensions within which the receiver will record video.

– setMaximumVideoSize: (page 79)
Sets the maximum dimensions within which the receiver should record video.

– minimumVideoFrameInterval (page 74)
Returns the minimum time interval between which the receiver will record consecutive video frames.

– setMinimumVideoFrameInterval: (page 80)
Sets the minimum time interval between which the receiver should record consecutive video frames.

70 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Methods Implemented by the Delegate

– captureOutput:didOutputSampleBuffer:fromConnection: (page 81) delegate method
Gives the delegate the opportunity to inspect samples as they are received by the output and start
and stop capturing at exact times.

– captureOutput:willStartRecordingToOutputFileAtURL:forConnections: (page 86) delegate
method

Informs the delegate when the output is about to start writing to a file.

– captureOutput:didStartRecordingToOutputFileAtURL:forConnections: (page 83) delegate
method

Informs the delegate when the output has started writing to a file.

– captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError: (page 84) delegate
method

Gives the delegate the opportunity to determine what should happen when an output file has reached
a soft limit.

– captureOutput:mustChangeOutputFileAtURL:forConnections:dueToError: (page 83) delegate
method

Informs the delegate when an output file can no longer be written using the incoming media.

– captureOutput:willFinishRecordingToOutputFileAtURL:forConnections:dueToError: (page
85) delegate method

Informs the delegate when the output will stop writing new samples to a file.

– captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError: (page
80) delegate method

Informs the delegate when an output file is ready to be opened by applications.

– captureOutput:didPauseRecordingToOutputFileAtURL:forConnections: (page 82) delegate
method

Called whenever the output is recording to a file and successfully pauses the recording at the request
of the client.

– captureOutput:didResumeRecordingToOutputFileAtURL:forConnections: (page 82) delegate
method

Called whenever the output, at the request of the client, successfully resumes a file recording that
was paused.

Instance Methods

compressionOptionsForConnection:
Returns the options the receiver uses to compress media on the given connection as it is being captured.

- (QTCompressionOptions *)compressionOptionsForConnection:(QTCaptureConnection
*)connection

Parameters
connection

The connection containing the media to be compressed.

Instance Methods 71
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Return Value
A QTCompressionOptions object detailing the options being used to compress captured media on the
given connection, or NIL if the media will not be re-compressed.

Discussion
This method returns the options for compressing media set with the
setCompressionOptions:forConnection: method. If the receiver should not re-compress the output
media, this method returns NIL. The default value is NIL.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Discussion
Delegates can determine what to do when the limit is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to nil when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

isRecordingPaused
Returns whether recording to the current output file is paused.

- (BOOL)isRecordingPaused

Return Value
Returns YES if recording to the current output file is paused and returns NO otherwise.

Discussion
This method returns whether recording to the file returned by outputFileURL has been previously paused
using the pauseRecording method. When a recording is paused, captured samples are not written to the
output file, but new samples can be written to the same file in the future by calling resumeRecording. The
value of this method is key value observable using the key @"recordingPaused".

Availability
QuickTime 7.6.3 or later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

72 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

maximumRecordedDuration
Returns the maximum duration of the media that should be recorded by the receiver.

- (QTTime)maximumRecordedDuration

Return Value
The maximum time to be recorded, or QTZeroTime if there is no limit set.

Discussion
This method returns a soft limit on the duration of recorded files set by setMaximumRecordedDuration:.
Delegates can determine what to do when the limit is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to NIL when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

maximumRecordedFileSize
Returns the maximum file size, in bytes, of the file that should be recorded by the receiver.

- (UInt64)maximumRecordedFileSize

Return Value
The maximum file size, in bytes, to be recorded, or 0 if there is no limit set.

Discussion
This method returns a soft limit on the duration of recorded files set by setMaximumRecordedFileSize:.
Delegates can determine what to do when the limit is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to NIL when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

maximumVideoSize
Returns the maximum dimensions within which the receiver will record video.

- (NSSize)maximumVideoSize

Return Value
An NSSize specifying the maximum dimensions at which the receiver should record video. Returns
NSZeroSize if there is no limit.

Instance Methods 73
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Discussion
This method returns the maximum limit on the dimensions of video that the receiver records to a file previously
set by setMaximumVideoSize:. When a size is set, all video recorded by the receiver will be no larger than
the specified size, while still preserving the original aspect ratio of the content. A value of NSZeroSize
indicates that there should be no limit. If this is set to a value other than NSZeroSize, device native
compressed video, such as DV video, will be decompressed so that it can be resized. By default, there is no
limit on the maximum recorded video size.

Availability
QuickTime 7.6.3 or later.

Declared In
QTCaptureFileOutput.h

minimumVideoFrameInterval
Returns the minimum time interval between which the receiver will record consecutive video frames.

- (NSTimeInterval)minimumVideoFrameInterval

Return Value
An NSTimeInterval specifying the minimum interval between video frames. Returns 0 if there is no frame
rate limit set.

Discussion
This method returns the minimum amount of time that should separate consecutive frames recorded by the
receiver. This is equivalent to the inverse of the maximum frame rate. A value of 0 indicates an unlimited
maximum frame rate. If this is set to a value other than 0, device native compressed video, such as DV video,
will be decompressed so that its frame rate can be adjusted. The default value is 0.

Availability
QuickTime 7.6.3 or later.

Declared In
QTCaptureFileOutput.h

outputFileURL
Returns the file URL of the file to which the receiver is currently recording incoming buffers.

- (NSURL *)outputFileURL

Return Value
An NSURL object containing the file URL of the file currently being written by the receiver. Returns NIL if the
receiver is not recording to any file.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

74 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

pauseRecording
Pauses recording to the current output file.

- (void)pauseRecording

Discussion
This method causes the receiver to stop writing captured samples to the current output file returned by
outputFileURL, but leaves the file open so that samples can be written to it in the future, when
resumeRecording is called. This allows clients to record multiple media segments that are not contiguous in
time to a single file.

When clients stop recording or change files using recordToOutputFileURL:bufferDestination: or
recording automatically stops due to an error condition while recording is paused, the output file will be
finished and closed normally without requiring a matching call to resumeRecording. When there is no
current output file, or when recording is already paused, this method does nothing. This method can be
called within the captureOutput:didOutputSampleBuffer:fromConnection: delegate method to
pause recording after an exact media sample.

Availability
QuickTime 7.6.3 or later.

Declared In
QTCaptureFileOutput.h

recordedDuration
Returns the duration of the media recorded by the receiver.

- (QTTime)recordedDuration

Return Value
The recorded time.

Discussion
If recording is in progress, this method returns the total time recorded so far. Otherwise, this method returns
the time recorded in the most recent recording.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

recordedFileSize
Returns the size, in bytes, of the data recorded by the receiver to output files.

- (UInt64)recordedFileSize

Return Value
The recorded size, in bytes.

Instance Methods 75
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Discussion
If a recording is in progress, this method returns the size in bytes of the data recorded so far. Otherwise, this
method returns the size in the most recent recording.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

recordToOutputFileURL:
Calls recordToOutputFileURL:bufferDestination: with a buffer destination of
QTCaptureFileOutputBufferDestinationNewFile.

- (void)recordToOutputFileURL:(NSURL *)url

Parameters
url

An url object containing the URL of the output file, or NIL if the receiver should not record to any
file. This method throws an NSInvalidArgumentException if the URL is not a valid file URL.

Discussion
The method sets the file URL to which the receiver is currently writing output media. If a file at the given URL
already exists when capturing starts, the existing file is overwritten. If NIL is passed as the file URL, the receiver
will stop recording to any file. If this method is invoked while an existing output file was already being
recorded, no media samples are discarded between the old file and the new file. The sample buffer currently
in flight when this method is called will always be written to the new file. Applications can specify where the
sample buffer currently in flight will be recorded using therecordToOutputFileURL:bufferDestination:
method. When the new file is set, applications cannot open the old file until it has finished recording in the
background.

Delegates should implement the
captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError: to be
notified when the file is ready to be opened.

Availability
Mac OS X v10.5 and later.

Related Sample Code
MyRecorder
QT Capture Widget
QTCompressionOptionsWindow
QTRecorder

Declared In
QTCaptureFileOutput.h

recordToOutputFileURL:bufferDestination:
Sets the file written to by the receiver, specifying where the sample buffer currently in flight should be
recorded.

76 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

- (void)recordToOutputFileURL:(NSURL *)url
bufferDestination:(QTCaptureFileOutputBufferDestination)bufferDestination

Parameters
outputURL

An NSURL object containing the URL of the output file, or NIL if the receiver should not record to any
file. This method throws an NSInvalidArgumentException if the URL is not a valid file URL.

bufferDestination
A buffer destination specifying which file should contain the buffer currently in flight.

Discussion
The method sets the file URL to which the receiver is currently writing output media. If a file at the given URL
already exists when capturing starts, the existing file will be overwritten. If NIL is passed as the file URL, the
receiver will stop recording to any file. If this method is invoked while an existing output file was already
being recorded, no media samples will be discarded between the old file and the new file.

Applications can specify where the sample buffer currently in flight will be recorded using the
bufferDestination argument. When the new file is set, applications will not be able to open the old file
until it has finished recording in the background. Delegates should implement the
captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError:method
to be notified when the file is ready to be opened.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureFileOutput.h

resumeRecording
Resumes recording to the current output file after it was previously paused using pauseRecording.

- (void)resumeRecording

Discussion
This method causes the receiver to resume writing captured samples to the current output file returned by
outputFileURL, after recording was previously paused using pauseRecording. This allows clients to record
multiple media segments that are not contiguous in time to a single file. When there is no current output
file, or when recording is not paused, this method does nothing. This method can be called within the
captureOutput:didOutputSampleBuffer:fromConnection: delegate method to resume recording
at an exact media sample.

Availability
QuickTime 7.6.3 or later.

Declared In
QTCaptureFileOutput.h

setCompressionOptions:forConnection:
Sets the options the receiver uses to compress media on the given connection as it is being captured.

Instance Methods 77
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

- (void)setCompressionOptions:(QTCompressionOptions *)compressionOptions
forConnection:(QTCaptureConnection *)connection

Parameters
compressionOptions

A QTCompressionOptions object detailing the options being used to compress captured media,
or NIL if the media should not be re-compressed.

connection
The connection containing the media to be compressed.

Discussion
This method sets the options for compressing media as it is being captured. If compression cannot be
performed in real time, the receiver will drop frames in order to remain synchronized with the session. If the
receiver does not re-compress the output media, this method should be passed NIL. The default value is
NIL.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Discussion
Delegates can determine what to do when the limit is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to nil when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureFileOutput.h

setMaximumRecordedDuration:
Sets the maximum duration of the media that should be recorded by the receiver.

- (void)setMaximumRecordedDuration:(QTTime)maximumRecordedDuration

Parameters
maximumRecordedDuration

The maximum time to be recorded, or QTZeroTime if there should be no limit.

78 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Discussion
This method sets a soft limit on the duration of recorded files. Delegates can determine what to do when
the limit is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to NIL when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

setMaximumRecordedFileSize:
Sets the maximum file size, in bytes, of the file that should be recorded by the receiver.

- (void)setMaximumRecordedFileSize:(UInt64)maximumRecordedFileSize

Parameters
maximumRecordedFileSize

The maximum size, in bytes, to be recorded, or 0 is there should be no limit.

Discussion
This method sets a soft limit on the size of recorded files. Delegates can determine what to do when the limit
is reached by implementing the
captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:method. By default,
the current output file is set to NIL when the limit is reached.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

setMaximumVideoSize:
Sets the maximum dimensions within which the receiver should record video.

- (void)setMaximumVideoSize:(NSSize)maximumVideoSize

Parameters
maximumVideoSize

An NSSize specifying the maximum dimensions at which the receiver should record video. A value
of NSZeroSize indicates that there should be no limit.

Discussion
This method sets the maximum limit on the dimensions of video that the receiver records to a file. When a
size is set, all video recorded by the receiver will be no larger than the specified size, while still preserving
the original aspect ratio of the content. A value of NSZeroSize indicates that there should be no limit. If
this is set to a value other than NSZeroSize, device native compressed video, such as DV video, will be
decompressed so that it can be resized. By default, there is no limit on the maximum recorded video size.

Availability
QuickTime 7.6.3 or later.

Instance Methods 79
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Declared In
QTCaptureFileOutput.h

setMinimumVideoFrameInterval:
Sets the minimum time interval between which the receiver should record consecutive video frames.

- (void)setMinimumVideoFrameInterval:(NSTimeInterval)minimumVideoFrameInterval

Parameters
minimumVideoFrameInterval

An NSTimeInterval specifying the minimum interval between video frames. A value of 0 indicates
that there should be no frame rate limit.

Discussion
This method sets the minimum amount of time that should separate consecutive frames recorded by the
receiver. This is equivalent to the inverse of the maximum frame rate. A value of 0 indicates an unlimited
maximum frame rate. If this is set to a value other than 0, device native compressed video, such as DV video,
will be decompressed so that its frame rate can be adjusted. The default value is 0.

Availability
QuickTime 7.6.3 or later.

Declared In
QTCaptureFileOutput.h

Delegate Methods

captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError:
Informs the delegate when an output file is ready to be opened by applications.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL
forConnections:(NSArray *)connections
dueToError:(NSError *)error

Parameters
captureOutput

The capture file output that has finished writing the file.

outputURL
The file URL of the file that has been written.

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that was
written to the file.

error
An error describing what caused the file to stop recording, or NIL if there was no error.

80 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Discussion
Whenever the receiver’s recordToOutputFileURL: or recordToOutputFileURL:bufferDestination:
method is called during recording, they return immediately, finishing any pending file writing in the
background. Delegates must implement this method to be informed when those files are finished and ready
to be opened by applications.

Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

captureOutput:didOutputSampleBuffer:fromConnection:
Gives the delegate the opportunity to inspect samples as they are received by the output and start and stop
capturing at exact times.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
didOutputSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
captureOutput

The capture file output that is receiving the media data.

sampleBuffer
A sample buffer object containing the sample data and additional information about the sample,
such as its time code and record date.

connection
The capture connection object owned by the receiver that is receiving the sample data.

Discussion
This method is called whenever the file output receives a single media sample (a single video frame, for
example) through the given connection. This gives delegates an opportunity to start and stop capturing or
change output files at an exact sample. Calls to the file output’s recordToOutputFileURL: and
recordToOutputFileURL:bufferDestination:methods are guaranteed to include the received sample
if called from within this method. Delegates can gather information particular to the sample, such as its
record time, and whether it marks a scene change, by inspecting the sampleInfo object. Sample buffers
always contain a single frame of video if called from this method but may also contain multiple packets of
audio. For B-frame video formats, this method is always called in presentation order.

Applications should not assume that this method will be called on the main thread. In addition, this method
is called periodically, so it must be efficient to prevent capture performance problems.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

Delegate Methods 81
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

captureOutput:didPauseRecordingToOutputFileAtURL:forConnections:
Called whenever the output is recording to a file and successfully pauses the recording at the request of the
client.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
didPauseRecordingToOutputFileAtURL:(NSURL *)fileURL
forConnections:(NSArray *)connections

Parameters
captureOutput

The capture file output that has paused its file recording.

fileURL
The file URL of the file that is being written.

connections
An array of QTCaptureConnection objects owned by the file output that provided the data that is
being written to the file.

Discussion
Delegates can use this method to be informed when a request to pause recording is actually respected. It is
safe for delegates to change what the file output is currently doing (starting a new file, for example) from
within this method. Clients should not assume that this method will be called on the main thread, and should
also try to make this method as efficient as possible. If recording to a file is stopped, either manually or due
to an error, this method is not guaranteed to be called, even if a previous call to pauseRecordingwas made.

Availability
QuickTime 7.2.1 or later.

Declared In
QTCaptureFileOutput.h

captureOutput:didResumeRecordingToOutputFileAtURL:forConnections:
Called whenever the output, at the request of the client, successfully resumes a file recording that was paused.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
didResumeRecordingToOutputFileAtURL:(NSURL *)fileURL
forConnections:(NSArray *)connections

Parameters
captureOutput

The capture file output that has resumed its paused file recording.

fileURL
The file URL of the file that is being written.

connections
An array of QTCaptureConnection objects owned by the file output that provided the data that is
being written to the file.

Discussion
Delegates can use this method to be informed when a request to resume a paused recording is actually
respected. It is safe for delegates to change what the file output is currently doing (starting a new file, for
example) from within this method. Clients should not assume that this method will be called on the main

82 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

thread, and should also try to make this method as efficient as possible. If recording to a file is stopped, either
manually or due to an error, this method is not guaranteed to be called, even if a previous call to
resumeRecording was made.

Availability
QuickTime 7.2.1 or later.

Declared In
QTCaptureFileOutput.h

captureOutput:didStartRecordingToOutputFileAtURL:forConnections:
Informs the delegate when the output has started writing to a file.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
didStartRecordingToOutputFileAtURL:(NSURL *)fileURL
forConnections:(NSArray *)connections

Parameters
captureOutput

The capture file output that started writing the file.

outputURL
The file URL of the file being written.

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that is
being written to the file.

Discussion
Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

captureOutput:mustChangeOutputFileAtURL:forConnections:dueToError:
Informs the delegate when an output file can no longer be written using the incoming media.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
mustChangeOutputFileAtURL:(NSURL *)outputFileURL
forConnections:(NSArray *)connections
dueToError:(NSError *)error

Parameters
captureOutput

The capture file output that must finish writing the file.

outputURL
The file URL of the file that is being written.

Delegate Methods 83
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that is
being written to the file.

error
The error that caused the output to require that a new file be written.

Discussion
This method is called if the existing output file for that connection can no longer be written (this occurs, for
example, if the stream format of the samples has changed, the output is receiving invalid samples, or there
is insufficient disk space remaining on the output file’s disk). Delegates implementing this method can start
recording on a new file using recordToOutputFileURL: or
recordToOutputFileURL:bufferDestination: to ensure that incoming data will continue to be recorded.
If the delegate does not implement this method or does not set new output files for the given connections,
recording stops automatically.

Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:
Gives the delegate the opportunity to determine what should happen when an output file has reached a
soft limit.

- (BOOL)captureOutput:(QTCaptureFileOutput *)captureOutput
shouldChangeOutputFileAtURL:(NSURL *)outputFileURL
forConnections:(NSArray *)connections
dueToError:(NSError *)error

Parameters
captureOutput

The capture file output that should finish writing the file.

outputURL
The file URL of the file that is being written.

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that is
being written to the file.

error
The error that caused the output to suggest that a new file be written.

Return Value
Delegates should return YES if the current file should no longer be written, or NO if the current file should
continue to be written.

Discussion
This method is called when the file output encounters a problem, such as dropped media samples (indicated
by a QTErrorMediaDiscontinuity error), that doesn't require that recording stop but may be a reason
for some applications to change files or stop recording. For example, applications concerned with recording

84 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

every frame of video or every sample of audio may want to treat such problems as error conditions rather
than ignoring them. This method is also called when the file output reaches a soft limit, namely one of the
limits set using the setMaximumRecordedDuration: and setMaximumRecordedFileSize: methods.

Delegates should check the value of the error parameter to see what kind of error caused this delegate
method to be called. If the delegate returns NO, the output will continue writing the same file. If the delegate
returns YES and doesn't set a new output file,
captureOutput:mustChangeOutputFileAtURL:forConnections:dueToError: will be called. If the
delegate returns YES and sets a new output file, recording will continue on the new file. If the delegate does
not respond to this method, the file output will automatically continue recording when it encounters one
of these errors, unless it is a QTErrorMaximumDurationReached or QTErrorMaximumFileSizeReached
error, in which case the file output will automatically stop recording.

Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

captureOutput:willFinishRecordingToOutputFileAtURL:forConnections:dueToError:
Informs the delegate when the output will stop writing new samples to a file.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
willFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL
forConnections:(NSArray *)connections
dueToError:(NSError *)error

Parameters
captureOutput

The capture file output that will finish writing the file.

outputURL
The file URL of the file that is being written.

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that is
being written to the file.

error
An error describing what caused the file to stop recording, or nil if there was no error.

Discussion
This method is called when the file output will stop recording new samples to the file at outputFileURL,
either because recordToFile: or recordToFile:bufferDestination: was called, or because an error,
described by the error parameter, occurred (if no error occurred, the error parameter will be NIL). Delegates
should also implement
captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError: to be
notified when the file is ready to be opened by applications.

Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Delegate Methods 85
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Declared In
QTCaptureFileOutput.h

captureOutput:willStartRecordingToOutputFileAtURL:forConnections:
Informs the delegate when the output is about to start writing to a file.

- (void)captureOutput:(QTCaptureFileOutput *)captureOutput
willStartRecordingToOutputFileAtURL:(NSURL *)fileURL
forConnections:(NSArray *)connections

Parameters
captureOutput

The capture file output that will start writing the file.

outputURL
The file URL of the file that will be written.

connections
An array of QTCaptureConnection objects owned by the receiver that provided the data that will
be written to the file.

Discussion
Applications should not assume that this method will be called on the main thread.

Availability
Mac OS X v10.5 and later; QuickTime 7.2.1.

Declared In
QTCaptureFileOutput.h

Constants

QTCaptureFileOutputBufferDestination
Specifies where the media sample buffer currently in flight should be written when changing output files.

enum {
 QTCaptureFileOutputBufferDestinationNewFile = 0,
 QTCaptureFileOutputBufferDestinationOldFile = 1
};
typedef NSUInteger QTCaptureFileOutputBufferDestination;

Constants
QTCaptureFileOutputBufferDestinationNewFile

This tells the output to include the buffer currently in flight in the old file.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureFileOutput.h.

86 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

QTCaptureFileOutputBufferDestinationOldFile
This tells the output to include the buffer currently in flight in the new file.

Available in Mac OS X v10.5 and later.

Declared in QTCaptureFileOutput.h.

Constants 87
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

88 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

QTCaptureFileOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureInput.h

Availability Available in QuickTime 7.2.1 and later.

Overview

This class provides input source connections for a QTCaptureSession. QTCaptureInput is an abstract
class that provides an interface for connecting capture input sources, such as cameras, to a
QTCaptureSession. An input source can have multiple connections. For instance, many cameras output
both audio and video streams. Each connection owned by a QTCaptureInput instance is described by a
QTCaptureConnection.

Tasks

Capturing Input

– connections (page 89)
Returns an array of connections owned by the receiver.

Instance Methods

connections
Returns an array of connections owned by the receiver.

- (NSArray *)connections

Return Value
An NSArray of QTCaptureConnection instances.

Overview 89
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

QTCaptureInput Class Reference

Discussion
For each connection owned by the receiver, this method returns a QTCaptureConnection object describing
the media type, format, and other attributes of the connection.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTRecorder

Declared In
QTCaptureInput.h

90 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

QTCaptureInput Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureLayer.h

Availability Available in QuickTime 7.2.1 and later.

Overview

This class provides a layer that displays video frames currently being captured from a device attached to the
computer, and is intended to provide support for Core Animation, that is, drawing the contents of a capture
session into a layer. QTCaptureLayer renders a capture session within a layer hierarchy.

Tasks

Creating Capture Layers

+ layerWithSession: (page 92)
Creates an autoreleased QTCaptureLayer associated with the specified QTCaptureSession object.

– initWithSession: (page 92)
Creates a QTCaptureLayer associated with the specified QTCaptureSession object.

– session (page 92)
Returns the capture session associated with a QTCaptureLayer object.

– setSession: (page 93)
Sets or resets the capture session associated with a QTCaptureLayer object.

Overview 91
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

QTCaptureLayer Class Reference

Class Methods

layerWithSession:
Creates an autoreleased QTCaptureLayer associated with the specified QTCaptureSession object.

+ (id)layerWithSession:(QTCaptureSession *)session

Parameters
session

The session with which to create an autoreleased QuickTime capture layer object.

Discussion
By default, the movie starts playing immediately at rate 1.0 from the beginning of the movie. These default
characteristics can be modified by setting layer properties or movie properties

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureLayer.h

Instance Methods

initWithSession:
Creates a QTCaptureLayer associated with the specified QTCaptureSession object.

- (id)initWithSession:(QTCaptureSession *)session

Parameters
session

The session with which to initialize the QuickTime capture layer object.

Discussion
By default, the movie starts playing immediately at rate 1.0 from the beginning of the movie. These default
characteristics can be modified by setting layer properties or movie properties.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureLayer.h

session
Returns the capture session associated with a QTCaptureLayer object.

- (QTCaptureSession *)session

92 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

QTCaptureLayer Class Reference

Parameters
session

The session returned by the QuickTime capture layer object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureLayer.h

setSession:
Sets or resets the capture session associated with a QTCaptureLayer object.

- (void)setSession:(QTCaptureSession *)session

Parameters
session

The session set or reset by the QuickTime capture layer object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureLayer.h

Instance Methods 93
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

QTCaptureLayer Class Reference

94 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

QTCaptureLayer Class Reference

Inherits from QTCaptureFileOutput : QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureMovieFileOutput.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code MyRecorder
QT Capture Widget
QTCompressionOptionsWindow
QTRecorder

Overview

This class represents an output destination for QTCaptureSession that writes captured media to QuickTime
movie files. A QTCaptureMovieFileOutput instance writes the media captured by its connected capture
session to QuickTime movie files. The methods implemented by this class are described in the
QTCaptureFileOutput Class Reference.

Overview 95
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

QTCaptureMovieFileOutput Class Reference

96 Overview
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

QTCaptureMovieFileOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureOutput.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code AudioDataOutputToAudioUnit
StillMotion

Overview

QTCaptureOutput is an abstract class that provides an interface for connecting capture output destinations,
such as QuickTime files and video previews, to a QTCaptureSession. Similar to a QTCaptureInput, a
QTCaptureOutput can have multiple connections represented by QTCaptureConnection objects, one for
each stream of media that it receives. Unlike a QTCaptureInput, however, a QTCaptureOutput does not
have any connections when it is first created. When an output is added to a QTCaptureSession, it creates
connections as appropriate so that the session has a destination for all of its input media.

Tasks

Capturing Connections

– connections (page 97)
Returns an array of connections owned by the receiver that are currently connected to a capture
session.

Instance Methods

connections
Returns an array of connections owned by the receiver that are currently connected to a capture session.

Overview 97
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

QTCaptureOutput Class Reference

- (NSArray *)connections

Return Value
An array of QTCaptureConnection instances owned by the receiver that are currently connected to a
capture session.

Discussion
This class creates a new output connection for each input connection of a matching media type connected
to the capture session. The connections method returns an array of connections owned by the receiver
that are currently connected to the capture session’s input connections.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureOutput.h

98 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

QTCaptureOutput Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureSession.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code AudioDataOutputToAudioUnit
MyRecorder
QT Capture Widget
QTRecorder
StillMotion

Overview

This class is the primary interface for capturing media streams. A QTCaptureSession instance provides an
interface for connecting capture input sources, subclasses QTCaptureInput to output destinations and
subclasses of QTCaptureOutput. In addition to managing the connections between inputs and outputs,
instances of QTCaptureSession also manage when a capture is running.

Tasks

Controlling Receiver Capture

– isRunning (page 102)
Returns whether the receiver is running.

– startRunning (page 103)
Tells the receiver to start capturing data from its inputs and sending data to its outputs.

– stopRunning (page 104)
Tells the receiver to stop capturing data from its inputs and sending data to its outputs.

Overview 99
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

Working with Receiver Inputs and Outputs

– addInput:error: (page 100)
Adds an input to the receiver.

– addOutput:error: (page 101)
Adds an output to the receiver.

– inputs (page 101)
Returns an array of inputs connected to the receiver.

– outputs (page 102)
Returns an array of outputs connected to the receiver.

– removeInput: (page 103)
Removes an input from the receiver.

– removeOutput: (page 103)
Removes an output from the receiver.

Instance Methods

addInput:error:
Adds an input to the receiver.

- (BOOL)addInput:(QTCaptureInput *)input
error:(NSError **)errorPtr

Parameters
input

The capture input to be connected to the receiver.

errorPtr
After the method returns, if this parameter is not equal to NIL, it points to an error describing why
the input could not be added, or points to NIL if the input was added successfully.

Return Value
Returns YES if the input was added successfully, or has already been added to the receiver. Returns NO if the
input could not be added.

Discussion
This method adds a QTCaptureInput to the receiver’s list of inputs, adding each of its connections to the
capture session as media sources. If there are any outputs already added to the receiver after an input is
successfully added, each output creates an additional QTCaptureConnection for each stream of media
that it can read from the session and adds it to the list returned by its connections method. If an input is
added successfully, it is retained by the receiver and this method returns YES. If an input is added more than
once, this method does nothing and returns YES. If an input cannot be added, this method returns NO and
returns an NSError in the location pointed to by errorPtr. The same input cannot be added to more than one
capture session. If a client tries to add an input that has already been added to another session, the method
throws an NSInvalidArgumentException.

Availability
Mac OS X v10.5 and later.

100 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

Related Sample Code
LiveVideoMixer3
QT Capture Widget

Declared In
QTCaptureSession.h

addOutput:error:
Adds an output to the receiver.

- (BOOL)addOutput:(QTCaptureOutput *)output
error:(NSError **)errorPtr

Parameters
output

The QTCaptureOutput instance connection to be connected to the receiver.

errorPtr
If not equal to NIL, points to an error describing why the output could not be added, or points to
NIL if the output was added successfully.

Return Value
Returns YES if the output was added successfully, or has already been added to the receiver. Returns NO if
the output could not be added.

Discussion
This method adds a QTCaptureOutput to the receiver’s list of outputs. After an output is successfully added
to a session, it creates one QTCaptureConnection for each stream of media that it can read from the session
and adds it to the list returned by its connections method. If an input is added successfully, it is retained
by the receiver and this method returns YES. If an output is added more than once, this method does nothing
and returns YES. If an output cannot be added, this method returns NO and returns an NSError in the location
pointed to by errorPtr. The same output cannot be added to more than one capture session. If a client tries
to add an output that has already been added to another session, the method throws an
NSInvalidArgumentException.

Availability
Mac OS X v10.5 and later.

Related Sample Code
LiveVideoMixer3
QT Capture Widget

Declared In
QTCaptureSession.h

inputs
Returns an array of inputs connected to the receiver.

- (NSArray *)inputs

Instance Methods 101
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

Return Value
An array of QTCaptureInput instances.

Discussion
A capture session can have one or more input sources, which are instances of QTCaptureInput.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureSession.h

isRunning
Returns whether the receiver is running.

- (BOOL)isRunning

Return Value
Returns YES if the receiver is running. NO otherwise.

Discussion
When a QTCaptureSession is running, it continuously reads media from its inputs and sends it to those
outputs currently accepting data. When data does not need to be sent to file outputs, previews, and other
outputs, capture sessions should not be running so that the overhead from capturing not affect application
performance. By default, capture sessions are not running.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureSession.h

outputs
Returns an array of outputs connected to the receiver.

- (NSArray *)outputs

Return Value
An array of QTCaptureOutput instances.

Discussion
A capture session can have one or more output destinations, which are instances of QTCaptureOutput.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureSession.h

102 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

removeInput:
Removes an input from the receiver.

- (void)removeInput:(QTCaptureInput *)input

Parameters
input

The QTCaptureInput to be removed from the receiver.

Discussion
This method removes a QTCaptureInput added with addInput:error: and releases it.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureSession.h

removeOutput:
Removes an output from the receiver.

- (void)removeOutput:(QTCaptureOutput *)output

Parameters
output

The QTCaptureOutput instance to be disconnected from the receiver.

Discussion
This method removes a QTCaptureOutput instance previously added using addOutput:error: and
releases it.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureSession.h

startRunning
Tells the receiver to start capturing data from its inputs and sending data to its outputs.

- (void)startRunning

Instance Methods 103
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

Discussion
When a QTCaptureSession is running, it continuously reads media from its inputs and sends it to those
outputs currently accepting data. When data does not need to be sent to file outputs, previews, and other
outputs, the capture session should not be running so that the overhead from capturing does not affect
application performance. By default, capture sessions are not running.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureSession.h

stopRunning
Tells the receiver to stop capturing data from its inputs and sending data to its outputs.

- (void)stopRunning

Discussion
When a QTCaptureSession is running, it continuously reads media from its inputs and sends it to those
outputs currently accepting data. When data does not need to be sent to file outputs, previews, and other
outputs, the capture session should not be running so that the overhead from capturing does not affect
application performance. By default, capture sessions are not running.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureSession.h

Constants

Notification Keys
Constants used as notification keys.

104 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

NSString * const QTCaptureSessionErrorKey
NSString * const QTCaptureSessionRuntimeErrorNotification

Constants
QTCaptureSessionErrorKey

Used as a notification key in the user info dictionary passed to
QTCaptureSessionRuntimeErrorNotification to indicate the error responsible for the
notification. The value is an NSError.

QuickTime 7.2.1 and later.

Declared in QTCaptureSession.h.

QTCaptureSessionRuntimeErrorNotification
Posted when an error occurs that while a capture session is running prevents input media from being
previewed or captured. The notification user info dictionary QTCaptureSessionErrorKey entry
contains an NSError object that describes the error that prevented the session from running properly.
Normally, such errors are caused by an invalid configuration of inputs and outputs.

QuickTime 7.2.1 and later.

Declared in QTCaptureSession.h.

Constants 105
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

106 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

QTCaptureSession Class Reference

Inherits from QTCaptureOutput : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureVideoPreviewOutput.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code LiveVideoMixer3

Overview

This class represents an output destination for a QTCaptureSession that can be used to preview the video
being captured. Instances of QTCaptureVideoPreviewOutputproduce decompressed video frames suitable
for preview. Because the output video is intended for preview only, instances may drop frames or reduce
output quality in order to improve overall performance of the capture session. Applications that need to
process full-quality frames without dropping them should use QTCaptureDecompressedVideoOutput
instead.

Applications can access the decompressed frames from a QuickTime visual context for each output connection,
or via the captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: (page 111)
delegate method. In addition, clients can create subclasses of QTCaptureVideoPreviewOutput to add
custom capturing behavior. Application Kit clients wishing to preview video do not normally need to use
QTCaptureVideoPreviewOutput instances directly, since they are created and managed by instances of
QTCaptureView. Clients should use QTCaptureVideoPreviewOutput directly only when they require
preview functionality not provided by QTCaptureView or when they need to process decompressed frames
directly.

Note that clients should not attempt to access or configure a QTCaptureView’s preview output.

Tasks

Previewing Output

– delegate (page 108)
Returns the receiver’s delegate.

Overview 107
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class
Reference

– pixelBufferAttributes (page 109)
Returns the Core Video pixel buffer attributes previously set by setPixelBufferAttributes: that
determine what kind of pixel buffers are output by the receiver.

– setPixelBufferAttributes: (page 110)
Sets the CoreVideo pixel buffer attributes that determine what kind of pixel buffers are output by the
receiver.

– visualContextForConnection: (page 111)
Returns the QuickTime visual context used to preview the video for the given connection.

– outputVideoFrame:withSampleBuffer:fromConnection: (page 108)
Called whenever the receiver outputs a new video frame.

– setDelegate: (page 110)
Sets the receiver’s delegate.

– setVisualContext:forConnection: (page 110)
Sets the QuickTime visual context used to preview the video for the described connection.

Capturing Output

– captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: (page 111) delegate
method

Called whenever the video preview output outputs a new video frame.

Instance Methods

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureVideoPreviewOutput.h

outputVideoFrame:withSampleBuffer:fromConnection:
Called whenever the receiver outputs a new video frame.

- (void)outputVideoFrame:(CVImageBufferRef)videoFrame
withSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Parameters
videoFrame

A buffer containing the decompressed frame.

108 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class Reference

sampleBuffer
A sample buffer containing additional information about the frame, such as its presentation time.

connection
The connection from which the video was received.

Discussion
This method should not be invoked directly. Subclasses can override this method to provide custom processing
behavior for each frame. The default implementation calls the delegate’s
captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection: method. Subclasses
should not assume that this method will be called on the main thread. In addition, this method is called
periodically, so it must be efficient to prevent capture performance problems.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureVideoPreviewOutput.h

pixelBufferAttributes
Returns the Core Video pixel buffer attributes previously set bysetPixelBufferAttributes: that determine
what kind of pixel buffers are output by the receiver.

- (NSDictionary *)pixelBufferAttributes

Return Value
A dictionary containing pixel buffer attributes for buffers output by the reciever. The keys in the dictionary
are described in CoreVideo/CVPixelBuffer.h. If the return value is NIL, then the receiver outputs buffers
using the fastest possible pixel buffer attributes.

Discussion
This method returns the pixel buffer attributes set by setPixelBufferAttributes: that clients can use
to customize the size and pixel format of the video frames output by the receiver. When the dictionary is
non-nil, the receiver will attempt to output pixel buffers using the attributes specified in the dictionary. A
non-nil dictionary also guarantees that the output CVImageBuffer is a CVPixelBuffer. When the value
for kCVPixelBufferPixelFormatTypeKey is set to an NSNumber, all image buffers output by the receiver
will be in that format. When the value is an NSArray, image buffers output by the receiver will be in the most
optimal format specified in that array. If the captured images are not in the one of the specified pixel formats,
then a format conversion will be performed. If the dictionary is NIL or there is no value for the
kCVPixelBufferPixelFormatTypeKey, then the receiver will output images in the most efficient possible
format given the input. For example, if the source is an iSight producing component Y'CbCr 8-bit 4:2:2 video
then Y'CbCr 8-bit 4:2:2 will be used as the output format in order to avoid any conversions. The default value
for the returned dictionary is NIL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureVideoPreviewOutput.h

Instance Methods 109
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class Reference

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureVideoPreviewOutput.h

setPixelBufferAttributes:
Sets the CoreVideo pixel buffer attributes that determine what kind of pixel buffers are output by the receiver.

- (void)setPixelBufferAttributes:(NSDictionary *)pixelBufferAttributes

Parameters
pixelBufferAttributes

A dictionary containing pixel buffer attributes for buffers that will be output by the reciever. The keys
in the dictionary are described in CoreVideo/CVPixelBuffer.h. If the dictionary is NIL, then the
receiver outputs buffers using the fastest possible pixel buffer attributes.

Discussion
This method sets the pixel buffer attributes that clients can use to customize the size and pixel format of the
video frames output by the receiver. When the dictionary is non-nil, the receiver will attempt to output pixel
buffers using the attributes specified in the dictionary. A non-nil dictionary also guarantees that the output
CVImageBuffer is a CVPixelBuffer. When the value for kCVPixelBufferPixelFormatTypeKey is set
to an NSNumber, all image buffers output by the receiver will be in that format. When the value is an NSArray,
image buffers output by the receiver will be in the most optimal format specified in that array. If the captured
images are not in the one of the specified pixel formats, then a format conversion will be performed. If the
dictionary is NIL or there is no value for the kCVPixelBufferPixelFormatTypeKey, then the receiver will
output images in the most efficient possible format given the input. For example, if the source is an iSight
producing component Y'CbCr 8-bit 4:2:2 video then Y'CbCr 8-bit 4:2:2 will be used as the output format in
order to avoid any conversions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureVideoPreviewOutput.h

setVisualContext:forConnection:
Sets the QuickTime visual context used to preview the video for the described connection.

- (void)setVisualContext:(QTVisualContextRef)visualContext
forConnection:(QTCaptureConnection *)connection

Parameters
visualContext

A QTVisualContextRef to be used for the preview of the given connection.

110 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class Reference

connection
The connection to be previewed by the given visual context.

Discussion
If the application has an existing visual context being used to display video, this method can be used to set
the visual context for the preview.

Availability
Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
QTCaptureVideoPreviewOutput.h

visualContextForConnection:
Returns the QuickTime visual context used to preview the video for the given connection.

- (QTVisualContextRef)visualContextForConnection:(QTCaptureConnection *)connection

Parameters
connection

The connection previewed by the returned visual context.

Return Value
A QTVisualContextRef that provides access to a video preview for the given connection.

Discussion
The returned visual context can be used to obtain frames that can be used to display a video preview of the
capture session. By default this method returns NULL, until a visual context is set using
setVisualContext:forConnection:.

Availability
Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
QTCaptureVideoPreviewOutput.h

Delegate Methods

captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection:
Called whenever the video preview output outputs a new video frame.

- (void)captureOutput:(QTCaptureOutput *)captureOutput
didOutputVideoFrame:(CVImageBufferRef)videoFrame
withSampleBuffer:(QTSampleBuffer *)sampleBuffer
fromConnection:(QTCaptureConnection *)connection

Delegate Methods 111
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class Reference

Parameters
captureOutput

The QTCaptureVideoPreviewOutput instance that output the frame.

videoFrame
A CVImageBufferRef containing the decompressed frame.

sampleBuffer
A QTSampleBuffer object containing additional information about the frame, such as its presentation
time.

connection
The connection from which the video was received.

Discussion
Delegates receive this method whenever the output decompresses and outputs a new video frame. Delegates
can use the provided video frame for a custom preview or for further image processing. Delegates should
not assume that this method will be called on the main thread. In addition, this method is called periodically,
so it must be efficient to prevent capture performance problems.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureDecompressedVideoOutput.h

112 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

QTCaptureVideoPreviewOutput Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCaptureView.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code MyRecorder
QT Capture Widget
QTCompressionOptionsWindow
QTRecorder
StillMotion

Overview

This is a subclass of NSView that displays a video preview of a capture session. A QTCaptureView previews
the video being processed by an instance of QTCaptureSession. This class creates and maintains its own
QTCaptureVideoPreviewOutput as necessary to gather preview video from the capture session.

Tasks

Associating a View with a Capture Session

– availableVideoPreviewConnections (page 114)
Returns an array of output video connections that can be previewed.

– captureSession (page 115)
Returns the capture session being previewed by the receiver.

– setCaptureSession: (page 116)
Sets the capture session to be previewed by the receiver.

– setVideoPreviewConnection: (page 117)
Sets the output connection to be previewed by the receiver.

Overview 113
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

– videoPreviewConnection (page 118)
Returns the output connection being previewed by the receiver.

Controlling View Appearance

– fillColor (page 115)
Returns the fill color drawn in the area of the view not covered by the video preview.

– preservesAspectRatio (page 116)
Returns whether the receiver preserves the aspect ratio of the video preview when drawing it.

– previewBounds (page 116)
Returns the rectangle occupied by the video preview in the view.

– setFillColor: (page 117)
Sets the fill color drawn in the area of the view not covered by the video preview.

– setPreservesAspectRatio: (page 117)
Sets whether the receiver preserves the aspect ratio of the video preview when drawing it.

Getting and Setting a Delegate

– delegate (page 115)
Returns the receiver’s delegate.

– setDelegate: (page 117)
Sets the receiver’s delegate.

Methods Implemented by the Delegate

– view:willDisplayImage: (page 118) delegate method
Delegates of QTCaptureView can implement this method to modify the image that is to be drawn
into a QTCaptureView.

Instance Methods

availableVideoPreviewConnections
Returns an array of output video connections that can be previewed.

- (NSArray *)availableVideoPreviewConnections

Return Value
An array of QTCaptureConnection instances for connections available to be previewed.

Discussion
This method returns an array of connections that can be previewed with the receiver. The returned connections
can be used with the setVideoPreviewConnection: method to set the connection being previewed by
the receiver.

114 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

If there are multiple video connections that can be previewed, this method can determine which the view
will display.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

captureSession
Returns the capture session being previewed by the receiver.

- (QTCaptureSession *)captureSession

Return Value
A QTCaptureSession instance used for the preview.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

fillColor
Returns the fill color drawn in the area of the view not covered by the video preview.

- (NSColor *)fillColor

Return Value
An NSColor of the receiver’s fill color.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

Instance Methods 115
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

preservesAspectRatio
Returns whether the receiver preserves the aspect ratio of the video preview when drawing it.

- (BOOL)preservesAspectRatio

Return Value
Returns YES if the video preview aspect ratio is preserved; otherwise, NO.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

previewBounds
Returns the rectangle occupied by the video preview in the view.

- (NSRect)previewBounds

Return Value
The rectangle occupied by the video preview in the view.

Discussion
The default implementation of this method returns a video rectangle based on the value returned by
preservesAspectRatio. Subclasses can override this method to change the rectangle occupied by the
video preview.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

setCaptureSession:
Sets the capture session to be previewed by the receiver.

- (void)setCaptureSession:(QTCaptureSession *)captureSession

Parameters
captureSession

A QTCaptureSession instance to be used for the preview.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QT Capture Widget

Declared In
QTCaptureView.h

116 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

setFillColor:
Sets the fill color drawn in the area of the view not covered by the video preview.

- (void)setFillColor:(NSColor *)fillColor

Parameters
fillColor

An NSColor to be used for the receiver’s fill color.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

setPreservesAspectRatio:
Sets whether the receiver preserves the aspect ratio of the video preview when drawing it.

- (void)setPreservesAspectRatio:(BOOL)preservesAspectRatio

Parameters
preservesAspectRatio

If YES, preserves the aspect ratio; otherwise, NO.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

setVideoPreviewConnection:
Sets the output connection to be previewed by the receiver.

- (void)setVideoPreviewConnection:(QTCaptureConnection *)connection

Parameters
connection

A QTCaptureConnection instance for the connection to be previewed.

Instance Methods 117
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

Discussion
A QTCaptureView can only preview one video connection at a time. This method sets the output connection
to be previewed by the receiver. The given connection must be one of the connections returned by
availableVideoPreviewConnections or this method throws an NSInvalidArgumentException.

If there are multiple video connections that can be previewed, this method can determine which the view
will display.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

videoPreviewConnection
Returns the output connection being previewed by the receiver.

- (QTCaptureConnection *)videoPreviewConnection

Return Value
A QTCaptureConnection instance for the previewed connection.

Discussion
A QTCaptureView can preview only one video connection at a time. This method returns the output
connection currently being previewed by the receiver.

If there are multiple video connections that can be previewed, this method can determine which the view
will display.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

Delegate Methods

view:willDisplayImage:
Delegates of QTCaptureView can implement this method to modify the image that is to be drawn into a
QTCaptureView.

- (CIImage *)view:(QTCaptureView *)view willDisplayImage:(CIImage *)image

Parameters
view

A QTCaptureView object that identifies the view which is about to draw.

image
A CIImage object that represents the frame that will otherwise be drawn to the QTCaptureView.

118 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

Return Value
Delegates should return a CIImage object to be drawn by the capture view, or NIL if the capture view should
draw the original image.

Discussion
The image parameter is a CIImage representing the captured frame that is about to be drawn into a
QTCaptureView. The delegate can return another image that modifies the source image (by applying a
CIFilter, for example). The returned image will then be drawn into the capture view instead of the source
image. The delegate can also return NIL or the original image to leave the drawn image unmodified.

Availability
Mac OS X v10.5 and later.

Declared In
QTCaptureView.h

Delegate Methods 119
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

120 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

QTCaptureView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTCompressionOptions.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code MyRecorder
QTCompressionOptionsWindow

Overview

This class represents a set of compression options for a particular type of media. QTCompressionOptions
objects are used to describe compression options for different kinds of media. Compression options are
created from presets keyed by a named identifier. Preset identifiers are described in the “Compression
Options Identifiers” (page 124) section that describes the Compression Options Identifiers.

Note that not all documented identifiers may be available for a given system configuration. Clients should
always query for available identifiers first.

Tasks

Creating and Configuring Compression Options

+ compressionOptionsIdentifiersForMediaType: (page 122)
Returns all of the possible identifiers for the given media type that can be used with
compressionOptionsWithIdentifier: on the user’s system.

+ compressionOptionsWithIdentifier: (page 122)
Returns a compression options object configured for the given identifier.

Receiving Compression Options

– mediaType (page 124)
The media type on which the receiver’s compression options should be used.

Overview 121
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

– localizedDisplayName (page 123)
A short localized name describing the receiver’s compression options.

– localizedCompressionOptionsSummary (page 123)
A localized summary of the receiver’s compression options.

– isEqualToCompressionOptions: (page 123)
Returns whether the receiver contains options identical to those in the given compression options
object.

Class Methods

compressionOptionsIdentifiersForMediaType:
Returns all of the possible identifiers for the given media type that can be used with
compressionOptionsWithIdentifier: on the user’s system.

+ (NSArray *)compressionOptionsIdentifiersForMediaType:(NSString *)mediaType

Parameters
mediaType

A media type used to create compression options.

Return Value
An array of strings that can be used to create compression options with the
compressionOptionsWithIdentifier: method.

Discussion
Media types are defined in QTMedia.h.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTCompressionOptionsWindow

Declared In
QTCompressionOptions.h

compressionOptionsWithIdentifier:
Returns a compression options object configured for the given identifier.

+ (id)compressionOptionsWithIdentifier:(NSString *)identifier

Parameters
identifier

The identifier for the compression options object.

Return Value
A compression options object with the appropriate compression options.

122 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

Availability
Mac OS X v10.5 and later.

Related Sample Code
MyRecorder
QTCompressionOptionsWindow

Declared In
QTCompressionOptions.h

Instance Methods

isEqualToCompressionOptions:
Returns whether the receiver contains options identical to those in the given compression options object.

- (BOOL)isEqualToCompressionOptions:(QTCompressionOptions *)compressionOptions

Parameters
compressionOptions

The compression options of the compression options object.

Availability
Mac OS X v10.5 and later.

Declared In
QTCompressionOptions.h

localizedCompressionOptionsSummary
A localized summary of the receiver’s compression options.

- (NSString *)localizedCompressionOptionsSummary

Return Value
A localized string summarizing the receiver's compression options.

Availability
Mac OS X v10.5 and later.

Declared In
QTCompressionOptions.h

localizedDisplayName
A short localized name describing the receiver’s compression options.

- (NSString *)localizedDisplayName

Instance Methods 123
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

Return Value
A localized string appropriate for display in the user interface (in a list of compression options, for example).

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTCompressionOptionsWindow

Declared In
QTCompressionOptions.h

mediaType
The media type on which the receiver’s compression options should be used.

- (NSString *)mediaType

Return Value
A QuickTime media type, such as QTMediaTypeVideo or QTMediaTypeSound.

Availability
Mac OS X v10.5 and later.

Declared In
QTCompressionOptions.h

Constants

Compression Options Identifiers
These identifiers can be passed to the compressionOptionsWithIdentifier: class method to get an
instance configured with the compression options for that identifier. Each identifier represents a set of options
that determine how media will be compressed.

124 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

QTCompressionOptionsLosslessAppleIntermediateVideo;
QTCompressionOptionsLosslessAnimationVideo;
QTCompressionOptions120SizeH264Video;
QTCompressionOptions240SizeH264Video;
QTCompressionOptionsSD480SizeH264Video;
QTCompressionOptions120SizeMPEG4Video;
QTCompressionOptions240SizeMPEG4Video;
QTCompressionOptionsSD480SizeMPEG4Video;
QTCompressionOptionsLosslessALACAudio;
QTCompressionOptionsHighQualityAACAudio;
QTCompressionOptionsVoiceQualityAACAudio;

Constants
QTCompressionOptionsLosslessAppleIntermediateVideo

Compresses video using the Apple Intermediate codec at lossless quality.

This is appropriate for an intermediate format for media that requires further processing.

Only available in 32-bit.

QTCompressionOptionsLosslessAnimationVideo
Compresses video using the Animation codec at highest quality and color depth.

This is appropriate for an intermediate format for media that requires further processing.

QTCompressionOptions120SizeH264Video
Compresses video using the H.264 codec using medium bit-rate settings with dimensions no larger
than 160x120.

This is appropriate for delivery to low-bandwidth and low-capacity destinations.

QTCompressionOptions240SizeH264Video
Compresses video using the H.264 codec using medium bit-rate settings with dimensions no larger
than 320x240.

This is appropriate for delivery to medium-bandwidth and medium-capacity destinations.

QTCompressionOptionsSD480SizeH264Video
Compresses video using the H.264 codec using medium bit-rate settings with dimensions no larger
than 720x480.

This is appropriate for delivery to medium and high-bandwidth and medium- and high-capacity
destinations.

QTCompressionOptions120SizeMPEG4Video
Compresses video using the MPEG-4 codec using medium bit-rate settings with dimensions no larger
than 160x120.

This is appropriate for delivery to low-bandwidth and low-capacity destinations.

Only available in 32-bit.

QTCompressionOptions240SizeMPEG4Video
Compresses video using the MPEG-4 codec using medium bit-rate settings with dimensions no larger
than 320x240.

This is appropriate for delivery to medium-bandwidth and medium-capacity destinations.

Only available in 32-bit.

Constants 125
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

QTCompressionOptionsSD480SizeMPEG4Video
Compresses video using the MPEG-4 codec using medium bit-rate settings with dimensions no larger
than 720x480.

This is appropriate for delivery to medium and high-bandwidth and medium- and high-capacity
destinations.

Only available in 32-bit.

QTCompressionOptionsLosslessALACAudio
Compresses audio using the Apple Lossless codec.

This is appropriate for an intermediate format for media that requires further processing.

QTCompressionOptionsHighQualityAACAudio
Compresses audio using the AAC codec at 64 kbps per channel.

This is appropriate for delivery of high-quality music and other audio.

QTCompressionOptionsVoiceQualityAACAudio
Compresses audio using the AAC codec at 32 kbps per channel.

This is appropriate for delivery of voice recordings.

126 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

QTCompressionOptions Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Availability Available in Mac OS X v10.3 and later.

Declared in QTKit/QTDataReference.h

Overview

A QTDataReference object is a representation of a QuickTime data reference which specifies the location
of a QuickTime movie or some media data. You can create QTDataReference objects that refer to data
stored in files accessed using filenames or URLs, or in memory accessed using handles, pointers, or NSData
objects.

Tasks

Creating a QTDataReference

+ dataReferenceWithDataRef:type: (page 129)
Creates a QTDataReference object of type type initialized with data from dataRef.

+ dataReferenceWithDataRefData:type: (page 129)
Creates a QTDataReference object of type type initialized with data from dataRefData.

+ dataReferenceWithReferenceToFile: (page 130)
Creates a QTDataReference object for the file fileName.

+ dataReferenceWithReferenceToURL: (page 131)
Creates a QTDataReference object for the URL url.

+ dataReferenceWithReferenceToData: (page 129)
Creates a QTDataReference object for the data block data.

+ dataReferenceWithReferenceToData:name:MIMEType: (page 130)
Creates a QTDataReference object for the data block data.

Overview 127
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Initializing a QTDataReference

– initWithDataRef:type: (page 132)
Initializes a newly created QTDataReference object with data from dataRef.

– initWithDataRefData:type: (page 132)
Initializes a newly created QTDataReference object with data from dataRefData.

– initWithReferenceToFile: (page 133)
Initializes a newly created QTDataReference object for the file fileName.

– initWithReferenceToURL: (page 133)
Initializes a newly created QTDataReference object for the URL url.

– initWithReferenceToData: (page 132)
Initializes a newly created QTDataReference object for the data block data.

– initWithReferenceToData:name:MIMEType: (page 132)
Initializes a newly created QTDataReference object for the data block data.

Getting and Setting Data Reference Information

– dataRef (page 131)
Returns the QuickTime data reference associated with a QTDataReference object.

– dataRefData (page 131)
Returns the QuickTime data reference data associated with a QTDataReference object, stored in an
NSData object.

– dataRefType (page 131)
Returns the type of the data reference associated with a QTDataReference object.

– referenceFile (page 134)
Returns the file name of the data reference associated with a QTDataReference object.

– referenceURL (page 134)
Returns the URL of the data reference associated with a QTDataReference object.

– referenceData (page 134)
Returns the reference data of a QTDataReference object, that is, the NSData object passed to
initWithReferenceToData or initWithReferenceToData:name:MIMEType.

– name (page 134)
Returns the name in a file-naming extension associated with a QTDataReference object.

– MIMEType (page 133)
Returns the type in a MIME type extension associated with a QTDataReference object.

– setDataRef: (page 135)
Sets the data reference data of a QTDataReference object to dataRef.

– setDataRefType: (page 135)
Sets the data reference type of a QTDataReference object to type.

128 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Class Methods

dataReferenceWithDataRef:type:
Creates a QTDataReference object of type type initialized with data from dataRef.

+ (id)dataReferenceWithDataRef:(Handle)dataRef type:(NSString *)type

Parameters
dataRef

The data reference stored as a handle in a QTDataReference object.

type
The type of initialized data from a data reference.

Discussion
You can use this call to convert an existing QuickTime data reference (stored as a handle) into a
QTDataReference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataReferenceWithDataRefData:type:
Creates a QTDataReference object of type type initialized with data from dataRefData.

+ (id)dataReferenceWithDataRefData:(NSData *)dataRefData type:(NSString *)type

Parameters
dataRefData

The NSData object with data referenced data.

type
The type initialized with data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataReferenceWithReferenceToData:
Creates a QTDataReference object for the data block data.

+ (id)dataReferenceWithReferenceToData:(NSData *)data

Class Methods 129
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Parameters
data

The data for the QTDataReference object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataReferenceWithReferenceToData:name:MIMEType:
Creates a QTDataReference object for the data block data.

+ (id)dataReferenceWithReferenceToData:(NSData *)data name:(NSString *)name
MIMEType:(NSString *)MIMEType

Parameters
data

The data of the QTDataReference object.

name
The name of the QTDataReference object.

MIMEType
The MIME type for the data reference.

Discussion
This data reference has two data reference extensions, a file-naming extension and a MIME type extension.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataReferenceWithReferenceToFile:
Creates a QTDataReference object for the file fileName.

+ (id)dataReferenceWithReferenceToFile:(NSString *)fileName

Parameters
fileName

The file name for a full path for a file.

Discussion
The fileName is assumed to be a full path name for a file.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

130 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

dataReferenceWithReferenceToURL:
Creates a QTDataReference object for the URL url.

+ (id)dataReferenceWithReferenceToURL:(NSURL *)url

Parameters
url

The URL for the QTDataReference object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

Instance Methods

dataRef
Returns the QuickTime data reference associated with a QTDataReference object.

- (Handle)dataRef

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataRefData
Returns the QuickTime data reference data associated with a QTDataReference object, stored in an NSData
object.

- (NSData *)dataRefData

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

dataRefType
Returns the type of the data reference associated with a QTDataReference object.

- (NSString *)dataRefType

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 131
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Declared In
QTDataReference.h

initWithDataRef:type:
Initializes a newly created QTDataReference object with data from dataRef.

- (id)initWithDataRef:(Handle)dataRef type:(NSString *)type

Discussion
The QTDataReference is of type dataRefType. You can use this call to convert an existing QuickTime data
reference (stored as a handle) into a QTDataReference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

initWithDataRefData:type:
Initializes a newly created QTDataReference object with data from dataRefData.

- (id)initWithDataRefData:(NSData *)dataRefData type:(NSString *)type

Discussion
The QTDataReference is of type dataRefType.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

initWithReferenceToData:
Initializes a newly created QTDataReference object for the data block data.

- (id)initWithReferenceToData:(NSData *)data

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

initWithReferenceToData:name:MIMEType:
Initializes a newly created QTDataReference object for the data block data.

132 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

- (id)initWithReferenceToData:(NSData *)data name:(NSString *)name MIMEType:(NSString
 *)MIMEType

Discussion
This data reference has two data reference extensions: a file-naming extension and a MIME type extension.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

initWithReferenceToFile:
Initializes a newly created QTDataReference object for the file fileName.

- (id)initWithReferenceToFile:(NSString *)fileName

Parameters
fileName

The file name for the file.

Discussion
The fileName is assumed to be a full path name for a file.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

initWithReferenceToURL:
Initializes a newly created QTDataReference object for the URL url.

- (id)initWithReferenceToURL:(NSURL *)url

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

MIMEType
Returns the type in a MIME type extension associated with a QTDataReference object.

- (NSString *)MIMEType

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 133
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Declared In
QTDataReference.h

name
Returns the name in a file-naming extension associated with a QTDataReference object.

- (NSString *)name

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

referenceData
Returns the reference data of a QTDataReference object, that is, the NSData object passed to
initWithReferenceToData or initWithReferenceToData:name:MIMEType.

- (NSData *)referenceData

Discussion
For some QTDataReference objects, this may be NIL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

referenceFile
Returns the file name of the data reference associated with a QTDataReference object.

- (NSString *)referenceFile

Discussion
For some QTDataReference objects, this name may be NIL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

referenceURL
Returns the URL of the data reference associated with a QTDataReference object.

- (NSURL *)referenceURL

134 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Discussion
For some QTDataReference objects, this URL may be NIL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

setDataRef:
Sets the data reference data of a QTDataReference object to dataRef.

- (void)setDataRef:(Handle)dataRef

Discussion
The previous data reference data is disposed of.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

setDataRefType:
Sets the data reference type of a QTDataReference object to type.

- (void)setDataRefType:(NSString *)type

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTDataReference.h

Constants

Data Reference Types
Constants are Cocoa identifiers for the basic data reference types. One of these types would be returned, for
instance, by this method: - (NString *) dataRefType.

Constants 135
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

NSString * const QTDataReferenceTypeFile;
NSString * const QTDataReferenceTypeHandle;
NSString * const QTDataReferenceTypePointer;
NSString * const QTDataReferenceTypeResource;
NSString * const QTDataReferenceTypeURL;

Constants
QTDataReferenceTypeFile

The file type for a QTDataReference object.

Available in Mac OS X v10.4 and later.

Declared in QTDataReference.h.

QTDataReferenceTypeHandle
The handle type for a QTDataReference object.

Available in Mac OS X v10.4 and later.

Declared in QTDataReference.h.

QTDataReferenceTypePointer
The pointer type for a QTDataReference object.

Available in Mac OS X v10.4 and later.

Declared in QTDataReference.h.

QTDataReferenceTypeResource
The resource type for a QTDataReference object.

Available in Mac OS X v10.4 and later.

Declared in QTDataReference.h.

QTDataReferenceTypeURL
The URL type for a QTDataReference object.

Available in Mac OS X v10.4 and later.

Declared in QTDataReference.h.

136 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

QTDataReference Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTFormatDescription.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code AudioDataOutputToAudioUnit

Overview

QTFormatDescription objects are used to describe the media format of media samples and of media
sources, such as devices and capture connections. Format descriptions include basic information about the
media, such as media type and format type (or codec type), as well as extended information specific to each
media type. The extended information can be accessed via the object's attributeForKey: and
formatDescriptionAttributes methods, using the keys described in the “Core Audio and Video
Types” (page 140) section. In addition to these explicit methods, applications can use key-value coding to get
extended attributes. For an object that supports a given attribute, valueForKey:will be functionally identical
to attributeForKey:. Applications wishing to observe changes for a given attribute can add a key-value
observer where the key path is the attribute key.

Tasks

Formatting Different Types of Media

– attributeForKey: (page 138)
Returns the current value of the format description attribute for the given key.

– formatDescriptionAttributes (page 138)
Returns a dictionary of all attributes set for the receiver.

– formatType (page 139)
Returns the format type of the described media, a four character code representing the format or
codec type.

– isEqualToFormatDescription: (page 139)
Returns whether the receiver describes the same format as the given format description.

Overview 137
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

– localizedFormatSummary (page 139)
Returns a localized summary of the media format.

– mediaType (page 140)
Returns the media type of the described media.

– quickTimeSampleDescription (page 140)
Returns the media’s QuickTime SampleDescription.

Instance Methods

attributeForKey:
Returns the current value of the format description attribute for the given key.

- (id)attributeForKey:(NSString *)key

Parameters
key

The key for the desired format description attribute.

Discussion
Use this method to get attributes of a format description. The keys that can be used with this method are
described in the Constants section. Applications using key-value coding can also get an attribute for a given
key by passing that key to the NSObject valueForKey: method.

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit

Declared In
QTFormatDescription.h

formatDescriptionAttributes
Returns a dictionary of all attributes set for the receiver.

- (NSDictionary *)formatDescriptionAttributes

Discussion
Applications can use this method to determine what attributes a specific format description supports.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTFormatDescription.h

138 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

formatType
Returns the format type of the described media, a four character code representing the format or codec type.

- (UInt32)formatType

Parameters
formatType

The format type for the described media.

Discussion
This method returns the specific format, or codec, used to represent the media. Video format types are defined
in QuickTime/ImageCompression.h and audio format types are defined in
CoreAudio/CoreAudioTypes.h.

Availability
Mac OS X v10.5 and later.

Declared In
QTFormatDescription.h

isEqualToFormatDescription:
Returns whether the receiver describes the same format as the given format description.

- (BOOL)isEqualToFormatDescription:(QTFormatDescription *)formatDescription

Parameters
formatDescription

The format description for the QTFormatDescription object.

Availability
Mac OS X v10.5 and later.

Declared In
QTFormatDescription.h

localizedFormatSummary
Returns a localized summary of the media format.

- (NSString *)localizedFormatSummary

Return Value
A localized string summarizing the media format.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTRecorder

Declared In
QTFormatDescription.h

Instance Methods 139
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

mediaType
Returns the media type of the described media.

- (NSString *)mediaType

Parameters
mediaType

The QuickTime media type of the described media object.

Return Value
A QuickTime media type, such as QTMediaTypeVideo, QTMediaTypeSound, or QTMediaTypeMuxed.

Discussion
Media types are defined in QTMedia.h.

Availability
Mac OS X v10.5 and later.

Declared In
QTFormatDescription.h

quickTimeSampleDescription
Returns the media’s QuickTime SampleDescription.

- (NSData *)quickTimeSampleDescription

Return Value
An NSData containing the SampleDescription for the media.

Discussion
This method returns a QuickTime SampleDescription structure, allowing applications to get detailed
information on the media format. The SampleDescription is returned in the native endian byte order for
the system.

Availability
Mac OS X v10.5 and later.

Declared In
QTFormatDescription.h

Constants

Core Audio and Video Types
Constants for different core audio and video types.

140 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

NSString * const QTFormatDescriptionAudioChannelLayoutAttribute;
NSString * const QTFormatDescriptionAudioMagicCookieAttribute;
NSString * const QTFormatDescriptionAudioStreamBasicDescriptionAttribute;
NSString * const QTFormatDescriptionVideoCleanApertureDisplaySizeAttribute;
NSString * const QTFormatDescriptionVideoEncodedPixelsSizeAttribute;
NSString * const QTFormatDescriptionVideoProductionApertureDisplaySizeAttribute;

Constants
QTFormatDescriptionAudioChannelLayoutAttribute

Returns an NSData interpreted as a Core Audio AudioChannelLayout for audio media.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

QTFormatDescriptionAudioMagicCookieAttribute
Returns an NSData interpreted as a Core Audio magic cookie for audio media.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

QTFormatDescriptionAudioStreamBasicDescriptionAttribute
Returns an NSValue interpreted as a Core Audio AudioStreamBasicDescription for audio media.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

QTFormatDescriptionVideoCleanApertureDisplaySizeAttribute
Returns an NSValue interpreted as an NSSize that indicates the size of video media displayed through
its clean aperture and scaled by its pixel aspect ratio.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

QTFormatDescriptionVideoEncodedPixelsSizeAttribute
Returns an NSValue interpreted as an NSSize that indicates the encoded size of video media.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

QTFormatDescriptionVideoProductionApertureDisplaySizeAttribute
Returns an NSValue interpreted as an NSSize that indicates the size of video media scaled by its
pixel aspect ratio but not displayed through its clean aperture.

This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Declared in QTFormatDescription.h.

QuickTime 7.2 and later.

Constants 141
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

142 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

QTFormatDescription Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTMedia.h

Availability Available in Mac OS X v10.4 and later.

Related sample code QTKitTimeCode
QTMetadataEditor

Overview

A QTMedia object is an object that represents the data associated with a QTTrack object. A QTMovie object
typically contains one or more streams of media data, which are represented by QTTrack objects. A QTTrack
object has exactly one QTMedia object associated with it. The QTMedia object exposes attributes such as
media type and media characteristics. When a QTMovie object has been initialized with
QTMovieOpenForPlaybackAttribute set to NO, a QTMedia object wraps the underlying QuickTime media
(of type Media).

Tasks

Creating a QTMedia Object

+ mediaWithQuickTimeMedia:error: (page 144)
Returns a QTMedia object associated with a QuickTime Media.

Initializing a QTMedia Object

– initWithQuickTimeMedia:error: (page 146)
Returns a QTMedia object associated with a QuickTime Media.

Overview 143
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

Accessing Media Properties

– track (page 148)
Returns the QTTrack object associated with a QTMedia object.

– hasCharacteristic: (page 145)
Indicates whether a QTMedia object has a specified characteristic.

– attributeForKey: (page 145)
Returns the current value of an attribute of a QTMedia object.

– setAttribute:forKey: (page 147)
Sets an attribute of a QTMedia object to a specified value.

– mediaAttributes (page 146)
Returns a dictionary containing the current values of all public attributes of a QTMedia object.

– setMediaAttributes: (page 148)
Sets the attributes of a QTMedia object using the key-value pairs in a specified dictionary.

Accessing QuickTime Media Data

– quickTimeMedia (page 147)
Returns the QuickTime media associated with the media object.

Class Methods

mediaWithQuickTimeMedia:error:
Returns a QTMedia object associated with a QuickTime Media.

+ (id)mediaWithQuickTimeMedia:(Media)media error:(NSError **)errorPtr

Parameters
media

The QuickTime media data with which to initialize the media object.

errorPtr
On return, if the media object could not be created, a pointer to an error indicating the reason for
the failure.

Return Value
The newly created media object.

Discussion
This method cannot be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. In addition, this method cannot be called by 64-bit
applications.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

144 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

Declared In
QTMedia.h

Instance Methods

attributeForKey:
Returns the current value of an attribute of a QTMedia object.

- (id)attributeForKey:(NSString *)attributeKey

Parameters
attributeKey

An NSString object that specifies the attribute to be read; pass strings like
QTMediaTimeScaleAttribute or QTMediaTypeAttribute. Possible attribute keys are listed in
“Media Attributes” (page 152).

Return Value
The value of the specified attribute.

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAttribute:forKey: (page 147)

Related Sample Code
QTMetadataEditor

Declared In
QTMedia.h

hasCharacteristic:
Indicates whether a QTMedia object has a specified characteristic.

- (BOOL)hasCharacteristic:(NSString *)characteristic

Parameters
characteristic

An NSString object that specifies the characteristic to be read; pass strings like
QTMediaCharacteristicVisual or QTMediaCharacteristicAudio. Possible characteristics are
listed in “Media Characteristics” (page 151).

Return Value
Returns YES if the QTMedia object has the specified characteristic, NO otherwise.

Instance Methods 145
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMedia.h

initWithQuickTimeMedia:error:
Returns a QTMedia object associated with a QuickTime Media.

- (id)initWithQuickTimeMedia:(Media)media error:(NSError **)errorPtr

Parameters
media

The QuickTime media with which to initialize the QTMedia object.

errorPtr
A pointer to an NSError object; if a QTMedia object cannot be created, an NSError object is returned
in this location.

Return Value
The newly initialized media object.

Discussion
This method cannot be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. In addition, this method cannot be called by 64-bit
applications.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QTMedia.h

mediaAttributes
Returns a dictionary containing the current values of all public attributes of a QTMedia object.

- (NSDictionary *)mediaAttributes

Return Value
A dictionary containing all of the media’s attributes.

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. Possible attribute keys are listed in “Media
Attributes” (page 152).

146 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMediaAttributes: (page 148)

Declared In
QTMedia.h

quickTimeMedia
Returns the QuickTime media associated with the media object.

- (Media)quickTimeMedia

Return Value
The QuickTime media associated with the media object.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QTMedia.h

setAttribute:forKey:
Sets an attribute of a QTMedia object to a specified value.

- (void)setAttribute:(id)value forKey:(NSString *)attributeKey

Parameters
value

An object that specifies the value of the attribute to be written.

attributeKey
An NSString object that specifies the attribute to be written; pass strings like
QTMediaTimeScaleAttribute or QTMediaTypeAttribute. Possible attribute keys are listed in
“Media Attributes” (page 152).

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. However, certain attributes may not be writable when
the movie containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to
YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– attributeForKey: (page 145)

Declared In
QTMedia.h

Instance Methods 147
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

setMediaAttributes:
Sets the attributes of a QTMedia object using the key-value pairs in a specified dictionary.

- (void)setMediaAttributes:(NSDictionary *)attributes

Parameters
attributes

An NSDictionary object that specifies the attributes to set and their desired values.

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. However, certain attributes may not be writable when
the movie containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to
YES. Possible attribute keys are listed in “Media Attributes” (page 152).

Availability
Available in Mac OS X v10.3 and later.

See Also
– mediaAttributes (page 146)

Declared In
QTMedia.h

track
Returns the QTTrack object associated with a QTMedia object.

- (QTTrack *)track

Return Value
The QTTrack object that contains the media.

Discussion
This method can be called when the movie containing this media has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMedia.h

Constants

Media Types
Constants for different media types. Compare these constants with the value associated with the
QTMediaTypeAttribute key.

148 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

NSString * const QTMediaTypeVideo;
NSString * const QTMediaTypeSound;
NSString * const QTMediaTypeText;
NSString * const QTMediaTypeBase;
NSString * const QTMediaTypeMPEG;
NSString * const QTMediaTypeMusic;
NSString * const QTMediaTypeTimeCode;
NSString * const QTMediaTypeSprite;
NSString * const QTMediaTypeFlash;
NSString * const QTMediaTypeMovie;
NSString * const QTMediaTypeTween;
NSString * const QTMediaType3D;
NSString * const QTMediaTypeSkin;
NSString * const QTMediaTypeQTVR;
NSString * const QTMediaTypeHint;
NSString * const QTMediaTypeStream;
NSString * const QTMediaTypeMuxed;
NSString * const QTMediaTypeQuartzComposer;
NSString * const QTMediaTypeSubtitle;
NSString * const QTMediaTypeClosedCaption;

Constants
QTMediaTypeVideo

The media type of a video track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeSound
The media type of a sound track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeText
The media type of a text track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeBase
The media type of a base track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeMPEG
The media type of a MPEG track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeMusic
The media type of a music track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

Constants 149
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

QTMediaTypeTimeCode
The media type of a timecode track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeSprite
The media type of a sprite track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeFlash
The media type of a flash track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeMovie
The media type of a movie track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeTween
The media type of a tween track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaType3D
The media type of a QuickDraw 3D track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeSkin
The media type of a skin track

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeQTVR
The media type of a QuickTime VR track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeHint
The media type of a hint track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTypeStream
The media type of a stream track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

150 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

QTMediaTypeMuxed
The media type of a multiplexed audio and video track.

Available in Mac OS X v10.5 and later.

Declared in QTMedia.h.

QTMediaTypeQuartzComposer
The media type of a Quartz Composer track.

Available in Mac OS X v10.5 and later.

Declared in QTMedia.h.

QTMediaTypeSubtitle
The media type of a subtitle track.

Mac OS X v10.6 and QuickTime 7.6.3 and later.

Declared in QTMedia.h.

QTMediaTypeClosedCaption
The media type of a closed caption track.

Mac OS X v10.6 and QuickTime 7.6.3 and later.

Declared in QTMedia.h.

Media Characteristics
Characteristics of a given media. You can query for these characteristics using the hasCharacteristic: (page
145) method.

NSString * const QTMediaCharacteristicVisual;
NSString * const QTMediaCharacteristicAudio;
NSString * const QTMediaCharacteristicCanSendVideo;
NSString * const QTMediaCharacteristicProvidesActions;
NSString * const QTMediaCharacteristicNonLinear;
NSString * const QTMediaCharacteristicCanStep;
NSString * const QTMediaCharacteristicHasNoDuration;
NSString * const QTMediaCharacteristicHasSkinData;
NSString * const QTMediaCharacteristicProvidesKeyFocus;
NSString * const QTMediaCharacteristicHasVideoFrameRate;

Constants
QTMediaCharacteristicVisual

The media has visual data.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicAudio
The media has audio data.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicCanSendVideo
The media can send visual data to another track.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

Constants 151
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

QTMediaCharacteristicProvidesActions
The media has actions.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicNonLinear
The media is non-linear.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicCanStep
The media can step.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicHasNoDuration
The media has no duration.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicHasSkinData
The media has skin data.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicProvidesKeyFocus
Key events can be focused at the media.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaCharacteristicHasVideoFrameRate
The media has a video frame rate.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

Media Attributes
The following constants are keys for the media attributes that you can get and set using the
mediaAttributes (page 146) and setMediaAttributes: (page 148) methods. To get or set a single
attribute, use attributeForKey: (page 145) or setAttribute:forKey: (page 147).

152 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

NSString * const QTMediaCreationTimeAttribute;
NSString * const QTMediaDurationAttribute;
NSString * const QTMediaModificationTimeAttribute;
NSString * const QTMediaSampleCountAttribute;
NSString * const QTMediaQualityAttribute;
NSString * const QTMediaTimeScaleAttribute;
NSString * const QTMediaTypeAttribute;

Constants
QTMediaCreationTimeAttribute

The creation time. The value for this key is of type NSDate.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaDurationAttribute
The duration. The value for this key is of type NSValue, interpreted as a QTTime (page 299).

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaModificationTimeAttribute
The modification time. The value for this key is of type NSDate.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaSampleCountAttribute
The media sample count. The value for this key is of type NSNumber, interpreted as a long.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaQualityAttribute
The media quality. The value for this key is of type NSNumber, interpreted as a short.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

QTMediaTimeScaleAttribute
The media time scale. The value for this key is of type NSNumber, interpreted as a long.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

Constants 153
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

QTMediaTypeAttribute
The media type. The value for this key is of type NSString. See “Media Types” (page 148) for the
values this attribute can return.

This attribute can be read but not written. This attribute can be read but not written when the movie
containing this media has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMedia.h.

154 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

QTMedia Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTMovie.h

Availability Available in Mac OS X v10.4 and later.

Related sample code QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
QTKitTimeCode
QTMetadataEditor

Overview

A QTMovie object is an object that represents a playable collection of media data.

A QTMovie object can be initialized from a file, from a resource specified by a URL, from a block of memory,
from a pasteboard, or from an existing QuickTime movie. Once a QTMovie object has been initialized, it
will typically be used in combination with a QTMovieView for playback. It can also be used for other
purposes, such as converting the media data into a different format.

The designated initializer for the QTMovie class is initWithAttributes:error:, whose first parameter
is a dictionary of attribute keys and their desired values. One of these attributes must specify the location of
the media data (for instance, using the QTMovieURLAttribute key). Other attributes may specify desired
movie-opening behaviors, and others still may specify desired initial values of QTMovie properties (for
instance, QTMovieVolumeAttribute).

There are two movie-opening behaviors. Specifying QTMovieOpenForPlaybackAttribute with the value
YES indicates that the QTMovie object will be used only for playback, in which case QTKit may be able to
use more efficient code paths for some media data. Specifying QTMovieOpenAsyncRequiredAttribute
with the value YES indicates that all operations necessary to open the movie file (or other container) and to
create a valid QTMovie object must occur asynchronously. In other words, initWithAttributes:error:
will return almost immediately, performing any lengthy operations on another thread.

An exception, QTDisallowedForInitializationPurposeException, is raised whenever the client
attempts to call a method that is not allowed under a requested movie-opening behavior. For example, if a
QTMovie object is initialized with QTMovieOpenForPlaybackAttribute set to YES, then

Overview 155
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTDisallowedForInitializationPurposeException is raised if the client attempts to call methods
that export the media data. An exception, QTMovieUneditableException, is raised whenever the client
attempts to directly or indirectly edit a QTMovie object that is not currently set as editable (for instance, by
calling appendSelectionFromMovie: on an uneditable movie).

Tasks

Determining If a Movie Can Be Initialized

+ canInitWithFile: (page 163)
Returns YES if the contents of the specified file can be used to initialize a QTMovie object.

+ canInitWithURL: (page 164)
Returns YES if the contents of the specified URL can be used to initialize a QTMovie object.

+ canInitWithPasteboard: (page 163)
Returns YES if the contents of the specified pasteboard can be used to initialize a QTMovie object.

+ canInitWithDataReference: (page 163)
Returns YES if the specified data reference can be used to initialize a QTMovie object.

– initWithPasteboard:error: (page 184)
Initializes a QTMovie object with the contents of the pasteboard specified by pasteboard.

Getting a List of Supported File Types

+ movieFileTypes: (page 165)
Returns an array of file types that can be opened as QuickTime movies.

+ movieTypesWithOptions: (page 166)
Returns an array of UTIs that QuickTime can open.

+ movieUnfilteredFileTypes (page 167)
Returns an array of file types that can be used to initialize a QTMovie object.

+ movieUnfilteredPasteboardTypes (page 167)
Returns an array of pasteboard types that can be used to initialize a QTMovie object.

Creating a Movie

+ movie (page 165)
Creates an empty QTMovie object.

+ movieNamed:error: (page 166)
Creates a QTMovie object initialized with the data from the QuickTime movie of the specified name
in the application’s bundle.

+ movieWithData:error: (page 168)
Creates a QTMovie object initialized with the data specified by data.

+ movieWithURL:error: (page 170)
Creates a QTMovie object initialized with the data in the URL specified by url.

156 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

+ movieWithPasteboard:error: (page 169)
Creates a QTMovie object initialized with the contents of the pasteboard specified by pasteboard.

+ movieWithFile:error: (page 169)
Creates a QTMovie object initialized with the data in the file specified by the name fileName.

+ movieWithDataReference:error: (page 168)
Creates a QTMovie object initialized with the data specified by the data reference dataReference.

+ movieWithQuickTimeMovie:disposeWhenDone:error: (page 170)
Creates a QTMovie object initialized from an existing QuickTime movie movie.

+ movieWithAttributes:error: (page 167)
Creates a QTMovie object initialized with the attributes specified in attributes.

Controlling Movie Playback

– autoplay (page 173)
Sets a movie to start playing when a sufficient amount of media data is available.

– play (page 190)
Plays the movie.

– stop (page 198)
Stops the movie playing.

– gotoBeginning (page 179)
Repositions the play position to the beginning of the movie.

– gotoEnd (page 179)
Repositions the play position to the end of the movie.

– gotoNextSelectionPoint (page 179)
Repositions the movie to the next selection point.

– gotoPreviousSelectionPoint (page 180)
Repositions the movie to the previous selection point.

– gotoPosterTime (page 179)
Repositions the play position to the movie’s poster time.

– setCurrentTime: (page 194)
Sets the movie’s current time setting to time.

– stepForward (page 198)
Sets the movie forward a single frame.

– stepBackward (page 197)
Sets the movie backward a single frame.

Managing Threaded Operations of Movie Objects

+ enterQTKitOnThread (page 164)
Performs any QuickTime-specific initialization for the current (non-main) thread; must be paired with
a call to exitQTKitOnThread.

+ enterQTKitOnThreadDisablingThreadSafetyProtection (page 164)
Performs any QuickTime-specific initialization for the current (non-main) thread, allowing
non-thread-safe components; must be paired with a call to exitQTKitOnThread.

Tasks 157
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

+ exitQTKitOnThread (page 165)
Performs any QuickTime-specific shut-down for the current (non-main) thread; must be paired with
a call to enterQTKitOnThread or enterQTKitOnThreadDisablingThreadSafetyProtection.

– attachToCurrentThread (page 173)
Attaches the receiver to the current thread; returns YES if successful, NO otherwise.

– detachFromCurrentThread (page 176)
Detaches the receiver from the current thread; returns YES if successful, NO otherwise.

Initializing a QTMovie

– initWithFile:error: (page 183)
Initializes a QTMovie object with the data in the file specified by the name fileName.

– initWithURL:error: (page 185)
Initializes a QTMovie object with the data in the URL specified by url.

– initWithData:error: (page 182)
Initializes a QTMovie object with the data specified by data.

– initWithDataReference:error: (page 182)
Initializes a QTMovie object with the data reference setting specified by dataReference.

– initWithMovie:timeRange:error: (page 183)
Initializes a QTMovie object with some or all of the data from an existing QTMovie object movie.

– initWithQuickTimeMovie:disposeWhenDone:error: (page 184)
Initializes a QTMovie object with the data from an existing QuickTime movie movie.

– initWithAttributes:error: (page 181)
Initializes a QTMovie object with the attributes specified in attributes.

Getting Information About a Movie and Its Chapters

– hasChapters (page 180)
Returns YES if the receiver has chapters, NO otherwise.

– chapterCount (page 174)
Returns the number of chapters in the receiver, or 0 if there are no chapters.

– chapters (page 175)
Returns an NSArray containing information about the chapters in the receiver.

– addChapters:withAttributes:error: (page 171)
Adds chapters to the receiver using the information specified in the chapters array.

– removeChapters (page 192)
 Removes any existing chapters from the receiver.

– startTimeOfChapter: (page 197)
Returns a QTTime structure that is the start time of the chapter having the specified 0-based index
in the list of chapters.

– chapterIndexForTime: (page 175)
Returns the 0-based index of the chapter that contains the specified movie time.

158 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Inspecting Movie Properties

– duration (page 177)
Returns the duration of a QTMovie object as a structure of type QTTime.

– currentTime (page 176)
Returns the current time of a QTMovie object as a structure of type QTTime.

– rate (page 191)
Returns the current rate of a QTMovie object.

– volume (page 200)
Returns the movie’s volume as a scalar value of type float.

– muted (page 189)
Returns the movie’s mute setting.

– movieWithTimeRange:error: (page 189)
Returns a QTMovie object whose data is the data in the specified time range.

– attributeForKey: (page 173)
Returns the current value of the movie attribute attributeKey.

– movieAttributes (page 188)
Returns a dictionary containing the current values of all defined movie attributes.

Managing QTMovie Idling States

– setIdling: (page 195)
Sets the movie to idle YES or not to idle NO.

– isIdling (page 187)
Returns the current idling state of a QTMovie object.

Setting QTMovie Properties

– setRate: (page 196)
Sets the movie’s rate to rate.

– setVolume: (page 197)
Sets the movie’s volume to volume.

– setMuted: (page 195)
Sets the movie’s mute setting to mute.

Setting Movie Attributes

– setAttribute:forKey: (page 194)
Set the movie attribute attributeKey to the value specified by the value parameter.

– setMovieAttributes: (page 195)
Set the movie attributes using the key-value pairs specified in the dictionary attributes.

Tasks 159
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Supporting Aperture Modes

– generateApertureModeDimensions (page 178)
Adds information to a QTMovie needed to support aperture modes for tracks created with applications
and/or versions of QuickTime that did not support aperture mode dimensions.

– removeApertureModeDimensions (page 191)
Removes aperture mode dimension information from a movie's tracks.

Getting and Setting Selection Times

– selectionStart (page 193)
Returns the start time of the movie’s current selection as a QTTime structure.

– selectionEnd (page 193)
Returns the end point of the movie’s current selection as a QTTime structure.

– selectionDuration (page 193)
Returns the duration of the movie’s current selection as a QTTime structure.

– setSelection: (page 196)
Sets the movie’s selection to selection.

Getting Movie Tracks

– tracks (page 198)
Returns an array of QTTrack objects associated with the receiver.

– tracksOfMediaType: (page 199)
Returns an array of tracks with the specified media type.

Getting Movie Images

– posterImage (page 190)
Returns an NSImage for the poster frame of a QTMovie.

– currentFrameImage (page 175)
Returns an NSImage for the frame at the current time in a QTMovie.

– frameImageAtTime: (page 177)
Returns an NSImage for the frame at the time time in a QTMovie.

– frameImageAtTime:withAttributes:error: (page 178)
Returns an NSImage*, CIImage*, CGImageRef, CVPixelBufferRef, or CVOpenGLTextureRef for
the movie image at the specified time

Storing Movie Data

– initToWritableDataReference:error: (page 181)
Creates a new storage container at the location specified by dataReference and returns a QTMovie
object that has that container as its default data reference.

160 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

– invalidate (page 187)
Invalidates a QTMovie object immediately.

– initToWritableFile:error: (page 181)
Useful for directly passing filenames and data objects. The QTMovie returned by this method is
editable.

– initToWritableData:error: (page 180)
Useful for directly passing filenames and data objects. The QTMovie returned by this method is
editable.

– movieFormatRepresentation (page 188)
Returns the movie’s data in an NSData object.

– writeToFile:withAttributes: (page 200)
Returns YES if the movie file was successfully created and NO otherwise.

– writeToFile:withAttributes:error: (page 201)
Returns an NSError object if an error occurs and if errorPtr is non-NULL.

Editing a Movie

– replaceSelectionWithSelectionFromMovie: (page 192)
Replaces the current selection in a QTMovie with the current selection in movie.

– appendSelectionFromMovie: (page 172)
Appends to a QTMovie the current selection in movie.

– insertSegmentOfMovie:timeRange:atTime: (page 186)
Inserts into a QTMovie at time time the selection in movie delimited by the time range range.

– insertSegmentOfMovie:fromRange:scaledToRange: (page 185)
Inserts the specified segment from the movie into the receiver, scaled to the range dstRange.

– insertEmptySegmentAt: (page 185)
inserts into a QTMovie an empty segment delimited by the range range.

– deleteSegment: (page 176)
Deletes from a QTMovie the segment delimited by segment.

– scaleSegment:newDuration: (page 193)
Scales the QTMovie segment delimited by the segment segment so that it will have the new duration
newDuration.

– insertSegmentOfTrack:timeRange:atTime: (page 186)
Inserts the specified segment of a QTTrack object into a QTMovie, at the specified time in the target
QTMovie.

– insertSegmentOfTrack:fromRange:scaledToRange: (page 186)
Inserts the specified segment of a QTTrack object into a QTMovie, scaling it as necessary to fit into
the specified target range.

– removeTrack: (page 192)
Removes a QTTrack from a movie.

– addImage:forDuration:withAttributes: (page 172)
Adds an image for the specified duration to the receiver, using attributes specified in the attributes
dictionary.

Tasks 161
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Saving a Movie

– canUpdateMovieFile (page 174)
Indicates whether a movie file can be updated with changes made to the movie object.

– updateMovieFile (page 199)
Updates the movie file of a QTMovie.

Getting QTMovie Primitives

– quickTimeMovie (page 190)
Returns the QuickTime movie associated with a QTMovie object.

– quickTimeMovieController (page 191)
Returns the QuickTime movie controller associated with a QTMovie object.

Getting and Setting QTMovie Delegates

– delegate (page 176)
Returns the delegate of a QTMovie object.

– setDelegate: (page 194)
Sets the movie’s delegate to delegate.

– externalMovie: (page 201) delegate method
This method is called, if implemented by a QTMovie delegate object, when an external movie needs
to be found (usually for a wired action targeted at an external movie).

– movieShouldLoadData: (page 189)
If implemented by a delegate of a QTMovie object, called periodically while the movie is loading its
data.

– movieShouldTask: (page 203) delegate method
If a QTMovie object has a delegate and that delegate implements this method, that method will be
called before QTKit performs the standard idle processing on a movie.

– movie:shouldContinueOperation:withPhase:atPercent:withAttributes: (page 202) delegate
method

If implemented, this method is called periodically during lengthy operations (such as exporting a
movie).

– movie:linkToURL: (page 202) delegate method
If implemented by a delegate of a QTMovie object, called to handle the movie controller
actionmcActionLinkToURL.

Accessing QTMovie Visual Contexts

– setVisualContext: (page 196)
Sets the visual context of the QTMovie.

– visualContext (page 199)
Allows access to the visual context of the QTMovie.

162 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Class Methods

canInitWithDataReference:
Returns YES if the specified data reference can be used to initialize a QTMovie object.

+ (BOOL)canInitWithDataReference:(QTDataReference*)dataReference

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

canInitWithFile:
Returns YES if the contents of the specified file can be used to initialize a QTMovie object.

+ (BOOL)canInitWithFile:(NSString *)fileName

Parameters
fileName

An NSString object that specifies a full pathname to a file.

Return Value
YES if a QTMovie object can be initialized from the specified file, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTKitAdvancedDocument
QTKitCreateMovie
QTKitImport
QTKitPlayer

Declared In
QTMovie.h

canInitWithPasteboard:
Returns YES if the contents of the specified pasteboard can be used to initialize a QTMovie object.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

An NSPasteboard object.

Class Methods 163
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Return Value
YES if a QTMovie object can be initialized from the specified pasteboard, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
iChatTheater

Declared In
QTMovie.h

canInitWithURL:
Returns YES if the contents of the specified URL can be used to initialize a QTMovie object.

+ (BOOL)canInitWithURL:(NSURL *)url

Parameters
url

An NSURL object.

Return Value
YES if a QTMovie object can be initialized from the specified URL, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

enterQTKitOnThread
Performs any QuickTime-specific initialization for the current (non-main) thread; must be paired with a call
to exitQTKitOnThread.

+ (void)enterQTKitOnThread

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTAudioContextInsert

Declared In
QTMovie.h

enterQTKitOnThreadDisablingThreadSafetyProtection
Performs any QuickTime-specific initialization for the current (non-main) thread, allowing non-thread-safe
components; must be paired with a call to exitQTKitOnThread.

164 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

+ (void)enterQTKitOnThreadDisablingThreadSafetyProtection

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTKitThreadedExport

Declared In
QTMovie.h

exitQTKitOnThread
Performs any QuickTime-specific shut-down for the current (non-main) thread; must be paired with a call to
enterQTKitOnThread or enterQTKitOnThreadDisablingThreadSafetyProtection.

+ (void)exitQTKitOnThread

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTAudioContextInsert
QTKitThreadedExport

Declared In
QTMovie.h

movie
Creates an empty QTMovie object.

+ (id)movie

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitMovieShuffler
QTKitPlayer

Declared In
QTMovie.h

movieFileTypes:
Returns an array of file types that can be opened as QuickTime movies.

Class Methods 165
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

+ (NSArray *)movieFileTypes:(QTMovieTypeOptions)types

Discussion
Passing zero as the options parameter returns an array of all the common file types that QuickTime can open
in place on the current system. This array includes the file type .mov and .mqv, and any files types that can
be opened using a movie importer that does not need to write data into a new file while performing the
import. This array excludes any file types for still images and any file types that require an aggressive movie
importer (for instance, the movie importer for text files). For more information, refer to “Constants For Use
With movieFileTypes: Method” (page 204).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
LiveVideoMixer
LiveVideoMixer2
LiveVideoMixer3
QTKitAdvancedDocument

Declared In
QTMovie.h

movieNamed:error:
Creates a QTMovie object initialized with the data from the QuickTime movie of the specified name in the
application’s bundle.

+ (id)movieNamed:(NSString *)name
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CALayerEssentials

Declared In
QTMovie.h

movieTypesWithOptions:
Returns an array of UTIs that QuickTime can open.

+ (NSArray *)movieTypesWithOptions:(QTMovieFileTypeOptions)types

Discussion
This method gets an array of NSString objects that specify the uniform type identifiers (UTIs) for types of files
that QuickTime can open. The types parameter is interpreted just like the types parameter to + (NSArray
*)movieFileTypes:(QTMovieFileTypeOptions)types.

166 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
QuickTime 7.2.1 or later.

Declared In
QTMovie.h

movieUnfilteredFileTypes
Returns an array of file types that can be used to initialize a QTMovie object.

+ (NSArray *)movieUnfilteredFileTypes

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreVideo103
QTCoreVideo201
QTCoreVideo202
QTKitMovieFrameImage
QTKitMovieShuffler

Declared In
QTMovie.h

movieUnfilteredPasteboardTypes
Returns an array of pasteboard types that can be used to initialize a QTMovie object.

+ (NSArray *)movieUnfilteredPasteboardTypes

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
GLUT

Declared In
QTMovie.h

movieWithAttributes:error:
Creates a QTMovie object initialized with the attributes specified in attributes.

+ (id)movieWithAttributes:(NSDictionary *)attributes
error:(NSError **)errorPtr

Parameters
attributes

An NSDictionary object whose key-value pairs specify the attributes to use when initializing the
movie.

Class Methods 167
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

A new QTMovie object is created using the specified attributes. There are three types of attributes that can
be included in this dictionary:

 ■ Attributes that specify the location of the movie data, for instance, QTMovieFileNameAttribute.

 ■ Attributes that specify how the movie is to be instantiated, for instance,
QTMovieOpenForPlaybackAttribute.

 ■ Attributes that specify playback characteristics of the movie or other properties of the QTMovie object,
for instance, QTMovieVolumeAttribute.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

movieWithData:error:
Creates a QTMovie object initialized with the data specified by data.

+ (id)movieWithData:(NSData *)data
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitCreateMovie
QTKitFrameStepper
QTKitImport

Declared In
QTMovie.h

movieWithDataReference:error:
Creates a QTMovie object initialized with the data specified by the data reference dataReference.

+ (id)movieWithDataReference:(QTDataReference *)dataReference
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

168 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

movieWithFile:error:
Creates a QTMovie object initialized with the data in the file specified by the name fileName.

+ (id)movieWithFile:(NSString *)fileName
error:(NSError **)errorPtr

Discussion
The fileName is assumed to be a full path name for a file.

If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitCommandLine
QTKitMovieFrameImage
QTKitPlayer
QTMetadataEditor

Declared In
QTMovie.h

movieWithPasteboard:error:
Creates a QTMovie object initialized with the contents of the pasteboard specified by pasteboard.

+ (id)movieWithPasteboard:(NSPasteboard *)pasteboard
error:(NSError **)errorPtr

Discussion
These contents can be a QuickTime movie (of type Movie), a file path, or data of type
QTMoviePasteboardType.

If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
GLUT

Class Methods 169
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

movieWithQuickTimeMovie:disposeWhenDone:error:
Creates a QTMovie object initialized from an existing QuickTime movie movie.

+ (id)movieWithQuickTimeMovie:(Movie)movie
disposeWhenDone:(BOOL)dispose
error:(NSError **)errorPtr

Discussion
This method cannot be called by 64-bit applications.

The dispose parameter (a BOOL) indicates whether the QTKit should call DisposeMovie on the specified
movie when the QTMovie object is deallocated. Passing YES effectively transfers “ownership” of the Movie
to the QTKit. (Note that most applications will probably want to pass YES; passing NO means that the
application wants to call DisposeMovie itself, perhaps so that it can operate on a Movie after it has been
disassociated with a QTMovie object.)

If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Note that command-line tools that pass NO for the disposeWhenDone parameter must make sure to release
the active autorelease pool before calling DisposeMovie on the specified QuickTime movie. Failure to do
this may result in a crash. Tools that need to call DisposeMovie before releasing the main autorelease pool
can create another autorelease pool associated with the movie.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
QTKitCreateMovie

Declared In
QTMovie.h

movieWithURL:error:
Creates a QTMovie object initialized with the data in the URL specified by url.

+ (id)movieWithURL:(NSURL *)url
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

170 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Related Sample Code
Movie Overlay
QTAudioContextInsert
QTKitCreateMovie
QTKitPlayer
QTMetadataEditor

Declared In
QTMovie.h

Instance Methods

addChapters:withAttributes:error:
Adds chapters to the receiver using the information specified in the chapters array.

- (void)addChapters:(NSArray *)chapters
withAttributes:(NSDictionary *)attributes
error:(NSError **)errorPtr

Parameters
chapters

An NSArray that contains one dictionary per chapter. The dictionary entries are:

 ■ QTMovieChapterName, an NSString object that is the chapter name.

 ■ QTMovieChapterStartTime, an NSValue object that wraps a QTTime structure that indicates
the start time of the chapter.

attributes
An NSDictionary that contains settings for the new chapter track and its text. The following keys are
currently recognized:

 ■ QTMovieChapterTargetTrackAttribute, a QTTrack that is the target of the chapter track;
if none is specified, use first video track in movie.

 ■ QTTrackDisplayNameAttribute, an NSString that is the name of the chapter track; if none
is specified, use "Chapter Track".

 ■ QTTrackTimeScaleAttribute, an NSNumber that wraps a long; this is the time scale of the
chapter track. If not present, the time scale of the target track is used.

 ■ QTTrackBoundsAttribute, an NSValue that wraps an NSRect that specifies the desired position
and size of the chapter track. The default width and height are those of the receiver QTMovie
object.

 ■ QTTrackEnabledAttribute, an NSNumber that wraps a BOOL; if YES, the chapter track is
enabled, otherwise disabled (which is the default).

 ■ QTTrackLayerAttribute, an NSNumber that wraps a short; this is the layer of the chapter track
(default is -1).

errorPtr
A pointer to an NSError instance; if non-NULL, return any error in that location.

Instance Methods 171
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
Each array element is an NSDictionary containing key-value pairs. Currently two keys are defined for this
dictionary, QTMovieChapterName and QTMovieChapterStartTime. The value for
the QTMovieChapterName key is an NSString object that is the chapter name. The value for
the QTMovieChapterStartTime key is an NSValue object that wraps a QTTime structure that indicates the
start time of the chapter. The receiving QTMovie object must be editable or an exception will be raised.

The attributes dictionary specifies additional attributes for the chapters. Currently only one key is recognized
for this dictionary, QTMovieChapterTargetTrackAttribute, which specifies the QTTrack in the receiver
that is the target of the chapters; if none is specified, this method uses first video track in movie. If no video
track is in the movie, this method uses the first audio track in the movie. If no audio track is in the movie, this
method uses the first track in the movie. If an error occurs and errorPtr is non-NULL, then an NSError object
is returned in that location.

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

addImage:forDuration:withAttributes:
Adds an image for the specified duration to the receiver, using attributes specified in the attributes dictionary.

- (void)addImage:(NSImage *)image
forDuration:(QTTime)duration
withAttributes:(NSDictionary *)attributes

Discussion
Keys in the dictionary can be QTAddImageCodecType to select a codec type and QTAddImageCodecQuality
to select a quality. Qualities are expected to be specified as NSNumbers, using the codec values like
codecNormalQuality. (See ImageCompression.h for the complete list.) The attributes dictionary can also
contain a value for the QTTrackTimeScaleAttribute key, which is used as the time scale of the new track,
should one need to be created. The default time scale for a new track is 600.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
StillMotion
WritableFileDemo

Declared In
QTMovie.h

appendSelectionFromMovie:
Appends to a QTMovie the current selection in movie.

- (void)appendSelectionFromMovie:(id)movie

Discussion
If the movie is not editable, this method raises an exception.

172 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

attachToCurrentThread
Attaches the receiver to the current thread; returns YES if successful, NO otherwise.

- (BOOL)attachToCurrentThread

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTKitThreadedExport

Declared In
QTMovie.h

attributeForKey:
Returns the current value of the movie attribute attributeKey.

- (id)attributeForKey:(NSString *)attributeKey

Discussion
A list of supported movie attributes and their acceptable values can be found in the “Settable and Gettable
Movie Attributes” (page 205) section.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MyMediaPlayer
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
QTKitTimeCode

Declared In
QTMovie.h

autoplay
Sets a movie to start playing when a sufficient amount of media data is available.

- (void)autoplay

Instance Methods 173
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
The autoplay method configures a QTMovie object to begin playing as soon as enough data is available that
the playback can continue uninterrupted to the end of the movie. This is most useful for movies being loaded
from a remote URL or from an extremely slow local device. For movies stored on most local devices, this
method has the same effect as the -[QTMovie play] method.

Availability
QuickTime 7.2.1 or later.

Declared In
QTMovie.h

canUpdateMovieFile
Indicates whether a movie file can be updated with changes made to the movie object.

- (BOOL)canUpdateMovieFile

Discussion
This method returns NO if any of the following conditions are true:

 ■ The movie is not associated with a file.

 ■ The movie is not savable (has 'nsav' user data set to 1).

 ■ The movie file is not writable.

 ■ The movie file does not contain a movie atom (indicating that the movie was imported from a non-movie
format).

Otherwise, the method returns YES.

Using this method, an application can check first to see if the movie file can be updated; if not, it can prompt
the user for a new name and location of a file in which to save the updated movie.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

chapterCount
Returns the number of chapters in the receiver, or 0 if there are no chapters.

- (NSInteger)chapterCount

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

174 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

chapterIndexForTime:
Returns the 0-based index of the chapter that contains the specified movie time.

- (NSInteger)chapterIndexForTime:(QTTime)time

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

chapters
Returns an NSArray containing information about the chapters in the receiver.

- (NSArray *)chapters

Discussion
Each array element is an NSDictionary containing key-value pairs. Currently two keys are defined for this
dictionary, QTMovieChapterName and QTMovieChapterStartTime. The value for
the QTMovieChapterName key is an NSString object that is the chapter name. The value for
the QTMovieChapterStartTime key is an NSValue object that wraps a QTTime structure that indicates the
start time of the chapter.

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

currentFrameImage
Returns an NSImage for the frame at the current time in a QTMovie.

- (NSImage *)currentFrameImage

Availability
Available in Mac OS X v10.3 and later.

See Also
– frameImageAtTime: (page 177)
– posterImage (page 190)

Related Sample Code
QTKitFrameStepper

Declared In
QTMovie.h

Instance Methods 175
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

currentTime
Returns the current time of a QTMovie object as a structure of type QTTime.

- (QTTime)currentTime

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
QTKitMovieFrameImage

Declared In
QTMovie.h

delegate
Returns the delegate of a QTMovie object.

- (id)delegate

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

deleteSegment:
Deletes from a QTMovie the segment delimited by segment.

- (void)deleteSegment:(QTTimeRange)segment

Discussion
If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitCommandLine

Declared In
QTMovie.h

detachFromCurrentThread
Detaches the receiver from the current thread; returns YES if successful, NO otherwise.

- (BOOL)detachFromCurrentThread

176 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
These methods allow applications to manage QTMovie objects on non-main threads. Before any QTKit
operations can be performed on a secondary thread, either enterQTKitOnThread or
enterQTKitOnThreadDisablingThreadSafetyProtection must be called, and exitQTKitOnThread
must be called before exiting the thread. A QTMovie object can be migrated from one thread to another by
first calling detachFromCurrentThread on the first thread and then attachToCurrentThread on the
second thread.

Availability
Mac OS X v10.5 and later.

Related Sample Code
QTKitThreadedExport

Declared In
QTMovie.h

duration
Returns the duration of a QTMovie object as a structure of type QTTime.

- (QTTime)duration

Discussion
This method can be called when the movie has been initialized with QTMovieOpenForPlaybackAttribute
set to YES.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MyMediaPlayer
QTKitCreateMovie
QTKitMovieShuffler
QTKitTimeCode
StillMotion

Declared In
QTMovie.h

frameImageAtTime:
Returns an NSImage for the frame at the time time in a QTMovie.

- (NSImage *)frameImageAtTime:(QTTime)time

Availability
Available in Mac OS X v10.3 and later.

See Also
– currentFrameImage (page 175)
– posterImage (page 190)

Instance Methods 177
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

frameImageAtTime:withAttributes:error:
Returns an NSImage*, CIImage*, CGImageRef, CVPixelBufferRef, or CVOpenGLTextureRef for the
movie image at the specified time

- (void *)frameImageAtTime:(QTTime)time
withAttributes:(NSDictionary *)attributes
error:(NSError **)errorPtr

Discussion
if an error occurs and the desired type of image cannot be created, then this returns nil and sets errorPtr to
an NSError * describing the error. The dictionary of attributes that contain these keys is described in “Dictionary
of Frame Image Attributes ” (page 218).

Note: All images returned by this method are autoreleased objects and must be retained by the caller if
they are to be accessed outside of the current run loop cycle.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
QTKitMovieFrameImage

Declared In
QTMovie.h

generateApertureModeDimensions
Adds information to a QTMovie needed to support aperture modes for tracks created with applications
and/or versions of QuickTime that did not support aperture mode dimensions.

- (void)generateApertureModeDimensions

Discussion
If the image descriptions in video tracks lack tags describing clean aperture and pixel aspect ratio information,
the media data is scanned to see if the correct values can be divined and attached. Then the aperture mode
dimensions are calculated and set. Afterwards, the QTTrackHasApertureModeDimensionsAttribute
property will be set to YES for those tracks. Tracks that do not support aperture modes are not changed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

178 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

gotoBeginning
Repositions the play position to the beginning of the movie.

- (void)gotoBeginning

Discussion
If the movie is playing, the movie continues playing from the new position.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIColorTracking
CIVideoDemoGL

Declared In
QTMovie.h

gotoEnd
Repositions the play position to the end of the movie.

- (void)gotoEnd

Discussion
If the movie is playing in one of the looping modes, the movie continues playing accordingly; otherwise,
play stops.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

gotoNextSelectionPoint
Repositions the movie to the next selection point.

- (void)gotoNextSelectionPoint

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

gotoPosterTime
Repositions the play position to the movie’s poster time.

- (void)gotoPosterTime

Instance Methods 179
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
If no poster time is defined, the movie jumps to the beginning. If the movie is playing, the movie continues
playing from the new position.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

gotoPreviousSelectionPoint
Repositions the movie to the previous selection point.

- (void)gotoPreviousSelectionPoint

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

hasChapters
Returns YES if the receiver has chapters, NO otherwise.

- (BOOL)hasChapters

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

initToWritableData:error:
Useful for directly passing filenames and data objects. The QTMovie returned by this method is editable.

- (id)initToWritableData:(NSMutableData *)data
error:(NSError **)errorPtr

Discussion
These methods––initToWritableDataReference:error:, initToWritableFile:error: and
initToWritableData:error:––create an empty, writable storage container to which media data can be
added (for example, using the QTMovie addImagemethod). The methods return QTMovie objects associated
with those containers.

Special Considerations

This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

180 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
QuickTime 7.2.1 or later.

Related Sample Code
StillMotion

Declared In
QTMovie.h

initToWritableDataReference:error:
Creates a new storage container at the location specified by dataReference and returns a QTMovie object
that has that container as its default data reference.

- (id)initToWritableDataReference:(QTDataReference *)dataReference
error:(NSError **)errorPtr

Special Considerations

This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
QuickTime 7.2.1 or later.

Declared In
QTMovie.h

initToWritableFile:error:
Useful for directly passing filenames and data objects. The QTMovie returned by this method is editable.

- (id)initToWritableFile:(NSString *)filename
error:(NSError **)errorPtr

Special Considerations

This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitCreateMovie
WritableFileDemo

Declared In
QTMovie.h

initWithAttributes:error:
Initializes a QTMovie object with the attributes specified in attributes.

Instance Methods 181
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (id)initWithAttributes:(NSDictionary *)attributes
error:(NSError **)errorPtr

Parameters
attributes

An NSDictionary object whose key-value pairs specify the attributes to use when initializing the
movie.

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

A new QTMovie object is created using the specified attributes. There are three types of attributes that can
be included in this dictionary:

 ■ Attributes that specify the location of the movie data, for instance, QTMovieFileNameAttribute.

 ■ Attributes that specify how the movie is to be instantiated, for instance,
QTMovieOpenForPlaybackAttribute.

 ■ Attributes that specify playback characteristics of the movie or other properties of the QTMovie object,
for instance, QTMovieVolumeAttribute.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MyMediaPlayer
QTKitAdvancedDocument

Declared In
QTMovie.h

initWithData:error:
Initializes a QTMovie object with the data specified by data.

- (id)initWithData:(NSData *)data
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

initWithDataReference:error:
Initializes a QTMovie object with the data reference setting specified by dataReference.

182 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (id)initWithDataReference:(QTDataReference *)dataReference
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

initWithFile:error:
Initializes a QTMovie object with the data in the file specified by the name fileName.

- (id)initWithFile:(NSString *)fileName
error:(NSError **)errorPtr

Discussion
The fileName is assumed to be a full path name for a file. If a QTMovie object cannot be created, an NSError
object is returned in the location pointed to by errorPtr. Pass NIL if you do not want an NSError object
returned.

Note that alias files should not be passed into this method; the client application is responsible for resolving
aliases before handing them to QTKit methods.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTCoreVideo103
QTKitButtonTester
QTKitMovieShuffler
QTQuartzPlayer
ViewController

Declared In
QTMovie.h

initWithMovie:timeRange:error:
Initializes a QTMovie object with some or all of the data from an existing QTMovie object movie.

- (id)initWithMovie:(QTMovie *)movie
timeRange:(QTTimeRange)range
error:(NSError **)errorPtr

Discussion
The section of data used is delimited by the range range. If a QTMovie object cannot be created, an NSError
object is returned in the location pointed to by errorPtr. Pass NIL if you do not want an NSError object
returned.

Instance Methods 183
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

initWithPasteboard:error:
Initializes a QTMovie object with the contents of the pasteboard specified by pasteboard.

- (id)initWithPasteboard:(NSPasteboard *)pasteboard
error:(NSError **)errorPtr

Discussion
These contents can be a QuickTime movie (of type Movie), a file path, or data of type
QTMoviePasteBoardType. If a QTMovie object cannot be created, an NSError object is returned in the
location pointed to by errorPtr. Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

initWithQuickTimeMovie:disposeWhenDone:error:
Initializes a QTMovie object with the data from an existing QuickTime movie movie.

- (id)initWithQuickTimeMovie:(Movie)movie
disposeWhenDone:(BOOL)dispose
error:(NSError **)errorPtr

Parameters
movie

A QuickTime movie (of type Movie).

dispose
A BOOL value that indicates whether QTKit should call DisposeMovie on the specified QuickTime
movie when the QTMovie object is deallocated. Passing YES effectively transfers ownership of the
Movie to QTKit.

Discussion
This method cannot be called by 64-bit applications.

This is the designated initializer for the QTMovie class. The dispose parameter (a BOOL) indicates whether
the QTKit should call DisposeMovie on the specified movie when the QTMovie object is deallocated. Passing
YES effectively transfers “ownership” of the Movie to the QTKit. (Note that most applications will probably
want to pass YES; passing NO means that the application wants to call DisposeMovie itself, perhaps so that
it can operate on a Movie after it has been disassociated from a QTMovie object.) Command-line tools that
pass NO for the dispose parameter must make sure to release the active autorelease pool before calling
DisposeMovie on the specified QuickTime movie. Failure to do this may result in a crash. Tools that need
to call DisposeMovie before releasing the main autorelease pool can create another autorelease pool
associated with the movie.

184 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QTMovie.h

initWithURL:error:
Initializes a QTMovie object with the data in the URL specified by url.

- (id)initWithURL:(NSURL *)url
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitFrameStepper
StillMotion

Declared In
QTMovie.h

insertEmptySegmentAt:
inserts into a QTMovie an empty segment delimited by the range range.

- (void)insertEmptySegmentAt:(QTTimeRange)range

Discussion
If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

insertSegmentOfMovie:fromRange:scaledToRange:
Inserts the specified segment from the movie into the receiver, scaled to the range dstRange.

Instance Methods 185
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (void)insertSegmentOfMovie:(QTMovie *)movie
fromRange:(QTTimeRange)srcRange
scaledToRange:(QTTimeRange)dstRange

Discussion
This is essentially an Add Scaled operation on a movie. If the movie is not editable, this method raises an
exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

insertSegmentOfMovie:timeRange:atTime:
Inserts into a QTMovie at time time the selection in movie delimited by the time range range.

- (void)insertSegmentOfMovie:(QTMovie *)movie
timeRange:(QTTimeRange)range
atTime:(QTTime)time

Discussion
If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitMovieShuffler

Declared In
QTMovie.h

insertSegmentOfTrack:fromRange:scaledToRange:
Inserts the specified segment of a QTTrack object into a QTMovie, scaling it as necessary to fit into the
specified target range.

- (QTTrack *)insertSegmentOfTrack:(QTTrack *)track
fromRange:(QTTimeRange)srcRange
scaledToRange:(QTTimeRange)dstRange

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

insertSegmentOfTrack:timeRange:atTime:
Inserts the specified segment of a QTTrack object into a QTMovie, at the specified time in the target QTMovie.

186 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (QTTrack *)insertSegmentOfTrack:(QTTrack *)track
timeRange:(QTTimeRange)range
atTime:(QTTime)time

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

invalidate
Invalidates a QTMovie object immediately.

- (void)invalidate

Discussion
By the time this method has returned, the receiver will have detached itself from any resources it is
using, disposing of these resources when appropriate. Attempting to make any non-trivial use of the receiver
after invalidating it will result in undefined behavior. This method does not release the receiver, so under
retain-release memory management, release must still be called on the receiver for it to be fully deallocated.
Because this method defeats sharing of QTMovie objects, it should only be called when it is known that the
object is no longer needed.

Clients that pass NO for the dispose parameter must invalidate the QTMovie object (by calling -[QTMovie
invalidate]) before calling DisposeMovie on the specified QuickTime movie. Failure to do this may result
in a crash.

Special Considerations

This method can be called when the movie has been initialized with QTMovieOpenForPlaybackAttribute
set to YES.

Availability
QuickTime 7.2.1 or later.

See Also
– initWithQuickTimeMovie:disposeWhenDone:error: (page 184)
+ movieWithQuickTimeMovie:disposeWhenDone:error: (page 170)

Declared In
QTMovie.h

isIdling
Returns the current idling state of a QTMovie object.

- (BOOL)isIdling

Return Value
YES if the movie is idling, NO otherwise.

Instance Methods 187
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Discussion
This method allows you to manage the idling state of a QTMovie object, that is, whether it is being tasked.
Note that movies attached to a background thread should not be idled; if they are idled, unexpected behavior
can result. This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

movieAttributes
Returns a dictionary containing the current values of all defined movie attributes.

- (NSDictionary *)movieAttributes

Discussion
A list of supported movie attributes and their acceptable values can be found in the “Settable and Gettable
Movie Attributes” (page 205) section.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIColorTracking
CIVideoDemoGL

Declared In
QTMovie.h

movieFormatRepresentation
Returns the movie’s data in an NSData object.

- (NSData *)movieFormatRepresentation

Availability
Available in Mac OS X v10.3 and later.

See Also
– writeToFile:withAttributes:error: (page 201)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
QTMetadataEditor

188 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

movieShouldLoadData:
If implemented by a delegate of a QTMovie object, called periodically while the movie is loading its data.

- (BOOL)movieShouldLoadData:(id)sender

Parameters
sender

The QTMovie object that is loading its data.

Return Value
A BOOL value; this value is ignored by QTKit.

Special Considerations

This delegate method is deprecated and should not be used in new code. This delegate method is not called
when the movie has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

movieWithTimeRange:error:
Returns a QTMovie object whose data is the data in the specified time range.

- (id)movieWithTimeRange:(QTTimeRange)range
error:(NSError **)errorPtr

Discussion
If a QTMovie object cannot be created, an NSError object is returned in the location pointed to by errorPtr.
Pass NIL if you do not want an NSError object returned.

Special Considerations

This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

muted
Returns the movie’s mute setting.

- (BOOL)muted

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

Instance Methods 189
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

play
Plays the movie.

- (void)play

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIColorTracking
CIVideoDemoGL
QTKitMovieShuffler
TrackFormatDemo
VideoViewer

Declared In
QTMovie.h

posterImage
Returns an NSImage for the poster frame of a QTMovie.

- (NSImage *)posterImage

Availability
Available in Mac OS X v10.3 and later.

See Also
– currentFrameImage (page 175),
– frameImageAtTime: (page 177)

Related Sample Code
QTKitMovieShuffler

Declared In
QTMovie.h

quickTimeMovie
Returns the QuickTime movie associated with a QTMovie object.

- (Movie)quickTimeMovie

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

See Also
– quickTimeMovieController (page 191)

190 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Related Sample Code
QTAudioExtractionPanel
QTCoreVideo103
QTCoreVideo202
QTExtractAndConvertToAIFF
VideoViewer

Declared In
QTMovie.h

quickTimeMovieController
Returns the QuickTime movie controller associated with a QTMovie object.

- (MovieController)quickTimeMovieController

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

See Also
– quickTimeMovie (page 190)

Related Sample Code
QTKitMovieShuffler

Declared In
QTMovie.h

rate
Returns the current rate of a QTMovie object.

- (float)rate

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MyMediaPlayer
QTKitMovieShuffler
QTQuartzPlayer

Declared In
QTMovie.h

removeApertureModeDimensions
Removes aperture mode dimension information from a movie's tracks.

Instance Methods 191
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (void)removeApertureModeDimensions

Discussion
This method does not attempt to modify sample descriptions, so it may not completely reverse the effects
of generateApertureModeDimensions. It sets the QTMovieHasApertureModeDimensionsAttribute
property to NO.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

removeChapters
 Removes any existing chapters from the receiver.

- (BOOL)removeChapters

Discussion
Returns YES if either the receiver had no chapters or the chapters were successfully removed from the receiver.
Returns NO if the chapters could not for some reason be removed from the receiver. The receiving
QTMovie object must be editable or an exception will be raised.

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

removeTrack:
Removes a QTTrack from a movie.

- (void)removeTrack:(QTTrack *)track

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

replaceSelectionWithSelectionFromMovie:
Replaces the current selection in a QTMovie with the current selection in movie.

- (void)replaceSelectionWithSelectionFromMovie:(id)movie

Discussion
If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

192 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

scaleSegment:newDuration:
Scales the QTMovie segment delimited by the segment segment so that it will have the new duration
newDuration.

- (void)scaleSegment:(QTTimeRange)segment
newDuration:(QTTime)newDuration

Discussion
If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

selectionDuration
Returns the duration of the movie’s current selection as a QTTime structure.

- (QTTime)selectionDuration

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

selectionEnd
Returns the end point of the movie’s current selection as a QTTime structure.

- (QTTime)selectionEnd

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

selectionStart
Returns the start time of the movie’s current selection as a QTTime structure.

- (QTTime)selectionStart

Instance Methods 193
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

setAttribute:forKey:
Set the movie attribute attributeKey to the value specified by the value parameter.

- (void)setAttribute:(id)value
forKey:(NS String *)attributeKey

Discussion
A list of supported movie attributes and their acceptable values can be found in the “Settable and Gettable
Movie Attributes” (page 205) section.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitImport
QTKitMovieShuffler
QTKitPlayer
ViewController

Declared In
QTMovie.h

setCurrentTime:
Sets the movie’s current time setting to time.

- (void)setCurrentTime:(QTTime)time

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIColorTracking
CIVideoDemoGL
StillMotion

Declared In
QTMovie.h

setDelegate:
Sets the movie’s delegate to delegate.

194 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (void)setDelegate:(id)delegate

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitProgressTester

Declared In
QTMovie.h

setIdling:
Sets the movie to idle YES or not to idle NO.

- (void)setIdling:(BOOL)state

Parameters
state

A Boolean value that indicates whether to idle the movie (YES) or not (NO).

Discussion
This method allows you to manage the idling state of a QTMovie object, that is, whether it is being tasked.
Note that movies attached to a background thread should not be idled; if they are idled, unexpected behavior
can result. This method cannot be called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

setMovieAttributes:
Set the movie attributes using the key-value pairs specified in the dictionary attributes.

- (void)setMovieAttributes:(NSDictionary *)attributes

Discussion
A list of supported movie attributes and their acceptable values can be found in the “Settable and Gettable
Movie Attributes” (page 205) section.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

setMuted:
Sets the movie’s mute setting to mute.

Instance Methods 195
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

- (void)setMuted:(BOOL)mute

Discussion
Note that this does not affect the volume.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

setRate:
Sets the movie’s rate to rate.

- (void)setRate:(float)rate

Discussion
For instance, 0.0 is stop, 1.0 is playback at normal speed, 2.0 is twice normal speed, and so on.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MyMediaPlayer
QTCoreImage101
QTCoreVideo101
QTCoreVideo103
QTQuartzPlayer

Declared In
QTMovie.h

setSelection:
Sets the movie’s selection to selection.

- (void)setSelection:(QTTimeRange)selection

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

setVisualContext:
Sets the visual context of the QTMovie.

- (void)setVisualContext:(QTVisualContextRef)visualContext

196 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
QTMovie.h

setVolume:
Sets the movie’s volume to volume.

- (void)setVolume:(float)volume

Discussion
Note that this does not affect the movie’s stored settings.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

startTimeOfChapter:
Returns a QTTime structure that is the start time of the chapter having the specified 0-based index in the list
of chapters.

- (QTTime)startTimeOfChapter:(NSInteger)chapterIndex

Availability
Mac OS X v10.5 and later.

Declared In
QTMovie.h

stepBackward
Sets the movie backward a single frame.

- (void)stepBackward

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL

Declared In
QTMovie.h

Instance Methods 197
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

stepForward
Sets the movie forward a single frame.

- (void)stepForward

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
QTKitFrameStepper

Declared In
QTMovie.h

stop
Stops the movie playing.

- (void)stop

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CIVideoDemoGL
QTAudioContextInsert
QTAudioExtractionPanel
QTKitMovieShuffler
QTKitPlayer

Declared In
QTMovie.h

tracks
Returns an array of QTTrack objects associated with the receiver.

- (NSArray *)tracks

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
QTMetadataEditor
TrackFormatDemo

198 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

tracksOfMediaType:
Returns an array of tracks with the specified media type.

- (NSArray *)tracksOfMediaType:(NSString *)type

Discussion
The type parameter should be one of the media types defined by constants in QTMedia.h beginning with
"QTMediaType", for instance, QTMediaTypeVideo.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitTimeCode

Declared In
QTMovie.h

updateMovieFile
Updates the movie file of a QTMovie.

- (BOOL)updateMovieFile

Discussion
Returns YES if the update succeeds and NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTKitCommandLine
QTKitPlayer
QTMetadataEditor
WritableFileDemo

Declared In
QTMovie.h

visualContext
Allows access to the visual context of the QTMovie.

- (QTVisualContextRef)visualContext

Instance Methods 199
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
QTMovie.h

volume
Returns the movie’s volume as a scalar value of type float.

- (float)volume

Discussion
The valid range is 0.0 to 1.0.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

writeToFile:withAttributes:
Returns YES if the movie file was successfully created and NO otherwise.

- (BOOL)writeToFile:(NSString *)fileName
withAttributes
:(NSDictionary *)attributes

Discussion
This method returns YES if the movie file was successfully created and NO otherwise. NOwill also be returned
if the load state of the target is less than QTMovieLoadStateComplete, in which case no attempt is made
to write the QTMovie into a file. If the dictionary attributes contains an object whose key is
QTMovieFlatten, then the movie is flattened into the specified file. If the dictionary attributes contains
an object whose key is QTMovieExport, then the movie is exported into the specified file using a movie
exporter whose type is specified by the value of the key QTMovieExportType. The value associated with
the QTMovieExportSettings key should be an object of type NSData that contains an atom container of
movie export settings.

Availability
QuickTime 7.2.1 or later.

See Also
– movieFormatRepresentation (page 188)

Related Sample Code
QTKitCommandLine
QTKitMovieShuffler
QTKitProgressTester
QTKitThreadedExport

200 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

writeToFile:withAttributes:error:
Returns an NSError object if an error occurs and if errorPtr is non-NULL.

- (BOOL)writeToFile:(NSString *)fileName
withAttributes:(NSDictionary *)attributes
error:(NSError **)errorPtr

Discussion
The method operates exactly like the existing QTMovie writeToFile:withAttributes method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– movieFormatRepresentation (page 188)

Declared In
QTMovie.h

Delegate Methods

externalMovie:
This method is called, if implemented by a QTMovie delegate object, when an external movie needs to be
found (usually for a wired action targeted at an external movie).

- (QTMovie *)externalMovie:(NSDictionary *)dictionary

Parameters
dictionary

An NSDictionary object that contains information about the desired external movie.

Return Value
A QTMovie object.

Discussion
The keys for the dictionary in this delegate method are: QTMovieTargetIDNotificationParameter and
QTMovieTargetNameNotificationParameter. The QTMovieTargetIDNotificationParameter key
indicates that the delegate should return a QTMovie object that has the specified movie ID. The
QTMovieTargetNameNotificationParameter key indicates that the delegate should return a QTMovie
object that has the specified movie name.

This delegate method is not called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Delegate Methods 201
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

movie:linkToURL:
If implemented by a delegate of a QTMovie object, called to handle the movie controller
actionmcActionLinkToURL.

- (BOOL)movie:(QTMovie *)movie linkToURL:(NSURL *)url

Parameters
movie

A QTMovie object.

url
An NSURL object.

Return Value
A BOOL value; a delegate should return YES if it handled this method, NO otherwise.

Discussion
QTMovie objects can contain requests to open URLs. An application can implement this delegate method
to override the default URL-opening mechanism in QTKit. In general, most applications will not need to install
a delegate to handle this. This delegate method is not called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

movie:shouldContinueOperation:withPhase:atPercent:withAttributes:
If implemented, this method is called periodically during lengthy operations (such as exporting a movie).

- (BOOL)movie:(QTMovie *)movieshouldContinueOperation
:(NSString *)op withPhase:(QTMovieOperationPhase)phase atPercent:(NSNumber
*)percent withAttributes:(NSDictionary *)attributes

Parameters
op

An NSString object that is a localized description of the operation being performed.

phase
A value of type QTMovieOperationPhase that indicates indicates whether the operation is just
beginning (QTMovieOperationBeginPhase), ending (QTMovieOperationEndPhase), or is at a
certain percentage of completion (QTMovieOperationUpdatePercentPhase).

percent
When the phase parameter isQTMovieOperationUpdatePercentPhase, the approximate percentage
of the operation completed.

202 Delegate Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

attributes
An NSDictionary object that the same dictionary passed to a QTMovie method that caused the
lengthy operation (for example, the attributes dictionary passed to
writeToFile:withAttributes:error:). This parameter may be nil.

Return Value
A BOOL value; a delegate should return YES to continue the lengthy operation, NO to cancel it.

Discussion
A delegate can implement this method. The op string is a localized string that indicates what the operation
is. The phase indicates whether the operation is just beginning, ending, or is at a certain percentage of
completion. If the phase is QTMovieOperationUpdatePercentPhase, then the percent parameter
indicates the percentage of the operation completed. The attributes dictionary may be NIL; if not NIL,
it is the same dictionary passed to a QTMovie method that caused the lengthy operation (for example, the
attributes dictionary passed to writeToFile). The constants for this method are defined as follows:

typedef enum {
 QTMovieOperationBeginPhase = movieProgressOpen,
 QTMovieOperationUpdatePercentPhase = movieProgressUpdatePercent,
 QTMovieOperationEndPhase = movieProgressClose
}

Special Considerations

This delegate method is not called when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovie.h

movieShouldTask:
If a QTMovie object has a delegate and that delegate implements this method, that method will be called
before QTKit performs the standard idle processing on a movie.

- (BOOL)movieShouldTask:(id)movie

Parameters
movie

The QTMovie object that is about to perform idle processing.

Return Value
A BOOL value; a delegate should return YES to cancel the standard movie idle processing, NO otherwise.

Discussion
The delegate can cancel that normal processing by returning YES.

Special Considerations

This delegate method is deprecated and should not be used in new code. This delegate method is not called
when the movie has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Delegate Methods 203
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Declared In
QTMovie.h

Constants

Constants For Use With movieFileTypes: Method
The following values can be used to include some or all of the file types that are normally excluded:

typedef enum {
 QTIncludeStillImageTypes = 1 << 0,
 QTIncludeTranslatableTypes = 1 << 1,
 QTIncludeAggressiveTypes = 1 << 2,
 QTIncludeCommonTypes = 0,
 QTIncludeAllTypes = 0xffff
} QTMovieFileTypeOptions;

Constants
QTIncludeStillImageTypes

This value adds to the array all file types for still images that can be opened using a graphics importer.

Available in Mac OS X v10.3 and later.

Declared in QTMovie.h.

QTIncludeTranslatableTypes
This value adds to the array all file types for files that can be opened using a movie importer but for
which a new file must be created.

Available in Mac OS X v10.3 and later.

Declared in QTMovie.h.

QTIncludeAggressiveTypes
This value adds to the array all file types for files that can be opened using a movie importer but that
are not commonly used in connection with movies (for instance, text or HTML files).

Available in Mac OS X v10.3 and later.

Declared in QTMovie.h.

QTIncludeCommonTypes
This value adds to the array all common file types that QuickTime can open in place on the current
system.

Available in Mac OS X v10.3 and later.

Declared in QTMovie.h.

QTIncludeAllTypes
This value adds to the array all file types that QuickTime can open on the current system, using any
available movie or graphics importer.

Available in Mac OS X v10.3 and later.

Declared in QTMovie.h.

204 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Settable and Gettable Movie Attributes
The following constants specify the movie attributes that you can get and set using the movieAttributes
and setMovieAttributes methods. To get or set a single attribute, use attributeForKey or
setAttribute.

Constants 205
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

NSString * const QTMovieApertureModeAttribute;
NSString * const QTMovieActiveSegmentAttribute;
NSString * const QTMovieAutoAlternatesAttribute;
NSString * const QTMovieCopyrightAttribute;
NSString * const QTMovieCreationTimeAttribute;
NSString * const QTMovieCurrentSizeAttribute;
NSString * const QTMovieCurrentTimeAttribute;
NSString * const QTMovieDataSizeAttribute;
NSString * const QTMovieDelegateAttribute;
NSString * const QTMovieDisplayNameAttribute;
NSString * const QTMovieDurationAttribute;
NSString * const QTMovieEditableAttribute;
NSString * const QTMovieFileNameAttribute;
NSString * const QTMovieHasApertureModeDimensionsAttribute;
NSString * const QTMovieHasAudioAttribute;
NSString * const QTMovieHasDurationAttribute;
NSString * const QTMovieHasVideoAttribute;
NSString * const QTMovieIsActiveAttribute;
NSString * const QTMovieIsInteractiveAttribute;
NSString * const QTMovieIsLinearAttribute;
NSString * const QTMovieIsSteppableAttribute;
NSString * const QTMovieLoadStateAttribute;
NSString * const QTMovieLoadStateErrorAttribute;
NSString * const QTMovieLoopsAttribute;
NSString * const QTMovieLoopsBackAndForthAttribute;
NSString * const QTMovieModificationTimeAttribute;
NSString * const QTMovieMutedAttribute;
NSString * const QTMovieNaturalSizeAttribute;
NSString * const QTMoviePlaysAllFramesAttribute;
NSString * const QTMoviePlaysSelectionOnlyAttribute;
NSString * const QTMoviePosterTimeAttribute;
NSString * const QTMoviePreferredMutedAttribute;
NSString * const QTMoviePreferredRateAttribute;
NSString * const QTMoviePreferredVolumeAttribute;
NSString * const QTMoviePreviewModeAttribute;
NSString * const QTMoviePreviewRangeAttribute;
NSString * const QTMovieRateAttribute;
NSString * const QTMovieSelectionAttribute;
NSString * const QTMovieTimeScaleAttribute;
NSString * const QTMovieURLAttribute;
NSString * const QTMovieVolumeAttribute;
NSString * const QTMovieRateChangesPreservePitchAttribute;

Constants
QTMovieApertureModeAttribute

Sets the aperture mode attribute on a QTMovie object to indicate whether aspect ratio and clean
aperture correction should be performed.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

206 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieActiveSegmentAttribute
The active segment of a QTMovie object; the value for this key is of type NSValue, interpreted as a
QTTimeRange structure. This constant is available in Mac OS X 10.4 and later, but deprecated in Mac
OS X 10.5.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieAutoAlternatesAttribute
The auto-alternate state of a QTMovie object. The value for this key is of type NSNumber, interpreted
as a BOOL.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieCopyrightAttribute
The copyright string of a QTMovie object; the value for this key is of type NSString.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieCreationTimeAttribute
The creation time of a QTMovie object; the value for this key is of type NSDate.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieCurrentSizeAttribute
The current size of a QTMovie object; the value for this key is of type NSValue, interpreted as an
NSSize structure.

This attribute can be read and written. This attribute cannot be read or written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES. This attribute is deprecated
in QTKit version 7.6 and later.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieCurrentTimeAttribute
The current time of a QTMovie object; the value for this key is of type NSValue, interpreted as a
QTTime structure.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 207
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieDataSizeAttribute
The data size of a QTMovie. The value for this key is of type NSNumber, which is interpreted as a
longlong.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieDelegateAttribute
The delegate for a QTMovie object. The value for this key is of type NSObject.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieDisplayNameAttribute
The display name of a QTMovie object. A display name is stored as user data in a movie file and hence
may differ from the base name of the movie’s filename or URL. The value for this key is of type
NSString.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieDontInteractWithUserAttribute
When set in a dictionary passed to movieWithAttributes or initWithAttributes, this prevents
QuickTime from interacting with the user during movie initialization. The value for this key is of type
NSNumber, interpreted as a BOOL.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieDurationAttribute
The duration of a QTMovie object; the value for this key is of type NSValue, interpreted as a QTTime
structure.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieEditableAttribute
The editable setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is
YES if the movie can be edited.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieFileNameAttribute
The file name string of a QTMovie object; the value for this key is of type NSString.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

208 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieHasApertureModeDimensionsAttribute
The aperture mode dimensions set on any track in this QTMovie object, even if those dimensions are
all identical to the classic dimensions (as is the case for content with square pixels and no
edge-processing region). The value for this key is of type NSNumber, interpreted as a BOOL.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieHasAudioAttribute
The audio data setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value
is YES if the movie contains audio data.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieHasDurationAttribute
The duration setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is
YES if the movie has a duration. (Some types of movies, for instance QuickTime VR movies, have no
duration.)

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieHasVideoAttribute
The video data setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value
is YES if the movie contains video data.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieIsActiveAttribute
The active setting; the value for this key is of type NSNumber, interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieIsInteractiveAttribute
The interactive setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value
is YES if the movie is interactive.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 209
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieIsLinearAttribute
The linear setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is YES
if the movie is linear, as opposed to a non-linear QuickTime VR movie.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieIsSteppableAttribute
The steppable setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is
YES if the movie can step from frame to frame.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieLoadStateAttribute
The load state value; the value for this key is of type NSNumber, interpreted as a long.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Declared in QTMovie.h.

Mac OS X v10.5 and later.

QTMovieLoadStateErrorAttribute
The load state error of a QTMovie object; the value for this key is of type NSError.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Declared in QTMovie.h.

QuickTime 7.6.3 and later.

QTMovieLoopsAttribute
The looping setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is
YES if the movie is set to loop, NO otherwise.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieLoopsBackAndForthAttribute
The palindrome looping setting; the value for this key is of type NSNumber, interpreted as a BOOL.
This value is YES if the movie is set to loop back and forth. Note that QTMovieLoopsAttribute and
QTMovieLoopsBackAndForthAttribute are independent and indeed exclusive.
QTMovieLoopsAttribute is used to get and set the state of normal looping;
QTMovieLoopsBackAndForthAttribute is used to get and set the state of palindrome looping.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

210 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieModificationTimeAttribute
The modification time of a QTMovie object; the value for this key is of type NSDate.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieMutedAttribute
The mute setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value is YES
if the movie volume is muted.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieNaturalSizeAttribute
The natural size of a QTMovie object; the value for this key is of type NSValue, interpreted as an
NSSize structure.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePlaysAllFramesAttribute
The play-all-frames setting; the value for this key is of type NSNumber, interpreted as a BOOL. This
value is YES if the movie will play all frames.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePlaysSelectionOnlyAttribute
The play-selection setting; the value for this key is of type NSNumber, interpreted as a BOOL. This value
is YES if the movie will play only the current selection.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePosterTimeAttribute
The movie poster time of a QTMovie object; the value for this key is of type NSValue, interpreted as
a QTTime structure.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 211
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMoviePreferredMutedAttribute
The preferred mute setting; the value for this key is of type NSNumber, interpreted as a BOOL. This
value is YES if the movie preferred mute setting is muted.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

The preferred settings refer to settings contained in the movie file (or movie data) itself. The actual
settings refer to the actual values of those settings. For instance, a movie can have a preferred rate
of 2, and a good movie playing application will respect that setting. But an application or the user
can set the actual rate to some other value. The non-preferred settings can change dynamically, but
the preferred settings will not.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePreferredRateAttribute
The preferred rate; the value for this key is of type NSNumber, interpreted as a float.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

The preferred settings refer to settings contained in the movie file (or movie data) itself. The actual
settings refer to the actual values of those settings. For instance, a movie can have a preferred rate
of 2, and a good movie playing application will respect that setting. But an application or the user
can set the actual rate to some other value. The non-preferred settings can change dynamically, but
the preferred settings will not.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePreferredVolumeAttribute
The preferred volume; the value for this key is of type NSNumber, interpreted as a float.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

The preferred settings refer to settings contained in the movie file (or movie data) itself. The actual
settings refer to the actual values of those settings. For instance, a movie can have a preferred rate
of 2, and a good movie playing application will respect that setting. But an application or the user
can set the actual rate to some other value. The non-preferred settings can change dynamically, but
the preferred settings will not.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePreviewModeAttribute
The preview mode setting; the value for this key is of type NSNumber, interpreted as a BOOL. This
value is YES if the movie is in preview mode.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

212 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMoviePreviewRangeAttribute
The preview range of a QTMovie object; the value for this key is of type NSValue, interpreted as a
QTTimeRange structure.

This attribute can be read and written. This attribute can be read but not written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieRateAttribute
The movie rate; the value for this key is of type NSNumber, interpreted as a float.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieRateChangesPreservePitchAttribute
When the playback rate is not unity, audio must be resampled in order to play at the new rate. The
default resampling affects the pitch of the audio (for example, playing at 2x speed raises the pitch by
an octave, 1/2x lowers an octave). If this property is set on the movie, an alternative algorithm is used,
which alters the speed without changing the pitch. Since this is more computationally expensive, this
property may be silently ignored on some slow CPUs.

This attribute can be read but not written; it must be among the initialization attributes to have any
effect. This attribute can be read but not written when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieSelectionAttribute
The selection range of a QTMovie object; the value for this key is of type NSValue, interpreted as a
QTTimeRange structure.

This attribute can be read and written. This attribute cannot be read or written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieTimeScaleAttribute
The time scale of a QTMovie object; the value for this key is of type NSNumber, interpreted as a long.
This attribute can be read and (in Mac OS X 10.5 and later) written; in earlier versions of Mac OS X,
this attribute is readable only. In general, you should set this attribute only on newly-created movies
or on movies that have not been edited. Also, you should only increase the time scale value, and you
should try to use integer multiples of the existing time scale.

This attribute can be read but not written when the movie has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 213
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieURLAttribute
The URL of a QTMovie object; the value for this key is of type NSURL.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieVolumeAttribute
The movie volume; the value for this key is of type NSNumber, interpreted as a float.

This attribute can be read and written. This attribute can be read and written when the movie has
been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Aperture Modes
When a movie is in clean, production, or encoded pixels aperture mode, each track's dimensions are overridden
by special dimensions for that mode. The original track dimensions are preserved and can be restored by
setting the movie into classic aperture mode. Aperture modes are not saved in movies. The associated value
is of type NSString and is assumed to be one of the following strings:

NSString * const QTMovieApertureModeClassic;
NSString * const QTMovieApertureModeClean;
NSString * const QTMovieApertureModeProduction;
NSString * const QTMovieApertureModeEncodedPixels;

Constants
QTMovieApertureModeClassic

No aspect ratio or clean aperture correction is performed. This is the default aperture mode and
provides compatibility with behavior in QuickTime 7.0.x and earlier. If you call -[QTTrack
setDimensions], the movie is automatically switched to classic mode.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieApertureModeClean
An aperture mode for general display. Where possible, video will be displayed at the correct pixel
aspect ratio, trimmed to the clean aperture. A movie in clean aperture mode sets each track’s
dimensions to match the size returned by -[QTTrack
apertureModeDimensionsForMode:QTMovieApertureModeClean].

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieApertureModeProduction
An aperture mode for modal use in authoring applications. Where possible, video will be displayed
at the correct pixel aspect ratio, but without trimming to the clean aperture so that the edge processing
region can be viewed. A movie in production aperture mode sets each track's dimensions to match
the size returned by -[QTTrack
apertureModeDimensionsForMode:QTMovieApertureModeProduction].

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

214 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieApertureModeEncodedPixels
An aperture mode for technical use. Displays all encoded pixels with no aspect ratio or clean aperture
compensation. A movie in encoded pixels aperture mode sets each track's dimensions to match the
size returned by -[QTTrack
apertureModeDimensionsForMode:QTMovieApertureModeEncodedPixels].

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

Movie Load State Values
The movie load state values. The attributeForKey:QTMovieLoadStateAttribute returns an NSNumber
that wraps a long integer; the enumerated constants shown here are the possible values of that long integer.

enum {
 QTMovieLoadStateError = -1L,
 QTMovieLoadStateLoading = 1000,
 QTMovieLoadStateLoaded = 2000,
 QTMovieLoadStatePlayable = 10000,
 QTMovieLoadStatePlaythroughOK = 20000,
 QTMovieLoadStateComplete = 100000L
};
typedef NSInteger QTMovieLoadState;

Constants
QTMovieLoadStateError

An error occurred while loading the movie.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieLoadStateLoading
The movie is loading.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieLoadStateLoaded
The movie atom has loaded; it’s safe to query movie properties.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieLoadStatePlayable
The movie has loaded enough media data to begin playing.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieLoadStatePlaythroughOK
The movie has loaded enough media data to play through to the end.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

Constants 215
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieLoadStateComplete
The movie has loaded completely.

Mac OS X v10.5 and later.

Declared in QTMovie.h.

Dictionary Items Passed to QTMovie Notifications
The following constants specify items in dictionaries passed to QTMovie notifications and delegate methods.

NSString * const QTMovieMessageNotificationParameter;
NSString * const QTMovieRateDidChangeNotificationParameter;
NSString * const QTMovieStatusFlagsNotificationParameter;
NSString * const QTMovieStatusCodeNotificationParameter;
NSString * const QTMovieStatusStringNotificationParameter;
NSString * const QTMovieTargetIDNotificationParameter;
NSString * const QTMovieTargetNameNotificationParameter;

Constants
QTMovieMessageNotificationParameter

Used as a key in the userInfo dictionary passed to the QTMovieMessageNotification notification
to indicate the message. The associated value is an NSString.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieRateDidChangeNotificationParameter
Used as a key in the userInfo dictionary passed to the QTMovieRateDidChangeNotification
notification to indicate the new playback rate. The associated value is an NSNumber that holds a
float.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieStatusFlagsNotificationParameter
Used as a key in the userInfo dictionary passed to the QTMovieStatusStringPostedNotification
notification to indicate status flags. The associated value is an NSNumber that holds a long.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieStatusCodeNotificationParameter
Used as a key in the userInfo dictionary passed to the QTMovieStatusStringPostedNotification
notification to indicate a status code (or error code). The associated value is an NSNumber that holds
an int.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieStatusStringNotificationParameter
Used as a key in the userInfo dictionary passed to the QTMovieStatusStringPostedNotification
notification to indicate a status string.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

216 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieTargetIDNotificationParameter
Used as a key in the dictionary passed to the externalMovie: delegate method to indicate that the
delegate should return a QTMovie object that has the movie ID specified by the key’s value.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieTargetNameNotificationParameter
Used as a key in the dictionary passed to the externalMovie: delegate method to indicate that the
delegate should return a QTMovie object that has the movie name specified by the key’s value.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Dictionary Keys For Movie Export
The following constants are dictionary keys that you can use to specify movie attributes, using the
writeToFile method.

NSString * const QTMovieExport;
NSString * const QTMovieExportType;
NSString * const QTMovieFlatten;
NSString * const QTMovieExportSettings;
NSString * const QTMovieExportManufacturer;

Constants
QTMovieExport

The movie export setting; the value for this key is of type NSNumber, interpreted as a BOOL.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieExportType
The movie export type; the value for this key is of type NSNumber, interpreted as a long.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieFlatten
The movie flatten setting; the value for this key is of type NSNumber, interpreted as a BOOL.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieExportSettings
The movie export settings; the value of this key is of type NSData, interpreted as a QTAtomContainer.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieExportManufacturer
The export manufacturer value; the value for this key is of type NSNumber, interpreted as a long.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 217
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Dictionary Keys For Image Codecs
The following constants are dictionary keys that you can use to specify movie attributes, using the addImage
method.

NSString * const QTAddImageCodecType;
NSString * const QTAddImageCodecQuality;

Constants
QTAddImageCodecType

The image codec string; the value for this key is of type NSString.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTAddImageCodecQuality
The image codec value; the value for this key is of type NSNumber.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Dictionary of Frame Image Attributes
The following is a dictionary of attributes that can contain frame image keys, using the
frameImageAtTime:withAttributes:error: method.

NSString * const QTMovieFrameImageSize;
NSString * const QTMovieFrameImageType;
NSString * const QTMovieFrameImageTypeNSImage;
NSString * const QTMovieFrameImageTypeCGImageRef;
NSString * const QTMovieFrameImageTypeCIImage;
NSString * const QTMovieFrameImageTypeCVPixelBufferRef;
NSString * const QTMovieFrameImageTypeCVOpenGLTextureRef;
NSString * const QTMovieFrameImageRepresentationsType;
NSString * const QTMovieFrameImageOpenGLContext;
NSString * const QTMovieFrameImagePixelFormat;
NSString * const QTMovieFrameImageDeinterlaceFields;
NSString * const QTMovieFrameImageHighQuality;
NSString * const QTMovieFrameImageSingleField;
NSString * const QTMovieFrameImageSessionMode;

Constants
QTMovieFrameImageSize

Size of the image. The value is an NSValue containing an NSSize record. The default image size is
the current movie size.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageType
Type of the image. The value is an NSString. The default image type is NSImage.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

218 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieFrameImageTypeNSImage
A value for the QTMovieFrameImageType key of the QTMovie
frameImageAtTime:withAttributes:error: attributes dictionary. Specifies that the type of
image returned should be an NSImage.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageTypeCGImageRef
A value for the QTMovieFrameImageType key of the QTMovie
frameImageAtTime:withAttributes:error: attributes dictionary. Specifies that the type of
image returned should be a CGImageRef.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageTypeCIImage
A value for the QTMovieFrameImageType key of the QTMovie
frameImageAtTime:withAttributes:error: attributes dictionary. Specifies that the type of
image returned should be a CIImage.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageTypeCVPixelBufferRef
A value for the QTMovieFrameImageType key of the QTMovie
frameImageAtTime:withAttributes:error: attributes dictionary. Specifies that the type of
image returned should be a CVPixelBufferRef.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageTypeCVOpenGLTextureRef
A value for the QTMovieFrameImageType key of the QTMovie
frameImageAtTime:withAttributes:error: attributes dictionary. Specifies that the type of
image returned should be a CVOpenGLTextureRef. Clients that specify this attribute must also
specify the OpenGL context and pixel format for the texture using the
QTMovieFrameImageOpenGLContext and QTMovieFrameImagePixelFormat attribute keys.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageRepresentationsType
For NSImage, the image representations in the image. Value is an NSArray of NSString; strings are,
for example, NSBitmapImageRep class description. The default is NSBitmapImageRep.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageOpenGLContext
For CVOpenGLTextureRef, the OpenGL context to use. The value is an NSValue (CGLContextObj).

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImagePixelFormat
For CVOpenGLTextureRef, the pixel format to use. Value is an NSValue (CGLPixelFormatObj).

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

Constants 219
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieFrameImageDeinterlaceFields
Image is de-interlaced. Value is an NSNumber (BOOL) (default = YES).

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageHighQuality
Image is high quality. Value is an NSNumber (BOOL) (default = YES).

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageSingleField
Image is single field. Value is an NSNumber (BOOL) (default = YES). The returned object is an autorelease
object.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieFrameImageSessionMode
Indicates that two or more calls to frameImageAtTime:withAttributes:error: will be made
on the same QTMovie object.

By adding this key with the associated value that is an NSNumber wrapping the BOOLYES to the
dictionary of attributes, an application indicates that it will make more than one call to
frameImageAtTime:withAttributes:error: on the same QTMovie object. This knowledge
permits QTMovie to cache certain objects and data structures used to generate a frame image, thereby
improving performance. When the caller has obtained all the frame images desired from a given
QTMovie object, the caller should follow those session calls with a call where this value is NO; this is
a signal to QTMovie to dispose of that cached data.

Declared in QTMovie.h.

Mac OS X v10.6; QuickTime 7.6.3 and later.

Data Locator Attributes
The following constants are data locators that you can use to specify movie attributes, using the
movieWithAttributes and initWithAttributes methods.

NSString * const QTMovieDataReferenceAttribute;
NSString * const QTMoviePasteboardAttribute;
NSString * const QTMovieDataAttribute;

Constants
QTMovieDataReferenceAttribute

The data reference of a QTMovie object;the value for this key is of type QTDataReference.

This attribute can be read but not written. This attribute can be read but not written when the movie
has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMoviePasteboardAttribute
The pasteboard setting of a QTMovie object.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

220 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieDataAttribute
The data of a QTMovie object.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Movie Instantiation Options
The following constants are movie instantiation options that you can use to specify movie attributes, using
the movieWithAttributes and initWithAttributes methods.

NSString * const QTMovieFileOffsetAttribute;
NSString * const QTMovieResolveDataRefsAttribute;
NSString * const QTMovieAskUnresolvedDataRefsAttribute;
NSString * const QTMovieOpenAsyncOKAttribute;
NSString * const QTMovieOpenAsyncRequiredAttribute;
NSString * const QTMovieOpenForPlaybackAttribute;

Constants
QTMovieFileOffsetAttribute

The file offset value; the value for this key is of type NSNumber, interpreted as a long long.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieResolveDataRefsAttribute
Indicates whether external data references in a movie file should be resolved (NSNumber YES) or not
resolved (NSNumber NO).

A movie file can contain references to media data in other locations. By default, QTMovie attempts
to resolve these references at the time that the movie file is opened and a QTMovie object is
instantiated. You can prevent that resolution from occurring by passing an NSNumber wrapping the
value NO as the value of this attribute.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieAskUnresolvedDataRefsAttribute
Indicates whether the user should be prompted to help find any unresolved data references (NSNumber
YES) or not (NSNumber NO).

When the value of the QTMovieResolveDataRefsAttribute attribute is an NSNumber wrapping
the value YES and a movie file contains unresolved data references, this attribute indicates whether
the user should be prompted to help find the missing referenced data (NSNumber YES) or not
(NSNumber NO). Typically, QTMovie will display a dialog box that allows the user to navigate to the
file or URL containing the referenced data. By setting this attribute to NO, you can prevent that dialog
box from being displayed and thereby speed up the movie opening and initialization process.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 221
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieOpenAsyncOKAttribute
Indicates whether a movie file can be opened asynchronously if possible (NSNumber YES) or not
(NSNumber NO).

Opening a movie file and initializing a QTMovie object for that file may require a considerable amount
of time, perhaps to convert the data in the file from one format to another. By setting this attribute
to an NSNumberwrapping the value YES, you grant QTMovie permission to return a non-nil QTMovie
identifier to your application immediately and then to continue processing the file data internally. If
a movie is opened asynchronously, you must monitor the movie load state and ensure that it has
reached the appropriate threshold before attempting to perform certain operations on the movie.
For instance, you cannot export or copy a QTMovie object until its load state has reached
QTMovieLoadStateComplete.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

QTMovieOpenAsyncRequiredAttribute
Indicates whether the QTMovie must be opened asynchronously (NSNumber YES) or not (NSNumber
NO).

Set this attribute to an NSNumber wrapping YES to indicate that all operations necessary to open the
movie file (or other container) and create a valid QTMovie object must occur asynchronously. That is
to say, the methods +movieWithAttributes:error: and -initWithAttributes:error: must
return almost immediately, performing any lengthy operations on another thread. Your application
can monitor the movie load state to determine the progress of those operations.

If you require asynchronous opening but QTMovie is unable to honor your request, then the methods
+movieWithAttributes:error: and -initWithAttributes:error: return nilwith an NSError
having the error domain QTKitErrorDomain and code QTErrorMovieOpeningCannotBeAsynchronous.

Declared in QTMovie.h.

Mac OS X v10.6 and later; QuickTime 7.6.3 and later.

QTMovieOpenForPlaybackAttribute
Indicates whether the QTMovie will be used only for playback (NSNumber YES) or not (NSNumber
NO).

Set this attribute to an NSNumber wrapping YES to indicate that you intend to use movie playback
methods (such as -play or -stop, or corresponding movie view methods such as -play: or -pause:)
to control the movie, but do not intend to use other methods that edit, export, or in any way modify
the movie. Knowing that you need playback services only may allow QTMovie to use more efficient
code paths for some media files.

This attribute is meaningful only when added to the dictionary passed to
-initWithAttributes:error:. In particular, setting this attribute on a QTMovie object that is
already open has no effect.

Declared in QTMovie.h.

Mac OS X v10.6 and later; QuickTime 7.6.3 and later.

Movie Chapter Information
These constants allow applications to get information about a movie and its chapters, and to navigate within
a movie by chapters. Since chapters are a reasonably common feature of movies and podcasts, QTKit enables
developers to create them.

222 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

NSString * const QTMovieChapterName;
NSString * const QTMovieChapterStartTime;
NSString * const QTMovieChapterTargetTrackAttribute;

Constants
QTMovieChapterName

A key indicating the chapter name in the dictionaries that are array elements in the array returned
by QTMoviechapters or passed to QTMovieaddChapters:withAttributes:error.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieChapterStartTime
A key indicating the chapter start time in the dictionaries that are array elements in the array returned
by QTMoviechapters or passed to QTMovieaddChapters:withAttributes:error.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

QTMovieChapterTargetTrackAttribute
A key indicating the track in the QTMovie object that is the target of the chapter track.

Available in Mac OS X v10.5 and later.

Declared in QTMovie.h.

Pasteboard Support
The following constant is the type of movie data passed on the pasteboard.

NSString * const QTMoviePasteboardType;

Constants
QTMoviePasteboardType

Specifies the type of movie data passed on the pasteboard.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Exceptions
The following exception is raised when calling a method requiring editing or modification of a movie that is
uneditable.

NSString * const QTMovieUneditableException;

Constants
QTMovieUneditableException

Raised when the developer tries to call a method that requires editing or modifying the movie on an
uneditable movie.

Available in Mac OS X v10.4 and later.

Declared in QTMovie.h.

Constants 223
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Notifications

QTMovieApertureModeDidChangeNotification
Issued when the aperture mode of the target QTMovie object changes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovie.h

QTMovieChapterDidChangeNotification
Issued when the chapter associated with QTMovie changes.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieChapterListDidChangeNotification
Issued when the chapter list associated with QTMovie changes.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieCloseWindowRequestNotification
Sent when a request is made to close the movie’s window.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieDidEndNotification
Sent when the movie is “done” or at its end.

224 Notifications
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

This notification contains no userInfo parameters. It is equivalent to the standard player controller’s
mcActionMovieFinished action.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieEditabilityDidChangeNotification
Sent when the editable state of a movie has changed.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieEditedNotification
Sent when a movie has been edited.

This notification contains no userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieEnterFullScreenRequestNotification
Sent when a request is made to play back a movie in full screen mode.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieExitFullScreenRequestNotification
Sent when a request is made to play back a movie in normal windowed mode.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

Notifications 225
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieLoadStateDidChangeNotification
Sent when the load state of a movie has changed.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieLoopModeDidChangeNotification
Sent when a change is made in a movie’s looping mode.

This notification contains no information in the userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieMessageStringPostedNotification
Sent when a movie message has been received by the movie controller.

Movie messages can be sent to an application by wired actions (for instance, a wired sprite) or by code that
issues the mcActionShowMessageStringmovie controller action. The userInfo dictionary contains a single
entry whose value is of type NSString, which is the movie message.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieRateDidChangeNotification
Sent when the rate of a movie has changed.

The userInfo dictionary contains a single entry whose value is of type NSNumber that represents a float,
which is the new rate.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieSelectionDidChangeNotification
Sent when the selection of a movie has changed.

This notification contains no userInfo dictionary.

226 Notifications
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieNaturalSizeDidChangeNotification
Posted whenever the natural size (that is, the original dimensions of the movie when it was authored) changes,
either because the movie was edited or because new information about the movie was loaded asynchronously.

All clients that display movies using dimensions based on the QTMovieNaturalSizeAttribute should
respond to this notification to update their display as necessary.

Availability
QuickTime 7.6.3 and later.

Declared In
QTMovie.h

QTMovieSizeDidChangeNotification
Sent when the size of a movie has changed.

This notification contains no userInfo dictionary.

Availability
QuickTime 7.0 and later, but deprecated in QuickTime 7.6.3 and later.

Declared In
QTMovie.h

QTMovieStatusStringPostedNotification
Status messages can be sent by QuickTime’s streaming components or by any code that wants to display a
message in the movie controller bar status area.

The userInfo dictionary contains a single entry whose value is of type NSString, which is the status message.

The following are keys (notification parameters) for userInfo items for the
QTMovieStatusStringPostedNotificationnotificationQTMovieStatusCodeNotificationParameter
and QTMovieStatusStringNotificationParameter.

A status string notification can indicate an error (in which case
QTMovieStatusCodeNotificationParameter will have a value), or it can contain a string (in which case
QTMovieStatusStringNotificationParameter will have a value). For more information, see
mcActionShowStatusString.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

Notifications 227
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

QTMovieTimeDidChangeNotification
Sent when the time in a movie has changed.

The QTMovieTimeDidChangeNotification is fired whenever the movie time changes to a time other
than what it would be during normal playback. So, for example, this notification is not fired every frame.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

QTMovieVolumeDidChangeNotification
Sent when the volume of a movie has changed.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTMovie.h

228 Notifications
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

QTMovie Class Reference

Inherits from CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTMovieLayer.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code CALayerEssentials
Core Animation QuickTime Layer

Overview

This class provides a layer into which the frames of a QTMovie can be drawn, and is intended to provide
support for Core Animation, that is, drawing the contents of a movie into a layer. QTMovieLayer renders a
QTMoviewithin a layer hierarchy. Note that this class requires rendering using visual contexts. Do not attempt
to directly modify the contents property of an QTMovieLayer object. Doing so will effectively turn it into
a regular CALayer.

Tasks

Creating Movie Layers

+ layerWithMovie: (page 230)
Creates an autoreleased QTMovieLayer associated with the specified QTMovie object.

– initWithMovie: (page 230)
Creates a QTMovieLayer associated with the specified QTMovie object.

– movie (page 231)
Returns the movie associated with a QTMovieLayer object.

– setMovie: (page 231)
Sets the QTMovie object in a QTMovieLayer to movie.

Overview 229
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

QTMovieLayer Class Reference

Class Methods

layerWithMovie:
Creates an autoreleased QTMovieLayer associated with the specified QTMovie object.

+ (id)layerWithMovie:(QTMovie *)movie

Parameters
movie

The QuickTime movie with which to create an autoreleased QuickTime layer object.

Discussion
By default, the movie starts playing immediately at rate 1.0 from the beginning of the movie. These default
characteristics can be modified by setting layer properties or movie properties.

Availability
Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
Core Animation QuickTime Layer

Declared In
QTMovieLayer.h

Instance Methods

initWithMovie:
Creates a QTMovieLayer associated with the specified QTMovie object.

- (id)initWithMovie:(QTMovie *)movie

Parameters
movie

The QuickTime movie with which to initialize the QuickTime layer object.

Discussion
This is the designated initializer. By default, the movie starts playing immediately at rate 1.0 from the beginning
of the movie. These default characteristics can be modified by setting layer properties or movie properties.

Availability
Mac OS X v10.5 and later.

Declared In
QTMovieLayer.h

230 Class Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

QTMovieLayer Class Reference

movie
Returns the movie associated with a QTMovieLayer object.

- (QTMovie *)movie

Availability
Mac OS X v10.5 and later.

Declared In
QTMovieLayer.h

setMovie:
Sets the QTMovie object in a QTMovieLayer to movie.

- (void)setMovie:(QTMovie *)movie

Discussion
The currently set QuickTime movie is disposed of using DisposeMovie, unless the QTMovie was created
with a call to initWithQuickTimeMovie and the disposeWhenDone flag was NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTMovieLayer.h

Instance Methods 231
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

QTMovieLayer Class Reference

232 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

QTMovieLayer Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSTextInput
NSUserInterfaceValidations
NSCoding
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTMovieView.h

Availability Available in Mac OS X v10.4 and later.

Related sample code QTAudioContextInsert
QTAudioExtractionPanel
QTKitCreateMovie
QTKitPlayer
QTKitTimeCode

Overview

A QTMovieView is a subclass of NSView that can be used to display and control QuickTime movies. You
normally use a QTMovieView object in combination with a QTMovie object, which supplies the movie being
displayed. A QTMovieView also supports editing operations on the movie.

The movie can be placed within an arbitrary bounding rectangle in the view’s coordinate system, and the
remainder of the view can be filled with a fill color. The movie controller, if it is visible, can also be placed
within an arbitrary bounding rectangle in the view’s coordinate system.

Adopted Protocols

NSMenuValidations
- validateMenuItem:

NSUserInterfaceValidations
- validateUserInterfaceItem

Overview 233
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Tasks

Initializing the View

– initWithFrame: (page 241) Available in Mac OS X v10.3 through Mac OS X v10.5
Initializes a newly allocated QTMovieView with frame as its frame rectangle.

Getting View Characteristics

– movie (page 244)
Returns the QTMovie object associated with the QTMovieView.

– isControllerVisible (page 242)
Returns an indication of whether the QTMovieView has been requested to display a built-in movie
controller user interface.

– isEditable (page 243)
Returns YES if the QTMovieView object is editable.

– preservesAspectRatio (page 246)
Returns YES if the QTMovieView object maintains the aspect ratio of the movie when drawing it in
the view.

– fillColor (page 239)
Returns the fill color of the QTMovieView.

– movieBounds (page 245)
Returns the rectangle currently occupied by the movie in a QTMovieView.

– movieControllerBounds (page 245)
Returns the rectangle currently occupied by the movie controller bar (if it’s visible) in a QTMovieView.

– controllerBarHeight (page 238)
Returns the height of the controller bar.

Setting View Characteristics

– setMovie: (page 250)
Sets the QTMovie object in a QTMovieView to movie.

– setControllerVisible: (page 248)
Sets the visibility state of the movie controller bar in a QTMovieView to controllerVisible.

– setPreservesAspectRatio: (page 250)
Sets the aspect ratio state of a QTMovieView to preservesAspectRatio.

– setShowsResizeIndicator: (page 251)
Shows or hides the movie controller grow box.

– setFillColor: (page 249)
Sets the fill color of a QTMovieView to fillColor.

– setEditable: (page 249)
Sets the edit state of a QTMovieView to editable.

234 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

– selectNone: (page 247)
Selects nothing.

Controlling Movie Playback

– play: (page 246)
Starts the movie playing at its current location.

– pause: (page 246)
Pauses the movie playing.

– gotoBeginning: (page 240)
Sets the current movie time to the beginning of the movie.

– gotoEnd: (page 240)
Sets the current movie time to the end of the movie.

– gotoNextSelectionPoint: (page 240)
Sets the current movie time to the next selection point.

– gotoPreviousSelectionPoint: (page 241)
Sets the current movie time to the previous selection point.

– gotoPosterFrame: (page 241)
Sets the current movie time to the movie poster frame.

– stepForward: (page 253)
Steps the movie forward one frame.

– stepBackward: (page 252)
Steps the movie backward one frame.

Editing a Movie

– cut: (page 238)
Deletes the current movie selection from the movie, placing it on the clipboard.

– copy: (page 238)
Copies the current movie selection onto the clipboard.

– paste: (page 245)
Inserts the contents of the clipboard (if it contains a movie clip) into the movie at the current play
position.

– selectAll: (page 247)
Selects the entire movie.

– delete: (page 239)
Deletes the current movie selection from the movie, placing it on the clipboard.

– add: (page 237)
Adds the contents of the clipboard to the movie at the current movie time.

– addScaled: (page 237)
Adds the contents of the clipboard to the movie, scaled to fit into the current movie selection.

– replace: (page 247)
Replaces the current movie selection with the contents of the clipboard.

Tasks 235
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

– trim: (page 253)
Trims the movie to the current movie selection.

Showing and Hiding Buttons in the Movie Controller Bar

– setBackButtonVisible: (page 248)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setCustomButtonVisible: (page 248)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setHotSpotButtonVisible: (page 250)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setStepButtonsVisible: (page 251)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setTranslateButtonVisible: (page 252)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setVolumeButtonVisible: (page 252)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– setZoomButtonsVisible: (page 252)
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

– isBackButtonVisible (page 241)
Returns the current visibility state of the specified controller bar button.

– isCustomButtonVisible (page 242)
Returns the current visibility state of the specified controller bar button.

– isHotSpotButtonVisible (page 243)
Returns the current visibility state of the specified controller bar button.

– areStepButtonsVisible (page 237)
Returns the current visibility state of the specified controller bar button.

– isTranslateButtonVisible (page 243)
Returns the current visibility state of the specified controller bar button.

– isVolumeButtonVisible (page 244)
Returns the current visibility state of the specified controller bar button.

– areZoomButtonsVisible (page 237)
Returns the current visibility state of the specified controller bar button.

Delegate Methods

– menuForEventDelegate: (page 244)
Returns an NSMenu object that is the contextual menu for the specified event.

– delegate (page 239)
Returns the receiver’s delegate.

– setDelegate: (page 249)
Sets the receiver’s delegate.

236 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Instance Methods

add:
Adds the contents of the clipboard to the movie at the current movie time.

- (IBAction)add:(id)sender

Discussion
This action is undoable. If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

addScaled:
Adds the contents of the clipboard to the movie, scaled to fit into the current movie selection.

- (IBAction)addScaled:(id)sender

Discussion
This action is undoable. If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

areStepButtonsVisible
Returns the current visibility state of the specified controller bar button.

- (BOOL)areStepButtonsVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

areZoomButtonsVisible
Returns the current visibility state of the specified controller bar button.

Instance Methods 237
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

- (BOOL)areZoomButtonsVisible

Discussion
These methods allow applications to hide and show specific buttons in the movie controller bar.

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

controllerBarHeight
Returns the height of the controller bar.

- (float)controllerBarHeight

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitAdvancedDocument

Declared In
QTMovieView.h

copy:
Copies the current movie selection onto the clipboard.

- (IBAction)copy:(id)sender

Discussion
If there is no selection, the current frame is copied. The movie does not need to be editable.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

cut:
Deletes the current movie selection from the movie, placing it on the clipboard.

- (IBAction)cut:(id)sender

238 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Discussion
If there is no selection, the current frame is deleted. This action is undoable. If the movie is not editable, this
method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Availability
QuickTime 7.2.1 or later.

Declared In
QTMovieView.h

delete:
Deletes the current movie selection from the movie, placing it on the clipboard.

- (IBAction)delete:(id)sender

Discussion
If there is no selection, the current frame is deleted. This action is undoable. If the movie is not editable, this
method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

fillColor
Returns the fill color of the QTMovieView.

- (NSColor *)fillColor

Parameters
fillColor

The fill color of the QTMovieView object.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert

Instance Methods 239
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

gotoBeginning:
Sets the current movie time to the beginning of the movie.

- (IBAction)gotoBeginning:(id)sender

Discussion
This action method sets the current movie time to the beginning of the movie. If the movie is playing, the
movie continues playing from the new position.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

gotoEnd:
Sets the current movie time to the end of the movie.

- (IBAction)gotoEnd:(id)sender

Discussion
This action method sets the current movie time to the end of the movie. If the movie is playing in one of the
looping modes, the movie continues playing accordingly; otherwise, play stops.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

gotoNextSelectionPoint:
Sets the current movie time to the next selection point.

- (IBAction)gotoNextSelectionPoint:(id)sender

Discussion
This action method sets the current movie time to the next selection point.

Availability
Available in Mac OS X v10.3 and later.

240 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Declared In
QTMovieView.h

gotoPosterFrame:
Sets the current movie time to the movie poster frame.

- (IBAction)gotoPosterFrame:(id)sender

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

gotoPreviousSelectionPoint:
Sets the current movie time to the previous selection point.

- (IBAction)gotoPreviousSelectionPoint:(id)sender

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

initWithFrame:
Initializes a newly allocated QTMovieView with frame as its frame rectangle. (Available in Mac OS X v10.3
through Mac OS X v10.5.)

- (id)initWithFrame:(NSRect)frame

Parameters
frame

The NSRect object with which to initialize the QTMovieView with its frame rectangle.

Discussion
The new movie view object must be inserted into the view hierarchy of an NSWindow before it can be used.
This method is the designated initializer for the QTMovieView class.

Availability
Available in Mac OS X v10.3 through Mac OS X v10.5.

Declared In
QTMovieView.h

isBackButtonVisible
Returns the current visibility state of the specified controller bar button.

Instance Methods 241
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

- (BOOL)isBackButtonVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

isControllerVisible
Returns an indication of whether the QTMovieView has been requested to display a built-in movie controller
user interface.

- (BOOL)isControllerVisible

Discussion
Using the setControllerVisible: (page 248) method, the client tells QTMovieView whether or not to
display a user interface for controlling the movie within its bounds. Using the isControllerVisible
method, the client can determine whether a QTMovieView has been configured to display such an interface.
By using the controllerBarHeight (page 238) method, you can determine the height of the portion of
the QTMovieView that is required to display that interface. Note that some types of QuickTime content are
authored to display their own user interface; for those types of content it is possible for the
controllerBarHeight (page 238) method to return 0 even when the isControllerVisible method is
YES.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

isCustomButtonVisible
Returns the current visibility state of the specified controller bar button.

- (BOOL)isCustomButtonVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

242 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Declared In
QTMovieView.h

isEditable
Returns YES if the QTMovieView object is editable.

- (BOOL)isEditable

Parameters
isEditable

The editable state being returned by the QTMovieView object.

Discussion
When editable, a movie can be modified using editing methods and associated key commands. The default
is NO.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

isHotSpotButtonVisible
Returns the current visibility state of the specified controller bar button.

- (BOOL)isHotSpotButtonVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

isTranslateButtonVisible
Returns the current visibility state of the specified controller bar button.

- (BOOL)isTranslateButtonVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

Instance Methods 243
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

isVolumeButtonVisible
Returns the current visibility state of the specified controller bar button.

- (BOOL)isVolumeButtonVisible

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

menuForEventDelegate:
Returns an NSMenu object that is the contextual menu for the specified event.

- (NSMenu *)menuForEventDelegate:(NSEvent *)event

Parameters
event

An NSEvent object that specifies an event.

Discussion
This delegate method can be used instead of subclassing QTMovieView in cases where an application cannot
hard-link against the QTKit framework.

Availability
Mac OS X v10.6; QuickTime 7.6.3 or later.

movie
Returns the QTMovie object associated with the QTMovieView.

- (QTMovie *)movie

Parameters
movie

The QuickTime movie to be returned with the QTMovieView object.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
iChatTheater
QTKitThreadedExport
QTKitTimeCode

Declared In
QTMovieView.h

244 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

movieBounds
Returns the rectangle currently occupied by the movie in a QTMovieView.

- (NSRect)movieBounds

Parameters
movieBounds

The NSRect rectangle returned by the movie in a QTMovieView object.

Discussion
This rectangle does not include the area occupied by the movie controller bar (if it’s visible).

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

movieControllerBounds
Returns the rectangle currently occupied by the movie controller bar (if it’s visible) in a QTMovieView.

- (NSRect)movieControllerBounds

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

paste:
Inserts the contents of the clipboard (if it contains a movie clip) into the movie at the current play position.

- (IBAction)paste:(id)sender

Discussion
This action is undoable. If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

Instance Methods 245
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

pause:
Pauses the movie playing.

- (IBAction)pause:(id)sender

Discussion
This action method pauses the movie playback. This method does nothing if the movie is already paused.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
MyMovieFilter
QTExtractAndConvertToAIFF

Declared In
QTMovieView.h

play:
Starts the movie playing at its current location.

- (IBAction)play:(id)sender

Discussion
This action method starts the movie playing at its current location. This method does nothing if the movie
is already playing.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
iChatTheater
MyMovieFilter

Declared In
QTMovieView.h

preservesAspectRatio
Returns YES if the QTMovieView object maintains the aspect ratio of the movie when drawing it in the view.

- (BOOL)preservesAspectRatio

Parameters
preservesAspectRatio

The state of the aspect ratio returned by the QTMovieView object.

Discussion
The remainder is filled with fillColor.

246 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

replace:
Replaces the current movie selection with the contents of the clipboard.

- (IBAction)replace:(id)sender

Discussion
If there is no selection, the contents of the clipboard replace the entire movie. This action is undoable. If the
movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

selectAll:
Selects the entire movie.

- (IBAction)selectAll:(id)sender

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

selectNone:
Selects nothing.

- (IBAction)selectNone:(id)sender

Discussion
Note that this method does not change the movie time.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 247
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Declared In
QTMovieView.h

setBackButtonVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setBackButtonVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

setControllerVisible:
Sets the visibility state of the movie controller bar in a QTMovieView to controllerVisible.

- (void)setControllerVisible:(BOOL)controllerVisible

Parameters
controllerVisible

The state of controller visibility set in a QTMovieView object.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

setCustomButtonVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setCustomButtonVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

248 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Declared In
QTMovieView.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Availability
QuickTime 7.2.1 or later.

Declared In
QTMovieView.h

setEditable:
Sets the edit state of a QTMovieView to editable.

- (void)setEditable:(BOOL)editable

Parameters
editable

The editable state of the QTMovieView object.

Discussion
The default state is NO.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
GLUT

Declared In
QTMovieView.h

setFillColor:
Sets the fill color of a QTMovieView to fillColor.

- (void)setFillColor:(NSColor *)fillColor

Discussion
Note that this may cause a redraw.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Instance Methods 249
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

setHotSpotButtonVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setHotSpotButtonVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

setMovie:
Sets the QTMovie object in a QTMovieView to movie.

- (void)setMovie:(QTMovie *)movie

Discussion
The currently set QuickTime movie is disposed of using DisposeMovie, unless the QTMovie was created
with a call to initWithQuickTimeMovie and the disposeWhenDone flag was NO.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTAudioExtractionPanel
QTExtractAndConvertToAIFF
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

setPreservesAspectRatio:
Sets the aspect ratio state of a QTMovieView to preservesAspectRatio.

- (void)setPreservesAspectRatio:(BOOL)preservesAspectRatio

250 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Parameters
preservesAspectRatio

The aspect ratio of the movie rectangle.

Discussion
If preservesAspectRatio is YES, the longer side of the movie rectangle is scaled to exactly fit into the
view’s frame and the other side is centered in the view frame; the remaining area is filled with the view’s fill
color. Note that the movie view may be redrawn, but not resized.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
QTMovieView.h

setShowsResizeIndicator:
Shows or hides the movie controller grow box.

- (void)setShowsResizeIndicator:(BOOL)show

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitPlayer

Declared In
QTMovieView.h

setStepButtonsVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setStepButtonsVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

Instance Methods 251
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

setTranslateButtonVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setTranslateButtonVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

setVolumeButtonVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setVolumeButtonVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

setZoomButtonsVisible:
Sets the specified controller bar button to be visible or invisible, according to the state parameter.

- (void)setZoomButtonsVisible:(BOOL)state

Availability
QuickTime 7.2.1 or later.

Related Sample Code
QTKitButtonTester

Declared In
QTMovieView.h

stepBackward:
Steps the movie backward one frame.

- (IBAction)stepBackward:(id)sender

Availability
Available in Mac OS X v10.3 and later.

252 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Declared In
QTMovieView.h

stepForward:
Steps the movie forward one frame.

- (IBAction)stepForward:(id)sender

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

trim:
Trims the movie to the current movie selection.

- (IBAction)trim:(id)sender

Discussion
If there is no selection, the current frame is retained and the remainder of the movie is deleted. This action
is undoable. If the movie is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTMovieView.h

Constants

Movie View Bindings
Constants for different movie view bindings.

NSString * const QTMovieViewMovieBinding;
NSString * const QTMovieViewControllerVisibleBinding;
NSString * const QTMovieViewPreservesAspectRatioBinding;
NSString * const QTMovieViewFillColorBinding;

Constants
QTMovieViewMovieBinding

A QTMovieView binding that determines the receiver's movie. Value is a QTMovie.

Available in Mac OS X v10.4 and later.

Declared in QTMovieView.h.

Constants 253
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

QTMovieViewControllerVisibleBinding
A QTMovieView binding that determines whether or not the controls are visible. Value is a boolean.

Available in Mac OS X v10.4 and later.

Declared in QTMovieView.h.

QTMovieViewPreservesAspectRatioBinding
A QTMovieView binding that determines whether or not the receiver preserves the natural aspect
ratio of the movie. Value is a boolean.

Available in Mac OS X v10.4 and later.

Declared in QTMovieView.h.

QTMovieViewFillColorBinding
A QTMovieView binding that determines the fill color. Value is an NSColor.

Available in Mac OS X v10.4 and later.

Declared in QTMovieView.h.

254 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

QTMovieView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTSampleBuffer.h

Availability Available in QuickTime 7.2.1 and later.

Related sample code AudioDataOutputToAudioUnit
QTRecorder
StillMotion

Overview

This class provides format information, timing information, and metadata on media sample buffers.
QTSampleBuffer objects contain data from media samples as well as metadata about those samples,
including format information, timing information, and other attributes. Some extended information can be
accessed via a QTSampleBuffer’s attributeForKey: and sampleBufferAttributes methods, using the
keys described in the Constants section. In addition to these explicit methods, applications can use key-value
coding to get extended attributes. For an object that supports a given attribute, valueForKey: will be
functionally identical to attributeForKey:. Applications wishing to observe changes for a given attribute
can add a key-value observer where the key path is the attribute key.

Tasks

Getting Sample Buffer Information

– attributeForKey: (page 256)
Returns a sample buffer attribute for the given key.

– audioBufferListWithOptions: (page 257)
Returns a pointer to a Core Audio AudioBufferList containing audio data owned by the receiver.

– bytesForAllSamples (page 257)
Returns a pointer to the bytes of media data contained in the sample buffer.

– decodeTime (page 258)
Returns the decode time of the buffer.

Overview 255
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

– decrementSampleUseCount (page 258)
Decrements the use count of the sample data owned by the receiver, allowing the sample data to be
invalidated after a matching call to incrementSampleUseCount.

– duration (page 259)
Returns the duration of the buffer.

– formatDescription (page 259)
Returns the format description of the buffer.

– getAudioStreamPacketDescriptions:inRange: (page 259)
Gets an array of Core Audio AudioStreamPacketDescriptions describing the lengths of samples in
variable bit- rate audio buffers.

– incrementSampleUseCount (page 260)
Increments the use count of the sample data owned by the receiver, preventing the sample data from
being invalidated until a matching call to decrementSampleUseCount.

– lengthForAllSamples (page 260)
Returns the length of the buffer returned by bytesForAllSamples.

– numberOfSamples (page 261)
Returns the number of media samples contained in the buffer.

– presentationTime (page 261)
Returns the presentation time of the buffer.

– sampleBufferAttributes (page 261)
Returns a dictionary of the sample buffer's current attirbutes.

– sampleUseCount (page 262)
Returns the use count of the sample data owned by the receiver.

Instance Methods

attributeForKey:
Returns a sample buffer attribute for the given key.

- (id)attributeForKey:(NSString *)key

Parameters
key

The key of the returned attribute. Attribute keys are described in the “Sample Buffer Attributes” (page
262) section.

Return Value
An object for the given attribute key, or NIL if the sample buffer does not have the given attribute.

Discussion
Use this method to get attributes of a sample buffer. The keys that can be used with this method are described
in the Constants section. Applications using key-value coding can also get an attribute for a given key by
passing that key to the NSObject valueForKey: method.

Availability
Mac OS X v10.5 and later.

256 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Declared In
QTSampleBuffer.h

audioBufferListWithOptions:
Returns a pointer to a Core Audio AudioBufferList containing audio data owned by the receiver.

- (AudioBufferList
*)audioBufferListWithOptions:(QTSampleBufferAudioBufferListOptions)options;

Parameters
options

A bitfield containing options that determine what kind of audio buffer list will be returned. The options
constants, which can be combined using the bitwise or operator, are described as part of the
QTSampleBufferAudioBufferListOptions type.

Return Value
A pointer to an AudioBufferList structure. This pointer and its associated audio buffers will remain valid
as long as the receiver is valid and the value returned by sampleUseCount is greater then 0.

Discussion
This method returns a pointer to a Core Audio AudioBufferList containing all of the audio data in the
sample buffer. The AudioBufferList can then be passed to Core Audio APIs for rendering and processing
audio. The returned AudioBufferListwill be valid for as long as the receiver is valid and the value returned
by sampleUseCount has not been decremented to 0. Clients passing the AudioBufferList to an audio
unit must include the QTSampleBufferAudioBufferListOptionAssure16ByteAlignment flag in the
options parameter. This method will throw an NSInternalInconsistencyException if called after
decrementSampleUseCount has been used to invalidate the media data contained in the sample buffer.

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit

Declared In
QTSampleBuffer.h

bytesForAllSamples
Returns a pointer to the bytes of media data contained in the sample buffer.

- (void *)bytesForAllSamples

Return Value
A pointer to a buffer of media data.

Discussion
This method returns a pointer to the data for the media samples contained within the sample buffer. Clients
reading bytes from this pointer should check the total length of the buffer using lengthForAllSamples.
Applications can interpret the media data returned by this method using the infomation from the sample
buffer’s formatDescription. This method will throw an NSInternalInconsistencyException if called after
decrementSampleUseCount has been used to invalidate the media data contained in the sample buffer.

Instance Methods 257
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

decodeTime
Returns the decode time of the buffer.

- (QTTime)decodeTime

Return Value
A QTTime representing the decode time of the buffer. For B-frame video media, the decode time may be
different from the presentationTime.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

decrementSampleUseCount
Decrements the use count of the sample data owned by the receiver, allowing the sample data to be
invalidated after a matching call to incrementSampleUseCount.

- (void)decrementSampleUseCount

Discussion
This method allows clients to control when the potentially large memory buffers owned by the receiver are
deallocated. A newly allocated QTSampleBuffer has a sample use count of 1. When the sample use count
drops to 0, the memory allocated for the samples will be freed and the bytesForAllSamples,
lengthForAllSamples, andaudioBufferListWithOptions:methods will each throw an
NSInternalInconsistencyException when called.

This method is analogous to the NSObject release method in that it allows clients to relinquish ownership
over data contained within the sample buffer. In particular, clients that have called
incrementSampleUseCount because they were interested in the sample data of QTSampleBuffer objects
returned by other APIs in QTKit should call this method when they no longer need that data. It is particularly
important that clients using garbage collection ensure that the sample use count is 0 when they no longer
require the sample data owned by a QTSampleBuffer, so that memory can be deallocated promptly rather
than when the object is finalized.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

258 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

duration
Returns the duration of the buffer.

- (QTTime)duration

Return Value
A QTTime representing the duration of the buffer.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

formatDescription
Returns the format description of the buffer.

- (QTFormatDescription *)formatDescription

Return Value
A QTFormatDescription object describing the media format of the buffer.

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit

Declared In
QTSampleBuffer.h

getAudioStreamPacketDescriptions:inRange:
Gets an array of Core Audio AudioStreamPacketDescriptions describing the lengths of samples in variable
bit- rate audio buffers.

- (BOOL)getAudioStreamPacketDescriptions:(void *)audioStreamPacketDescriptions
inRange:(NSRange)range

Parameters
audioStreamPacketDescriptions

An array of Core Audio AudioStreamPacketDescription structures allocated to be large enough to fit
the number of packet descriptions indicated by range.

range
The range of packet descriptions to use when filling the array. If the range falls outside the number
of samples returned by numberOfSamples, this method raises an NSRangeException.

Return Value
If the buffer contains variable bit-rate audio, this method fills the audioStreamPacketDescriptions with
AudioStreamPacketDescription structures and returns YES. If the buffer contains single bit-rate audio,
this method returns NO and leaves audioStreamPacketDescriptions untouched.

Instance Methods 259
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Discussion
Applications that need to process individual packets of variable bit-rate audio from the buffer should call
this method to determine the length of each sample in the buffer. This method raises an
NSInternalInconsistencyException if this method is invoked on a QTSampleBuffer object that does not
describe an audio sample buffer.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

incrementSampleUseCount
Increments the use count of the sample data owned by the receiver, preventing the sample data from being
invalidated until a matching call to decrementSampleUseCount.

- (void)incrementSampleUseCount

Discussion
This method allows clients to control when the potentially large memory buffers owned by the receiver are
deallocated. A newly allocated QTSampleBuffer has a sample use count of 1. When the sample use count
drops to 0, the memory allocated for the samples will be freed and the bytesForAllSamples,
lengthForAllSamples, and audioBufferListWithOptions: methods will each throw an
NSInternalInconsistencyException when called.

This method is analogous to the NSObject retain method in that it allows clients to declare ownership over
data contained within the sample buffer. In particular, clients interested in the sample data of
QTSampleBuffer objects returned by other APIs in QTKit should call this method to ensure that they have
acceess to the sample data, and later call decrementSampleUseCountwhen they no longer need that data.
It is particularly important that clients using garbage collection ensure that the sample use count is 0 when
they no longer require the sample data owned by a QTSampleBuffer, so that memory can be deallocated
promptly rather than when the object is finalized.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

lengthForAllSamples
Returns the length of the buffer returned by bytesForAllSamples.

- (NSUInteger)lengthForAllSamples

Return Value
The length, in bytes of the buffer returned by bytesForAllSamples.

Discussion
Clients reading bytes from the pointer returned by bytesForAllSamples should use this method to check
the total length of the buffer. This method will throw an NSInternalInconsistencyException if called after
decrementSampleUseCount has been used to invalidate the media data contained in the sample buffer.

260 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

numberOfSamples
Returns the number of media samples contained in the buffer.

- (NSInteger)numberOfSamples

Return Value
The number of samples in the buffer.

Discussion
In general, video buffers will always contain one sample (a single frame), while audio buffers may contain
multiple samples. Applications that need to interpret variable bit-rate audio can get the individual sample
lengths with the getAudioStreamPacketDescriptions:inRange: method.

Availability
Mac OS X v10.5 and later.

Related Sample Code
AudioDataOutputToAudioUnit

Declared In
QTSampleBuffer.h

presentationTime
Returns the presentation time of the buffer.

- (QTTime)presentationTime

Return Value
A QTTime representing the presentation time of the buffer. For B-frame video media, the presentation time
may be different from the decodeTime.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

sampleBufferAttributes
Returns a dictionary of the sample buffer's current attirbutes.

- (NSDictionary *)sampleBufferAttributes

Instance Methods 261
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Return Value
A dictionary of attributes attached to the sample buffer. Attribute keys are described in the Constants section
that discusses the attributes.

Discussion
Applications can use this method to determine what attributes a specific sample buffer supports.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

sampleUseCount
Returns the use count of the sample data owned by the receiver.

- (NSUInteger)sampleUseCount

Return Value
The use count of the sample data owned by the receiver.

Discussion
This method returns the use count of the data owned by the reciever, as determined buy the number of
invocations of incrementSampleUseCount and decrementSampleUseCount. If the value retunred by
this method is 0, then the data owned by the reciever has been invalidated and the bytesForAllSamples,
lengthForAllSamples, and audioBufferListWithOptions: methods wil throw an
NSInternalInconsistencyException. Clients should rarely need to call this method. It is generally only useful
for debugging purposes.

Availability
Mac OS X v10.5 and later.

Declared In
QTSampleBuffer.h

Constants

Sample Buffer Attributes
The following are constants for different sample buffer attributes.

262 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

NSString * const QTSampleBufferHostTimeAttribute;
NSString * const QTSampleBufferSMPTETimeAttribute
NSString * const QTSampleBufferSceneChangeTypeAttribute;
NSString * const QTSampleBufferDateRecordedAttribute;
NSString * const QTSampleBufferExplicitSceneChange;
NSString * const QTSampleBufferTimeStampDiscontinuitySceneChange;

Constants
QTSampleBufferHostTimeAttribute

Returns the buffer's host time, if the buffer is from a real time source.

The value returned by this attribute can be compared with the return value of
CVGetCurrentHostTime() or AudioGetCurrentHostTime() to determine whether or not it is
too late for the buffer to be processed in real time. Value is an NSNumber interpreted as a UInt64. This
string value can be used in key paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

QTSampleBufferSMPTETimeAttribute
Returns the SMPTE timecode of the sample buffer, if it has one.

The value is an NSValue interpreted as a SMPTETime (defined in CoreAudio/CoreAudioTypes.h).
This string value can be used in key paths for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

QTSampleBufferSceneChangeTypeAttribute
If the buffer marks a scene change in the input content, returns a constant.

The returned constant specifies the type of scene change. This string value can be used in key paths
for key-value coding, key-value observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

QTSampleBufferDateRecordedAttribute
Returns the date on which the media in the buffer was originally recorded.

The value is an NSDate. This string value can be used in key paths for key-value coding, key-value
observing, and bindings.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

QTSampleBufferExplicitSceneChange
Indicates that a scene change was explicitly marked in the sample buffer’s metadata.

This constant is returned by QTSampleBufferSceneChangeTypeAttribute specifying what kind
of scene change, if any, is marked by a sample buffer.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

Constants 263
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

QTSampleBufferTimeStampDiscontinuitySceneChange
Indicates that the scene changed due to a discontinuity in time stamps between the current sample
buffer and the previous sample buffer.

This constant is returned by QTSampleBufferSceneChangeTypeAttribute specifying what kind
of scene chnage, if any, is marked by a sample buffer.

Available in Mac OS X v10.5 and later.

Declared in QTSampleBuffer.h.

264 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

QTSampleBuffer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTTrack.h

Availability Available in Mac OS X v10.4 and later.

Related sample code MoviePlayer - C#
QTAudioContextInsert
QTAudioExtractionPanel
QTKitTimeCode
QTMetadataEditor

Overview

A QTTrack object is an object that represents the ordering and other characteristics of media data in a
QTMovie object, such as a single video track or audio track. A QTMovie object typically contains one or more
streams of media data, which are represented by QTTrack objects. When a QTMovie object has been initialized
with QTMovieOpenForPlaybackAttribute set to NO, a QTTrack object wraps the underlying QuickTime
track (of type Track). A QTMovie object may have several QTTrack objects associated with it. By constrast,
a QTTrack object has exactly one QTMedia object associated with it.

Tasks

Creating a QTTrack

+ trackWithQuickTimeTrack:error: (page 267)
Returns a QTTrack object associated with a QuickTime Track.

Initializing a QTTrack

– initWithQuickTimeTrack:error: (page 270)
Returns a QTTrack object associated with a QuickTime Track.

Overview 265
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Getting Track Properties

– movie (page 273)
Returns the QTMovie object associated with a QTTrack object.

– media (page 272)
Returns the QTMedia object associated with a QTTrack object.

– isEnabled (page 272)
Returns YES if the QTTrack object is currently enabled, NO otherwise.

– volume (page 277)
Returns the volume of a QTTrack object.

– attributeForKey: (page 269)
Returns the current value of an attribute of a QTTrack object.

– trackAttributes (page 276)
Returns a dictionary containing the current values of public attributes of a QTTrack object.

Setting Track Properties

– setEnabled: (page 275)
Sets the enabled state of a QTTrack to enabled.

– setVolume: (page 276)
Sets the volume of a QTTrack object.

– setAttribute:forKey: (page 275)
Set the track attribute attributeKey to the value specified by the value parameter.

– setTrackAttributes: (page 276)
Sets the attributes of a QTTrack object using the key-value pairs in a specified dictionary.

Editing Track Properties

– addImage:forDuration:withAttributes: (page 268)
Adds an image to a QTTrack object for the specified duration, using attributes specified in the
attributes dictionary.

– deleteSegment: (page 269)
Deletes a specified segment from a QTTrack object.

– insertEmptySegmentAt: (page 271)
Inserts into a QTTrack an empty segment delimited by the range range.

– insertSegmentOfTrack:timeRange:atTime: (page 272)
Inserts into a QTTrack object the specified segment of another QTTrack object.

– insertSegmentOfTrack:fromRange:scaledToRange: (page 271)
Inserts into a QTTrack object the specified segment of another QTTrack object, scaling that new
segment to a specified start time and duration.

– scaleSegment:newDuration: (page 274)
Scales the QTTrack segment delimited by the segment segment so that it will have the new duration
newDuration.

266 Tasks
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Getting QTTrack Primitives

– quickTimeTrack (page 273)
Returns the QuickTime track associated with a QTTrack object.

Getting and Setting Aperture Mode Dimensions

– apertureModeDimensionsForMode: (page 268)
Returns an NSSize value that indicates the dimensions of the target track for the specified movie
aperture mode.

– setApertureModeDimensions:forMode: (page 274)
Sets the dimensions of the target track for the specified movie aperture mode.

– generateApertureModeDimensions (page 270)
Adds aperture mode dimensions information to a QTTrack object.

– removeApertureModeDimensions (page 274)
Removes aperture mode dimensions information from the QTTrack object.

Class Methods

trackWithQuickTimeTrack:error:
Returns a QTTrack object associated with a QuickTime Track.

+ (id)trackWithQuickTimeTrack:(Track)track
error:(NSError **)errorPtr

Parameters
track

A QuickTime Track with which to initialize the QTTrack object.

errorPtr
A pointer to an NSError object; if a QTTrack object cannot be created, an NSError object is returned
in this location.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. In addition, this method cannot be called by 64-bit
applications. Pass NULL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QTTrack.h

Class Methods 267
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Instance Methods

addImage:forDuration:withAttributes:
Adds an image to a QTTrack object for the specified duration, using attributes specified in the attributes
dictionary.

- (void)addImage:(NSImage *)image
forDuration:(QTTime)duration
withAttributes:(NSDictionary *)attributes

Parameters
image

An NSImage that is to be appended to the target track.

duration
A QTTime structure that indicates the desired duration of the appended image in the track.

attributes
An NSDictionary object that specifies attributes of the appended image.

Keys in the dictionary can be QTAddImageCodecType to select a codec type and
QTAddImageCodecQuality to select a quality. Qualities are expected to be specified as NSNumbers,
using the codec values like codecNormalQuality. (See ImageCompression.h for the complete
list.)

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

apertureModeDimensionsForMode:
Returns an NSSize value that indicates the dimensions of the target track for the specified movie aperture
mode.

- (NSSize)apertureModeDimensionsForMode:(NSString *)mode

Parameters
mode

An NSString object that indicates the aperture mode whose dimensions are to be returned; pass
values like QTMovieApertureModeClean.

Discussion
For instance, passing a mode of QTMovieApertureModeClean would cause
apertureModeDimensionsForMode: to return the track dimensions to use in clean aperture mode. This
method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

268 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Availability
QuickTime 7.2 or later.

Declared In
QTTrack.h

attributeForKey:
Returns the current value of an attribute of a QTTrack object.

- (id)attributeForKey:(NSString *)attributeKey

Parameters
attributeKey

An NSString object that specifies the attribute to be read; pass strings like
QTTrackTimeScaleAttribute or QTTrackVolumeAttribute.

Return Value
An NSObject that is the value of the specified attribute key.

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. A list of supported track attributes and their acceptable
values can be found in the “Track Attributes” (page 277) section.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitPlayer
QTMetadataEditor
TrackFormatDemo

Declared In
QTTrack.h

deleteSegment:
Deletes a specified segment from a QTTrack object.

- (void)deleteSegment:(QTTimeRange)segment

Parameters
segment

A QTTimeRange structure that indicates the segment in the target track that is to be deleted.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. If the movie containing this track is not editable, this
method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 269
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Declared In
QTTrack.h

generateApertureModeDimensions
Adds aperture mode dimensions information to a QTTrack object.

- (void)generateApertureModeDimensions

Discussion
If the image descriptions in the track lack tags describing clean aperture and pixel aspect ratio information,
the media data is scanned to see if the correct values can be divined and attached. Then the aperture mode
dimensions are calculated and set. Afterwards, the QTTrackHasApertureModeDimensionsAttribute
property will be set to YES for this track. Tracks that do not support aperture modes are not changed. This
method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
QuickTime 7.2 or later.

Declared In
QTTrack.h

initWithQuickTimeTrack:error:
Returns a QTTrack object associated with a QuickTime Track.

- (id)initWithQuickTimeTrack:(Track)track
error:(NSError **)errorPtr

Parameters
track

A QuickTime Track with which to initialize the QTTrack object.

errorPtr
A pointer to an NSError object; if a QTTrack object cannot be created, an NSError object is returned
in this location.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. In addition, this method cannot be called by 64-bit
applications. Pass NULL if you do not want an NSError object returned.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QTTrack.h

270 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

insertEmptySegmentAt:
Inserts into a QTTrack an empty segment delimited by the range range.

- (void)insertEmptySegmentAt:(QTTimeRange)range

Parameters
range

A QTTimeRange structure that indicates the segment in the target track at which an empty segment
is to be inserted.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. If the movie containing this track is not editable, this
method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

insertSegmentOfTrack:fromRange:scaledToRange:
Inserts into a QTTrack object the specified segment of another QTTrack object, scaling that new segment
to a specified start time and duration.

- (void)insertSegmentOfTrack:(QTTrack *)track
fromRange:(QTTimeRange)srcRange
scaledToRange:(QTTimeRange)dstRange

Parameters
track

The QTTrack object from which the segment to be inserted is copied.

srcRange
A QTTimeRange structure that indicates the segment in track to be copied.

dstRange
A QTTimeRange structure that indicates the range in the target track into which the copied segment
is to be inserted.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. This is essentially an Add Scaled operation on a track. If
the movie containing this track is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

Instance Methods 271
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

insertSegmentOfTrack:timeRange:atTime:
Inserts into a QTTrack object the specified segment of another QTTrack object.

- (void)insertSegmentOfTrack:(QTTrack *)track
timeRange:(QTTimeRange)range
atTime:(QTTime)time

Parameters
track

The QTTrack object from which the segment to be inserted is copied.

range
A QTTimeRange structure that indicates the segment in track to be copied.

time
A QTTime structure that indicates the time in the target track at which the copied segment is to be
inserted.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. If the movie containing this track is not editable, this
method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

isEnabled
Returns YES if the QTTrack object is currently enabled, NO otherwise.

- (BOOL)isEnabled

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

media
Returns the QTMedia object associated with a QTTrack object.

- (QTMedia *)media

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

272 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
QTKitTimeCode
QTMetadataEditor

Declared In
QTTrack.h

movie
Returns the QTMovie object associated with a QTTrack object.

- (QTMovie *)movie

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

quickTimeTrack
Returns the QuickTime track associated with a QTTrack object.

- (Track)quickTimeTrack

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. In addition, this method cannot be called by 64-bit
applications.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitTimeCode

Declared In
QTTrack.h

Instance Methods 273
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

removeApertureModeDimensions
Removes aperture mode dimensions information from the QTTrack object.

- (void)removeApertureModeDimensions

Discussion
It does not attempt to modify sample descriptions, so it may not completely reverse the effects of
generateApertureModeDimensions. It sets the QTTrackHasApertureModeDimensionsAttribute
property to NO. This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
QuickTime 7.2 or later.

Declared In
QTTrack.h

scaleSegment:newDuration:
Scales the QTTrack segment delimited by the segment segment so that it will have the new duration
newDuration.

- (void)scaleSegment:(QTTimeRange)segment
newDuration:(QTTime)newDuration

Parameters
segment

A QTTimeRange structure that indicates the segment in the target track that is to be scaled.

newDuration
A QTTime structure that indicates the desired duration of the segment that is to be scaled.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. If the track is not editable, this method raises an exception.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

setApertureModeDimensions:forMode:
Sets the dimensions of the target track for the specified movie aperture mode.

- (void)setApertureModeDimensions:(NSSize)dimensions
forMode:(NSString *)mode

Parameters
dimensions

An NSSize structure that indicates the desired dimensions for the specified aperture mode.

274 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

mode
An NSString object that indicates the aperture mode whose dimensions are to be set; pass values
like QTMovieApertureModeClean.

Discussion
This method cannot be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
QuickTime 7.2 or later.

Declared In
QTTrack.h

setAttribute:forKey:
Set the track attribute attributeKey to the value specified by the value parameter.

- (void)setAttribute:(id)value
forKey:(NSString *)attributeKey

Parameters
attributes

An NSDictionary object that specifies the attributes to set and their desired values.

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. However, certain attributes may not be writable when
the movie containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.
A list of supported track attributes and their acceptable values can be found in the “Track Attributes” (page
277) section.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

setEnabled:
Sets the enabled state of a QTTrack to enabled.

- (void)setEnabled:(BOOL)enabled

Parameters
enabled

The desired track enabled state.

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 275
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

Related Sample Code
QTKitTimeCode

Declared In
QTTrack.h

setTrackAttributes:
Sets the attributes of a QTTrack object using the key-value pairs in a specified dictionary.

- (void)setTrackAttributes:(NSDictionary *)attributes

Parameters
attributes

An NSDictionary object that specifies the attributes to set and their desired values.

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. However, certain attributes may not be writable when
the movie containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.
A list of supported track attributes and their acceptable values can be found in the “Track Attributes” (page
277) section.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

setVolume:
Sets the volume of a QTTrack object.

- (void)setVolume:(float)volume

Parameters
volume

The desired track volume.

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. The valid range is 0.0 to 1.0.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

trackAttributes
Returns a dictionary containing the current values of public attributes of a QTTrack object.

276 Instance Methods
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

- (NSDictionary *)trackAttributes

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. A list of supported track attributes and their acceptable
values can be found in the “Track Attributes” (page 277) section.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

volume
Returns the volume of a QTTrack object.

- (float)volume

Discussion
This method can be called when the movie containing this track has been initialized with
QTMovieOpenForPlaybackAttribute set to YES. The valid range is 0.0 to 1.0.

Availability
Available in Mac OS X v10.3 and later.

Declared In
QTTrack.h

Constants

Track Attributes
The following constants specify the track attributes that you can get and set using the trackAttributes
and setTrackAttributes methods. To get or set a single attribute, use attributeForKey or
setAttribute.

Constants 277
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

NSString * const QTTrackBoundsAttribute;
NSString * const QTTrackCreationTimeAttribute;
NSString * const QTTrackDimensionsAttribute;
NSString * const QTTrackDisplayNameAttribute;
NSString * const QTTrackEnabledAttribute;
NSString * const QTTrackFormatSummaryAttribute;
NSString * const QTTrackIsChapterTrackAttribute;
NSString * const QTTrackHasApertureModeDimensionsAttribute;
NSString * const QTTrackIDAttribute;
NSString * const QTTrackLayerAttribute;
NSString * const QTTrackMediaTypeAttribute;
NSString * const QTTrackModificationTimeAttribute;
NSString * const QTTrackRangeAttribute;
NSString * const QTTrackTimeScaleAttribute;
NSString * const QTTrackUsageInMovieAttribute;
NSString * const QTTrackUsageInPosterAttribute;
NSString * const QTTrackUsageInPreviewAttribute;
NSString * const QTTrackVolumeAttribute;

Constants
QTTrackBoundsAttribute

The bounding rectangle of a QTTrack object; the value for this key is of type NSValue, interpreted
as an NSRect.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackCreationTimeAttribute
The creation time of a QTTrack object; the value for this key is of type NSDate.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackDimensionsAttribute
The dimensions of a QTTrack object; the value for this key is of type NSValue, interpreted as an
NSSize.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackDisplayNameAttribute
The display name of a QTTrack object; the value for this key is of type NSString.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

278 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

QTTrackEnabledAttribute
The track enabled state of a QTTrack object; the value for this key is of type NSNumber, interpreted
as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackFormatSummaryAttribute
An NSString that is a localized, human-readable string that summarizes a track’s format; for example,
“16-bit Integer (Big Endian), Stereo (L R), 48.000 kHz”.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Declared in QTTrack.h.

Mac OS X v10.5 and later.

QTTrackIsChapterTrackAttribute
Whether a QTTrack object is a chapter track for some other QTTrack object; the value for this key
is of type NSNumber, interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.5 and later.

Declared in QTTrack.h.

QTTrackHasApertureModeDimensionsAttribute
Whether aperture mode dimensions have been set on a QTTrack object; the value for this key is of
type NSNumber, interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.5 and later.

Declared in QTTrack.h.

QTTrackIDAttribute
The track ID of a QTTrack object; the value for this key is of type NSNumber, interpreted as a long.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackLayerAttribute
The track layer of a QTTrack object; the value for this key is of type NSNumber, interpreted as a short.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

Constants 279
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

QTTrackMediaTypeAttribute
The media type of a QTTrack object; the value for this key is of type NSString.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackModificationTimeAttribute
The modification time of a QTTrack object; the value for this key is of type NSDate.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackRangeAttribute
The range of time this track occupies; the value for this key is of type NSValue, interpreted as a
QTTimeRange.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackTimeScaleAttribute
The time scale of a QTTrack object; the value for this key is of type NSNumber, interpreted as a long.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackUsageInMovieAttribute
Whether a QTTrack object contributes data to the movie; the value for this key is of type NSNumber,
interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackUsageInPosterAttribute
Whether a QTTrack object contributes data to the movie poster; the value for this key is of type
NSNumber, interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

280 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

QTTrackUsageInPreviewAttribute
Whether a QTTrack object contributes data to the movie preview; the value for this key is of type
NSNumber, interpreted as a BOOL.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

QTTrackVolumeAttribute
The volume of a QTTrack object; the value for this key is of type NSNumber, interpreted as a float.

This attribute can be read and written. This attribute can be read and written when the movie
containing this track has been initialized with QTMovieOpenForPlaybackAttribute set to YES.

Available in Mac OS X v10.4 and later.

Declared in QTTrack.h.

Constants 281
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

282 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

QTTrack Class Reference

283
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART II

Functions

284
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART II

Functions

Framework: /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTTime.h

Overview

This chapter describes the functions that are available in the QuickTime Kit framework.

Functions by Task

Creating QTTime Structures
The following functions are used to create QTTime structures.

QTMakeTime (page 288)
Creates a QTTime structure.

QTMakeTimeScaled (page 289)
Returns a QTTime structure.

QTTimeFromString (page 293)
Returns a QTTime structure.

QTMakeTimeWithTimeRecord (page 290)
Creates a QTTime structure.

QTMakeTimeWithTimeInterval (page 290)
Creates a QTTime structure.

Getting and Setting Times
The following functions are used to get and set times.

QTGetTimeRecord (page 287)
Returns the value of a QTTime structure expressed as a TimeRecord.

QTGetTimeInterval (page 287)
Returns the value of a QTTime structure expressed as an NSTimeInterval.

Overview 285
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

Comparing QTTime Structures
The following function is used to compare QTTime structures.

QTTimeCompare (page 292)
Returns a value of type NSComparisonResult.

QTSMPTETimeCompare (page 291)
Compares two SMPTETime structures.

QTStringFromSMPTETime (page 291)
Returns a human-readable string from the SMPTETime. The returned string is of the form hh:mm:ss.ff.

Adding and Subtracting Times
The following functions are used to add and subtract times:

QTTimeIncrement (page 293)
Adds two QTTime structures.

QTTimeDecrement (page 293)
Subtracks one QTTime from another.

Getting a Time Description
The following function is used to get a time description:

QTStringFromTime (page 291)
Returns a description of a QTTime structure.

Time Range Functions

QTEqualTimeRanges (page 287)
Returns YES if the specified time ranges are identical.

QTIntersectionTimeRange (page 288)
Returns a QTTimeRange structure that represents the intersection of the two ranges.

QTMakeTimeRange (page 289)
Returns a QTTimeRange structure initialized using the QTTime structures time and duration.

QTStringFromTimeRange (page 292)
Returns a description of a QTTimeRange structure.

QTTimeInTimeRange (page 294)
Returns YES if the specified time time lies in the time range range.

QTTimeRangeEnd (page 294)
Returns a QTTime structure representing the end of the specified time range.

QTTimeRangeFromString (page 294)
Returns a QTTimeRange structure

QTUnionTimeRange (page 295)
Returns a QTTimeRange structure.

286 Functions by Task
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QuickTime Helper Functions

QTStringForOSType (page 291)
Returns an NSString representing the specified four-character code type.

QTOSTypeForString (page 290)
Returns a four-character code representing the specified NSString.

Functions

QTEqualTimeRanges
Returns YES if the specified time ranges are identical.

BOOL QTEqualTimeRanges (
 QTTimeRange range,
 QTTimeRange range2
);

Discussion
This function returns YES if the specified time ranges are identical.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTGetTimeInterval
Returns the value of a QTTime structure expressed as an NSTimeInterval.

BOOL QTGetTimeInterval (
 QTTime time,
 NSTimeInterval *timeInterval
);

Discussion
This function returns, in the location timeInterval, the value of a QTTime structure expressed as a
NSTimeInterval. Returns YES if the method succeeded.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTime.h

QTGetTimeRecord
Returns the value of a QTTime structure expressed as a TimeRecord.

Functions 287
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

BOOL QTGetTimeRecord (
 QTTime time,
 TimeRecord *timeRecord
);

Discussion
This function returns, in the location pointed to by timeRecord, the value of a QTTime structure expressed
as a TimeRecord. Returns YES if the method succeeded.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
QTTime.h

QTIntersectionTimeRange
Returns a QTTimeRange structure that represents the intersection of the two ranges.

QTTimeRange QTIntersectionTimeRange (
 QTTimeRange range1,
 QTTimeRange range2
);

Discussion
This function returns a QTTimeRange structure that represents the intersection of the two ranges. The
intersection of two ranges is the largest range that includes all times that are in both ranges.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTMakeTime
Creates a QTTime structure.

QTTime QTMakeTime (
 long long timeValue,
 long timeScale
);

Discussion
This function creates a QTTime structure initialized using the scalar value timeValue and the time scale
scale.

Availability
Available in Mac OS X v10.4 and later.

288 Functions
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitCommandLine
QTKitCreateMovie
QTKitMovieShuffler

Declared In
QTTime.h

QTMakeTimeRange
Returns a QTTimeRange structure initialized using the QTTime structures time and duration.

QTTimeRange QTMakeTimeRange (
 QTTime time,
 QTTime duration
);

Discussion
This function returns a QTTimeRange structure initialized using the QTTime structures time and duration.
Those structures may have different time scales. In all cases, the time scale used in the new QTTimeRange
structure is that of time.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTKitCommandLine
QTKitMovieShuffler

Declared In
QTTimeRange.h

QTMakeTimeScaled
Returns a QTTime structure.

QTTime QTMakeTimeScaled (
 QTTime time,
 long timeScale
);

Discussion
This function returns a QTTime structure whose time is set to the time of a QTTime structure interpreted
using the time scale scale.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTime.h

Functions 289
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTMakeTimeWithTimeInterval
Creates a QTTime structure.

QTKIT_EXTERN QTTime QTMakeTimeWithTimeInterval (
 NSTimeInterval timeInterval
);

Discussion
Creates a QTTime structure initialized using the NSTimeInterval value timeInterval.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTime.h

QTMakeTimeWithTimeRecord
Creates a QTTime structure.

QTKIT_EXTERN QTTime QTMakeTimeWithTimeRecord (
 TimeRecord timeRecord
);

Discussion
This function creates a QTTime structure initialized using the values in the time record timeRecord.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
QTTime.h

QTOSTypeForString
Returns a four-character code representing the specified NSString.

OSType QTOSTypeForString (
 NSString *string
);

Discussion
This function returns a four-character code representing the specified NSString.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTUtilities.h

290 Functions
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTSMPTETimeCompare
Compares two SMPTETime structures.

NSComparisonResult QTSMPTETimeCompare(SMPTETime time, SMPTETIme otherTime)

QTStringForOSType
Returns an NSString representing the specified four-character code type.

NSString * QTStringForOSType (
 OSType type
);

Discussion
This function returns an NSString representing the specified four-character code type.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTUtilities.h

QTStringFromSMPTETime
Returns a human-readable string from the SMPTETime. The returned string is of the form hh:mm:ss.ff.

NSString* QTStringFromSMPTETime(SMPTETime time)

Availability
Available in Mac OS X v10.5 and later.

Declared In
QTTime.h

QTStringFromTime
Returns a description of a QTTime structure.

NSString * QTStringFromTime (
 QTTime time
);

Discussion
This function returns a description of a QTTime structure. The string is in the form
"sign:days:hours:minutes:seconds.timevalue:timescale", where sign is empty or “-”. Note that
this is not for user input, but for archiving and debugging purposes.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIVideoDemoGL

Functions 291
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTAudioExtractionPanel
QTKitPlayer
QTRecorder

Declared In
QTTime.h

QTStringFromTimeRange
Returns a description of a QTTimeRange structure.

NSString * QTStringFromTimeRange (
 QTTimeRange range
);

Discussion
This function returns a description of a QTTimeRange structure. The string is in the form
"hours:minutes:seconds.frames:: hours:minutes:seconds.frames". Note that this is for archiving
and debugging purposes, not for user display.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTTimeCompare
Returns a value of type NSComparisonResult.

NSComparisonResult QTTimeCompare (
 QTTime time,
 QTTime otherTime
);

Discussion
This function returns a value of type NSComparisonResult that indicates the result of comparing a QTTime
structure with the specified QTTime structure otherTime.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitMovieShuffler

Declared In
QTTime.h

292 Functions
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTTimeDecrement
Subtracks one QTTime from another.

QTTime QTTimeDecrement (
 QTTime time,
 QTTime decrement
);

Discussion
This function returns a QTTime structure whose time is set to the time of a QTTime structure minus that of
the structure decrement.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
QTTime.h

QTTimeFromString
Returns a QTTime structure.

QTKIT_EXTERN QTTime QTTimeFromString (
 NSString *string
);

Discussion
This function returns a QTTime structure whose time is set to the time expressed by the string; the string is
assumed to be in the form "days:hours:minutes:seconds.frames/timescale".

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
QTTime.h

QTTimeIncrement
Adds two QTTime structures.

Functions 293
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTTime QTTimeIncrement (
 QTTime time,
 QTTime increment
);

Discussion
This function returns a QTTime structure whose time is set to the time of a QTTime structure plus that of the
structure increment.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTime.h

QTTimeInTimeRange
Returns YES if the specified time time lies in the time range range.

BOOL QTTimeInTimeRange (
 QTTime time,
 QTTimeRange range
);

Discussion
This function returns YES if the specified time time lies in the time range range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTTimeRangeEnd
Returns a QTTime structure representing the end of the specified time range.

QTTime QTTimeRangeEnd (
 QTTimeRange range
);

Discussion
This function returns a QTTime structure representing the end of the specified time range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTTimeRangeFromString
Returns a QTTimeRange structure

294 Functions
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

QTTimeRange QTTimeRangeFromString (
 NSString *string
);

Discussion
This function returns a QTTimeRange structure whose range is set to the range expressed by string; the string
is assumed to be in the form
"days:hours:minutes:seconds.frames/timescale~days:hours:minutes:seconds.frames/timescale".

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

QTUnionTimeRange
Returns a QTTimeRange structure.

QTTimeRange QTUnionTimeRange (
 QTTimeRange range1,
 QTTimeRange range2
);

Discussion
This function returns a QTTimeRange structure that represents the union of the two ranges. The union of
two ranges is the smallest range that includes all times that are in either range.

Availability
Available in Mac OS X v10.4 and later.

Declared In
QTTimeRange.h

Functions 295
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

296 Functions
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

QTKit Functions Reference

297
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART III

Data Types

298
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART III

Data Types

Framework: QTKit/QTKit.h

Overview

This chapter describes the data types and constants found in the QuickTime Kit framework.

Data Types

QTTime
Defines the value and time scale of a time.

typedef struct { long long timeValue; long
timeScale; long flags; }

Discussion
The QTTime structure defines the value and time scale of a time. Currently only one flag is defined:

enum {
 kQTTimeIsIndefinite = 1 << 0
};

If this flag is set in a QTTime structure, the other fields should not be used. The QTKit provides a number of
functions for converting and comparing QTTime structures.

QTTimeRange
Defines a range of time.

typedef struct { QTTime time; QTTime duration; } QTTimeRange;

Discussion
The QTTimeRange structure defines a range of time. It is used, for instance, to specify the active segment of
a movie or track. The QTKit provides a number of functions for converting and comparing QTTimeRange
structures.

Availability
Available in Mac OS X v10.3 and later.

Overview 299
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

QTKit Data Types Reference

Declared In
QTTimeRange.h

300 Data Types
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

QTKit Data Types Reference

301
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART IV

Constants

302
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

PART IV

Constants

Framework: /System/Library/Frameworks/QTKit.framework

Declared in QTKit/QTError.h

Overview

This document defines constants in the QTKit framework that are not associated with a particular class.

Constants

QTKit Error Domain
The QTKit error domain identifier, and keys for extracting specific values from the userInfo dictionary of an
error returned by QTKit.

NSString * const QTKitErrorDomain;
NSString * const QTErrorCaptureInputKey;
NSString * const QTErrorCaptureOutputKey;
NSString * const QTErrorDeviceKey;
NSString * const QTErrorExcludingDeviceKey;
NSString * const QTErrorTimeKey;
NSString * const QTErrorFileSizeKey;
NSString * const QTErrorRecordingSuccesfullyFinishedKey;

Constants
QTKitErrorDomain

The QTKit error domain identifier.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorCaptureInputKey
Use this key to retrieve the QTCaptureInput object for which the error occurred.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorCaptureOutputKey
Use this key to retrieve the QTCaptureOutput object for which the error occurred.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

Overview 303
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

QTErrorDeviceKey
Use this key to retrieve the QTCaptureDevice object for which the error occurred.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorExcludingDeviceKey
Use this key to retrieve the QTCaptureDevice object for the device whose presence is excluding
the device for which the error occurred.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorTimeKey
An NSValue interpreted as QTTime.

Mac OS X v10.6; QuickTime 7.6.1.

Declared in QTError.h.

QTErrorFileSizeKey
Use this key to interpret the file size in bytes as an NSNumber.

Mac OS X v10.6; QuickTime 7.6.1.

Declared in QTError.h.

QTErrorRecordingSuccesfullyFinishedKey
Use this key to determine whether the products of a recording were successfully finished after recording
stopped due to an error. The value is an NSNumber interpreted as a BOOL.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTKit Error Codes
Error codes returned within QTKitErrorDomain.

304 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

enum {
 QTErrorUnknown = -1,
 QTErrorIncompatibleInput = 1002,
 QTErrorIncompatibleOutput = 1003,
 QTErrorDeviceAlreadyUsedbyAnotherSession = 1101,
 QTErrorNoDataCaptured = 1200,
 QTErrorSessionConfigurationChanged = 1201,
 QTErrorDiskFull = 1202,
 QTErrorDeviceWasDisconnected = 1203,
 QTErrorMediaChanged = 1204,
 QTErrorMaximumDurationReached = 1205,
 QTErrorMaximumFileSizeReached = 1206,
 QTErrorMediaDiscontinuity = 1207,
 QTErrorMaximumNumberOfSamplesForFileFormatReached = 1208,
 QTErrorDeviceNotConnected = 1300,
 QTErrorDeviceInUseByAnotherApplication = 1301,
 QTErrorDeviceExcludedByAnotherDevice = 1302,
};

Constants
QTErrorUnknown

Indicates an unexpected or unknown error.

Check NSUnderlyingErrorKey for an NSError representing the internal cause of the error.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorIncompatibleInput
The input could not be added to the specified session because it is incompatible with existing inputs
and outputs in the session.

Check QTErrorCaptureInputKey for the input experiencing the error.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorIncompatibleOutput
The output could not be added to the specified session because it is incompatible with existing inputs
and outputs in the session.

Check QTErrorCaptureOutputKey for the output experiencing the error.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorDeviceAlreadyUsedbyAnotherSession
The device could not be added to the session because it experiences a runtime error trying to use a
device already being used by another session.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorNoDataCaptured
Returned when no data was successfully captured during a recording or other capture operation.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

Constants 305
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

QTErrorSessionConfigurationChanged
The recording has been automatically stopped because an input or output has been added or removed,
or the channels of an input or output have changed.

Check QTErrorCaptureSuccesfullyFinishedKey to determine if the recorded products were
successfully completed when recording was stopped.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorDiskFull
The recording has been automatically stopped because the disk being used for recorded products is
full.

Check QTErrorCaptureSuccesfullyFinishedKey to determine if the recorded products were
successfully completed when recording was stopped. This error will occur while the destination disk
still has sufficient space to avoid system wide warnings about low disk space.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorDeviceWasDisconnected
The recording has been automatically stopped because an input device was disconnected.

Check QTErrorCaptureSuccesfullyFinishedKey to determine if the capture products were
successfully completed when recording was stopped.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorMediaChanged
The recording has been automatically stopped because the format of the input media changed or
the media samples were invalid.

Check QTErrorCaptureSuccesfullyFinishedKey to determine if the capture products were
successfully completed when recording was stopped.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorMaximumDurationReached
Returned when recording has reached the maximum duration specified by the application.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorMaximumFileSizeReached
Returned when recording has reached the maximum file size specified by the application.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorMediaDiscontinuity
Returned when there is a discontinuity in captured media, usually because of perfomance problems
on the user's system or because of a change in a device's state. This error generally indicates that
media samples have been dropped in order to maintain real time capture.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

306 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

QTErrorMaximumNumberOfSamplesForFileFormatReached
Indicates the maximum number of samples reached for the file format.

Mac OS X v10.6; QuickTime 7.6.3.

Declared in QTError.h.

QTErrorDeviceNotConnected
The device is not connected to the computer.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorDeviceInUseByAnotherApplication
The device is in use by another application.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

QTErrorDeviceExcludedByAnotherDevice
The device is excluded by another device.

Check QTErrorExcludingDeviceKey to determine the device that needs to be closed to open the
device that failed.

Available in Mac OS X v10.5 and later.

Declared in QTError.h.

Constants 307
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

308 Constants
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

QTKit Constants Reference

This table describes the changes to QTKit Framework Reference.

NotesDate

Added QTCaptureDecompressedAudioOutput class to collection; minor edits
and fixes to the Introduction.

2009-02-26

Added descriptions of two new classes, QTMovieLayer and QTCaptureLayer,
and added a reference to the "QuickTime 7.2.1 Update Guide."

2007-10-31

309
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

310
2009-02-26 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QTKit Framework Reference
	Contents
	Tables
	Introduction
	Part I: Classes
	NSCoder QTKit Additions Reference
	Overview
	Tasks
	Encoding Time and Time Ranges
	Decoding Time and Time Ranges

	Instance Methods
	decodeQTTimeForKey:
	decodeQTTimeRangeForKey:
	decodeSMPTETimeForKey:
	encodeQTTime:forKey:
	encodeQTTimeRange:forKey:
	encodeSMPTETime:forKey:

	NSValue QTKit Additions Reference
	Overview
	Tasks
	Wrapping Time and Time Range Structures

	Class Methods
	valueWithQTTime:
	valueWithQTTimeRange:
	valueWithSMPTETime:

	Instance Methods
	QTTimeRangeValue
	QTTimeValue
	SMPTETimeValue

	QTCaptureAudioPreviewOutput Class Reference
	Overview
	Tasks
	Getting and Setting Core Audio Output Devices

	Instance Methods
	outputDeviceUniqueID
	setOutputDeviceUniqueID:
	setVolume:
	volume

	QTCaptureConnection Class Reference
	Overview
	Tasks
	Getting and Setting Connection Attributes

	Instance Methods
	attributeForKey:
	attributeIsReadOnly:
	connectionAttributes
	formatDescription
	isEnabled
	mediaType
	owner
	setAttribute:forKey:
	setConnectionAttributes:
	setEnabled:

	Constants
	Audio Attributes

	Notifications
	QTCaptureConnectionAttributeDidChangeNotification
	QTCaptureConnectionAttributeWillChangeNotification
	QTCaptureConnectionChangedAttributeKey
	QTCaptureConnectionFormatDescriptionDidChangeNotification
	QTCaptureConnectionFormatDescriptionWillChangeNotification

	QTCaptureDecompressedAudioOutput Class Reference
	Overview
	Tasks
	Decompressing Audio Output

	Instance Methods
	delegate
	outputAudioSampleBuffer:fromConnection:
	setDelegate:

	Delegate Methods
	captureOutput:didOutputAudioSampleBuffer:fromConnection:

	QTCaptureDecompressedVideoOutput Class Reference
	Overview
	Tasks
	Decompressing Video Output

	Instance Methods
	automaticallyDropsLateVideoFrames
	delegate
	minimumVideoFrameInterval
	outputVideoFrame:withSampleBuffer:fromConnection:
	pixelBufferAttributes
	setAutomaticallyDropsLateVideoFrames:
	setDelegate:
	setMinimumVideoFrameInterval:
	setPixelBufferAttributes:

	Delegate Methods
	captureOutput:didDropVideoFrameWithSampleBuffer:fromConnection:
	captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection:

	QTCaptureDevice Class Reference
	Overview
	Tasks
	Finding Devices
	Using a Device
	Getting Information About a Device

	Class Methods
	defaultInputDeviceWithMediaType:
	deviceWithUniqueID:
	inputDevices
	inputDevicesWithMediaType:

	Instance Methods
	attributeForKey:
	attributeIsReadOnly:
	close
	deviceAttributes
	formatDescriptions
	hasMediaType:
	isConnected
	isInUseByAnotherApplication
	isOpen
	localizedDisplayName
	modelUniqueID
	open:
	setAttribute:forKey:
	setDeviceAttributes:
	uniqueID

	Constants
	Device Attributes
	Enumerations

	Notifications
	QTCaptureDeviceWasConnectedNotification
	QTCaptureDeviceWasDisconnectedNotification
	QTCaptureDeviceFormatDescriptionsWillChangeNotification
	QTCaptureDeviceFormatDescriptionsDidChangeNotification
	QTCaptureDeviceAttributeWillChangeNotification
	QTCaptureDeviceAttributeDidChangeNotification

	QTCaptureDeviceInput Class Reference
	Overview
	Tasks
	Capturing Device Input

	Class Methods
	deviceInputWithDevice:

	Instance Methods
	device
	initWithDevice:

	QTCaptureFileOutput Class Reference
	Overview
	Tasks
	Recording File Outputs
	Methods That Control Recording
	Methods Implemented by the Delegate

	Instance Methods
	compressionOptionsForConnection:
	delegate
	isRecordingPaused
	maximumRecordedDuration
	maximumRecordedFileSize
	maximumVideoSize
	minimumVideoFrameInterval
	outputFileURL
	pauseRecording
	recordedDuration
	recordedFileSize
	recordToOutputFileURL:
	recordToOutputFileURL:bufferDestination:
	resumeRecording
	setCompressionOptions:forConnection:
	setDelegate:
	setMaximumRecordedDuration:
	setMaximumRecordedFileSize:
	setMaximumVideoSize:
	setMinimumVideoFrameInterval:

	Delegate Methods
	captureOutput:didFinishRecordingToOutputFileAtURL:forConnections:dueToError:
	captureOutput:didOutputSampleBuffer:fromConnection:
	captureOutput:didPauseRecordingToOutputFileAtURL:forConnections:
	captureOutput:didResumeRecordingToOutputFileAtURL:forConnections:
	captureOutput:didStartRecordingToOutputFileAtURL:forConnections:
	captureOutput:mustChangeOutputFileAtURL:forConnections:dueToError:
	captureOutput:shouldChangeOutputFileAtURL:forConnections:dueToError:
	captureOutput:willFinishRecordingToOutputFileAtURL:forConnections:dueToError:
	captureOutput:willStartRecordingToOutputFileAtURL:forConnections:

	Constants
	QTCaptureFileOutputBufferDestination

	QTCaptureInput Class Reference
	Overview
	Tasks
	Capturing Input

	Instance Methods
	connections

	QTCaptureLayer Class Reference
	Overview
	Tasks
	Creating Capture Layers

	Class Methods
	layerWithSession:

	Instance Methods
	initWithSession:
	session
	setSession:

	QTCaptureMovieFileOutput Class Reference
	Overview

	QTCaptureOutput Class Reference
	Overview
	Tasks
	Capturing Connections

	Instance Methods
	connections

	QTCaptureSession Class Reference
	Overview
	Tasks
	Controlling Receiver Capture
	Working with Receiver Inputs and Outputs

	Instance Methods
	addInput:error:
	addOutput:error:
	inputs
	isRunning
	outputs
	removeInput:
	removeOutput:
	startRunning
	stopRunning

	Constants
	Notification Keys

	QTCaptureVideoPreviewOutput Class Reference
	Overview
	Tasks
	Previewing Output
	Capturing Output

	Instance Methods
	delegate
	outputVideoFrame:withSampleBuffer:fromConnection:
	pixelBufferAttributes
	setDelegate:
	setPixelBufferAttributes:
	setVisualContext:forConnection:
	visualContextForConnection:

	Delegate Methods
	captureOutput:didOutputVideoFrame:withSampleBuffer:fromConnection:

	QTCaptureView Class Reference
	Overview
	Tasks
	Associating a View with a Capture Session
	Controlling View Appearance
	Getting and Setting a Delegate
	Methods Implemented by the Delegate

	Instance Methods
	availableVideoPreviewConnections
	captureSession
	delegate
	fillColor
	preservesAspectRatio
	previewBounds
	setCaptureSession:
	setDelegate:
	setFillColor:
	setPreservesAspectRatio:
	setVideoPreviewConnection:
	videoPreviewConnection

	Delegate Methods
	view:willDisplayImage:

	QTCompressionOptions Class Reference
	Overview
	Tasks
	Creating and Configuring Compression Options
	Receiving Compression Options

	Class Methods
	compressionOptionsIdentifiersForMediaType:
	compressionOptionsWithIdentifier:

	Instance Methods
	isEqualToCompressionOptions:
	localizedCompressionOptionsSummary
	localizedDisplayName
	mediaType

	Constants
	Compression Options Identifiers

	QTDataReference Class Reference
	Overview
	Tasks
	Creating a QTDataReference
	Initializing a QTDataReference
	Getting and Setting Data Reference Information

	Class Methods
	dataReferenceWithDataRef:type:
	dataReferenceWithDataRefData:type:
	dataReferenceWithReferenceToData:
	dataReferenceWithReferenceToData:name:MIMEType:
	dataReferenceWithReferenceToFile:
	dataReferenceWithReferenceToURL:

	Instance Methods
	dataRef
	dataRefData
	dataRefType
	initWithDataRef:type:
	initWithDataRefData:type:
	initWithReferenceToData:
	initWithReferenceToData:name:MIMEType:
	initWithReferenceToFile:
	initWithReferenceToURL:
	MIMEType
	name
	referenceData
	referenceFile
	referenceURL
	setDataRef:
	setDataRefType:

	Constants
	Data Reference Types

	QTFormatDescription Class Reference
	Overview
	Tasks
	Formatting Different Types of Media

	Instance Methods
	attributeForKey:
	formatDescriptionAttributes
	formatType
	isEqualToFormatDescription:
	localizedFormatSummary
	mediaType
	quickTimeSampleDescription

	Constants
	Core Audio and Video Types

	QTMedia Class Reference
	Overview
	Tasks
	Creating a QTMedia Object
	Initializing a QTMedia Object
	Accessing Media Properties
	Accessing QuickTime Media Data

	Class Methods
	mediaWithQuickTimeMedia:error:

	Instance Methods
	attributeForKey:
	hasCharacteristic:
	initWithQuickTimeMedia:error:
	mediaAttributes
	quickTimeMedia
	setAttribute:forKey:
	setMediaAttributes:
	track

	Constants
	Media Types
	Media Characteristics
	Media Attributes

	QTMovie Class Reference
	Overview
	Tasks
	Determining If a Movie Can Be Initialized
	Getting a List of Supported File Types
	Creating a Movie
	Controlling Movie Playback
	Managing Threaded Operations of Movie Objects
	Initializing a QTMovie
	Getting Information About a Movie and Its Chapters
	Inspecting Movie Properties
	Managing QTMovie Idling States
	Setting QTMovie Properties
	Setting Movie Attributes
	Supporting Aperture Modes
	Getting and Setting Selection Times
	Getting Movie Tracks
	Getting Movie Images
	Storing Movie Data
	Editing a Movie
	Saving a Movie
	Getting QTMovie Primitives
	Getting and Setting QTMovie Delegates
	Accessing QTMovie Visual Contexts

	Class Methods
	canInitWithDataReference:
	canInitWithFile:
	canInitWithPasteboard:
	canInitWithURL:
	enterQTKitOnThread
	enterQTKitOnThreadDisablingThreadSafetyProtection
	exitQTKitOnThread
	movie
	movieFileTypes:
	movieNamed:error:
	movieTypesWithOptions:
	movieUnfilteredFileTypes
	movieUnfilteredPasteboardTypes
	movieWithAttributes:error:
	movieWithData:error:
	movieWithDataReference:error:
	movieWithFile:error:
	movieWithPasteboard:error:
	movieWithQuickTimeMovie:disposeWhenDone:error:
	movieWithURL:error:

	Instance Methods
	addChapters:withAttributes:error:
	addImage:forDuration:withAttributes:
	appendSelectionFromMovie:
	attachToCurrentThread
	attributeForKey:
	autoplay
	canUpdateMovieFile
	chapterCount
	chapterIndexForTime:
	chapters
	currentFrameImage
	currentTime
	delegate
	deleteSegment:
	detachFromCurrentThread
	duration
	frameImageAtTime:
	frameImageAtTime:withAttributes:error:
	generateApertureModeDimensions
	gotoBeginning
	gotoEnd
	gotoNextSelectionPoint
	gotoPosterTime
	gotoPreviousSelectionPoint
	hasChapters
	initToWritableData:error:
	initToWritableDataReference:error:
	initToWritableFile:error:
	initWithAttributes:error:
	initWithData:error:
	initWithDataReference:error:
	initWithFile:error:
	initWithMovie:timeRange:error:
	initWithPasteboard:error:
	initWithQuickTimeMovie:disposeWhenDone:error:
	initWithURL:error:
	insertEmptySegmentAt:
	insertSegmentOfMovie:fromRange:scaledToRange:
	insertSegmentOfMovie:timeRange:atTime:
	insertSegmentOfTrack:fromRange:scaledToRange:
	insertSegmentOfTrack:timeRange:atTime:
	invalidate
	isIdling
	movieAttributes
	movieFormatRepresentation
	movieShouldLoadData:
	movieWithTimeRange:error:
	muted
	play
	posterImage
	quickTimeMovie
	quickTimeMovieController
	rate
	removeApertureModeDimensions
	removeChapters
	removeTrack:
	replaceSelectionWithSelectionFromMovie:
	scaleSegment:newDuration:
	selectionDuration
	selectionEnd
	selectionStart
	setAttribute:forKey:
	setCurrentTime:
	setDelegate:
	setIdling:
	setMovieAttributes:
	setMuted:
	setRate:
	setSelection:
	setVisualContext:
	setVolume:
	startTimeOfChapter:
	stepBackward
	stepForward
	stop
	tracks
	tracksOfMediaType:
	updateMovieFile
	visualContext
	volume
	writeToFile:withAttributes:
	writeToFile:withAttributes:error:

	Delegate Methods
	externalMovie:
	movie:linkToURL:
	movie:shouldContinueOperation:withPhase:atPercent:withAttributes:
	movieShouldTask:

	Constants
	Constants For Use With movieFileTypes: Method
	Settable and Gettable Movie Attributes
	Aperture Modes
	Movie Load State Values
	Dictionary Items Passed to QTMovie Notifications
	Dictionary Keys For Movie Export
	Dictionary Keys For Image Codecs
	Dictionary of Frame Image Attributes
	Data Locator Attributes
	Movie Instantiation Options
	Movie Chapter Information
	Pasteboard Support
	Exceptions

	Notifications
	QTMovieApertureModeDidChangeNotification
	QTMovieChapterDidChangeNotification
	QTMovieChapterListDidChangeNotification
	QTMovieCloseWindowRequestNotification
	QTMovieDidEndNotification
	QTMovieEditabilityDidChangeNotification
	QTMovieEditedNotification
	QTMovieEnterFullScreenRequestNotification
	QTMovieExitFullScreenRequestNotification
	QTMovieLoadStateDidChangeNotification
	QTMovieLoopModeDidChangeNotification
	QTMovieMessageStringPostedNotification
	QTMovieRateDidChangeNotification
	QTMovieSelectionDidChangeNotification
	QTMovieNaturalSizeDidChangeNotification
	QTMovieSizeDidChangeNotification
	QTMovieStatusStringPostedNotification
	QTMovieTimeDidChangeNotification
	QTMovieVolumeDidChangeNotification

	QTMovieLayer Class Reference
	Overview
	Tasks
	Creating Movie Layers

	Class Methods
	layerWithMovie:

	Instance Methods
	initWithMovie:
	movie
	setMovie:

	QTMovieView Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing the View
	Getting View Characteristics
	Setting View Characteristics
	Controlling Movie Playback
	Editing a Movie
	Showing and Hiding Buttons in the Movie Controller Bar
	Delegate Methods

	Instance Methods
	add:
	addScaled:
	areStepButtonsVisible
	areZoomButtonsVisible
	controllerBarHeight
	copy:
	cut:
	delegate
	delete:
	fillColor
	gotoBeginning:
	gotoEnd:
	gotoNextSelectionPoint:
	gotoPosterFrame:
	gotoPreviousSelectionPoint:
	initWithFrame:
	isBackButtonVisible
	isControllerVisible
	isCustomButtonVisible
	isEditable
	isHotSpotButtonVisible
	isTranslateButtonVisible
	isVolumeButtonVisible
	menuForEventDelegate:
	movie
	movieBounds
	movieControllerBounds
	paste:
	pause:
	play:
	preservesAspectRatio
	replace:
	selectAll:
	selectNone:
	setBackButtonVisible:
	setControllerVisible:
	setCustomButtonVisible:
	setDelegate:
	setEditable:
	setFillColor:
	setHotSpotButtonVisible:
	setMovie:
	setPreservesAspectRatio:
	setShowsResizeIndicator:
	setStepButtonsVisible:
	setTranslateButtonVisible:
	setVolumeButtonVisible:
	setZoomButtonsVisible:
	stepBackward:
	stepForward:
	trim:

	Constants
	Movie View Bindings

	QTSampleBuffer Class Reference
	Overview
	Tasks
	Getting Sample Buffer Information

	Instance Methods
	attributeForKey:
	audioBufferListWithOptions:
	bytesForAllSamples
	decodeTime
	decrementSampleUseCount
	duration
	formatDescription
	getAudioStreamPacketDescriptions:inRange:
	incrementSampleUseCount
	lengthForAllSamples
	numberOfSamples
	presentationTime
	sampleBufferAttributes
	sampleUseCount

	Constants
	Sample Buffer Attributes

	QTTrack Class Reference
	Overview
	Tasks
	Creating a QTTrack
	Initializing a QTTrack
	Getting Track Properties
	Setting Track Properties
	Editing Track Properties
	Getting QTTrack Primitives
	Getting and Setting Aperture Mode Dimensions

	Class Methods
	trackWithQuickTimeTrack:error:

	Instance Methods
	addImage:forDuration:withAttributes:
	apertureModeDimensionsForMode:
	attributeForKey:
	deleteSegment:
	generateApertureModeDimensions
	initWithQuickTimeTrack:error:
	insertEmptySegmentAt:
	insertSegmentOfTrack:fromRange:scaledToRange:
	insertSegmentOfTrack:timeRange:atTime:
	isEnabled
	media
	movie
	quickTimeTrack
	removeApertureModeDimensions
	scaleSegment:newDuration:
	setApertureModeDimensions:forMode:
	setAttribute:forKey:
	setEnabled:
	setTrackAttributes:
	setVolume:
	trackAttributes
	volume

	Constants
	Track Attributes

	Part II: Functions
	QTKit Functions Reference
	Overview
	Functions by Task
	Creating QTTime Structures
	Getting and Setting Times
	Comparing QTTime Structures
	Adding and Subtracting Times
	Getting a Time Description
	Time Range Functions
	QuickTime Helper Functions

	Functions
	QTEqualTimeRanges
	QTGetTimeInterval
	QTGetTimeRecord
	QTIntersectionTimeRange
	QTMakeTime
	QTMakeTimeRange
	QTMakeTimeScaled
	QTMakeTimeWithTimeInterval
	QTMakeTimeWithTimeRecord
	QTOSTypeForString
	QTSMPTETimeCompare
	QTStringForOSType
	QTStringFromSMPTETime
	QTStringFromTime
	QTStringFromTimeRange
	QTTimeCompare
	QTTimeDecrement
	QTTimeFromString
	QTTimeIncrement
	QTTimeInTimeRange
	QTTimeRangeEnd
	QTTimeRangeFromString
	QTUnionTimeRange

	Part III: Data Types
	QTKit Data Types Reference
	Overview
	Data Types
	QTTime
	QTTimeRange

	Part IV: Constants
	QTKit Constants Reference
	Overview
	Constants
	QTKit Error Domain
	QTKit Error Codes

	Revision History

