
QuickTime Movie Creation Guide

2009-06-01

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Apple TV, Mac,
Macintosh, QuickDraw, QuickTime, and
SoundTrack are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to QuickTime Movie Creation Guide 9

Organization of This Document 9
See Also 10

Chapter 1 Creating Movies 11

Movie Structures 11
Tracks 13
Media Structures 14

QuickTime Movie Characteristics 15
Movie Characteristics 16
Track Characteristics 17
Media Characteristics 18
Spatial Properties 19
The Transformation Matrix 24

Audio Properties 26
Sound Playback 27
Adding Sound to Video 27
Sound Data Formats 28

Sample Programs 29
Main Function 29
Creating and Opening a Movie File 30
Creating a Video Track in a New Movie 31
Adding Video Samples to a Media 32
Creating Video Data for a Movie 34
Creating a Sound Track 34
Creating a Sound Description Structure 36
Parsing a Sound Resource 39

Chapter 2 Sequence Grabber Components 41

Working With Sequence Grabber Settings 42
Features of Sequence Grabber Components 42
Working with Sequence Grabber Outputs 43
Storing Captured Data in Multiple Files 43
Application Examples 44
Using Sequence Grabber Components 45

Chapter 3 Sequence Grabber Component Functions 49

Configuring Sequence Grabber Components 49

3
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

Controlling Sequence Grabber Components 50
Working With Sequence Grabber Characteristics 50
Working With Channel Characteristics 51
Working With Channel Devices 52

The Device List Structure 52
The Device Name Structure 52
Working With Video Channels 53
Working With Sound Channels 54
Video Channel Callback Functions 54

Previewing and Recording Captured Data 56
Previewing 56
Recording 57

Playing Captured Data and Saving It in a QuickTime Movie 58
Initializing a Sequence Grabber Component 58
Creating a Sound Channel and a Video Channel 59
Previewing Sound and Video Sequences in a Window 60
Capturing Sound and Video Data 62
Setting Up the Video Bottleneck Functions 63
Drawing Information Over Video Frames During Capture 63

Application-Defined Functions 65
MyGrabFunction 65
MyGrabCompleteFunction 66
MyDisplayFunction 67
MyCompressFunction 67
MyCompressCompleteFunction 68
MyAddFrameFunction 69
MyTransferFrameFunction 70
MyGrabCompressCompleteFunction 71
MyDisplayCompressFunction 72
MyDataFunction 72
MyModalFilter 74

Data Types 74
The Compression Information Structure 74
Frame Information Structure 75

Chapter 4 Sequence Grabber Panel Components 77

How Sequence Grabber Panel Components Work 77
Creating Sequence Grabber Panel Components 79
Managing Your Panel Component 81

Managing Your Panel's Settings 81
Component Flags for Sequence Grabber Panel Components 82
Processing Your Panel's Events 82
Implementing the Required Component Functions 82

Managing the Dialog Box 84

4
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 5 Sequence Grabber Channel Components 87

Creating Sequence Grabber Channel Components 87
Component Type and Subtype Values 87
Required Functions 88
Component Manager Request Codes 88

A Sample Sequence Grabber Channel Component 90
Implementing the Required Component Functions 90
Initializing the Sequence Grabber Channel Component 94
Setting and Retrieving the Channel State 94
Managing Spatial Properties 95
Controlling Previewing and Recording Operations 97
Managing Channel Devices 100
Utility Functions for Recording Image Data 101
Providing Media-Specific Functions 104
Managing the Settings Dialog Box 104
Displaying Channel Information in the Settings Dialog Box 106

Support for Sound Capture at Any Sample Rate 107
Channel Source Names 108
Capturing to Multiple Files 108

Creating a Sequence Grabber Component that Captures Multiple Files 108

Chapter 6 Using Sequence Grabber Channel Components 111

Previewing 111
Configuring Sequence Grabber Channel Components 112

Configuration Functions for All Channel Components 112
Configuration Functions for Video Channel Components 113
Configuration Functions for Sound Channel Components 114

Controlling Sequence Grabber Channel Components 115
Recording 115
Working With Callback Functions 116

Using Callback Functions for Video Channel Components 116
Using Utility Functions for Video Channel Component Callback Functions 117

Working With Channel Devices 118
Utility Functions for Sequence Grabber Channel Components 119

Chapter 7 Text Channel Components 121

About the QuickTime Text Channel Component 121
Text Channel Component Functions 121

Chapter 8 About Video Digitizer Components 125

Analog-to-Digital Conversion 125
Types of Video Digitizer Components 126

5
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Source Coordinate Systems 126
Using Video Digitizer Components 127

Specifying Destinations 127
Setting Video Destinations 128
Starting and Stopping the Digitizer 128
Controlling Digitization 128
Multiple Buffering 129
Obtaining an Accurate Time of Frame Capture 129

Controlling Compressed Source Devices 129

Chapter 9 Creating Video Digitizer Components 131

Required Functions 131
Optional Functions 132

Frame Grabbers Without Playthrough 132
Frame Grabbers With Hardware Playthrough 133
Key Color and Alpha Channel Devices 133
Compressed Source Devices 133

Function Request Codes 134

Chapter 10 Video Digitizer Component API 137

Introduction 137
Component Type and Subtype Values 137
Getting Information About Video Digitizer Components 137
Setting Source Characteristics 137
Selecting an Input Source 138
Controlling Color 138
Controlling Analog Video 139
Selectively Displaying Video 139
Clipping 140
Utility Functions 140
Application-Defined Function 141
Capability Flags 141
Data Types 145

The Digitizer Information Structure 146
The Buffer List Structure 147
The Buffer Structure 148

Document Revision History 149

6
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 1 Creating Movies 11

Listing 1-1 Creating a movie: the main program 29
Listing 1-2 Creating and opening a movie file 30
Listing 1-3 Creating a video track 31
Listing 1-4 Adding video samples to a media 32
Listing 1-5 Creating video data 34
Listing 1-6 Creating a sound track 34
Listing 1-7 Creating a sound description 36
Listing 1-8 Parsing a sound resource 39

Chapter 2 Sequence Grabber Components 41

Listing 2-1 Creating and linking sequence grabber outputs 44
Listing 2-2 Associating outputs with channels 44
Listing 2-3 Specifying maximum data offset for an output 45

Chapter 3 Sequence Grabber Component Functions 49

Listing 3-1 Initializing a sequence grabber component 58
Listing 3-2 Creating a sound channel and a video channel 59
Listing 3-3 Previewing sound and video sequences in a window 60
Listing 3-4 Capturing sound and video 62
Listing 3-5 Setting up the video bottleneck functions 63
Listing 3-6 Drawing information over video frames during capture 64

Chapter 4 Sequence Grabber Panel Components 77

Listing 4-1 Implementing functions for open, close, can do, and version 82
Listing 4-2 Managing the settings dialog box 84
Listing 4-3 Managing the settings for a panel component 86

Chapter 5 Sequence Grabber Channel Components 87

Listing 5-1 Setting up global variables and implementing required functions 90
Listing 5-2 Initializing the sequence grabber channel component 94
Listing 5-3 Determining usage parameters and getting usage data 94
Listing 5-4 Managing spatial characteristics 95
Listing 5-5 Controlling previewing and recording operations 98
Listing 5-6 Coordinating devices for the channel component 100
Listing 5-7 Recording image data 101

7
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

Listing 5-8 Showing the tick count 104
Listing 5-9 Including a tick count checkbox in a dialog box in the panel component 105
Listing 5-10 Displaying channel settings 106
Listing 5-11 Channel capture and managing multiple output files 108

8
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

LISTINGS

This book describes some of the different ways your application can create a new QuickTime movie.

Note: This book replaces six previously separate Apple documents: “Movie Toolbox: Creating Movies,”
“Sequence Grabber Components,” “Sequence Grabber Channel Components,” “Sequence Grabber Panel
Components,” “Text Channel Components,” and “Video Digitizer Components.”

You need to read this book if you are going to work with QuickTime movies.

Organization of This Document

This book consists of the following chapters:

 ■ Creating Movies (page 11) shows you how to create a new movie.

 ■ Sequence Grabber Components (page 41) provides an overview of sequence grabber components,
channel components, video digitizer components, and panel components (used to provide dialogs).

 ■ Sequence Grabber Component Functions (page 49) describes the functions that are provided by sequence
grabber components.

 ■ Sequence Grabber Panel Components (page 77) describes what sequence grabber panel components
are, and how they are used.

 ■ Sequence Grabber Channel Components (page 87) describes how to build sequence grabber channel
components, also known simply as channel components.

 ■ Using Sequence Grabber Channel Components (page 111) gives an overview of the services your channel
component needs to provide.

 ■ Text Channel Components (page 121) describes a type of sequence grabber channel component that
captures text for use in QuickTime movies.

 ■ About Video Digitizer Components (page 125) gives you general information about video digitizers in
QuickTime.

 ■ Creating Video Digitizer Components (page 131) tells you what support is required from a custom video
digitizer component.

 ■ Video Digitizer Component API (page 137) describes the application programming interface for video
digitizer components.

Organization of This Document 9
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Creation
Guide

See Also

For information about creating a video digitizer component, see QuickTime Component Creation Guide.

The following other Apple books cover related aspects of QuickTime programming:

 ■ QuickTime Overview gives you the starting information you need to do QuickTime programming.

 ■ QuickTime Movie Basics introduces you to some of the basic concepts you need to understand when
working with QuickTime movies.

 ■ QuickTime Guide for Windows provides information specific to programming for QuickTime on the
Windows platform.

10 See Also
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to QuickTime Movie Creation Guide

This chapter describes QuickTime movies and shows you how to create a new movie using the QuickTime
Movie Toolbox. A sample program is given, detailing the necessary steps: creating and opening a file to hold
the movie, creating the tracks and media structures for audio and video, adding sample data, and adding
movie resources to the file. Read this section to see a sample program that will step you through the procedure
in tutorial fashion.

Movie Structures

QuickTime movies have a time dimension defined by a time scale and a duration, which are specified by a
time coordinate system. Figure 1-1 illustrates a movie’s time coordinate system. A movie always starts at
time 0. The time scale defines the unit of measure for the movie’s time values. The duration specifies how
long the movie lasts.

0
Movie time

Movie

Movie duration

Movie time unit

Movie time base

A movie can contain one or more tracks. Each track refers to media data that can be interpreted within the
movie’s time coordinate system. Each track begins at the beginning of the movie; however, a track can end
at any time. In addition, the actual data in the track may be offset from the beginning of the movie. Tracks
with data that does not commence at the beginning of a movie contain empty space that precedes the track
data.

At any given point in time, one or more tracks may or may not be enabled.

Note: Throughout this book, the term enabled track denotes a track that may become activated if the movie
time intersects the track. An enabled track refers to a media that in turn refers to media data.

However, no single track needs to be enabled during the entire movie. As you move through a movie, you
gain access to the data that is described by each of the enabled tracks. Figure 1-2 shows a movie that contains
five tracks. The lighter shading in each track represents the time offset between the beginning of the movie
and the start of the track’s data (this lighter shading corresponds to empty space at the beginning of these

Movie Structures 11
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

tracks). When the movie’s time value is 6, there are three enabled tracks: Video 1 and Audio 1, and Video 2,
which is just being enabled. The Other 1 track does not become enabled until the time value reaches 8. The
Audio 2 track becomes enabled at time value 10.

A movie can contain one or more layers. Each layer contains one or more tracks that may be related to one
another. The Movie Toolbox builds up a movie’s visual representation layer by layer. In Figure 1-2, for example,
if the images contained in the Video 1 and Video 2 tracks overlap spatially, the user sees the image that is
stored in the front layer. You can assign individual tracks to movie layers using Movie Toolbox functions that
are described in QuickTime Movie Internals Guide.

Movie time Movie time base

0 3 6 9 12 15

Movie

Other 1

Audio 2

Video 1

Video 2

Audio 1

The Movie Toolbox allows you to define both a movie preview and a movie poster for a QuickTime movie.
A movie preview is a short dynamic representation of a movie. Movie previews typically last no more than
3 to 5 seconds, and they should give the user some idea of what the movie contains. (An example of a movie
preview is a narrative track.) You define a movie preview by specifying its start time, its duration, and its
tracks. A movie may contain tracks that are used only in its preview.

A movie poster is a single visual image representing the movie. You specify a poster as a point in time in
the movie. As with the movie itself and the movie preview, you define which tracks are enabled in the movie
poster.

Figure 1-3 shows an example of a movie’s tracks. The video track is used for the movie, the preview, and the
poster. The movie audio track is used only for the movie. The preview audio track is used only for the preview.
The poster graphic track is used only for the poster.

12 Movie Structures
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Movie duration

Preview duration

Play the
preview

Show the
poster

Poster graphics track

Play the
movie

0

Preview start time

Enabled

Movie time base

Video track
Movie audio track

Preview audio track

Poster graphics track

Enabled

Video track
Movie audio track

Preview audio track

Poster graphics track

Enabled

Video track
Movie audio track

Preview audio track

Poster time

Tracks

A movie can contain one or more tracks. Each track represents a single stream of data in a movie and is
associated with a single media. The media has control information that refers to the actual movie data.

All of the tracks in a movie use the movie’s time coordinate system. That is, the movie’s time scale defines
the basic time unit for each of the movie’s tracks. Each track begins at the beginning of the movie, but the
track’s data might not begin until some time value other than 0. This intervening time is represented by
blank space. In an audio track the blank space translates to silence; in a video track the blank space generates
no visual image. Each track has its own duration. This duration need not correspond to the duration of the
movie. Movie duration always equals the maximum duration of all the tracks. An example of this is shown
in Figure 1-4.

Movie Structures 13
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

0
Movie time

Track

Movie

Track offset

Track duration

Movie time base

A track is always associated with one media. The media contains control information that refers to the data
that constitutes the track. The track contains a list of references that identify portions of the media that are
used in the track. In essence, these references are an edit list of the media. Consequently, a track can play
the data in its media in any order and any number of times. Figure 1-5 shows how a track maps data from a
media into a movie.

0

Media duration

Media time unit

This section of
the media is not

in the track

Media time

Movie time Movie time base
0

Media

Movie

Track

Media Structures

A media describes the data for a track. The data is not actually stored in the media. Rather, the media contains
references to its media data, which may be stored in disk files, on CD-ROM discs, or other appropriate storage
devices. Note that the data referred to by one media may be used by more than one movie, though the
media itself is not reused.

Each media has its own time coordinate system, which defines the media’s time scale and duration. A media’s
time coordinate system always starts at time 0, and it is independent of the time coordinate system of the
movie that uses its data. Tracks map data from the movie’s time coordinate system to the media’s time
coordinate system. Figure 1-6 shows how tracks perform this mapping.

14 Movie Structures
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Each supported data type has its own media handler. The media handler interprets the media’s data. The
media handler must be able to randomly access the data and play segments at rates specified by the movie.
The track determines the order in which the media is played in the movie and maps movie time values to
media time values.

Figure 1-6 shows the final link to the data. The media in the figure references digital video frames on a
CD-ROM disc.

0

CD-ROM or DVD-ROM

Media time

Movie time Movie time base
0

Media

Track

Movie

QuickTime Movie Characteristics

This section discusses the characteristics that govern playing and storing movies, tracks, and media structures.
This section has been divided into the following topics:

 ■ Movie Characteristics (page 16) discusses the time, display, and sound characteristics of a QuickTime
movie.

 ■ Track Characteristics (page 17) describes the characteristics of a movie track.

 ■ Media Characteristics (page 18) discusses the characteristics of a media.

 ■ Spatial Properties (page 19) describes how the Movie Toolbox displays a movie, including how the data
from each media is collected and transformed prior to display.

 ■ The Transformation Matrix (page 24) describes how matrix operations transform visual elements prior
to display.

 ■ Audio Properties (page 26) describes how the Movie Toolbox works with a movie’s sound tracks.

QuickTime Movie Characteristics 15
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Movie Characteristics

A QuickTime movie is represented as a private data structure. Your application never works with individual
fields in that data structure. Rather, the Movie Toolbox provides functions that allow you to work with a
movie’s characteristics. Figure 1-7 shows some of the characteristics of a QuickTime movie.

Movie

Creation time
Modification time

Preview time
Preview duration

Poster and preview time

Selection time
Selection duration

Current time

Matrix
Movie clip

Preferred rate
Preferred volume

Tracks

User data

Playback settings

Spatial characteristics

Preview and poster data

Track information

User data

Movie time information
Time scale
Duration

Every QuickTime movie has some state information, including a creation time and a modification time. These
times are expressed in standard Macintosh time format, representing the number of seconds since midnight,
January 1, 1904. The creation time indicates when the movie was created. The modification time indicates
when the movie was last modified and saved.

Each movie has its own time coordinate system and time scale. Any time values that relate to the movie must
be defined using this time scale and must be between 0 and the movie’s duration.

A movie’s preview is defined by its starting time and duration. Both of these time values are expressed in
terms of the movie’s time scale. A movie’s poster is defined by its time value, which is in terms of the movie’s
time scale. You assign tracks to the movie preview and the movie poster by calling the Movie Toolbox
functions that are described later in this chapter.

Your current position in a movie is defined by the movie’s current time. If the movie is currently playing,
this time value is changing. When you save a movie in a movie file, the Movie Toolbox updates the movie’s
current time to reflect its current position. When you load a movie from a movie file, the Movie Toolbox sets
the movie’s current time to the value found in the movie file.

The Movie Toolbox provides high-level editing functions that work with a movie’s current selection. The
current selection defines a segment of the movie by specifying a start time, referred to as the selection time,
and a duration, called the selection duration. These time values are expressed using the movie’s time scale.

16 QuickTime Movie Characteristics
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

For each movie currently in use, the Movie Toolbox maintains an active movie segment. The active movie
segment is the part of the movie that your application is interested in playing. By default, the active movie
segment is set to be the entire movie. You may wish to change this to be some segment of the movie; for
example, if you wish to play a user’s selection repeatedly. By setting the active movie segment, you guarantee
that the Movie Toolbox uses no samples from outside of that range while playing the movie.

A movie’s display characteristics are specified by a number of elements. The movie has a movie clipping
region and a 3-by-3 transformation matrix. The Movie Toolbox uses these elements to determine the spatial
characteristics of the movie. See Spatial Properties (page 19) for a complete description of these elements
and how they are used by the Movie Toolbox.

When you save a movie, you can establish preferred settings for playback rate and volume. The preferred
playback rate is called the preferred rate. The preferred playback volume is called the preferred volume.
These settings represent the most natural values for these movie characteristics. When the Movie Toolbox
loads a movie from a movie file, it sets the movie’s volume to this preferred value. When you start playing
the movie, the Movie Toolbox uses the preferred rate. You can then use Movie Toolbox functions to change
the rate and volume during playback.

The Movie Toolbox allows your application to store its own data along with a movie. You define the format
and content of these data objects. This application-specific data is called user data. You can use these data
objects to store both text and binary data. For example, you can use text user data items to store a movie’s
copyright and credit information. The Movie Toolbox provides functions that allow you to set and retrieve
a movie’s user data. This data is saved with the movie when you save the movie.

Track Characteristics

A QuickTime track is represented as a private data structure. Your application never works with individual
fields in that data structure. Rather, the Movie Toolbox provides functions that allow you to work with a
track’s characteristics. Figure 1-8 shows the characteristics of a QuickTime track.

Sound information

Track time information

Track ID

Edit data

Media information

User data

Track relationship

Spatial characteristics

Creation time
Modification time

Duration

Alternate group

Track width
 Track height

Track clipping region
Track matte

Matrix

Volume

Edit list

Media

User data

Track ID

Track

QuickTime Movie Characteristics 17
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

As with movies, each track has some state information, including a creation time and a modification time.
These times are expressed in standard Macintosh time format, representing the number of seconds since
midnight, January 1, 1904. The creation time indicates when the track was created. The modification time
indicates when the track was last modified and saved.

Each track has its own duration value, which is expressed in the time scale of the movie that contains the
track.

As has been discussed, movies can contain more than one track. In fact, a movie can contain more than one
track of a given type. You might want to create a movie with several sound tracks, each in a different language,
and then activate the sound track that is appropriate to the user’s native language. Your application can
manage these collections of tracks by assigning each track of a given type to an alternate group. You can
then choose one track from that group to be enabled at any given time. You can select a track from an
alternate group based on its language or its playback quality. A track’s playback quality indicates its suitability
for playback in a given environment. All tracks in an alternate group should refer to the same type of data.

A track’s display characteristics are specified by a number of elements, including track width, track height, a
transformation matrix, and a clipping region. See Spatial Properties (page 19) for a complete description of
these elements and how they are used by the Movie Toolbox.

Each track has a current volume setting. This value controls how loudly the track plays relative to the movie
volume.

Each track contains a media edit list. The edit list contains entries that define how the track’s media is to be
used in the movie that contains the track. Each entry in the edit list indicates the starting time and duration
of the media segment, along with the playback rate for that segment.

Each track has an associated media. See the next section for more information about media structures and
their characteristics.

The Movie Toolbox allows your application to store its own user data along with a track. You define the
format and content of these data objects. The Movie Toolbox provides functions that allow you to set and
retrieve a track’s user data. This data is saved with the track when you save the movie.

Media Characteristics

As is the case with movies and tracks, a QuickTime media is represented as a private data structure. Your
application never works with individual fields in that data structure. Rather, the Movie Toolbox provides
functions that allow you to work with a media’s characteristics. Figure 1-9 shows the characteristics of a
QuickTime media.

18 QuickTime Movie Characteristics
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Media

Creation time
 Modification time

Language
 Playback quality

Media information

Media time information

Media characteristics

Media handler

User data

Media type-specific information

User data

Time scale
Duration

Media handler

Each QuickTime media has some state information, including a creation time and a modification time. These
times are expressed in standard Macintosh time format, representing the number of seconds since midnight,
January 1, 1904. The creation time indicates when the media was created. The modification time indicates
when the media was last modified and saved.

Each media has its own time coordinate system, which is defined by its time scale and duration. Any time
values that relate to the media must be defined in terms of this time scale and must be between 0 and the
media’s duration.

A media contains information that identifies its language and playback quality. These values are used when
selecting one track to present from the tracks in an alternate group.

The media specifies a media handler, which is responsible for the details of loading, storing, and playing
media data. The media handler can store state information in the media. This information is referred to as
media information. The media information identifies where the media’s data is stored and how to interpret
that data. Typically, this data is stored in a data reference, which identifies the file that contains the data
and the type of data that is stored in the file.

The Movie Toolbox allows your application to store its own user data along with a media. You define the
format and content of these data objects. The Movie Toolbox provides functions that allow you to set and
retrieve a media’s user data. This data is saved with the media when you save the movie.

Spatial Properties

When you play a movie that contains visual data, the Movie Toolbox gathers the movie’s data from the
appropriate tracks and media structures, transforms the data as appropriate, and displays the results in a
window. The Movie Toolbox uses only those tracks that

 ■ are not empty

 ■ contain media structures that reference data at a specified time

 ■ are enabled in the current movie mode (standard playback, poster mode, or preview mode)

QuickTime Movie Characteristics 19
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Consequently, the size, shape, and location of many of these regions may change during movie playback.
This process is quite complicated and involves several phases of clipping and resizing.

The Movie Toolbox shields you from the intricacies of this process by providing two high-level functions,
GetMovieBox and SetMovieBox, which allow you to place a movie box at a specific location in the display
coordinate system. When you use these functions, the Movie Toolbox automatically adjusts the contents of
the movie’s matrix to satisfy your request.

Figure 1-10 provides an overview of the entire process of gathering, transforming, and displaying visual data.
Each track defines its own spatial characteristics, which are then interpreted within the context of the movie’s
spatial characteristics.

This section describes the process that the Movie Toolbox uses to display a movie. The process begins with
the movie data and ends with the final movie display. The phases, which are described in this section, include

 ■ the creation of a track rectangle (see Figure 1-11)

 ■ the clipping of a track’s image (see Figure 1-12)

 ■ the transformation of a track into the movie coordinate system (see Figure 1-13)

 ■ the clipping of a movie image (see Figure 1-14)

 ■ the transformation of a movie into the display coordinate system (see Figure 1-15)

 ■ the clipping of a movie for final display (see Figure 1-16)

20 QuickTime Movie Characteristics
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Note: Throughout this book, the term time coordinate system denotes QuickTime’s time-based system. All
other instances of the term coordinate system refer to graphic coordinates.

Track coordinate system

Movie coordinate system

Display coordinate system

a b u
c d v
x y w

Track rectangle Track matte

+ +

Track clipping region

=

Track boundary region

+

Track 2

Track 1

=

Movie coordinate system

Movie display clipping region

=+

Movie clipping region

Track matrix

Track matrix

Movie matrix

Movie matrix

a b u
c d v
x y w

Clipped track
movie boundary
regions

Movie display boundary region

Movie box

Track display
boundary regions

Final movie boundary region

Final track
boundary
regions

Track movie
 boundary regions

QuickTime Movie Characteristics 21
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Each track defines a rectangle into which its media is displayed. This rectangle is referred to as the track
rectangle, and it is defined by the track width and track height values assigned to the track. The upper-left
corner of this rectangle defines the origin point of the track’s coordinate system.

The media handler associated with the track’s media is responsible for displaying an image into this rectangle.
This process is shown in Figure 1-11.

Media data

Track rectangle

y (track width, track height)

(0,0) x

Media handler

The Movie Toolbox next mattes the image in the track rectangle by applying the track matte and the track
clipping region. This does not affect the shape of the image; only the display. Both the track matte and the
track clipping region are optional.

A track matte provides a mechanism for mixing images. Mattes contain several bits per pixel and are defined
in the track’s coordinate system. The matte can be used to perform a deep-mask operation on the image in
the track rectangle. The Movie Toolbox displays the weighted average of the track and its destination based
on the corresponding pixel value in the matte.

The track clipping region is a QuickDraw region that defines a portion of the track rectangle to retain. The
track clipping region is defined in the track’s coordinate system. This clipping operation creates the track
boundary region, which is the intersection of the track rectangle and the track clipping region.

This process and its results are shown in Figure 1-12.

Track rectangle

(0,0)

(track width,
track height)

Track matte

(0,0)

(track width,
track height)

+ +

Track clipping region

=

Track boundary region

x

y

(0,0)(0,0) x

y

x

y

x

y

After clipping and matting the track’s image, the Movie Toolbox transforms the resulting image into the
movie’s coordinate system. The Movie Toolbox uses a 3-by-3 transformation matrix to accomplish this
operation (see The Transformation Matrix (page 24) for a discussion of matrix operations in the Movie
Toolbox). The image inside the track boundary region is transformed by the track’s matrix into the movie
coordinate system. The resulting area is bounded by the track movie boundary region. Figure 1-13 shows
the results of this transformation operation.

22 QuickTime Movie Characteristics
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

x
a b u

c d v

x y w

xx

y y

=

Movie coordinate system

Track movie
boundary region

Track matrixTrack coordinate system

(0,0)(0,0)

Track boundary
region

The Movie Toolbox performs this portion of the process for each track in the movie. Once all of the movie’s
tracks have been processed, the Movie Toolbox proceeds to transform the complete movie image for display.

The union of all track movie boundary regions for a movie defines the movie’s movie boundary region. The
Movie Toolbox combines a movie’s tracks into this single region where layers are applied. Therefore, tracks
in back layers may be partially or completely obscured by tracks in front layers. The Movie Toolbox clips this
region to obtain the clipped movie boundary region. The movie’s movie clipping region defines the portion
of the movie boundary region that is to be used. Figure 1-14 shows the process by which a movie is clipped
and the resulting clipped movie boundary region.

Movie boundary region

+

Movie clipping region

Track 2

Track 1

=

Track movie
 boundary regions

(0,0)

Movie coordinate system

Clipped track movie boundary region

x(0,0)

y

Clipped track
movie boundary
regions

x(0,0)

y

x

y

After clipping the movie’s image, the Movie Toolbox transforms the resulting image into the display coordinate
system. The Movie Toolbox uses a 3-by-3 transformation matrix to accomplish this operation (see The
Transformation Matrix (page 24) for a complete discussion of matrix operations in the Movie Toolbox). The
image inside the clipped movie boundary region is transformed by the movie’s matrix into the display
coordinate system. The resulting area is bounded by the movie display boundary region. Figure 1-15 shows
the results of this step.

QuickTime Movie Characteristics 23
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

a b u

c d v

x y w

Clipped track movie boundary region

Display coordinate system

=

Movie display boundary region

Movie matrix

x

Movie coordinate system

x(0,0)

y

x(0,0)

y Track display
boundary regions

The rectangle that encloses the movie display boundary region is called the movie box, as shown in
Figure 1-16. You can control the location of a movie’s movie box by adjusting the movie’s transformation
matrix.

(0,0)

Movie display clipping region

=

Movie display boundary region

+

Final movie boundary region

x(0,0)

y
Final track
boundary
regions

y

x

y

Movie box

Track display
boundary regions

x(0,0)

Once the movie is in the display coordinate system (that is, the QuickDraw graphics world), the Movie
Toolbox performs a final clipping operation to generate the image that is displayed. The movie is clipped
with the movie display clipping region. When a movie is displayed, the Movie Toolbox ignores the graphics
port’s clipping region; this is why there is a movie display clipping region. Figure 1-16 shows this operation.

The Transformation Matrix

The Movie Toolbox makes extensive use of transformation matrices to define graphical operations that are
performed on movies when they are displayed. A transformation matrix defines how to map points from
one coordinate space into another coordinate space. By modifying the contents of a transformation matrix,
you can perform several standard graphical display operations, including translation, rotation, and scaling.
The Movie Toolbox provides a set of functions that make it easy for you to manipulate translation matrices.
Those functions are discussed in QuickTime Movie Internals Guide. The remainder of this section provides an
introduction to matrix operations in a graphical environment.

The matrix used to accomplish two-dimensional transformations is described mathematically by a 3-by-3
matrix. Figure 1-17 shows a sample 3-by-3 matrix. Note that QuickTime assumes that the values of the matrix
elements u and v are always 0.0, and the value of matrix element w is always 1.0.

24 QuickTime Movie Characteristics
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

a b u

c d v

wt tx y

x' y' 1x y 1 =x

During display operations, the contents of a 3-by-3 matrix transform a point (x,y) into a point (x',y') by means
of the following equations:

x' = ax + cy + t(x)

y' = bx + dy + t(y)

For example, the matrix shown in Figure 1-18 performs no transformation. It is referred to as the identity
matrix.

1 0

0 1 0

0 1

0

0

Using the formulas discussed earlier, you can see that this matrix would generate a new point (x',y') that is
the same as the old point (x,y):

x' = 1x + 0y + 0

y' = 0x + 1y + 0

x' = y and y' = y

In order to move an image by a specified displacement, you perform a translation operation. This operation
modifies the x and y coordinates of each point by a specified amount. The matrix shown in Figure 1-19
describes a translation operation.

0

1t yt x

0

1

1

0

0

You can stretch or shrink an image by performing a scaling operation. This operation modifies the x and y
coordinates by some factor. The magnitude of the x and y factors governs whether the new image is larger
or smaller than the original. In addition, by making the x factor negative, you can flip the image about the
x-axis; similarly, you can flip the image horizontally, about the y-axis, by making the y factor negative. The
matrix shown in Figure 1-20 describes a scaling operation.

s 0

s

0 1

x

y0

0

0

0

QuickTime Movie Characteristics 25
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Finally, you can rotate an image by a specified angle by performing a rotation operation. You specify the
magnitude and direction of the rotation by specifying factors for both x and y. The matrix shown in Figure 1-21
rotates an image counterclockwise by an angle q.

cos(θ) sin(θ) 0

–sin(A) cos(A) 0

0 0 1

You can combine matrices that define different transformations into a single matrix. The resulting matrix
retains the attributes of both transformations. For example, you can both scale and translate an image by
defining a matrix similar to that shown in Figure 1-22.

x =
0

1

sx

sy0

0

0

0

0 1

sx

sy0

0

0

0

0

1t y

0

1

1

xt t yxt

0

0

You combine two matrices by concatenating them. Mathematically, the two matrices are combined by matrix
multiplication. Note that the order in which you concatenate matrices is important; matrix operations are
not commutative.

Transformation matrices used by the Movie Toolbox contain the following data types:

[0] [0] Fixed [1] [0] Fixed [2] [0] Fract
[0] [1] Fixed [1] [1] Fixed [2] [1] Fract
[0] [2] Fixed [1] [2] Fixed [2] [2] Fract

Each cell in this table represents the data type of the corresponding element of a 3-by-3 matrix. All of the
elements in the first two columns of a matrix are represented by Fixed values. Values in the third column
are represented as Fract values. The Fract data type specifies a 32-bit, fixed-point value that contains 2
integer bits and 30 fractional bits. This data type is useful for accurately representing numbers in the range
from -2 to 2.

Audio Properties

This section discusses the sound capabilities of QuickTime and the Movie Toolbox. It has been divided into
the following topics:

 ■ Sound Playback (page 27) discusses the playback capabilities of the Movie Toolbox

 ■ Adding Sound to Video (page 27) discusses several issues you should consider when creating movies
that contain both sound and video

 ■ Sound Data Formats (page 28) describes the formats the Movie Toolbox uses to store sound information

26 Audio Properties
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Sound Playback

As is the case with video data, QuickTime movies store sound information in tracks. QuickTime movies may
have one or more sound tracks. The Movie Toolbox can play more than one sound at a time by mixing the
enabled sound tracks together during playback. This allows you to put together movies with separate music
and voice tracks. You can then manipulate the tracks separately but play them together. You can also use
multiple sound tracks to store different languages.

There are two main attributes of sound in QuickTime movies: volume and balance. You can control these
attributes using the facilities of the Movie Toolbox.

Every QuickTime movie has a current volume setting. This volume setting controls the loudness of the movie’s
sound. You can adjust a movie’s current volume by calling the SetMovieVolume function. In addition, you
can set a preferred volume setting for a movie. This value represents the best volume for the movie. The
Movie Toolbox saves this value when you store a movie into a movie file. The value of the current volume is
lost. You can set a movie’s preferred volume by calling the SetMoviePreferredVolume function. When
you load a movie from a movie file, the Movie Toolbox sets the movie’s current volume to the value of its
preferred volume.

Each track in a movie also has a volume setting. A track’s volume governs its loudness relative to other tracks
in the movie. You can set a track’s volume by calling the SetTrackVolume function.

In the Movie Toolbox, movie and track volumes are represented as 16-bit, fixed-point numbers that range
from -1.0 to +1.0. The high-order 8 bits contain the integer portion of the value; the low-order 8 bits contain
the fractional part. Positive values denote volume settings, with 1.0 corresponding to the maximum volume
on the user’s computer. Negative values are muted, but retain the magnitude of the volume setting so that,
by toggling the sign of a volume setting, you can turn off the sound and then turn it back on at the previous
level (something like pressing the mute button on a radio).

A track’s volume is scaled to a movie’s volume, and the movie’s volume is scaled to the value the user specifies
for speaker volume using the Sound control panel. That is, a movie’s volume setting represents the maximum
loudness of any track in the movie. If you set a track’s volume to a value less than 1.0, that track plays
proportionally quieter, relative to the loudness of other tracks in the movie.

Each track in a movie has its own balance setting. The balance setting controls the mix of sound between a
computer’s two speakers. If the source sound is monaural, the balance setting controls the relative loudness
of each speaker. If the source sound is stereo, the balance setting governs the mix of the right and left
channels. You can set the balance for a track’s media by calling the SetSoundMediaBalance function. When
you save the movie, the balance setting is stored in the movie file.

In the Movie Toolbox, balance values are represented as 16-bit, fixed-point numbers that range from -1.0 to
+1.0. The high-order 8 bits contain the integer portion of the value; the low-order 8 bits contain the fractional
part. Negative values weight the balance toward the left speaker; positive values emphasize the left channel.
Setting the balance to 0 corresponds to a neutral setting.

Adding Sound to Video

Most QuickTime movies contain both sound data and video data. If you are creating an application that plays
movies, you do not need to worry about the details of how sound is stored in a movie. However, if you are
developing an application that creates movies, you need to consider how you store the sound and video
data.

Audio Properties 27
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

There are two ways to store sound data in a QuickTime movie. The simplest method is to store the sound
track as a continuous stream. When you play a movie that has its sound in this form, the Movie Toolbox loads
the entire sound track into memory, and then reads the video frames when they are needed for display.
While this technique is very efficient, it requires a large amount of memory to store the entire sound, which
limits the length of the movie. This technique also requires a large amount of time to read in the entire sound
track before the movie can start playing. For this reason, this technique is only recommended when the
sound for a movie is fairly small (less than 64 KB).

For larger movies, a technique called interleaving must be used so that the sound and video data may be
alternated in small pieces, and the data can be read off disk as it is needed. Interleaving allows for movies of
almost any length with little delay on startup. However, you must tune the storage parameters to avoid a
lower video frame rate and breaks in the sound that result when sound data is read from slow storage devices.
In general, the Movie Toolbox hides the details of interleaving from your application. The FlattenMovie
and FlattenMovieData functions allow you to enable and disable interleaving when you create a movie.
These functions then interact with the appropriate media handler to correctly interleave the sound and video
data for your movie.

Sound Data Formats

The Movie Toolbox stores sound data in sound tracks as a series of digital samples. Each sample specifies
the amplitude of the sound at a given point in time, a format commonly known as linear pulse-codemodulation
(linear PCM). The Movie Toolbox supports both monaural and stereo sound. For monaural sounds, the samples
are stored sequentially, one after another. For stereo sounds, the samples are stored interleaved in a
left/right/left/right fashion.

In order to support a broad range of audio data formats, the Movie Toolbox can accommodate a number of
different sample encoding formats, sample sizes, sample rates, and compression algorithms. The following
paragraphs discuss the details of each of these attributes of movie sound data.

The Movie Toolbox supports two techniques for encoding the amplitude values in a sample: offset-binary
and twos-complement. Offset-binary encoding represents the range of amplitude values as an unsigned
number, with the midpoint of the range representing silence. For example, an 8-bit sample stored in
offset-binary format would contain sample values ranging from 0 to 255, with a value of 128 specifying
silence (no amplitude). Samples in Macintosh sound resources are stored in offset-binary form.

Twos-complement encoding stores the amplitude values as a signed number; in this case silence is
represented by a sample value of 0. Using the same 8-bit example, twos-complement values would range
from -128 to 127, with 0 meaning silence. The Audio Interchange File Format (AIFF) used by the Sound
Manager stores samples in twos-complement form, so it is common to see this type of sound in QuickTime
movies.

The Movie Toolbox allows you to store information about the sound data in the sound description. See
Creating a Sound Description Structure (page 36) for details of the sound description structure. Sample size
indicates the number of bits used to encode the amplitude value for each sample. The size of a sample
determines the quality of the sound, since more bits can represent more amplitude values. The basic Macintosh
sound hardware supports only 8-bit samples, but the Sound Manager also supports 16-bit and 32-bit sample
sizes. The Movie Toolbox plays these larger samples on 8-bit Macintosh hardware by converting the samples
to 8-bit format before playing them.

28 Audio Properties
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Sample rate indicates the number of samples captured per second. The sample rate also influences the sound
quality, because higher rates can more accurately capture the original sound waveform. The basic Macintosh
hardware supports an output sampling rate of 22.254 kHz. The Movie Toolbox can support any rate up to
65.535 kHz; as with sample size, the Movie Toolbox converts higher sample rates to rates that can be
accommodated by the Macintosh hardware when it plays the sound.

In addition to these sample encoding formats, the Movie Toolbox also supports the Macintosh Audio
Compression and Expansion (MACE) capability of the Sound Manager. This allows compression of the sound
data at ratios of 3 to 1 or 6 to 1. Compressing a movie’s sound can yield significant savings in storage and
RAM space, at the cost of somewhat lower quality and higher CPU overhead on playback.

Sample Programs

Creating a movie involves several steps. You must first create and open the movie file that is to contain the
movie. You then create the tracks and media structures for the movie. You then add samples to the media
structures. Finally, you add the movie resource to the movie file. The sample program in this section,
CreateWayCoolMovie, demonstrates this process.

This program has been divided into several segments. The main segment, CreateMyCoolMovieMovie
Toolbox, creates and opens the movie file, then invokes other functions to create the movie itself. Once the
data has been added to the movie, this function saves the movie in its movie file and closes the file.

The CreateMyCoolMovie function uses the CreateMyVideoTrack and CreateMySoundTrack functions
to create the movie’s tracks. The CreateMyVideoTrack function creates the video track and the media that
contains the track’s data. It then collects sample data in the media by calling the AddVideoSamplesToMedia
function. Note that this function uses the Image Compression Manager. The CreateMySoundTrack function
creates the sound track and the media that contains the sound. It then collects sample data by calling the
AddSoundSamplesToMedia function.

Main Function

The CreateWayCoolMovie program consists of a number of segments, many of which are not included in
this sample. Omitted segments deal with general initialization logic and other common aspects of Macintosh
programming. The main function, shown in Listing 1-1, shows you how to initialize various parts of the Movie
Toolbox and call the EnterMovies function.

Listing 1-1 Creating a movie: the main program

#include <Types.h>
#include <Traps.h>
#include <Menus.h>
#include

#include <Memory.h>
#include <Errors.h>
#include <Fonts.h>

#include <QuickDraw.h>
#include <Resources.h>
#include <GestaltEqu.h>
#include <FixMath.h>

Sample Programs 29
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

#include <Sound.h>
#include <string.h>

#include "Movies.h"
#include "ImageCompression.h"

void CheckError(OSErr error, Str255 displayString)
{
 if (error == noErr) return;
 if (displayString[0] > 0)
 DebugStr(displayString);
 ExitToShell();
}

void InitMovieToolbox (void)
{
 OSErr err;

 InitGraf (&qd.thePort);
 InitFonts ();
 InitWindows ();
 InitMenus ();
 TEInit ();
 InitDialogs (nil);
 err = EnterMovies ();
 CheckError (err, "\pEnterMovies");
}

void main(void)
{
 InitMovieToolbox ();
 CreateMyCoolMovie ();
}

Creating and Opening a Movie File

The CreateMyCoolMovie function, shown in Listing 1-2, contains the main logic for this program. This
function creates and opens a movie file for the new movie. It then establishes a data reference for the movie’s
data (note that, if your movie’s data is stored in the same file as the movie itself, you do not have to create
a data reference; set the data reference to 0). This function then calls two other functions,
CreateMyVideoTrack and CreateMySoundTrack, to create the tracks for the new movie. Once the tracks
have been created, CreateMyCoolMovie adds the new resource to the movie file and closes the movie file.

Listing 1-2 Creating and opening a movie file

#define kMyCreatorType 'TVOD' /* Sample Player's creator type, the
 movie player of choice. You can
 also use your own creator type. */

#define kPrompt "\pEnter movie file name"

void CreateMyCoolMovie (void)
{
 Point where = {100,100};
 SFReply theSFReply;

30 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 Movie theMovie = nil;
 FSSpec mySpec;
 short resRefNum = 0;
 short resId = 0;
 OSErr err = noErr;

 SFPutFile (where, "\pEnter movie file name",
 "\pMovie File", nil, &theSFReply);
 if (!theSFReply.good) return;
 FSMakeFSSpec(theSFReply.vRefNum, 0,
 theSFReply.fName, &mySpec);
 err = CreateMovieFile (&mySpec,
 'TVOD',
 smCurrentScript,
 createMovieFileDeleteCurFile,
 &resRefNum,
 &theMovie);
 CheckError(err, "\pCreateMovieFile");
 CreateMyVideoTrack (theMovie);
 CreateMySoundTrack (theMovie);

 err = AddMovieResource (theMovie, resRefNum, &resId,
 theSFReply.fName);
 CheckError(err, "\pAddMovieResource");

 if (resRefNum) CloseMovieFile (resRefNum);
 DisposeMovie (theMovie);
}

The code listing above adds the movie to the resource fork of the file that it creates. It is possible to create
a movie file with no resource fork, and to store the movie in the file’s data fork.

To create a movie file with no resource fork, pass the createMovieFileDontCreateResFile flag when
you call CreateMovieFile. To store the movie into the file’s data fork, call AddMovieResource as shown,
but pass kResFileNotOpened as the resRefNum parameter, and pass movieInDataForkResID in the
ResID parameter.

Creating a Video Track in a New Movie

The CreateMyVideoTrack function, shown in Listing 1-3, creates a video track in the new movie. This
function creates the track and its media by calling the NewMovieTrack and NewTrackMedia functions,
respectively. This function then establishes a media-editing session and adds the movie’s data to the media.
The bulk of this work is done by the AddVideoSamplesToMedia subroutine. Once the data has been added
to the media, this function adds the media to the track by calling the Movie Toolbox’s
InsertMediaIntoTrack function.

Listing 1-3 Creating a video track

#define kVideoTimeScale 600
#define kTrackStart 0
#define kMediaStart 0
#define kFix1 0x00010000

void CreateMyVideoTrack (Movie theMovie)
{

Sample Programs 31
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 Track theTrack;
 Media theMedia;
 OSErr err = noErr;
 Rect trackFrame = {0,0,100,320};
 theTrack = NewMovieTrack (theMovie,
 FixRatio(trackFrame.right,1),
 FixRatio(trackFrame.bottom,1),
 kNoVolume);
 CheckError(GetMoviesError(), "\pNewMovieTrack");

 theMedia = NewTrackMedia (theTrack, VideoMediaType,
 600, // Video Time Scale
 nil, 0);
 CheckError(GetMoviesError(), "\pNewTrackMedia");

 err = BeginMediaEdits (theMedia);
 CheckError(err, "\pBeginMediaEdits");
 AddVideoSamplesToMedia (theMedia, &trackFrame);

 err = EndMediaEdits (theMedia);
 CheckError(err, "\pEndMediaEdits");

 err = InsertMediaIntoTrack (theTrack, 0, /* track start time */
 0, /* media start time */
 GetMediaDuration (theMedia),
 kFix1);
 CheckError(err, "\pInsertMediaIntoTrack");
}

Adding Video Samples to a Media

The AddVideoSamplesToMedia function, shown in Listing 1-4, creates video data frames, compresses each
frame, and adds the frames to the media. This function creates its own video data by calling the DrawAFrame
function. Note that this function does not temporally compress the image sequence; rather, the function
only spatially compresses each frame individually.

Listing 1-4 Adding video samples to a media

#define kSampleDuration 240
 /* video frames last 240 * 1/600th of a second */
#define kNumVideoFrames 29
#define kNoOffset 0
#define kMgrChoose 0
#define kSyncSample 0
#define kAddOneVideoSample 1
#define kPixelDepth 16
void AddVideoSamplesToMedia (Media theMedia,
 const Rect *trackFrame)
{
 long maxCompressedSize;
 GWorldPtr theGWorld = nil;
 long curSample;
 Handle compressedData = nil;
 Ptr compressedDataPtr;
 ImageDescriptionHandle imageDesc = nil;
 CGrafPtr oldPort;

32 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 GDHandle oldGDeviceH;
 OSErr err = noErr;
 err = NewGWorld (&theGWorld,
 16, /* pixel depth */
 trackFrame,
 nil,
 nil,
 (GWorldFlags) 0);
 CheckError (err, "\pNewGWorld");

 LockPixels (theGWorld->portPixMap);

 err = GetMaxCompressionSize (theGWorld->portPixMap,
 trackFrame,
 0, /* let ICM choose depth */
 codecNormalQuality,
 'rle ',
 (CompressorComponent) anyCodec,
 &maxCompressedSize);
 CheckError (err, "\pGetMaxCompressionSize");
 compressedData = NewHandle(maxCompressedSize);
 CheckError(MemError(), "\pNewHandle");

 MoveHHi(compressedData);
 HLock(compressedData);
 compressedDataPtr = StripAddress(*compressedData);
 imageDesc = (ImageDescriptionHandle)NewHandle(4);
 CheckError(MemError(), "\pNewHandle");

 GetGWorld (&oldPort, &oldGDeviceH);
 SetGWorld (theGWorld, nil);

 for (curSample = 1; curSample < 30; curSample++)
 {
 EraseRect (trackFrame);
 DrawFrame(trackFrame, curSample);
 err = CompressImage (theGWorld->portPixMap,
 trackFrame,
 codecNormalQuality,
 'rle ',
 imageDesc,
 compressedDataPtr);
 CheckError(err, "\pCompressImage");

 err = AddMediaSample(theMedia,
 compressedData,
 0, /* no offset in data */
 (**imageDesc).dataSize,
 60, /* frame duration = 1/10 sec */
 (SampleDescriptionHandle)imageDesc,
 1, /* one sample */
 0, /* self-contained samples */
 nil);
 CheckError(err, "\pAddMediaSample");
 }

 SetGWorld (oldPort, oldGDeviceH);

Sample Programs 33
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 if (imageDesc) DisposeHandle ((Handle)imageDesc);
 if (compressedData) DisposeHandle (compressedData);
 if (theGWorld) DisposeGWorld (theGWorld);
}

Creating Video Data for a Movie

The DrawAFrame function, shown in Listing 1-5, creates video data for this movie. This function draws a
different frame each time it is invoked, based on the sample number, which is passed as a parameter.

Listing 1-5 Creating video data

void DrawFrame (const Rect *trackFrame, long curSample)
{
 Str255 numStr;
 ForeColor(redColor);
 PaintRect(trackFrame);
 ForeColor(blueColor);
 NumToString (curSample, numStr);
 MoveTo (trackFrame->right / 2, trackFrame->bottom / 2);
 TextSize (trackFrame->bottom / 3);
 DrawString (numStr);
}

Creating a Sound Track

The CreateMySoundTrack function, shown in Listing 1-6, creates the movie’s sound track. This sound track
is not synchronized to the video frames of the movie; rather, it is just a separate sound track that accompanies
the video data. This function relies upon an 'snd ' resource for its source sound. The CreateMySoundTrack
function uses the CreateSoundDescription function to create the sound description structure for these
samples.

As with the CreateMyVideoTrack function discussed earlier, this function creates the track and its media
by calling the NewMovieTrack and NewTrackMedia functions, respectively. This function then establishes
a media-editing session and adds the movie’s data to the media. This function adds the sound samples using
a single invocation of the AddMediaSample function. This is possible because all the sound samples are the
same size and rely on the same sample description (the SoundDescription structure). If you use this
approach, it is often advisable to break up the sound data in the movie, so that the movie plays smoothly.
After you create the movie, you can call the FlattenMovie function to create an interleaved version of the
movie. Another approach is to call AddMediaSamplemultiple times, breaking the sound into multiple chunks
at that point.

Once the data has been added to the media, this function adds the media to the track by calling the Movie
Toolbox’s InsertMediaIntoTrack function.

Listing 1-6 Creating a sound track

#define kSoundSampleDuration 1
#define kSyncSample 0
#define kTrackStart 0
#define kMediaStart 0
#define kFix1 0x00010000

34 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

void CreateMySoundTrack (Movie theMovie)
{
 Track theTrack;
 Media theMedia;
 Handle sndHandle = nil;
 SoundDescriptionHandle sndDesc = nil;
 long sndDataOffset;
 long sndDataSize;
 long numSamples;
 OSErr err = noErr;

 sndHandle = GetResource ('snd ', 128);
 CheckError (ResError(), "\pGetResource");
 if (sndHandle == nil) return;
 sndDesc = (SoundDescriptionHandle) NewHandle(4);
 CheckError (MemError(), "\pNewHandle");

 CreateSoundDescription (sndHandle,
 sndDesc,
 &sndDataOffset,
 &numSamples,
 &sndDataSize);

 theTrack = NewMovieTrack (theMovie, 0, 0, kFullVolume);
 CheckError (GetMoviesError(), "\pNewMovieTrack");

 theMedia = NewTrackMedia (theTrack, SoundMediaType,
 FixRound ((**sndDesc).sampleRate),
 nil, 0);
 CheckError (GetMoviesError(), "\pNewTrackMedia");
 err = BeginMediaEdits (theMedia);
 CheckError(err, "\pBeginMediaEdits");
 err = AddMediaSample(theMedia,
 sndHandle,
 sndDataOffset, /* offset in data */
 sndDataSize,
 1, /* duration of each sound sample */
 (SampleDescriptionHandle) sndDesc,
 numSamples,
 0, /* self-contained samples */
 nil);
 CheckError(err, "\pAddMediaSample");

 err = EndMediaEdits (theMedia);
 CheckError(err, "\pEndMediaEdits");
 err = InsertMediaIntoTrack (theTrack,
 0, /* track start time */
 0, /* media start time */
 GetMediaDuration (theMedia),
 kFix1);
 CheckError(err, "\pInsertMediaIntoTrack");
 if (sndDesc != nil) DisposeHandle((Handle)sndDesc);
}

Sample Programs 35
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Creating a Sound Description Structure

The CreateSoundDescription function, shown in Listing 1-7, creates a sound description structure that
correctly describes the sound samples obtained from the 'snd ' resource. This function can handle all the
sound data formats that are possible in the sound resource. This function uses the GetSndHdrOffset
function to locate the sound data in the sound resource.

Listing 1-7 Creating a sound description

/* Constant definitions */
#define kMACEBeginningNumberOfBytes 6
#define kMACE31MonoPacketSize 2
#define kMACE31StereoPacketSize 4
#define kMACE61MonoPacketSize 1
#define kMACE61StereoPacketSize 2
void CreateSoundDescription (Handle sndHandle,
 SoundDescriptionHandlesndDesc,
 long *sndDataOffset,
 long *numSamples,
 long *sndDataSize)
{
 long sndHdrOffset = 0;
 long sampleDataOffset;
 SoundHeaderPtr sndHdrPtr = nil;
 long numFrames;
 long samplesPerFrame;
 long bytesPerFrame;
 SignedByte sndHState;
 SoundDescriptionPtr sndDescPtr;

 *sndDataOffset = 0;
 *numSamples = 0;
 *sndDataSize = 0;
 SetHandleSize((Handle)sndDesc, sizeof(SoundDescription));
 CheckError(MemError(),"\pSetHandleSize");

 sndHdrOffset = GetSndHdrOffset (sndHandle);
 if (sndHdrOffset == 0) CheckError(-1, "\pGetSndHdrOffset ");
 /* we can use pointers since we don't move memory */
 sndHdrPtr = (SoundHeaderPtr) (*sndHandle + sndHdrOffset);
 sndDescPtr = *sndDesc;

 sndDescPtr->descSize = sizeof (SoundDescription);
 /* total size of sound description structure */
 sndDescPtr->resvd1 = 0;
 sndDescPtr->resvd2 = 0;
 sndDescPtr->dataRefIndex = 1;
 sndDescPtr->compressionID = 0;
 sndDescPtr->packetSize = 0;
 sndDescPtr->version = 0;
 sndDescPtr->revlevel = 0;
 sndDescPtr->vendor = 0;

 switch (sndHdrPtr->encode)
 {
 case stdSH:
 sndDescPtr->dataFormat = 'raw ';

36 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 /* uncompressed offset-binary data */
 sndDescPtr->numChannels = 1;
 /* number of channels of sound */
 sndDescPtr->sampleSize = 8;
 /* number of bits per sample */
 sndDescPtr->sampleRate = sndHdrPtr->sampleRate;
 /* sample rate */
 *numSamples = sndHdrPtr->length;
 *sndDataSize = *numSamples;
 bytesPerFrame = 1;
 samplesPerFrame = 1;
 sampleDataOffset = (Ptr)&sndHdrPtr->sampleArea - (Ptr)sndHdrPtr;
 break;

 case extSH:
 {
 ExtSoundHeaderPtr extSndHdrP;
 extSndHdrP = (ExtSoundHeaderPtr)sndHdrPtr;

 sndDescPtr->dataFormat = 'raw ';
 /* uncompressed offset-binary data */
 sndDescPtr->numChannels = extSndHdrP->numChannels;
 /* number of channels of sound */
 sndDescPtr->sampleSize = extSndHdrP->sampleSize;
 /* number of bits per sample */
 sndDescPtr->sampleRate = extSndHdrP->sampleRate;
 /* sample rate */
 numFrames = extSndHdrP->numFrames;
 *numSamples = numFrames;
 bytesPerFrame = extSndHdrP->numChannels *
 (extSndHdrP->sampleSize / 8);
 samplesPerFrame = 1;
 *sndDataSize = numFrames * bytesPerFrame;
 sampleDataOffset = (Ptr)(&extSndHdrP->sampleArea)
 - (Ptr)extSndHdrP;
 }
 break;

 case cmpSH:
 {
 CmpSoundHeaderPtr cmpSndHdrP;
 cmpSndHdrP = (CmpSoundHeaderPtr)sndHdrPtr;
 sndDescPtr->numChannels = cmpSndHdrP->numChannels;
 /* number of channels of sound */
 sndDescPtr->sampleSize = cmpSndHdrP->sampleSize;
 /* number of bits per sample before compression */
 sndDescPtr->sampleRate = cmpSndHdrP->sampleRate;
 /* sample rate */
 numFrames = cmpSndHdrP->numFrames;
 sampleDataOffset =(Ptr)(&cmpSndHdrP->sampleArea)
 - (Ptr)cmpSndHdrP;
 switch (cmpSndHdrP->compressionID)
 {
 case threeToOne:
 sndDescPtr->dataFormat = 'MAC3';
 /* compressed 3:1 data */
 samplesPerFrame = kMACEBeginningNumberOfBytes;
 *numSamples = numFrames * samplesPerFrame;

Sample Programs 37
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 switch (cmpSndHdrP->numChannels)
 {
 case 1:
 bytesPerFrame = cmpSndHdrP->numChannels
 * kMACE31MonoPacketSize;
 break;
 case 2:
 bytesPerFrame = cmpSndHdrP->numChannels
 * kMACE31StereoPacketSize;
 break;
 default:
 CheckError(-1, "\pCorrupt sound data");
 break;
 }
 *sndDataSize = numFrames * bytesPerFrame;
 break;
 case sixToOne:
 sndDescPtr->dataFormat = 'MAC6';
 /* compressed 6:1 data */
 samplesPerFrame = kMACEBeginningNumberOfBytes;
 *numSamples = numFrames * samplesPerFrame;
 switch (cmpSndHdrP->numChannels)
 {
 case 1:
 bytesPerFrame = cmpSndHdrP->numChannels
 * kMACE61MonoPacketSize;
 break;
 case 2:
 bytesPerFrame = cmpSndHdrP->numChannels
 * kMACE61StereoPacketSize;
 break;
 default:
 CheckError(-1, "\pCorrupt sound data");
 break;
 }
 *sndDataSize = (*numSamples) * bytesPerFrame;
 break;

 default:
 CheckError(-1, "\pCorrupt sound data");
 break;
 }
 } /* switch cmpSndHdrP->compressionID:*/
 break; /* of cmpSH: */

 default:
 CheckError(-1, "\pCorrupt sound data");
 break;

 } /* switch sndHdrPtr->encode */
 *sndDataOffset = sndHdrOffset + sampleDataOffset;
}

38 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Parsing a Sound Resource

The GetSndHdrOffset function, shown in Listing 1-8, parses the specified sound resource and locates the
sound data stored in the resource. The GetSndHdrOffset function cruises through a specified 'snd '
resource. It locates the sound data, if any, and returns its type, offset, and size into the resource.

The GetSndHdrOffset function returns an offset instead of a pointer so that the data is not locked in
memory. By returning an offset, the calling function can decide when and if it wants the resource locked
down to access the sound data.

The first step in finding this data is to determine if the 'snd ' resource is format (type) 1 or format (type) 2.
A type 2 is easy, but a type 1 requires that you find the number of 'snth' resource types specified and then
skip over each one, including the init option. Once you do this, you have a pointer to the number of
commands in the 'snd ' resource. When the function finds the first one, it examines the command to find
out if it is a sound data command. Since it is a sound resource, the command also has its dataPointerFlag
parameter set to 1. When the function finds a sound data command, it returns its offset and type and exits.

Warning: Do not send the GetSndHdrOffset function a nil handle; if you do, your system will crash.

Listing 1-8 Parsing a sound resource

typedef SndCommand *SndCmdPtr;
typedef struct
{
 short format;
 short numSynths;
} Snd1Header, *Snd1HdrPtr, **Snd1HdrHndl;
typedef struct
{
 short format;
 short refCount;
} Snd2Header, *Snd2HdrPtr, **Snd2HdrHndl;

typedef struct
{
 short synthID;
 long initOption;
} SynthInfo, *SynthInfoPtr;

long GetSndHdrOffset (Handle sndHandle)
{
 short howManyCmds;
 long sndOffset = 0;
 Ptr sndPtr;

 if (sndHandle == nil) return 0;
 sndPtr = *sndHandle;
 if (sndPtr == nil) return 0;

 if ((*(Snd1HdrPtr)sndPtr).format == firstSoundFormat)
 {
 short synths = ((Snd1HdrPtr)sndPtr)->numSynths;
 sndPtr += sizeof(Snd1Header) + (sizeof(SynthInfo) * synths);
 } else

Sample Programs 39
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

 {
 sndPtr += sizeof(Snd2Header);
 }

 howManyCmds = *(short *)sndPtr;

 sndPtr += sizeof(howManyCmds);
 /*
 sndPtr is now at the first sound command -- cruise all
 commands and find the first soundCmd or bufferCmd
 */
 while (howManyCmds > 0)
 {
 switch (((SndCmdPtr)sndPtr)->cmd)
 {
 case (soundCmd + dataOffsetFlag):
 case (bufferCmd + dataOffsetFlag):
 sndOffset = ((SndCmdPtr)sndPtr)->param2;
 howManyCmds = 0;/* done, get out of loop */
 break;
 default: /* catch any other type of commands */
 sndPtr += sizeof(SndCommand);
 howManyCmds--;
 break;
 }
 } /* done with all commands */
 return sndOffset;
} /* of GetSndHdrOffset */

40 Sample Programs
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating Movies

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

Video channel
component

Sound channel
component

Sound input
device

Video digitizer
component

Digital audio
equipment

Video digitizer
equipment

Control flow

Data flow

Sequence
grabber component

Your application

Sequence grabber components allow applications to obtain digitized data from sources that are external to
a Macintosh computer. For example, you can use a sequence grabber component to record video data from
a video digitizer. Your application can then request that the sequence grabber store the captured video data
in a QuickTime movie. In this manner, you can acquire movie data from various sources that can augment
the movie data you create by other means, such as computer animation. You can also use sequence grabber
components to obtain and display data from external sources, without saving the captured data in a movie.

The sequence grabber component provided by Apple allows applications to capture both audio and video
data easily, without concern for the details of how the data is acquired. When capturing video data, this
sequence grabber uses a video digitizer component to supply the digitized video images (see About Video
Digitizer Components (page 125) for more information about video digitizer components). When working
with audio data, Apple’s sequence grabber component retrieves its sound data from a sound input device.

41
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

Sequence grabber components use sequence grabber channel components (or, simply, channel components)
to obtain data from the audio- or video-digitizing equipment. These components isolate the sequence grabber
from the details of working with the various types of data that can be collected. The features that a sequence
grabber component supplies are dependent on the services provided by sequence grabber channel
components. The channel components, in turn, may use other components to interact with the digitizing
equipment. For example, the video channel component supplied by Apple uses a video digitizer component.
Figure 2-1 shows the relationship between these components and your application.

Sequence grabber panel components augment the capabilities of sequence grabber components and
sequence grabber channel components by allowing sequence grabbers to obtain configuration information
from the user for a particular digitizing source. Sequence grabbers present a settings dialog box to the user
whenever an application calls the SGSettingsDialog function (see Working With Sequence Grabber
Settings (page 42) for more information about this sequence grabber function). Applications never call
sequence grabber panel components directly; application developers use panel components only by calling
the sequence grabber component. See the chapter Sequence Grabber Panel Components (page 77) for
more information about the sequence grabber configuration dialog box and the relationships of sequence
grabbers, sequence grabber channels, and sequence grabber panels.

If you are developing digitizing equipment and you want to allow applications to use the services of your
equipment with a sequence grabber component, you should create an appropriate video digitizer component
or sound input device driver.

If you are developing equipment that provides a new type of data to QuickTime, you should develop a new
sequence grabber channel component. See Sequence Grabber Channel Components (page 87) for a
description of sequence grabber channel components.

Working With Sequence Grabber Settings

Sequence grabber components can work with channel components and panel components to collect
configuration settings from the user. The functions discussed in this section allow you to direct the sequence
grabber to display its settings dialog box to the user and to work with the configuration of each of the
grabber’s channels.

Use the SGSettingsDialog function to instruct the sequence grabber to display its settings dialog box to
the user.

The SGSetSettings and SGGetSettings functions allow you to retrieve or set the sequence grabber’s
configuration.

The SGSetChannelSettings and SGGetChannelSettings functions work with the configuration of an
individual channel.

Features of Sequence Grabber Components

Sequence grabber components allow you to assign a specific file to each channel. This allows you to collect
data into more than one file at a time, which can result in improved performance by defining the files for
different channels on different devices. These destination containers are referred to as sequence grabber
outputs. See Working with Sequence Grabber Outputs (page 43) for a complete discussion.

42 Working With Sequence Grabber Settings
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

Sequence grabber components use data handler components when writing movie data. This provides greater
flexibility, especially when working with special storage devices such as networks.

A sequence grabber automatically creates a timecode track if the video digitizer component contains timecode
information. To support timecode tracks, the sequence grabber also provides two functions that let you
identify the source information associated with video data that contains timecode information.

Working with Sequence Grabber Outputs

In order to allow sequence grabber components to capture to more than one data reference at a time,
QuickTime supports the concept of a sequence grabber output. A sequence grabber output ties a sequence
grabber channel to a specified data reference for the output of captured data.

If you are capturing to a single movie file, you can continue to use the SGSetDataOutput function (or the
SGSetDataRef function) to specify the sequence grabber’s destination. However, if you want to capture
movie data into several different files or data references, you must use sequence grabber outputs to do so.
Even if you are using outputs, you must still use the SGSetDataOutput function or the SGSetDataRef
function to identify where the sequence grabber should create the movie resource.

You are responsible for creating outputs, assigning them to sequence grabber channels, and disposing of
them when you are done. Sequence grabber components provide a number of functions for managing
outputs:

 ■ The SGNewOutput function creates a new output.

 ■ The SGDisposeOutput function disposes of an output.

 ■ The SGSetOutputFlags function configures the output.

 ■ The SGSetChannelOutput function assigns an output to a channel.

 ■ The SGGetDataOutputStorageSpaceRemaining function determines how much space is left in the
output.

Storing Captured Data in Multiple Files

In QuickTime, the sequence grabber allows a single capture session to store the captured data across multiple
files. Each channel of a capture can be placed in a separate file. In this way, sound and video can be captured
to separate files, even on separate devices. It is also possible to have a single capture session place its data
on several different devices in sequence. As a result, several different devices can be used in a single capture
session. This enables data capture to exceed any file size limitation imposed by a file system.

Working with Sequence Grabber Outputs 43
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

Note: The file offset parameter supports 64-bit file offsets in APIs that enable capture to multiple files. The
QuickTime Movie Toolbox does not currently support 64-bit file offsets, so the high 32 bits of the offset is
always 0000.

Application Examples

The first step in implementing multiple sequence grabber outputs during a single capture session is to create
all the sequence grabber outputs. Once the outputs have been created, they must be linked together. This
is done using the new SGSetOutputNextOutput routine. The linked outputs are used in link order. An
example of creating and linking two sequence grabber outputs is shown in Listing 2-1.

Listing 2-1 Creating and linking sequence grabber outputs

OSErr FSSpecToSGOutput(SeqGrabComponent theSG, FSSpec *fss,
 SGOutput *output)
{
 OSErr err;
 AliasHandle alias = nil;
 err = QTNewAlias(&fss, &alias, true);
 err = SGNewOutput(theSG, (Handle)alias, rAliasType,
 seqGrabToDisk, output);
 FSSpec fss;
 SGOutput output1, output2;
 // create an FSSpec for the first file
 FSMakeFSSpec(0, 0, "\pMacintosh HD:Movie 1", &fss);
 // create the output for the first file
 FSSpecToSGOutput(theSG, &fss, &output1)
 // create an FSSpec for the second file
 FSMakeFSSpec(0, 0, "\pMacintosh HD:Movie 2", &fss);
 //create the output for the second file
 FSSpecToSGOutput(theSG, &fss, &output2)
 // direct the movie resource to the first file
 err = SGSetDataOutput(theSG, fss, seqGrabToDisk);
 if (err) goto exit;
 // finally, link the outputs
 SGSetOutputNextOutput(theSG, output1, output2);
}

In this example two separate outputs are created. Once these outputs are created, they are linked together
using SGSetOutputNextOutput. The output output1 is used first. Once that output is full, output2 is
used.

Once outputs are created, they must be associated with the sequence grabber channels that write data to
these outputs. Listing 2-2 shows how this can be accomplished. This example shows how to associate the
outputs created in Listing 2-1 with both a sound and a video channel.

Listing 2-2 Associating outputs with channels

//associate both sound and video channels with all linked outputs
SGSetChannelOutput(theSG, soundChannel, output1);

44 Application Examples
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

SGSetChannelOutput(theSG, videoChannel, output1);

You can limit output files to a particular size by specifying the maximum number of bytes to be written to a
given sequence grabber output. Listing 1-3 shows an example of setting a maximum offset of 64 KB for data
written to an output.

Listing 2-3 Specifying maximum data offset for an output

wide maxOffset;
maxOffset.hi = 0;
//set the offset to 64K
maxOffset.lo = 64 * 1024;
SGSetOutputMaximumOffset(theSG, output1, &maxOffset);

Using Sequence Grabber Components

Sequence grabber components are standard components that are managed by the Component Manager.

The sequence grabber component provides functions that give your application precise control over the
display of the captured data. This section describes how to use the basic sequence grabber component
functions as well as the functions that allow you to configure video and sound channels.

Apple has defined a component type value for sequence grabber components; that type value is 'barg'.
You can use the following constant to specify this type value.

#define SeqGrabComponentType 'barg'/* sequence grabber component type */

Apple has defined a functional interface for basic sequence grabber components. For information about the
functions a sequence grabber component may support, see Sequence Grabber Component Functions (page
49).

You can use the following constants to refer to the request codes for each of the functions that a sequence
grabber component may support.

enum {
 /* selectors for basic sequence grabber component functions */
 kSGInitializeSelect = 0x1;
 kSGSetDataOutputSelect = 0x2;
 kSGGetDataOutputSelect = 0x3;
 kSGSetGWorldSelect = 0x4;
 kSGGetGWorldSelect = 0x5;
 kSGNewChannelSelect = 0x6;
 kSGDisposeChannelSelect = 0x7;
 kSGStartPreviewSelect = 0x10;
 kSGStartRecordSelect = 0x11;
 kSGIdleSelect = 0x12;
 kSGStopSelect = 0x13;
 kSGPauseSelect = 0x14;
 kSGPrepareSelect = 0x15;
 kSGReleaseSelect = 0x16;
 kSGGetMovieSelect = 0x17;
 kSGSetMaximumRecordTimeSelect = 0x18;
 kSGGetMaximumRecordTimeSelect = 0x19;

Using Sequence Grabber Components 45
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

 kSGGetStorageSpaceRemainingSelect = 0x1a;
 kSGGetTimeRemainingSelect = 0x1b;
 kSGGrabPictSelect = 0x1c;
 kSGGetLastMovieResIDSelect = 0x1d;
 kSGSetFlagsSelect = 0x1e;
 kSGGetFlagsSelect = 0x1f;
 kSGSetDataProcSelect = 0x20;
 kSGNewChannelFromComponentSelect = 0x21;
 kSGDisposeDeviceListSelect = 0x22;
 kSGAppendDeviceListToMenuSelect = 0x23;
 kSGSetSettingsSelect = 0x24;
 kSGGetSettingsSelect = 0x25;
 kSGGetIndChannelSelect = 0x26;
 kSGUpdateSelect = 0x27;
 kSGGetPauseSelect = 0x28;
 kSGSettingsDialogSelect = 0x29;
 kSGGetAlignmentProcSelect = 0x2A;
 kSGSetChannelSettingsSelect = 0x2B;
 kSGGetChannelSettingsSelect = 0x2C;

 /* selectors for common channel configuration functions */
 kSGCSetChannelUsageSelect = 0x80;
 kSGCGetChannelUsageSelect = 0x81;
 kSGCSetChannelBoundsSelect = 0x82;
 kSGCGetChannelBoundsSelect = 0x83;
 kSGCSetChannelVolumeSelect = 0x84;
 kSGCGetChannelVolumeSelect = 0x85;
 kSGCGetChannelInfoSelect = 0x86;
 kSGCSetChannelPlayFlagsSelect = 0x87;
 kSGCGetChannelPlayFlagsSelect = 0x88;
 kSGCSetChannelMaxFramesSelect = 0x89;
 kSGCGetChannelMaxFramesSelect = 0x8a;
 kSGCSetChannelRefConSelect = 0x8b;
 kSGCSetChannelClipSelect = 0x8C;
 kSGCGetChannelClipSelect = 0x8D;
 kSGCGetChannelSampleDescriptionSelect = 0x8E;
 kSGCGetChannelDeviceListSelect = 0x8F;
 kSGCSetChannelDeviceSelect = 0x90;
 kSGCSetChannelMatrixSelect = 0x91;
 kSGCGetChannelMatrixSelect = 0x92;
 kSGCGetChannelTimeScaleSelect = 0x93;

 /* selectors for video channel configuration functions */
 kSGCGetSrcVideoBoundsSelect = 0x100;
 kSGCSetVideoRectSelect = 0x101;
 kSGCGetVideoRectSelect = 0x102;
 kSGCGetVideoCompressorTypeSelect = 0x103;
 kSGCSetVideoCompressorTypeSelect = 0x104;
 kSGCSetVideoCompressorSelect = 0x105;
 kSGCGetVideoCompressorSelect = 0x106;
 kSGCGetVideoDigitizerComponentSelect = 0x107;
 kSGCSetVideoDigitizerComponentSelect = 0x108;
 kSGCVideoDigitizerChangedSelect = 0x109;
 kSGCSetVideoBottlenecksSelect = 0x10a;
 kSGCGetVideoBottlenecksSelect = 0x10b;
 kSGCGrabFrameSelect = 0x10c;
 kSGCGrabFrameCompleteSelect = 0x10d;
 kSGCDisplayFrameSelect = 0x10e;

46 Using Sequence Grabber Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

 kSGCCompressFrameSelect = 0x10f;
 kSGCCompressFrameCompleteSelect = 0x110;
 kSGCAddFrameSelect = 0x111;
 kSGCTransferFrameForCompressSelect = 0x112;
 kSGCSetCompressBufferSelect = 0x113;
 kSGCGetCompressBufferSelect = 0x114;
 kSGCGetBufferInfoSelect = 0x115;
 kSGCSetUseScreenBufferSelect = 0x116;
 kSGCGetUseScreenBufferSelect = 0x117;
 kSGCGrabCompressCompleteSelect = 0x118;
 kSGCDisplayCompressSelect = 0x119;
 kSGCSetFrameRateSelect = 0x11A;
 kSGCGetFrameRateSelect = 0x11B;

 /* selectors for sound channel configuration functions */
 kSGCSetSoundInputDriverSelect = 0x100;
 kSGCGetSoundInputDriverSelect = 0x101;
 kSGCSoundInputDriverChangedSelect = 0x102;
 kSGCSetSoundRecordChunkSizeSelect = 0x103;
 kSGCGetSoundRecordChunkSizeSelect = 0x104;
 kSGCSetSoundInputRateSelect = 0x105;
 kSGCGetSoundInputRateSelect = 0x106;
 kSGCSetSoundInputParametersSelect = 0x107;
 kSGCGetSoundInputParametersSelect = 0x108;

 /* selectors for utility functions provided to channel components */
 kSGWriteMovieData = 0x100;
 kSGAddFrameReferenceSelect = 0x101;
 kSGGetNextFrameReferenceSelect = 0x102;
 kSGGetTimeBaseSelect = 0x103;
 kSGSortDeviceListSelect = 0x104;
 kSGAddMovieDataSelect = 0x105;
 kSGChangedSourceSelect = 0x106;
};

Using Sequence Grabber Components 47
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

48 Using Sequence Grabber Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Sequence Grabber Components

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

This chapter describes the functions that are provided by sequence grabber components. These functions
are described from the perspective of an application developer. If you are developing a sequence grabber
component, your component must behave as described here.

Configuring Sequence Grabber Components

Sequence grabber components provide a number of functions that allow you to establish the environment
for grabbing or previewing digitized data. Before you can start a record or a preview operation, you must
initialize the sequence grabber component, establish the channels that will be used, define the display
environment for the operation, and determine the optimum screen position for the sequence grabber. In
addition, if you are performing a record operation, you must define a destination movie file. The following
sequence grabber component functions allow you to perform these tasks:

 ■ You can use the SGInitialize function to initialize a sequence grabber component. Before you can
call this function, you must establish a connection to the sequence grabber by calling the Component
Manager’s OpenDefaultComponent or OpenComponent function.

 ■ The SGNewChannel function allows you to create channels for the sequence grabber for an operation.
You can use the SGNewChannelFromComponent function to create a new channel using a specified
channel component. Use the SGDisposeChannel function to dispose of those channels that you are
no longer using.

 ■ You can use the SGGetIndChannel function to retrieve information about the channels that are currently
in use by the sequence grabber.

 ■ You can use the SGSetGWorld and SGGetGWorld functions to establish the display environment for
the sequence grabber. These functions affect only those channels that work with data that has visual
information.

 ■ The SGSetDataOutput and SGGetDataOutput functions allow you to identify the movie file that is
currently assigned to the sequence grabber. You only use these functions when you are performing a
record operation.

 ■ The SGSetDataProc function allows you to assign a data function to a channel. The sequence grabber
calls your data function whenever it writes movie data to the output file.

 ■ The SGGetAlignmentProc function allows you to determine a sequence grabber’s optimum screen
position to ensure the best performance and appearance.

Configuring Sequence Grabber Components 49
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Controlling Sequence Grabber Components

Sequence grabber components provide a full set of functions that allow your application to control the
preview or record operation. You can use these functions to start and stop the operation, to pause data
collection, and to retrieve a reference to the movie that is created during a record operation:

 ■ Use the SGStartPreview function to start a preview operation. The SGStartRecord function lets you
start a record operation. The SGStop function allows you to stop a sequence grabber component.

 ■ You can instruct the sequence grabber to pause by calling the SGPause function. You can determine
whether the sequence grabber is paused by calling the SGGetPause function.

 ■ You grant processing time to the sequence grabber by calling the SGIdle function. Be sure to call this
function often during record and preview operations. If your application receives an update event during
a record or preview operation, you should call the SGUpdate function.

 ■ You can prepare the sequence grabber for an upcoming preview or record operation by calling the
SGPrepare function. This function also allows the sequence grabber to verify that it can support the
parameters you have specified. By verifying the parameters you want to use, you can improve the startup
of preview and record operations. Use the SGRelease function to release system resources after calling
the SGPrepare function.

 ■ You can retrieve a reference to the movie created by a record operation by calling the SGGetMovie
function. You can determine the resource ID value assigned to the last movie resource created by the
sequence grabber by calling the SGGetLastMovieResID function.

 ■ You can extract a picture from the video source data by calling the SGGrabPict function.

Working With Sequence Grabber Characteristics

The characteristics that govern a sequence grabber operation fall into two main categories: those that apply
to the sequence grabber component, and those that apply to an individual channel that has been created
for the sequence grabber. Sequence grabber components provide a number of functions in each category.
The following functions allow you to configure the characteristics of the sequence grabber component. See
Working With Channel Characteristics (page 51) for information about functions that apply to a single channel.

 ■ Use the SGSetMaximumRecordTime function to limit the duration of a record operation. You can retrieve
this time limit by calling the SGGetMaximumRecordTime function.

 ■ The SGSetFlags function allows you to set control flags that govern an operation. Use the SGGetFlags
function to retrieve those flags.

 ■ You can obtain information about the progress of a record operation by calling the
SGGetStorageSpaceRemaining and SGGetTimeRemaining functions.

 ■ You can retrieve a reference to the time base used by a sequence grabber component by calling the
SGGetTimeBase function.

50 Controlling Sequence Grabber Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Working With Channel Characteristics

Sequence grabber components use channel components to obtain digitized data from external media. After
you create a channel for a sequence grabber component (by calling the SGNewChannel function), you must
configure that channel before you start a preview or record operation. The sequence grabber component
provides a number of functions that allow you to configure the characteristics of a channel component.
Several of these functions work on any channel component. This section discusses these general channel
configuration functions.

In addition, sequence grabber components provide functions that are specific to the channel type. Apple
currently provides three types of channel components: video channel components, sound channel components,
and text channel components. See Working With Video Channels (page 53) for information about the
sequence grabber configuration functions that work only with video channels. See Working With Sound
Channels (page 54) for information about the sequence grabber configuration functions that work only with
sound channels. For information about text channels, see Text Channel Components (page 121).

Here are the principal functions that help you work with sequence grabber channel charateristics:

 ■ Use the SGSetChannelUsage function to specify how a channel is to be used. You can restrict a channel
to use during record or preview operations. In addition, this function allows you to specify whether a
channel plays during a record operation. The SGGetChannelUsage function enables you to determine
a channel’s usage.

 ■ The SGGetChannelInfo function allows you to determine whether a channel has a visual or an audio
representation.

 ■ The SGSetChannelPlayFlags function allows you to influence the speed and quality with which the
sequence grabber displays captured data. The SGGetChannelPlayFlags function lets you determine
these flag settings.

 ■ The SGSetChannelMaxFrames function establishes a limit on the number of frames that the sequence
grabber will capture from a channel. The SGGetChannelMaxFrames function allows you to determine
that limit.

 ■ The SGSetChannelBounds function allows you to set the display boundary rectangle for a channel.
Use the SGGetChannelBounds function to determine a channel’s boundary rectangle.

 ■ The SGSetChannelVolume function allows you to control a channel’s sound volume. Use the
SGGetChannelVolume function to determine a channel’s volume.

 ■ The SGSetChannelRefCon function allows you to set the value of a reference constant that is passed
to your callback functions (see Video Channel Callback Functions (page 54) for information about the
callback functions that are supported by video channels).

 ■ Use the SGGetChannelSampleDescription function to retrieve a channel’s sample description. The
SGGetChannelTimeScale function allows you to obtain the channel’s time scale.

 ■ You can modify or retrieve the channel’s clipping region by calling the SGSetChannelClip or
SGGetChannelClip function. You can work with a channel’s transformation matrix by calling the
SGSetChannelMatrix and SGGetChannelMatrix functions.

Working With Channel Characteristics 51
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Working With Channel Devices

Sequence grabbers provide a number of functions that allow you to determine the device that is attached
to a given sequence grabber channel. These devices allow the channel component to control the digitizing
equipment. For example, video channels use video digitizer components, and sound channels use sound
input drivers. Your application can use these routines to present a list of available devices to the user, allowing
the user to select a specific device for each channel.

You may use the SGGetChannelDeviceList function to retrieve a list of devices that may be used with a
specified channel. You dispose of this device list by calling the SGDisposeDeviceList function. You can
place one or more device names into a menu by calling the SGAppendDeviceListToMenu function. You
can use the SGSetChannelDevice function to assign a device to a channel.

The Device List Structure

Some of these functions use a device list structure to pass information about one or more channel devices.
The SGDeviceListRecord data type defines the format of the device list structure.

typedef struct SGDeviceListRecord {
 short count; /* count of devices */
 short selectedIndex; /* current device */
 long reserved; /* set to 0 */
 SGDeviceName entry[1]; /* device names */
} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

DescriptionField

Indicates the number of devices described by this structure. The value of this field
corresponds to the number of entries in the device name array defined by the entry
field.

count

Identifies the currently active device. The value of this field corresponds to the
appropriate entry in the device name array defined by the entry field. Note that this
value is 0-relative; that is, the first entry has an index number of 0, the second's value
is 1, and so on.

selectedIndex

Reserved for Apple. Always set to 0.reserved

Contains an array of device name structures. Each structure corresponds to one valid
device. The count field indicates the number of entries in this array. The SGDeviceName
data type defines the format of a device name structure.

entry

The Device Name Structure

Device list structures contain an array of device name structures. Each device name structure identifies a
single device that may be used by the channel. The SGDeviceName data type defines the format of a device
name structure.

typedef struct SGDeviceName {

52 Working With Channel Devices
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 Str63 name; /* device name */
 Handle icon; /* device icon */
 long flags; /* flags */
 long refCon; /* set to 0 */
 long reserved; /* set to 0 */
} SGDeviceName;

DescriptionField

Contains the name of the device. For video digitizer components, this field contains the
component's name as specified in the component resource. For sound input drivers, this field
contains the driver name.

name

Contains a handle to the device's icon. Some devices may support an icon, which you may
choose to present to the user. If the device does not support an icon, or if you choose not to
retrieve this information (by setting the sgDeviceListWithIcons flag to 0 when you call
the SGGetChannelDeviceList function), this field is set to nil.

icon

Reflects the current status of the device. The sequence grabber sets these flags when you
retrieve a device list. The sgDeviceNameFlagDeviceUnavailable flag is defined. When set
to 1, this flag indicates that this device is not currently available.

flags

Reserved for Apple. Always set to 0.refCon

Reserved for Apple. Always set to 0.reserved

Working With Video Channels

Sequence grabber components provide a number of functions that allow you to configure the grabber’s
video channels. This section describes these configuration functions, which you can use only with video
channels. You can determine whether a channel has a visual representation by calling the SGGetChannelInfo
function. If you want to configure a sound channel, use the functions described in Working With Sound
Channels (page 54). If you want to configure general attributes of a channel, use the functions described in
Working With Channel Characteristics (page 51).

The SGGetSrcVideoBounds function allows you to determine the coordinates of the source video boundary
rectangle. This rectangle defines the size of the source video image being captured by the video channel.
You can use the SGSetVideoRect function to specify a part of the source video boundary rectangle to be
captured by the channel. The SGGetVideoRect function allows you to determine the active source video
rectangle.

Typically, the sequence grabber component uses the Image Compression Manager to compress the video
data it captures. You can control many aspects of this image- compression process. Use the
SGSetVideoCompressorType function to specify the type of image compressor to use. You can determine
the type of image compressor currently in use by calling the SGGetVideoCompressorType function. You
can specify a particular image compressor and set many image-compression parameters by calling the
SGSetVideoCompressor function. You can determine which image compressor is being used and its
parameter settings by calling the SGGetVideoCompressor function.

The channel components that supply video data to a sequence grabber component typically work with a
video digitizer component. (See About Video Digitizer Components (page 125) for a description of video
digitizer components.)

Working With Channel Devices 53
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Sequence grabber components provide functions that allow you to work with a channel’s video digitizer
component. You can use the SGGetVideoDigitizerComponent function to determine which video digitizer
component is supplying data to a specified channel component. You can set a channel’s video digitizer by
calling the SGSetVideoDigitizerComponent function. If you change any video digitizer settings by calling
the video digitizer component directly, you should inform the sequence grabber component by calling the
SGVideoDigitizerChanged function.

Some video source data may contain unacceptable levels of visual noise or artifacts. One technique for
removing this noise is to capture the image and then reduce it in size. During the size reduction process, the
noise can be filtered out. Sequence grabber components provide functions that allow you to filter the input
video data. The SGSetCompressBuffer function sets a filter buffer for a video channel. The
SGGetCompressBuffer function returns information about your filter buffer.

You can work with a video channel’s frame rate by calling the SGSetFrameRate and SGGetFrameRate
functions. You can control whether a channel uses an offscreen buffer by calling the SGSetUseScreenBuffer
and SGGetUseScreenBuffer functions.

Working With Sound Channels

Sequence grabber components provide a number of functions that allow you to configure the grabber’s
sound channels. This section describes these configuration functions, which you can use only with sound
channels. You can determine whether a channel has a sound representation by calling the SGGetChannelInfo
function. If you want to configure a video channel, use the functions described in Working With Video
Channels (page 53). If you want to configure general attributes of a channel, use the functions described in
Working With Channel Characteristics (page 51).

Use the SGSetSoundInputDriver function to specify a channel’s sound input device. You can determine
a channel’s sound input device by calling the SGGetSoundInputDriver function. If you change any attributes
of the sound input device, you should notify the sequence grabber component by calling the
SGSoundInputDriverChanged function. By default, the sequence grabber component uses the sound
driver’s best settings.

You can control the amount of sound data the sequence grabber works with at one time by calling the
SGSetSoundRecordChunkSize function. You can determine this value by calling the
SGGetSoundRecordChunkSize function.

You can control the rate at which the sound channel samples the input data by calling the
SGSetSoundInputRate function. You can determine the sample rate by calling the SGGetSoundInputRate
function.

You can control other sound input parameters by using the SGSetSoundInputParameters and
SGGetSoundInputParameters functions.

Video Channel Callback Functions

Sequence grabber components allow you to define a number of callback functions in your application. The
sequence grabber calls your functions at specific points in the process of collecting, compressing, and
displaying the source video data. By defining callback functions, you can control the process more precisely
or customize the operation of the sequence grabber component.

54 Working With Channel Devices
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

For example, you could use a callback function to draw a frame number on each video frame as it is collected.
You could use either a compress callback function or a grab-complete callback function to accomplish this.
The compress callback function is called after each frame is collected, in order to compress the frame. The
grab-complete callback function is called just before the compress callback function, as soon as the frame
has been captured.

The SGSetVideoBottlenecks function lets you assign callback functions to a video channel. You can use
the SGGetVideoBottlenecks function to determine the callback functions that have been assigned to a
video channel.

The SGSetVideoBottlenecks function accepts a video bottlenecks structure that identifies the callback
functions to be assigned to the channel. In addition, the SGGetVideoBottlenecks function contains a
pointer to this structure.

The video bottlenecks structure is defined by the VideoBottles data type as follows:

struct VideoBottles {
 short procCount;
 GrabProc grabProc;
 GrabCompleteProc grabCompleteProc;
 DisplayProc displayProc;
 CompressProc compressProc;
 CompressCompleteProc compressCompleteProc;
 AddFrameProc addFrameProc;
 TransferFrameProc transferFrameProc;
 GrabCompressCompleteProc grabCompressCompleteProc;
 DisplayCompressProc displayCompressProc;
};
typedef struct VideoBottles VideoBottles;

DescriptionField

Specifies the number of callback functions that may be identified in the
structure. Set this field to 9.

procCount

Identifies the grab function. If you are setting a grab function, set this field so
that it points to the function's entry point. If you are not setting a grab function,
set this field to nil.

grabProc

Identifies the grab-complete function. If you are setting a grab-complete
function, set this field so that it points to the function's entry point. If you are
not setting a grab-complete function, set this field to nil.

grabCompleteProc

Identifies the display function. If you are setting a display function, set this
field so that it points to the function's entry point. If you are not setting a
display function, set this field to nil.

displayProc

Identifies the compress function. If you are setting a compress function, set
this field so that it points to the function's entry point. If you are not setting a
compress function, set this field to nil.

compressProc

Identifies the compress-complete function. If you are setting a
compress-complete function, set this field so that it points to the function's
entry point. If you are not setting a compress-complete function, set this field
to nil.

compressCompleteProc

Working With Channel Devices 55
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

DescriptionField

Identifies the add-frame function. If you are setting an add-frame function, set
this field so that it points to the function's entry point. If you are not setting
an add-frame function, set this field to nil.

addFrameProc

Identifies the transfer-frame function. If you are setting a transfer-frame
function, set this field so that it points to the function's entry point. If you are
not setting a transfer-frame function, set this field to nil.

transferFrameProc

Identifies the grab-compress-complete function. If you are setting a
grab-compress-complete function, set this field so that it points to the
function's entry point. If you are not setting a grab-compress-complete function,
set this field to nil.

grabCompressComplete-
Proc

Identifies the display-compress function. If you are setting a display-compress
function, set this field so that it points to the function's entry point. If you are
not setting a display-compress function, set this field to nil.

displayCompressProc

The callback functions listed above are described in Application-Defined Functions (page 65).

For information about utility functions that you can use with video channel callback functions, see Utility
Functions for Sequence Grabber Channel Components (page 119).

Previewing and Recording Captured Data

You can use sequence grabber components in two ways: to play digitized data for the user or to save captured
data in a QuickTime movie. The process of displaying data that is to be captured is called previewing; saving
captured data in a movie is called recording. You can use previewing to allow the user to prepare to make a
recording. If you do so, your application can move directly from the preview operation to a record operation,
without stopping the process.

Previewing

Previewing captured data involves playing that data for the user as it is captured. For video data, this means
displaying the video images on the computer screen. For audio data, this means playing the sound through
the computer’s sound system.

Here are the steps you must follow to preview captured data:

1. First, you must open a connection to the sequence grabber component. Use the Component Manager’s
OpenDefaultComponent or OpenComponent function.

2. Once you have a connection to a sequence grabber component, you must configure the component
for the preview operation. Use the SGSetGWorld function to set the graphics world in which the preview
is to be displayed. Allocate the appropriate channels by calling the SGNewChannel function. You must
call this function once for each channel to be used by the sequence grabber component. Use the
SGSetChannelUsage function to specify that each channel is to be used for previewing. You can then

56 Previewing and Recording Captured Data
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

use the appropriate channel configuration functions to prepare the channel for the preview operation.
For video channels, use the functions discussed in Working With Video Channels (page 53). For sound
channels, use the functions discussed in Working With Sound Channels (page 54).

3. You start the preview operation by calling the SGStartPreview function. The sequence grabber
component then begins collecting data from the channels that you have created and plays that data
appropriately. You can pause and restart the preview by calling the SGPause function. Use the SGStop
function to stop the preview. During the preview operation, be sure to call the SGIdle function frequently,
so that the sequence grabber and its channels can perform the operation.

4. When you are done previewing, you can start recording or close your connection to the sequence grabber
component. When you close the sequence grabber component, it automatically disposes of the channels
you created.

Recording

During a record operation, a sequence grabber component collects the data it captures and formats that
data into a QuickTime movie. During a record operation, the sequence grabber can also play the captured
data for the user. However, the sequence grabber tries to prevent the playback from interfering with the
quality of the recording process.

Here are the steps you must follow to record captured data:

1. As with a preview operation, your application must establish a connection to a sequence grabber
component. Use the Component Manager’s OpenDefaultComponent or OpenComponent function.

2. Once you have a connection to a sequence grabber component, you must configure the component
for the record operation. Use the SGSetGWorld function to set the graphics world in which the data is
to be displayed. Allocate the appropriate channels by calling the SGNewChannel function. You must
call this function once for each channel to be used by the sequence grabber component. Use the
SGSetChannelUsage function to specify that each channel is to be used for recording. At this time, you
can specify whether the sequence grabber is to play that channel’s data while recording. You can then
use the appropriate channel configuration functions to prepare the channel for the record operation.
For video channels, use the functions discussed in Working With Video Channels (page 53). For sound
channels, use the functions discussed in Working With Sound Channels (page 54).

3. You must specify a movie file for use by the sequence grabber during the record operation. Use the
SGSetDataOutput function to specify this movie file. This function also allows you to control whether
the sequence grabber adds the movie resource to the movie file and whether it replaces existing data
or appends the new movie to the file.

4. You can limit the amount of data that is captured during a record operation. The
SGSetMaximumRecordTime function establishes a time limit for the record operation. The
SGSetChannelMaxFrames function limits the number of frames of data that the sequence grabber
collects from a specific channel.

5. You start the record operation by calling the SGStartRecord function. The sequence grabber component
then begins collecting data from the channels you have created, stores the data in a QuickTime movie,
and, optionally, plays that data appropriately. You can pause and restart the record process by calling
the SGPause function. During the record operation, be sure to call the SGIdle function frequently, so

Previewing and Recording Captured Data 57
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

that the sequence grabber and its channels can perform the operation. Use the SGStop function to stop
recording. At this time, the sequence grabber saves the movie in your movie file, if you have chosen to
do so.

6. When you are done recording, you can go back to previewing or close your connection to the sequence
grabber component. When you close the sequence grabber component, it automatically disposes of the
channels you created as well as any movies it has created.

Playing Captured Data and Saving It in a QuickTime Movie

This section supplies a sample program that shows how to use a sequence grabber component to preview
and record captured data. The program is divided into groups of functions that do the following tasks:

 ■ initialization

 ■ video and sound channel creation

 ■ sequence preview

 ■ capture of sound and video sequences

 ■ drawing over video frames during a capture operation

Initializing a Sequence Grabber Component

Listing 3-1 provides a sample function that creates and initializes a default sequence grabber component
for a specified window (using the OpenDefaultComponent and SGInitialize functions, respectively). It
then sets the graphics world of the sequence grabber component to the specified window with the
SGSetGWorld function. Note that the CloseComponent function is called for housekeeping purposes in
case the sequence grabber component fails.

Listing 3-1 Initializing a sequence grabber component

SeqGrabComponent MakeSequenceGrabber (WindowPtr aWindow)
{
 SeqGrabComponent anSG;
 OSErr err = noErr;

 /* open up the default sequence grabber */
 anSG = OpenDefaultComponent (SeqGrabComponentType, 0);
 if (anSG) {
 /* initialize the default sequence grabber component */
 err = SGInitialize (anSG);
 if (!err) {
 /* set the sequence grabber's graphics world to the
 specified window */
 err = SGSetGWorld (anSG, (CGrafPtr) aWindow, nil);
 }
 }
 if (err && anSG) {
 /* clean up on failure */
 CloseComponent (anSG);

58 Playing Captured Data and Saving It in a QuickTime Movie
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 anSG = nil;
 }
 return anSG;
}

Creating a Sound Channel and a Video Channel

Listing 3-2 supplies a sample function that attempts to create a video channel and a sound channel for the
sequence grabber component that was created in Listing 3-1. The boundaries of the video channel are set
to the specifications of the bounds parameter. The channel’s usage is always set to allow previewing. If the
value of the willRecord parameter is true, then the usage of the channel is set to allow recording also.

The SGNewChannel function uses the VideoMediaType constant to create a video channel and the
SoundMediaType constant to create a sound channel. The SGSetChannelBounds function specifies the
boundaries of the video channel. The SGSetChannelUsage function specifies whether the video and the
sound channels are used for preview or record operations. The SGDisposeChannel function cleans up upon
failure for each of the channels.

Listing 3-2 Creating a sound channel and a video channel

void MakeGrabChannels (SeqGrabComponent anSG,
 SGChannel *videoChannel,
 SGChannel *soundChannel,
 const Rect *bounds, Boolean willRecord)
{
 OSErr err;
 long usage;
 /* figure out the usage */
 usage = seqGrabPreview; /* always previewing */
 if (willRecord)
 usage |= seqGrabRecord; /* sometimes recording */

 /* create a video channel */
 err = SGNewChannel (anSG, VideoMediaType, videoChannel);
 if (!err) {
 /* set boundaries for new video channel */
 err = SGSetChannelBounds (*videoChannel, bounds);

 /* set usage for new video channel */
 if (!err)
 err = SGSetChannelUsage (*videoChannel,
 usage | seqGrabPlayDuringRecord);
 if (err) {
 /* clean up on failure */
 SGDisposeChannel (anSG, *videoChannel);
 *videoChannel = nil;
 }
 }

 /* create a sound channel */
 err = SGNewChannel (anSG, SoundMediaType, soundChannel);
 if (!err) {
 /* set usage of new sound channel */
 err = SGSetChannelUsage (*soundChannel, usage);
 if (err) {

Playing Captured Data and Saving It in a QuickTime Movie 59
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 /* clean up on failure */
 SGDisposeChannel(anSG, *soundChannel);
 *soundChannel = nil;
 }
 }
}

Previewing Sound and Video Sequences in a Window

Listing 3-3 shows how to use the sequence grabber component to preview sound and video sequences in
a window. Clicking the content area of the window causes the sequence grabber to pause until the mouse
button is released.

The Image Compression Manager’s GetBestDeviceRect function helps you determine the best monitor
for the window. The SGStartPreview function begins the preview of the sound and video sequences. The
SGIdle function grants the sequence grabber component the time it needs to preview data. The SGUpdate
function informs the sequence grabber of the update event. The Window Manager’s BeginUpdate and
EndUpdate functions respond to the event. The SGPause function instructs the sequence grabber to suspend
and resume its preview operation. In this example, it is used to suspend the preview operation while the
mouse button is held down. Finally, the SGStop function halts the action of the sequence grabber component.
The Component Manager’s CloseComponent function closes the component connection. The Window
Manager’s DisposeWindow function disposes of the window.

Listing 3-3 Previewing sound and video sequences in a window

void CheckError(OSErr error, Str255 displayString)
{
 if (error == noErr) return;
 if (displayString[0] > 0)
 DebugStr(displayString);
 ExitToShell();
}
Boolean IsQuickTimeInstalled (void)
{
 short error;
 long result;
 error = Gestalt (gestaltQuickTime, &result);
 return (error == noErr);
}
void initialize (void)
{
 OSErr err;

 InitGraf (&qd.thePort);
 InitFonts ();
 InitWindows ();
 InitMenus ();
 TEInit ();
 InitDialogs (nil);
 MaxApplZone();
 if (!IsQuickTimeInstalled())
 CheckError(-1,"\pPlease install QuickTime and try again");
 err = EnterMovies ();
 CheckError(err,"\pUnable to initialize Movie Toolbox");
}

60 Playing Captured Data and Saving It in a QuickTime Movie
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

WindowPtr makeWindow(void)
{
 WindowPtr aWindow;
 Rect windowRect = {0, 0, 120, 160};
 Rect bestRect;
 /* figure out the best monitor for the window */
 GetBestDeviceRect (nil, &bestRect);
 /* put the window in the top left corner of that monitor */
 OffsetRect(&windowRect, bestRect.left + 10, bestRect.top + 50);
 /* create the window */
 aWindow = NewCWindow (nil, &windowRect, "\pGrabber",
 true, noGrowDocProc, (WindowPtr)-1,
 true, 0);
 /* and set the port to the new window */
 SetPort(aWindow);
 return aWindow;
}

main (void)
{
 WindowPtr theWindow;
 SeqGrabComponent theSG;
 SGChannel videoChannel, soundChannel;
 Boolean done = false;
 OSErr err;
 initialize();
 theWindow = makeWindow();
 theSG = makeSequenceGrabber(theWindow);
 if (!theSG) return;

 makeGrabChannels(theSG, &videoChannel, &soundChannel,
 &theWindow->portRect, false);
 if ((videoChannel == nil) && (soundChannel == nil))
 CheckError(-1,"\pNo sound or video available");
 err = SGStartPreview(theSG);
 CheckError(err, "\pCan't start preview");
 while (!done) {
 AlignmentProcRecord alignProc;
 short part;
 WindowPtr whichWindow;
 EventRecord theEvent;

 GetNextEvent(everyEvent, &theEvent);
 switch (theEvent.what) {
 case nullEvent: /* give the sequence grabber time */
 err = SGIdle (theSG);
 if (err) done = true;
 break;
 case updateEvt:if (theEvent.message == (long)theWindow) {
 /* inform the sequence grabber of the
 update */
 SGUpdate(theSG,((WindowPeek)
 theWindow)->updateRgn);
 /* and swallow the update event */
 BeginUpdate(theWindow);
 EndUpdate(theWindow);
 }

Playing Captured Data and Saving It in a QuickTime Movie 61
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 break;

 case mouseDown:part = FindWindow (theEvent.where,
 &whichWindow);
 if (whichWindow != theWindow) break;
 switch (part) {
 case inContent:
 /* pause until mouse button is
 released */
 SGPause (theSG, true);
 while (StillDown())
 ;
 SGPause(theSG, false);
 break;
 case inGoAway:
 done = TrackGoAway (theWindow,
 theEvent.where);
 break;
 case inDrag:
 /* pause when dragging window so video
 doesn't draw in the wrong place */
 SGPause (theSG, true);
 SGGetAlignmentProc (theSG, &alignProc);
 DragAlignedWindow (theWindow,
 theEvent.where,
 &screenBits.bounds,
 nil, &alignProc);
 SGPause (theSG, false);
 break;
 }
 break;
 }
 }
 /* clean up */
 SGStop (theSG);
 CloseComponent (theSG);
 DisposeWindow (theWindow);
}

Capturing Sound and Video Data

Listing 3-4 uses the sequence grabber component to capture ten seconds of sound and video data. It prompts
the user for the name of the file to create. The SGSettingsDialog function is issued to invoke the default
sound and video capture settings dialog boxes. These default dialog boxes allow the user to configure the
settings for the capture operations. The SGSetMaximumRecordTime function indicates how long the capture
operations will last. The SGStartRecord function specifies the time at which the capture operations will
begin. The SGIdle function grants the time needed to confirm the capture operations. Finally, the SGStop
function and the Window Manager’s DisposeWindow routine are called in order to complete the capture
of the sequences.

Listing 3-4 Capturing sound and video

main (void)
{
 WindowPtr theWindow;

62 Playing Captured Data and Saving It in a QuickTime Movie
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 CGrafPort tempPort;
 SeqGrabComponent theSG;
 SGChannel videoChannel, soundChannel;
 OSErr err;
 initialize();
 theWindow = makeWindow();
 theSG = makeSequenceGrabber(theWindow);
 if (!theSG) return;
 err = setGrabFile(theSG);
 CheckError(err, "\pNo output file");
 makeGrabChannels (theSG, &videoChannel, &soundChannel,
 &theWindow->portRect, true);
 if ((videoChannel == nil) && (soundChannel == nil))
 CheckError(-1,"\pNo sound or video available");

 if (videoChannel)
 SGSettingsDialog (theSG, videoChannel, 0, nil,
 DoTheRightThing, nil, 0);
 if (soundChannel)
 SGSettingsDialog(theSG, soundChannel, 0, nil,
 DoTheRightThing, nil, 0);
 err = SGSetMaximumRecordTime(theSG, 10 * 60);
 CheckError(err, "\pCan't set max record time");
 err = SGStartRecord (theSG);
 CheckError(err, "\pCan't start record");
 while (!err)
 err = SGIdle (theSG);
 if (err == grabTimeComplete)
 err = noErr;
 CheckError(err, "\pError while recording");
 err = SGStop(theSG);
 CheckError(err, "\pError creating movie");
 CloseComponent(theSG);
 DisposeWindow(theWindow);
}

Setting Up the Video Bottleneck Functions

Listing 3-5 shows how to set up the video bottleneck functions of the sequence grabber video channel
component. Inside the main event loop in Listing 3-4, you should add the following lines after you call the
SGSetMaximumRecordTime function.

Listing 3-5 Setting up the video bottleneck functions

 if (videoChannel) {
 err = SGSetVideoBottlenecks (videoChannel, &tempPort);
 CheckError(err, "\pCouldn't set video bottlenecks");
 }

Drawing Information Over Video Frames During Capture

Listing 3-6 shows how to use the video bottleneck functions of the sequence grabber video channel
component to draw the letters “QT” over each video frame as it is captured.

Playing Captured Data and Saving It in a QuickTime Movie 63
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Listing 3-6 Drawing information over video frames during capture

pascal ComponentResult myGrabFrameComplete (SGChannel c,
 short bufferNum,
 Boolean *done,
 long refCon)
{
 ComponentResult err;
 /* call the default grab-complete function */
 err = SGGrabFrameComplete (c, bufferNum, done);
 if (*done) {
 /* frame is done */
 CGrafPtr savePort;
 GDHandle saveGD;
 PixMapHandle bufferPM, savePM;
 Rect bufferRect;
 CGrafPtr tempPort = (CGrafPtr)refCon;
 /* set to our temporary port */
 GetGWorld (&savePort, &saveGD);
 SetGWorld (tempPort, nil);
 /* find out about this buffer */
 err = SGGetBufferInfo (c, bufferNum, &bufferPM, &bufferRect,
 nil, nil);
 if (!err) {
 /* set up to draw into this buffer */
 savePM = tempPort->portPixMap;
 SetPortPix(bufferPM);
 /* draw some text into the buffer */
 TextMode (srcXor);
 MoveTo (bufferRect.right - 20, bufferRect.bottom - 14);
 DrawString ("\pQT");
 TextMode(srcOr);
 /* restore temporary port */
 SetPortPix (savePM);
 }
 SetGWorld (savePort, saveGD);
 }
 return err;
}

OSErr setupVideoBottlenecks (SGChannel videoChannel, WindowPtr w,
 CGrafPtr tempPort)
{
 OSErr err;
 err = SGSetChannelRefCon (videoChannel, (long)tempPort);
 if (!err) {
 VideoBottles vb;
 /* get the current bottlenecks */
 vb.procCount = 9;
 err = SGGetVideoBottlenecks (videoChannel, &vb);
 if (!err) {
 /* add our GrabFrameComplete function */
 vb.grabCompleteProc = myGrabFrameComplete;
 err = SGSetVideoBottlenecks (videoChannel, &vb);
 /* set up the temporary port */
 OpenCPort (tempPort); /* create a temporary port
 for drawing */
 SetRectRgn (tempPort->visRgn, -32000, -32000, 32000,

64 Playing Captured Data and Saving It in a QuickTime Movie
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 32000); /* with a wide open visible
 and clip region . . . */
 CopyRgn (tempPort->visRgn, tempPort->clipRgn);
 /* so that you can use it in
 any video buffer */
 PortChanged ((GrafPtr)tempPort);
 /* tell QuickDraw about the
 changes */
 }
 }
 return err;
}

Application-Defined Functions

This section describes the functions that your application may supply to sequence grabber components.

 ■ Your grab function is used by the sequence grabber component to begin the capture of a frame of video
data. Your grab-complete function allows the sequence grabber component to determine whether the
current frame-capture operation is complete.

 ■ Your display function enables the sequence grabber component to move a captured video image in an
offscreen buffer into the destination buffer for the video channel.

 ■ The sequence grabber component uses your compress function to commence the compression of a
captured video image. Your compress-complete function helps the sequence grabber component to
find out if the current frame-compression operation is finished.

 ■ Your add-frame function lets the sequence grabber component add a frame to a movie.

 ■ The sequence grabber component uses your transfer-frame function to move a video frame from the
capture buffer into the channel’s filter buffer.

 ■ You may provide two functions for use with compressed-source devices. Your grab-compress-complete
function determines when the current capture and compress operation is complete. Your display-compress
function decompresses and displays a frame.

 ■ The sequence grabber calls your data function whenever any of the grabber’s channels write data to
the movie file.

 ■ If you call the SGSettingsDialog function, you must supply a modal-dialog filter function. The interface
that your function must provide is discussed on MyModalFilter (page 74).

MyGrabFunction

The sequence grabber component calls your grab function in order to start capturing a frame of video data.

Your grab function must present the following interface:

pascal ComponentResult MyGrabFunction (SGChannel c,
 short bufferNum,
 long refCon);

Application-Defined Functions 65
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your grab function can use the sequence grabber component’s SGGrabFrame function to support the default
behavior.

MyGrabCompleteFunction

The sequence grabber component calls your grab-complete function in order to determine whether the
current frame-capture operation is complete. Once a frame has been completely captured, you can modify
its contents to suit your needs. For example, you can overlay text onto the video image.

Your function must present the following interface:

pascal ComponentResult MyGrabCompleteFunction (SGChannel c,
 short bufferNum,
 Boolean *done,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a pointer to a Boolean value. Your function sets this Boolean value to indicate
whether the frame has been completely captured. Set the Boolean value to true if the
capture is complete; set it to false if it is incomplete.

done

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

66 Application-Defined Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Your grab-complete function can use the sequence grabber component’s SGGrabFrameComplete function
to support the default behavior.

See Listing 3-6 for a sample grab-complete function. This function draws the letters “QT” over each video
frame in the sequence.

MyDisplayFunction

The sequence grabber component calls your display function in order to transfer a captured video image in
an offscreen buffer into the destination buffer for the video channel.

Your display function must support the following interface:

pascal ComponentResult MyDisplayFunction (SGChannel c,
 short bufferNum,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a pointer to a transformation matrix for the display operation. If there is no matrix
for the operation, this parameter is set to nil.

mp

Contains a handle to the clipping region for the destination image. This region is defined in
the destination coordinate system. Apply the clipping region after applying the transformation
matrix. If there is no clipping region, this parameter is set to nil.

clipRgn

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your application sets the destination buffer by calling the SGSetChannelBounds function.

Your display function can use the sequence grabber component’s SGDisplayFrame function to support
the default behavior.

MyCompressFunction

The sequence grabber component calls your compress function in order to start compressing the captured
video image.

Application-Defined Functions 67
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Your compress function must support the following interface:

pascal ComponentResult MyCompressFunction (SGChannel c,
 short bufferNum,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your compress function can use the sequence grabber component’s SGCompressFrame function to support
the default behavior. This function uses the Image Compression Manager to compress the video image.

MyCompressCompleteFunction

The sequence grabber component calls your compress-complete function in order to determine whether
the current frame-compression operation is complete.

Your compress-complete function must support the following interface:

pascal ComponentResult MyCompressCompleteFunction (SGChannel c,
 short bufferNum,
 Boolean *done,
 SGCompressInfo *ci,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a pointer to a Boolean value. Your function sets this Boolean value to indicate
whether the frame has been completely compressed. Set the Boolean value to true if the
compression is complete; set it to false if it is incomplete.

done

Contains a pointer to a compression information structure (defined by the SGCompressInfo
data type). If the compression is complete, your function must completely format this structure
with information that is appropriate to the frame just compressed.

ci

68 Application-Defined Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

DescriptionParameter

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

See The Compression Information Structure (page 74), for a description of the SGCompressInfo data type.

Once a frame has been completely compressed, you can add it to the movie. Your compress-complete
function can use the sequence grabber component’s SGCompressFrameComplete function to support the
default behavior.

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

MyAddFrameFunction

The sequence grabber component calls your add-frame function in order to add a frame to a movie. Your
add-frame function must support the following interface:

pascal ComponentResult MyAddFrameFunction (SGChannel c,
 short bufferNum,
 TimeValue atTime,
 TimeScale scale,
 SGCompressInfo *ci,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Specifies the time at which the frame was captured, in the time scale specified by the scale
parameter. Your add-frame function can change this value before adding the frame to the
movie or before calling the SGAddFrame function. You can determine the duration of a frame
by subtracting its capture time from the capture time of the next frame in the sequence.

atTime

Specifies the time scale of the movie. You must not change this value.scale

Contains a pointer to a compression information structure (defined by the SGCompressInfo
data type). This structure contains information describing the compression characteristics of
the image to be added to the movie.

ci

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

See The Compression Information Structure (page 74), for a description of the SGCompressInfo data type.

Application-Defined Functions 69
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

You can use your add-frame function to modify the contents of the frame before it is added to the movie.
This can be useful if you want to place frame numbers onto frames you are recording.

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your add-frame function can use the sequence grabber component’s SGAddFrame function to support the
default behavior.

MyTransferFrameFunction

The sequence grabber component calls your transfer-frame function in order to move a video frame from
the capture buffer into the channel’s filter buffer.

Your transfer-frame function must support the following interface:

pascal ComponentResult MyTransferFrameFunction (SGChannel c,
 short bufferNum,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

DescriptionParameter

Specifies the reference that identifies the channel for this operation.c

Identifies the buffer for this operation. You can obtain information about this buffer by calling
the SGGetBufferInfo function.

bufferNum

Contains a pointer to a transformation matrix for the transfer operation. If there is no matrix
for the operation, this parameter is set to nil.

mp

Contains a handle to the clipping region for the destination image. This region is defined in
the destination coordinate system. Apply the clipping region after applying the transformation
matrix. If there is no clipping region, this parameter is set to nil.

clipRgn

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

The sequence grabber component calls this function only when you are filtering the video data. By filtering
the video data through a filter buffer, you can eliminate some visual artifacts that result from noisy input
video sources. Your application sets a filter buffer by calling the SGSetCompressBuffer function.

If you are using a grab-complete function to determine when frames have been grabbed, you should also
implement a grab-compress-complete function (described in the next section). Otherwise, the channel will
decompress the specified image before calling your grab-complete function, which will result in significantly
lower performance. For details on grab-complete functions, see MyGrabCompleteFunction (page 66).

70 Application-Defined Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your transfer-frame function can use the sequence grabber component’s SGTransferFrameForCompress
function to support the default behavior.

MyGrabCompressCompleteFunction

The sequence grabber calls your grab-compress-complete function when it is working with a video digitizer
that supports compressed source data. Your grab-compress-complete function is responsible for determining
whether the current compressed frame has been completely captured and compressed, essentially combining
your grab-complete, compress, and compress-complete functions into one function.

Your function must support the following interface:

pascal ComponentResult MyGrabCompressCompleteFunction
 (SGChannel c,
 Boolean *done,
 SGCompressInfo *ci,
 TimeRecord *tr,
 long refCon);

DescriptionParameter

Identifies the channel for this operation.c

Contains a pointer to a Boolean value. Set this Boolean value to indicate whether you are
finished. Set it to true when you are done; set it to false if the operation is incomplete.

done

Contains a pointer to a compression information structure. When the operation is complete,
fill in this structure with information about the compression operation.

ci

Contains a pointer to a time record. When the operation is complete, fill in this structure with
information indicating when the frame was grabbed.

tr

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

See The Compression Information Structure (page 74), for a description of the SGCompressInfo data type.

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your grab-compress-complete function may use the sequence grabber’s SGGrabCompressComplete function
to support the default behavior.

Application-Defined Functions 71
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

MyDisplayCompressFunction

The sequence grabber calls your display-compress function when it is working with a video digitizer component
that supports compressed source data. Your display-compress function is responsible for decompressing
and displaying a compressed image.

pascal ComponentResult MyDisplayCompressFunction (SGChannel c,
 Ptr dataPtr,
 ImageDescriptionHandle desc,
 MatrixRecord *mp,
 RgnHandle clipRgn,
 long refCon);

DescriptionParameter

Identifies the channel for this operation. The sequence grabber provides this value to your
display-compress function.

c

Contains a pointer to the compressed image data.dataPtr

Specifies a handle to the image description structure to use for the decompression operation.desc

Contains a pointer to a matrix structure. This matrix structure contains the transformation
matrix to use when displaying the image. If there is no matrix for the operation, this parameter
is set to nil.

mp

Contains a handle to the clipping region for the destination image. This region is defined in
the destination coordinate system. Apply the clipping region after the transformation matrix.
If there is no clipping region, this parameter is set to nil.

clipRgn

Contains a reference constant value. You can set this value by calling the
SGSetChannelRefCon function.

refCon

DescriptionValueError constant

Request invalid in current mode-9402cantDoThatInCurrentMode

Your display-compress function may use the sequence grabber’s SGDisplayCompress function to support
the default behavior.

MyDataFunction

The sequence grabber calls your data function whenever any of the grabber’s channels write digitized data
to the destination movie file. You assign a data function to the sequence grabber by calling the
SGSetDataProc function.

Your data function must support the following interface:

pascal OSErr MyDataFunction (SGChannel c, Ptr p, long len,
 long *offset, long chRefCon,
 TimeValue time, short writeType,

72 Application-Defined Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

 long refCon);

DescriptionParameter

Identifies the channel component that is writing the digitized data.c

Contains a pointer to the digitized data.p

Indicates the number of bytes of digitized data.len

Contains a pointer to a field that may specify where you are to write the digitized data, and
that is to receive a value indicating where you wrote the data. You must update the field
referred to by this parameter, supplying the value indicated by the writeType parameter.

offset

Contains control information. The low-order 16 bits contain sample flags for use by the Movie
Toolbox's AddMediaSample function. The sequence grabber sets these flags as appropriate.
The high-order 16 bits are reserved for Apple and are always set to 0.

chRefCon

Identifies the starting time of the data, in the channel's time scale. You may use the
SGGetChannelTimeScale function to retrieve the channel's time scale.

time

Indicates the type of write operation being performed.writeType

Contains the reference constant you specified when you assigned your data function to the
sequence grabber.

refCon

The following values are defined for the writeType parameter:

DescriptionConstant

Append the new data to the end of the file. Set the field referred to by the offset
parameter to reflect the location at which you added the data.

seqGrabWriteAppend

Do not write any data to the output file. Instead, reserve space in the output
file for the amount of data indicated by the len parameter. Set the field referred
to by the offset parameter to the location of the reserved space.

seqGrabWriteReserve

Write the data into the location specified by the field referred to by the offset
parameter. Set that field to the location of the byte following the last byte you
wrote. This option is used to fill the space reserved previously when the
writeType parameter was set to seqGrabWriteReserve. Note that the
sequence grabber may call your data function several times to fill a single
reserved location.

seqGrabWriteFill

The sequence grabber calls your data function whenever any channel component writes data to the destination
movie. You may use your data function to store the digitized data in some format other than a QuickTime
movie.

You can instruct the sequence grabber not to write its data to a QuickTime movie by calling the
SGSetDataOutput function and setting the seqGrabDontMakeMovie flag to 1. This can save processing
time in cases where you do not want to create or update a movie.

Application-Defined Functions 73
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

MyModalFilter

The SGSettingsDialog function causes the sequence grabber to present its settings dialog box to the
user. This is a movable modal dialog box, so you must provide a filter function to handle update events in
your window. You specify your filter function with the proc parameter.

A modal-dialog filter function whose address is passed to SGSettingsDialog should support the following
interface:

pascal Boolean MyModalFilter (DialogPtr theDialog,
 EventRecord *theEvent,
 short *itemHit, long refCon);

DescriptionParameter

Points to the settings dialog box's dialog structure.theDialog

Contains a pointer to an event structure. This event structure contains information identifying
the nature of the event.

theEvent

Contains a pointer to a field that contains the item selected by the user. If you handle the
event, you should update this field to reflect the item number of the selected item.

itemHit

Contains a reference constant. You provide this reference constant to the sequence grabber
in the procRefNum parameter of the SGSettingsDialog function.

refCon

Your modal-dialog filter function returns a Boolean value that indicates whether you handled the event. Set
this value to true if you handled the event; otherwise, set it to false. If you handle the event, be sure to
update the value of the field referred to by the itemHit parameter.

Data Types

This section describes the compression information structure and the sequence grabber frame information
structure.

The Compression Information Structure

The compression information structure defines the characteristics of a buffer that contains a captured image
that has been compressed. Callback functions use compression information structures to exchange information
about compressed images. For example, the compress-complete function must format a compression
information record whenever a video frame is compressed (see MyCompressCompleteFunction (page 68)
for more information about the compress-complete callback function). The SGCompressInfo data type
defines a compression information structure.

74 Data Types
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Frame Information Structure

The frame information structure defines a frame for a sequence grabber component and its sequence grabber
channel components. The SeqGrabExtendedFrameInfo data type defines the format of a frame information
structure.SeqGrabExtendedFrameInfo is an extension ofSeqGrabFrameInfo, adding a newframeOutput
field and extending the frameOffset field to 64 bits.

Note: You only need to know about the frame information structure if you are creating a sequence grabber
component. If you are not creating a sequence grabber component, you may skip this section.

Data Types 75
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

76 Data Types
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Sequence Grabber Component Functions

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

This chapter describes sequence grabber panel components and explains how they are used. Because
applications never call sequence grabber panel components directly, only developers planning to create
panel components need to read this chapter.

A sequence grabber panel component presents a settings dialog box to the user that affects the behavior
of a channel component. For example, a dialog might let the user control the frame capture rate of a video
digitizer and the image quality of an image compressor. The user settings dialog box can be customized to
include any required options by creating a new component.

How Sequence Grabber Panel Components Work

This section provides background information about sequence grabber panel components. After reading
this section, you should understand why these components exist and whether you need to create one.

Sequence grabber panel components augment the capabilities of sequence grabber components and
sequence grabber channel components by allowing sequence grabbers to obtain configuration information
from the user for a particular digitizing source that is managed by a channel component. Consequently,
sequence grabbers, channel components, and panel components have a close relationship.

Figure 4-1 shows this relationship and how these components interact with one another to place digitized
data into a QuickTime movie.

How Sequence Grabber Panel Components Work 77
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Application

Control flow

Data flow

Sequence
grabber channel

component

Sequence
grabber channel

component

Sequence
grabber panel

component

Sound
Manager

Sequence
grabber channel

component

Sequence
grabber panel

component

Sound input
device

Video equipment

Video digitizer
component

Image
Compression

Manager

Audio equipment

Sequence grabbers present a settings dialog box to the user whenever an application calls the
SGSettingsDialog function (see Sequence Grabber Component Functions (page 49) for more information
about this sequence grabber function). Applications never call sequence grabber panel components directly;
application developers use panel components only by calling the sequence grabber component.

Although the sequence grabber creates the dialog box and manages its interactions with the user, portions
of the dialog box are controlled by panel components and channel components.

Figure 4-2 shows a sample dialog box and identifies the various parts of the dialog box.

78 How Sequence Grabber Panel Components Work
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Settings area (managed
by panel components)
Settings area (managed
by panel components)

Panel pop-up menu

Monitor area (managed
by channel components)

The sequence grabber creates the dialog box itself and manages the OK and Cancel buttons and the panel
pop-up menu. Channel components are responsible for the monitor area on the right side of the dialog box.
Panel components manage the settings area immediately below the panel pop-up menu. Only one panel
component is active at any given time; the user selects a panel component by manipulating the panel pop-up
menu.

When the user selects a specific panel component, the sequence grabber works with that component to
build the panel settings dialog area and present it to the user. The panel component processes dialog events
and mouse clicks as appropriate and validates the user’s settings. The sequence grabber then retrieves the
settings from the panel component and stores those settings.

There are two circumstances under which you should consider creating a sequence grabber panel component:

 ■ First, if you want to support special digitizing equipment in the QuickTime environment;

 ■ Second, if you have created your own sequence grabber channel component.

If you have created special digitizing equipment, you may not have to create a special channel component
for your equipment; the channel components provided by Apple may be sufficient for your needs. By providing
a special panel component, however, you can allow the user to take advantage of your equipment’s special
capabilities.

If you have created your own channel component, you must create an accompanying panel component to
allow the user to configure your channel.

Creating Sequence Grabber Panel Components

This section discusses how to create a sequence grabber panel component. You should read this section if
you are creating a panel component.

Creating Sequence Grabber Panel Components 79
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Applications do not call panel components directly. Rather, they invoke a sequence grabber’s settings dialog
box by calling the SGSettingsDialog function. In response, the sequence grabber presents the settings
dialog box to the user. When the user selects a specific settings panel, the sequence grabber invokes the
appropriate panel component.

Panel components provide a number of functions that allow sequence grabbers to manage their relationships
with panel components. See Managing Your Panel Component (page 81) for complete descriptions of these
functions.

Panel components are not responsible for saving their settings information. Sequence grabbers manage this
information on behalf of panel components, and a sequence grabber may combine configuration information
from several panel components in order to build up the complete configuration for an elaborate digitizing
environment. Panel components provide functions that allow sequence grabbers to obtain this configuration
information. See Managing Your Panel’s Settings (page 81) for more information about these functions.

Sequence grabbers store this configuration data in user data items. The Movie Toolbox provides a number
of functions that allow you to create and manage user data items.

Apple has defined a component type value for sequence grabber panel components. You can use the following
constant to specify this component type:

#define SeqGrabPanelType 'sgpn' /* panel component type */

Sequence grabber panel components use their component subtype and manufacturer values to indicate the
type of configuration services they provide. The subtype value indicates the media type supported by the
panel component. This value should correspond to the component subtype value of channel components
that may be configured by the panel component. For example, a panel component that manages video
settings would have a subtype of 'vide' (this value is defined by the Movie Toolbox’s VideoMediaType
constant).

The manufacturer field contains a unique identifier for each panel component. The value should indicate
something about the specific services provided by the component. For example, Apple has defined the
following manufacturer values:

#define SeqGrabCompressionPanelType 'sour' /* input source selection */
#define SeqGrabSourcePanelType 'cmpr' /* compression settings */

In general, Apple has reserved all lowercase values of component subtypes and manufacturer codes.

Apple has defined a functional interface for sequence grabber panel components. You may use the following
constants to refer to the request codes for each of the functions that your component must support:

enum {
 /* sequence grabber panel request codes */
 kSGCPanelGetDitlSelect = 0x200, /* SGPanelGetDITL */
 kSGCPanelCanRunSelect = 0x202, /* SGPanelCanRun */
 kSGCPanelInstallSelect = 0x203, /* SGPanelInstall */
 kSGCPanelEventSelect = 0x204, /* SGPanelEvent */
 kSGCPanelItemSelect = 0x205, /* SGPanelItem */
 kSGCPanelRemoveSelect = 0x206, /* SGPanelRemove */
 kSGCPanelSetGrabberSelect = 0x207, /* SGPanelSetGrabber */
 kSGCPanelSetResFileSelect = 0x208, /* SGPanelSetResFile */
 kSGCPanelGetSettingsSelect = 0x209, /* SGPanelGetSettings */
 kSGCPanelSetSettingsSelect = 0x20A, /* SGPanelSetSettings */
 kSGCPanelValidateInputSelect = 0x20B
};

80 Creating Sequence Grabber Panel Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Before reading the rest of this chapter, you should have a basic understanding of how to create components.
To create a sequence grabber panel component, you set up the global variables and implement the required
Component Manager request codes and the functions that are private to your particular component. Then
you manage the dialog box and work with the settings in the dialog box.

Managing Your Panel Component

Sequence grabber components load, configure, and unload your panel component. As part of this process,
the sequence grabber installs your panel’s dialog items into the settings dialog box and may open your
component’s resource file. Panel components provide a number of functions that allow the sequence grabber
to manage its relationship with panel components. This section discusses those functions.

After opening a connection to your panel component, the sequence grabber identifies itself to your component
by calling your SGPanelSetGrabber function. The sequence grabber then tries to determine whether your
component can work with its associated channel component by calling your SGPanelCanRun function. The
sequence grabber calls this function only if you have set the channelFlagHasDependency component flag
to 1.

Once the sequence grabber has determined that your panel component can work with its channel component,
the sequence grabber may open your component’s resource file (unless you have set the
channelFlagDontOpenResFile component flag to 1). Once it has opened the resource file, it passes the
file’s reference number to you by calling your SGPanelSetResFile function.

Next, the sequence grabber prepares to add your component’s items to the settings dialog box. The sequence
grabber obtains your item list by calling your SGPanelGetDITL function. Once it has installed the items, it
calls your SGPanelInstall function, giving you an opportunity to set initial values.

Before the sequence grabber removes your items from the settings dialog box, it calls your SGPanelRemove
function.

Managing Your Panel's Settings

Sequence grabber components store their configuration information in Movie Toolbox user data items. This
configuration information includes settings for each of the channels used by the sequence grabber. Because
your panel component configures sequence grabber channels, your panel component is responsible for
creating and formatting the contents of its user data items. The sequence grabber component calls your
component whenever it wants to retrieve these settings. The sequence grabber may also use previously
stored settings to restore your panel’s settings. This section discusses the functions that allow the sequence
grabber to work with your panel’s settings.

The sequence grabber calls your SGPanelGetSettings function in order to retrieve your panel’s current
settings. The sequence grabber uses your SGPanelSetSettings function to restore those settings to some
previous values.

Managing Your Panel Component 81
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Component Flags for Sequence Grabber Panel Components

The Component Manager allows you to specify information about your component’s capabilities in the
componentFlags field of the component description record. Sequence grabber panel components use the
componentFlags field to indicate specific information about their capabilities.

The following flags are defined:

enum {
 channelFlagDontOpenResFile = 2, /* do not open resource file */
 channelFlagHasDependency = 4 /* needs special hardware */
};

These flags control how sequence grabbers manage their connection with your panel component. The
channelFlagDontOpenResFile flag instructs the sequence grabber not to open your component’s resource
file. By default, the sequence grabber opens your component’s resource file for you, and then provides you
with the appropriate file reference number. In general, this is convenient. However, if your component is
linked with your application and does not have its own resource file, you may not want the sequence grabber
to try to open the resource file. In such cases, set this flag to 1.

The channelFlagHasDependency flag allows you to tell the sequence grabber that your panel component
requires special digitizing hardware. If you set this flag to 1, the sequence grabber gives your component an
opportunity to verify that it can work in the current hardware environment by calling your component’s
SGPanelCanRun function.

Processing Your Panel's Events

When your panel component is loaded into the settings dialog box and active, you may receive and process
dialog events and mouse clicks.

Your component’s SGPanelEvent function acts like a modal-dialog filter function, allowing you to process
individual dialog events. The sequence grabber calls your SGPanelItem function whenever the user clicks
a dialog item.

Whenever the user clicks the OK button, the sequence grabber calls your SGPanelValidateInput function.
Your panel component may then validate the user’s settings.

Implementing the Required Component Functions

Listing 4-1 illustrates the component dispatchers for a sequence grabber panel component together with
the required functions for open, close, can do, and version.

Listing 4-1 Implementing functions for open, close, can do, and version

#define sgcPictShowTicksType 'TICK'

typedef struct {
 ComponentInstance self;
 ControlHandle ch;
} PictPanelGlobalsRecord, *PictPanelGlobals;

82 Managing Your Panel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

/* only for PICT channels */
pascal ComponentResult SGSetShowTickCount (SGChannel c,
 Boolean show) = {0x2f3c,2,0x100,0x7000,0xA82A};
pascal ComponentResult SGGetShowTickCount (SGChannel c,
 Boolean *show) = {0x2f3c,4,0x101,0x7000,0xA82A};
pascal ComponentResult PictPanelDispatcher
 (ComponentParameters *params, Handle storage)

{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;
 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = PictPanelOpen; break;
 case kComponentCloseSelect:
 componentProc = PictPanelClose; break;
 case kComponentCanDoSelect:
 componentProc = PictPanelCanDo; break;
 case kComponentVersionSelect:
 componentProc = PictPanelVersion; break;
 case kSGCPanelGetDitlSelect:
 componentProc = PictPanelPanelGetDitl; break;
 case kSGCPanelInstallSelect:
 componentProc = PictPanelPanelInstall; break;
 case kSGCPanelItemSelect:
 componentProc = PictPanelPanelItem; break;
 case kSGCPanelRemoveSelect:
 componentProc = PictPanelPanelRemove; break;
 case kSGCPanelGetSettingsSelect:
 componentProc = PictPanelPanelGetSettings; break;
 case kSGCPanelSetSettingsSelect:
 componentProc = PictPanelPanelSetSettings; break;
 }
 if (componentProc)
 err = CallComponentFunctionWithStorage (storage, params,
 componentProc);
 return err;
}
pascal ComponentResult PictPanelCanDo (PictPanelGlobals store,
 short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kSGCPanelGetDitlSelect:
 case kSGCPanelInstallSelect:
 case kSGCPanelItemSelect:
 case kSGCPanelRemoveSelect:
 case kSGCPanelGetSettingsSelect:
 case kSGCPanelSetSettingsSelect:
 return true;
 default:
 return false;
 }
}
pascal ComponentResult PictPanelVersion (PictPanelGlobals store)

Managing Your Panel Component 83
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

{
 return 0x00020001;
}

pascal ComponentResult PictPanelOpen (PictPanelGlobals store,
 ComponentInstance self)
{
 OSErr err;

 /* allocate global variables */
 store = (PictPanelGlobals) NewPtrClear
 (sizeof(PictPanelGlobalsRecord));
 if (err = MemError()) goto bail;
 SetComponentInstanceStorage (self, (Handle)store);

 /* remember the component instance identification number */
 store->self = self;
bail:
 return err;
}
pascal ComponentResult PictPanelClose (PictPanelGlobals store,
 ComponentInstance self)
{
 if (store) DisposePtr ((Ptr)store);
 return noErr;
}

Managing the Dialog Box

This section gives details on the functions that a panel component must provide so that the sequence grabber
can load the component’s items into the settings dialog box and receive and process dialog events.

 ■ To prepare to add the component’s items to the settings dialog box, the sequence grabber obtains the
item list by calling the SGPanelGetDITL function.

 ■ Once it has installed the items, the sequence grabber calls the SGPanelInstall function, which sets
up the state of the dialog box (for example, a checkbox) and gives the panel component an opportunity
to set initial values.

 ■ When the panel component is loaded into the settings dialog box and active, it may receive and process
dialog events and mouse clicks. The component’s SGPanelEvent function processes individual dialog
events.

 ■ Whenever the user clicks a dialog item, the sequence grabber calls the SGPanelItem function.

 ■ Before the sequence grabber removes the items from the settings dialog box, it calls the SGPanelRemove
function.

Listing 4-2 provides an example of the management of the settings dialog box for a sequence grabber that
displays PICT images. The component item displayed in the dialog box in this case is a tick count checkbox.

Listing 4-2 Managing the settings dialog box

pascal ComponentResult PictPanelPanelGetDitl
 (PictPanelGlobals store, Handle *ditl)

84 Managing the Dialog Box
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

{
 /*
 Get and detach the dialog box template. Note that
 the sequence grabber has already opened the resource file.
 */
 *ditl = GetResource ('DITL', 7001);
 if (!*ditl) return resNotFound;
 DetachResource (*ditl);
 return noErr;
}

pascal ComponentResult PictPanelPanelInstall
 (PictPanelGlobals store, SGChannel c,
 DialogPtr d, short itemOffset)
{
 Rect r;
 short kind;
 Handle h;
 Boolean ticksShowing;
 /* set up the initial state of the checkbox */
 GetDItem (d, 1 + itemOffset, &kind, &h, &r);
 store->ch = (ControlHandle)h;
 SGGetShowTickCount (c, &ticksShowing);
 SetCtlValue (store->ch, ticksShowing);
 return noErr;
}
pascal ComponentResult PictPanelPanelItem
 (PictPanelGlobals store, SGChannel c,
 DialogPtr d, short itemOffset,
 short itemNum)
{
 /* if the item clicked was your checkbox, update its state */
 if ((itemNum - itemOffset) == 1) {
 Boolean showing = GetCtlValue (store->ch);
 SetCtlValue (store->ch, !showing);
 SGSetShowTickCount (c, !showing);
 }
 return noErr;
}
pascal ComponentResult PictPanelPanelRemove
 (PictPanelGlobals store,
 SGChannel c, DialogPtr d,
 short itemOffset)
{
 /* forget that it ever had a control */
 store->ch = nil;
 return noErr;
}

To allow the sequence grabber to work with your panel’s settings, your panel component must allow the
sequence grabber to

 ■ retrieve the panel’s current settings by calling your SGPanelGetSettings function

 ■ restore those settings to some previous values by using your SGPanelSetSettings function

Listing 4-3 gives an example in which the settings are managed in a user list that contains tick count
information for a panel component for PICT images.

Managing the Dialog Box 85
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Listing 4-3 Managing the settings for a panel component

pascal ComponentResult PictPanelPanelGetSettings
 (PictPanelGlobals store, SGChannel c,
 UserData *result, long flags)
{
 OSErr err;
 UserData ud;
 Boolean ticksShowing;

 /* create a user data list containing your state */
 if (err = NewUserData (&ud)) goto bail;
 if (err = SGGetShowTickCount (c, &ticksShowing)) goto bail;
 if (err = SetUserDataItem (ud, &ticksShowing,
 sizeof (ticksShowing),
 sgcPictShowTicksType, 1)) goto bail;
bail:
 if (err) {
 DisposeUserData(ud);
 ud = 0;
 }
 *result = ud;
 return err;
}
pascal ComponentResult PictPanelPanelSetSettings
 (PictPanelGlobals store, SGChannel c,
 UserData ud, long flags)
{
 Boolean ticksShowing;
 /* restore the state from the specified user data list */
 if (GetUserDataItem (ud, &ticksShowing,
 sizeof (ticksShowing),
 sgcPictShowTicksType, 1) == noErr)
 SGSetShowTickCount (c, ticksShowing);
 return noErr;
}

86 Managing the Dialog Box
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Sequence Grabber Panel Components

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

This chapter describes how to build sequence grabber channel components, also known simply as channel
components. These components are used by higher-level sequence grabber components, and act to isolate
the sequence grabber from the details of working with actual data types. Channel components may, in turn,
depend on the services of still lower-level components, such as video digitizer components.

For example, a sequence grabber component may provide both audio and video to an application. It may
receive the audio and video data from two channel components: an audio channel component and a video
channel component. The video channel component may receive its data from a video digitizer component
that is specific to a particular manufacturer’s video capture board.

You should read this chapter if you are developing a sequence grabber component, a channel component,
and/or a video digitizer component. Application programmers should use the services of a sequence grabber
component, and should not need to read this material.

Creating Sequence Grabber Channel Components

Sequence grabber channel components are the most convenient mechanism for extending the ability of the
sequence grabber component to accommodate new types of source data. For example, if you are developing
special-purpose hardware that generates a new kind of data, you should create a channel component for
that kind of data.

This section discusses issues you should consider when creating a sequence grabber channel component. It
also provides a sample program for the implementation of a sequence grabber channel component.

Component Type and Subtype Values

Apple has defined a component type value for sequence grabber channel components; that type value is
'sgch'. You can use the following constant to specify this type value:

#define SeqGrabChannelType 'sgch';

Sequence grabber channel components use their component subtype value to indicate the media type
created by the component. For example, a channel component that works with video data would have a
subtype of 'vide' (this value is defined by the Movie Toolbox’s VideoMediaType constant).

Creating Sequence Grabber Channel Components 87
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

Required Functions

At a minimum, your channel component should support the following functions:

 ■ SGGetChannelInfo

 ■ SGRelease

 ■ SGGetChannelUsage

 ■ SGSetChannelRefCon

 ■ SGGetDataRate

 ■ SGSetChannelUsage

 ■ SGIdle

 ■ SGStartPreview

 ■ SGInitChannel

 ■ SGStartRecord

 ■ SGPause

 ■ SGStop

 ■ SGPrepare

 ■ SGWriteSamples

In addition, if your channel component supports visual data, it should support at least the following functions:

 ■ SGGetChannelBounds

 ■ SGSetChannelBounds

 ■ SGSetGWorld

If your channel component supports audio data, it should support the following functions as well:

 ■ SGGetChannelVolume

 ■ SGSetChannelVolume

Other functions mentioned in this chapter are optional. However, your channel component should support
as many of these functions as possible, so that your component is more useful to applications and users.

Component Manager Request Codes

As with all components, your channel component receives its requests from the Component Manager in the
form of request codes. Apple strongly recommends that you fully support all of the Component Manager’s
request codes in your channel component, especially the target request. Developers will want to extend the
capabilities of the sequence grabber channel components. The Component Manager’s CaptureComponent
function, which uses the target request, is the most convenient mechanism for obtaining the services of a

88 Creating Sequence Grabber Channel Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

component and then extending those services. If your channel component does not support the target
request, then it cannot be used by applications or other components in this manner. You can use the following
constants to refer to the request codes for each of the functions that your channel component must support.

 /* basic sequence grabber channel component selectors */
 kSGSetGWorldSelect = 0x4;
 kSGStartPreviewSelect = 0x10;
 kSGStartRecordSelect = 0x11;
 kSGIdleSelect = 0x12;
 kSGStopSelect = 0x13;
 kSGPauseSelect = 0x14;
 kSGPrepareSelect = 0x15;
 kSGReleaseSelect = 0x16;
 kSGUpdateSelect = 0x27;

 /* selectors for common channel configuration functions */
 kSGCSetChannelUsageSelect = 0x80;
 kSGCGetChannelUsageSelect = 0x81;
 kSGCSetChannelBoundsSelect = 0x82;
 kSGCGetChannelBoundsSelect = 0x83;
 kSGCSetChannelVolumeSelect = 0x84;
 kSGCGetChannelVolumeSelect = 0x85;
 kSGCGetChannelInfoSelect = 0x86;
 kSGCSetChannelPlayFlagsSelect = 0x87;
 kSGCGetChannelPlayFlagsSelect = 0x88;
 kSGCSetChannelMaxFramesSelect = 0x89;
 kSGCGetChannelMaxFramesSelect = 0x8a;
 kSGCSetChannelRefConSelect = 0x8b;
 kSGCSetChannelClipSelect = 0x8C;
 kSGCGetChannelClipSelect = 0x8D;
 kSGCGetChannelSampleDescriptionSelect = 0x8E;
 kSGCGetChannelDeviceListSelect = 0x8F;
 kSGCSetChannelDeviceSelect = 0x90;
 kSGCSetChannelMatrixSelect = 0x91;
 kSGCGetChannelMatrixSelect = 0x92;
 kSGCGetChannelTimeScaleSelect = 0x93;

 /* selectors for video channel configuration functions */
 kSGCGetSrcVideoBoundsSelect = 0x100;
 kSGCSetVideoRectSelect = 0x101;
 kSGCGetVideoRectSelect = 0x102;
 kSGCGetVideoCompressorTypeSelect = 0x103;
 kSGCSetVideoCompressorTypeSelect = 0x104;
 kSGCSetVideoCompressorSelect = 0x105;
 kSGCGetVideoCompressorSelect = 0x106;
 kSGCGetVideoDigitizerComponentSelect = 0x107;
 kSGCSetVideoDigitizerComponentSelect = 0x108;
 kSGCVideoDigitizerChangedSelect = 0x109;
 kSGCSetVideoBottlenecksSelect = 0x10a;
 kSGCGetVideoBottlenecksSelect = 0x10b;
 kSGCGrabFrameSelect = 0x10c;
 kSGCGrabFrameCompleteSelect = 0x10d;
 kSGCDisplayFrameSelect = 0x10e;
 kSGCCompressFrameSelect = 0x10f;
 kSGCCompressFrameCompleteSelect = 0x110;
 kSGCAddFrameSelect = 0x111;
 kSGCTransferFrameForCompressSelect = 0x112;
 kSGCSetCompressBufferSelect = 0x113;

Creating Sequence Grabber Channel Components 89
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 kSGCGetCompressBufferSelect = 0x114;
 kSGCGetBufferInfoSelect = 0x115;
 kSGCSetUseScreenBufferSelect = 0x116;
 kSGCGetUseScreenBufferSelect = 0x117;
 kSGCGrabCompressCompleteSelect = 0x118;
 kSGCDisplayCompressSelect = 0x119;
 kSGCSetFrameRateSelect = 0x11A;
 kSGCGetFrameRateSelect = 0x11B;

 /* selectors for sound channel configuration functions */
 kSGCSetSoundInputDriverSelect = 0x100;
 kSGCGetSoundInputDriverSelect = 0x101;
 kSGCSoundInputDriverChangedSelect = 0x102;
 kSGCSetSoundRecordChunkSizeSelect = 0x103;
 kSGCGetSoundRecordChunkSizeSelect = 0x104;
 kSGCSetSoundInputRateSelect = 0x105;
 kSGCGetSoundInputRateSelect = 0x106;
 kSGCSetSoundInputParametersSelect = 0x107;
 kSGCGetSoundInputParametersSelect = 0x108;

 /* selectors for channel control functions */
 kSGCInitChannelSelect = 0x180;
 kSGCWriteSamplesSelect = 0x181;
 kSGCGetDataRateSelect = 0x182;
 kSGCAlignChannelRectSelect = 0x183;
};

A Sample Sequence Grabber Channel Component

This section describes a sample sequence grabber channel component for PICT image data.

Implementing the Required Component Functions

Listing 5-1 supplies the component dispatchers for the sequence grabber channel component together with
the required functions.

Listing 5-1 Setting up global variables and implementing required functions

#define kMediaTimeScale 600

typedef struct {
 ComponentInstance self;
 SeqGrabComponent grabber;
 long usage;
 Boolean paused;
 CGrafPtr destPort;
 GDHandle destGD;
 CGrafPort tempPort;
 MatrixRecord displayMatrix;
 Rect destRect;
 Rect srcRect;
 RgnHandle clip;
 Boolean inPreview;

90 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 Boolean inRecord;
 TimeBase base;
 long bytesWritten;
 Boolean showTickCount;
 long saveUsage;
} SGPictGlobalsRecord, *SGPictGlobals;

pascal ComponentResult SGPICTDispatcher
 (ComponentParameters *params, Handle storage)
{
 OSErr err = badComponentSelector;
 ComponentFunction componentProc = 0;

 switch (params->what) {
 case kComponentOpenSelect:
 componentProc = SGPictOpen; break;
 case kComponentCloseSelect:
 componentProc = SGPictClose; break;
 case kComponentCanDoSelect:
 componentProc = SGPictCanDo; break;
 case kComponentVersionSelect:
 componentProc = SGPictVersion; break;
 case kSGSetGWorldSelect:
 componentProc = SGPictSetGWorld; break;
 case kSGStartPreviewSelect:
 componentProc = SGPictStartPreview; break;
 case kSGStartRecordSelect:
 componentProc = SGPictStartRecord; break;
 case kSGIdleSelect:
 componentProc = SGPictIdle; break;
 case kSGStopSelect:
 componentProc = SGPictStop; break;
 case kSGPauseSelect:
 componentProc = SGPictPause; break;
 case kSGPrepareSelect:
 componentProc = SGPictPrepare; break;
 case kSGReleaseSelect:
 componentProc = SGPictRelease; break;
 case kSGCSetChannelUsageSelect:
 componentProc = SGPictSetChannelUsage; break;
 case kSGCGetChannelUsageSelect:
 componentProc = SGPictGetChannelUsage; break;
 case kSGCSetChannelBoundsSelect:
 componentProc = SGPictSetChannelBounds; break;
 case kSGCGetChannelBoundsSelect:
 componentProc = SGPictGetChannelBounds; break;
 case kSGCGetChannelInfoSelect:
 componentProc = SGPictGetChannelInfo; break;
 case kSGCSetChannelMatrixSelect:
 componentProc = SGPictSetChannelMatrix; break;
 case kSGCGetChannelMatrixSelect:
 componentProc = SGPictGetChannelMatrix; break;
 case kSGCSetChannelClipSelect:
 componentProc = SGPictSetChannelClip; break;
 case kSGCGetChannelClipSelect:
 componentProc = SGPictGetChannelClip; break;
 case kSGCGetChannelSampleDescriptionSelect:
 componentProc = SGPictGetChannelSampleDescription;

A Sample Sequence Grabber Channel Component 91
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 break;
 case kSGCGetChannelDeviceListSelect:
 componentProc = SGPictGetChannelDeviceList; break;
 case kSGCSetChannelDeviceSelect:
 componentProc = SGPictSetChannelDevice; break;
 case kSGCGetChannelTimeScaleSelect:
 componentProc = SGPictGetChannelTimeScale; break;
 case kSGCInitChannelSelect:
 componentProc = SGPictInitChannel; break;
 case kSGCWriteSamplesSelect:
 componentProc = SGPictWriteSamples; break;
 case kSGCGetDataRateSelect:
 componentProc = SGPictGetDataRate; break;
 case kSGCPanelGetDitlSelect:
 componentProc = SGPictPanelGetDitl; break;
 case kSGCPanelInstallSelect:
 componentProc = SGPictPanelInstall; break;
 case kSGCPanelEventSelect:
 componentProc = SGPictPanelEvent; break;
 case kSGCPanelRemoveSelect:
 componentProc = SGPictPanelRemove; break;
 case kSGCPanelGetSettingsSelect:
 componentProc = SGPictPanelGetSettings; break;
 case kSGCPanelSetSettingsSelect:
 componentProc = SGPictPanelSetSettings; break;
 case 0x0100:
 componentProc = SGPictSetShowTickCount; break;
 case 0x0101:
 componentProc = SGPictGetShowTickCount; break;
 }
 if (componentProc)
 err = CallComponentFunctionWithStorage (storage, params,
 componentProc);
 return err;
}

pascal ComponentResult SGPictCanDo (SGPictGlobals store,
 short ftnNumber)
{
 switch (ftnNumber) {
 case kComponentOpenSelect:
 case kComponentCloseSelect:
 case kComponentCanDoSelect:
 case kComponentVersionSelect:
 case kSGSetGWorldSelect:
 case kSGStartPreviewSelect:
 case kSGStartRecordSelect:
 case kSGIdleSelect:
 case kSGStopSelect:
 case kSGPauseSelect:
 case kSGPrepareSelect:
 case kSGReleaseSelect:
 case kSGCSetChannelUsageSelect:
 case kSGCGetChannelUsageSelect:
 case kSGCSetChannelBoundsSelect:
 case kSGCGetChannelBoundsSelect:
 case kSGCGetChannelInfoSelect:
 case kSGCSetChannelMatrixSelect:

92 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 case kSGCGetChannelMatrixSelect:
 case kSGCSetChannelClipSelect:
 case kSGCGetChannelClipSelect:
 case kSGCGetChannelSampleDescriptionSelect:
 case kSGCGetChannelDeviceListSelect:
 case kSGCSetChannelDeviceSelect:
 case kSGCGetChannelTimeScaleSelect:
 case kSGCInitChannelSelect:
 case kSGCWriteSamplesSelect:
 case kSGCGetDataRateSelect:
 case kSGCPanelGetDitlSelect:
 case kSGCPanelInstallSelect:
 case kSGCPanelEventSelect:
 case kSGCPanelRemoveSelect:
 case kSGCPanelGetSettingsSelect:
 case kSGCPanelSetSettingsSelect:

 /* private component functions */
 case 0x0100:
 case 0x0101:
 return true;
 default:
 return false;
 }
}

pascal ComponentResult SGPictVersion (SGPictGlobals store)
{
 return 0x00020001;
}

pascal ComponentResult SGPictOpen (SGPictGlobals store,
 ComponentInstance self)
{
 OSErr err;
 GrafPtr savePort;

 /* allocate global variables */
 store =
 (SGPictGlobals)NewPtrClear(sizeof(SGPictGlobalsRecord));
 if (err = MemError()) goto bail;

 /* create a temporary port for drawing during the idle
 function */
 GetPort (&savePort);
 OpenCPort (&store->tempPort);
 SetPort ((GrafPtr)&store->tempPort);
 PortSize (4096, 4096);
 SetRectRgn (store->tempPort.visRgn, 0, 0, 4096, 4096);
 ClipRgn (store->tempPort.visRgn);
 SetPort (savePort);

 store->self = self;
 store->showTickCount = false;
 SetComponentInstanceStorage (self, (Handle)store);

bail:
 return err;

A Sample Sequence Grabber Channel Component 93
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

}

pascal ComponentResult SGPictClose (SGPictGlobals store,
 ComponentInstance self)
{
 /* disposal operations */
 if (store) {
 if (store->clip) DisposeRgn(store->clip);
 CloseCPort(&store->tempPort);
 DisposPtr((Ptr)store);
 }
 return noErr;
}

Initializing the Sequence Grabber Channel Component

To initialize the channel component, the sequence grabber component calls the SGInitChannel function.

The code in Listing 5-2 initializes channel variables. The grabber component calls the SGPictInitChannel
function to initialize a sequence grabber channel component. The SGPictInitChannel function calls
QuickDraw’s SetRect routine and QuickTime’s SetIdentityMatrix function to specify the size of the area
(around a mouse-down event) in which the sequence grabber component will capture PICT images.

Listing 5-2 Initializing the sequence grabber channel component

pascal ComponentResult SGPictInitChannel (SGPictGlobals store,
 SeqGrabComponent owner)
{
 /* initialize any variables here */
 SetRect(&store->srcRect, 0, 0, 160, 120);/* rectangle in which
 capture occurs */
 SetIdentityMatrix (&store->displayMatrix);

 store->grabber = owner;
 SGGetTimeBase (owner, &store->base);

 return noErr;
}

Setting and Retrieving the Channel State

Listing 5-3 supplies configuration functions that set the usage parameters and storage for the channel
component. (See the descriptions of the SGSetChannelUsage and SGGetChannelUsage functions for
details.)

The sample code illustrates how to retrieve usage information. In this case, you indicate that the sequence
grabber component has spatial boundaries by using the seqGrabHasBounds constant in the channelInfo
parameter.

Listing 5-3 Determining usage parameters and getting usage data

pascal ComponentResult SGPictSetChannelUsage(SGPictGlobals store, long usage)
{

94 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 /* remember usage */
 store->usage = usage;
 return noErr;
}

pascal ComponentResult SGPictGetChannelUsage(SGPictGlobals store, long *usage)
{
 /* return usage */
 *usage = store->usage;
 return noErr;
}

pascal ComponentResult SGPictGetChannelInfo (SGPictGlobals store,
 long *channelInfo)
{
 /* indicate that you have spatial boundaries */
 *channelInfo = seqGrabHasBounds;
 return noErr;
}

Managing Spatial Properties

To set up an area in which the channel component displays image data, the sequence grabber should perform
these tasks:

1. Assign the destination graphics world and graphics device for the display of the captured image with
the SGSetGWorld function.

2. Specify a display transformation matrix for a video channel using the SGSetChannelMatrix function.
Your function determines the matrix that is being set, validates it, and updates the matrix and destination
rectangle. Your channel uses this matrix to transform its video image into the destination window.

3. Obtain the channel’s display transformation matrix by calling the SGGetChannelMatrix function.

4. Specify the channel’s display boundary rectangle with the SGSetChannelBounds function. The display
boundary rectangle defines the destination for data from this channel and adjusts the channel matrix.

5. Determine the channel’s display boundary rectangle with the SGGetChannelBounds function.

6. Dispose of the old clipping region and apply a new clipping region to the channel’s display region using
the SGSetChannelClip function.

7. Retrieve the new clipping region by calling the SGGetChannelClip function.

The code in Listing 5-4 provides an example of how to manage the spatial characteristics of the area in which
the channel component displays PICT image data.

Listing 5-4 Managing spatial characteristics

pascal ComponentResult SGPictSetGWorld (SGPictGlobals store,
 CGrafPtr gp, GDHandle gd)
{
 /* remember the destination graphics world */
 store->destPort = gp;

A Sample Sequence Grabber Channel Component 95
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 store->destGD = gd;
 return noErr;
}

pascal ComponentResult SGPictSetChannelMatrix
 (SGPictGlobals store, const MatrixRecord *m)
{
 OSErr err = noErr;
 MatrixRecord mat;
 short matType;

 /* determine the matrix being set */
 if (m)
 mat = *m;
 else
 SetIdentityMatrix (&mat);

 /* validate it */
 matType = GetMatrixType (&mat);

 if ((mat.matrix[0][0] < 0) || (mat.matrix[1][1] < 0) ||
 (matType >= linearMatrixType))
 return paramErr;

 /* update the matrix and destination rectangle */
 store->displayMatrix = mat;
 store->destRect = store->srcRect;
 TransformRect (&mat, &store->destRect, nil);
 return err;
}

pascal ComponentResult SGPictGetChannelMatrix
 (SGPictGlobals store, MatrixRecord *m)
{
 /* return current matrix */
 *m = store->displayMatrix;
 return noErr;
}

pascal ComponentResult SGPictSetChannelBounds
 (SGPictGlobals store, const Rect *bounds)
{
 /* remember destination rect */
 store->destRect = *bounds;

 /* recalculate display matrix from it */
 RectMatrix (&store->displayMatrix, &store->srcRect,
 &store->destRect);
 return noErr;
}

pascal ComponentResult SGPictGetChannelBounds
 (SGPictGlobals store, Rect *bounds)
{
 /* return current boundaries */
 *bounds = store->destRect;
 return noErr;
}

96 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

pascal ComponentResult SGPictSetChannelClip (SGPictGlobals store,
 RgnHandle theClip)
{
 OSErr err = noErr;

 /* toss the old channel clipping */
 if (store->clip) {
 DisposeRgn (store->clip);
 store->clip = nil;
 }
 /* and remember the new one */
 if (theClip) {
 err = HandToHand ((Handle *)&theClip);
 store->clip = theClip;
 }
 return err;
}

pascal ComponentResult SGPictGetChannelClip
 (SGPictGlobals store, RgnHandle *theClip)
{
 OSErr err = noErr;

 /* return clip, if there is one */
 if (*theClip = store->clip)
 err = HandToHand ((Handle *)theClip);
 return err;
}

Controlling Previewing and Recording Operations

To preview and record image data in the channel component, the code in Listing 5-5 implements these tasks:

1. The SGStartPreview function instructs the channel to commence processing any source data. In
preview mode, the component does not save any of the data it gathers from its source. Your channel
component should immediately present the data to the user in the appropriate format for the channel’s
configuration and display video data in the destination display region.

2. The SGStartRecord function instructs the channel to begin recording data from its source. The sequence
grabber component stores the collected data. The channel component should immediately begin
recording data.

3. The SGIdle function allows the sequence grabber component to grant processing time to the channel
component. TheSGIdle function permits the processing time for the previewing and recording operations
to take place. In the example shown in Listing 5-5, the work for the channel consists of getting the current
time, adding data to the movie if recording, and showing the preview image if necessary.

4. The SGStop function stops the channel’s preview and recording operations.

5. The SGPause function suspends or restarts the channel’s preview and recording operations.

6. The SGPrepare function has the sequence grabber component prepare the channel for subsequent
preview or record operations.

A Sample Sequence Grabber Channel Component 97
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

7. The SGRelease function releases any system resources that were allocated during preview or recording
operations and that remain thereafter.

The code in Listing 5-5 illustrates a channel component’s control of the previewing and recording of a PICT
image.

Listing 5-5 Controlling previewing and recording operations

pascal ComponentResult SGPictStartPreview (SGPictGlobals store)
{
 /* into preview mode */
 store->inPreview = (store->usage & seqGrabPreview) != 0;
 return noErr;
}

pascal ComponentResult SGPictStartRecord (SGPictGlobals store)
{
 /* into record mode (also preview, if PlayDuringRecord) */
 store->inRecord = (store->usage & seqGrabRecord) != 0;
 store->inPreview = (store->usage & seqGrabPlayDuringRecord) !=
 0;
 return noErr;
}

pascal ComponentResult SGPictIdle (SGPictGlobals store)
{
 OSErr err = noErr;

 /* this is where the work for preview and record happens */
 if (!store->paused && (store->inRecord || store->inPreview)) {
 Point mouseLoc;
 Rect r;
 PicHandle tempPict = nil;
 TimeRecord tr;
 CGrafPtr savePort;
 GDHandle saveGD;
 Rect maxR;

 GetGWorld (&savePort, &saveGD);

 /* get the current time */
 GetTimeBaseTime (store->base, kMediaTimeScale, &tr);

 /* figure the current area around the mouse
 (only on main screen) */
 SetGWorld (&store->tempPort, GetMainDevice());
 GetMouse (&mouseLoc);
 LocalToGlobal (&mouseLoc);
 r.top = r.bottom = mouseLoc.v;
 r.left = r.right = mouseLoc.h;
 InsetRect(&r, -(store->srcRect.right >> 1),
 -(store->srcRect.bottom >> 1));
 maxR = (**GetMainDevice()).gdRect;
 if (r.left < maxR.left)
 OffsetRect (&r, -r.left + maxR.left, 0);
 if (r.top < maxR.top)
 OffsetRect (&r, 0, -r.top + maxR.top);

98 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 if (r.right > maxR.right)
 OffsetRect(&r, maxR.right - r.right, 0);
 if (r.bottom > maxR.bottom)
 OffsetRect (&r, 0, maxR.bottom - r.bottom);

 /* copy the screen into a picture */
 tempPict = OpenPicture(&r);
 CopyBits ((BitMap *)&store->tempPort.portPixMap,
 (BitMap *)&store->tempPort.portPixMap, &r, &r,
 srcCopy, nil);
 if (store->showTickCount) {
 /* if users want to see ticks, draw them */
 Str63 str;
 NumToString (TickCount(), str);
 /* do some magic positioning */
 r.right = r.left + StringWidth(str) + 4;
 r.bottom = r.top + 14;
 EraseRect (&r);
 MoveTo(r.left + 2, r.bottom - 3);
 TextSize (12);
 DrawString (str);
 }
 ClosePicture();

 /* if recording, add data to movie */
 if (store->inRecord) {
 long offset;
 long pictSize = GetHandleSize ((Handle)tempPict);

 HLock ((Handle)tempPict);
 err = SGAddMovieData (store->grabber, store->self,
 (Ptr)*tempPict, pictSize, &offset, 0,
 tr.value.lo, seqGrabWriteAppend);
 store->bytesWritten += pictSize;
 }

 /* if you need to show the preview image, do that */
 if (store->inPreview) {
 RgnHandle saveClip;
 SetGWorld (store->destPort, store->destGD);
 if (store->clip) {
 saveClip = NewRgn();
 GetClip (saveClip);
 SetClip (store->clip);
 }
 DrawPicture (tempPict, &store->destRect);
 if (store->clip) {
 SetClip (saveClip);
 DisposeRgn (saveClip);
 }
 }

 KillPicture (tempPict);

 SetGWorld (savePort, saveGD);
 }
 return err;
}

A Sample Sequence Grabber Channel Component 99
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

pascal ComponentResult SGPictStop (SGPictGlobals store)
{
 /* stop all previewing and recording */
 store->inRecord = store->inPreview = false;
 return noErr;
}

pascal ComponentResult SGPictPause (SGPictGlobals store,
 Byte pause)
{
 /* pause */
 store->paused = pause;
 return noErr;
}

pascal ComponentResult SGPictPrepare (SGPictGlobals store,
 Boolean prepareForPreview,
 Boolean prepareForRecord)
{
 /* prepare for previewing and recording operations --
 all you do here is initialize a variable */
 store->bytesWritten = 0;
 return noErr;
}

pascal ComponentResult SGPictRelease (SGPictGlobals store)
{
 /* no resources to release after previewing or recording */
 return noErr;
}

Managing Channel Devices

To manage channel devices such as video digitizers or sound input drivers, you should

1. Let the sequence grabber retrieve a list of devices that are valid for the channel, using the
SGGetChannelDeviceList function.

2. Assign an appropriate channel device with the SGSetChannelDevice function.

Listing 5-6 provides examples of these required functions for channel device management. The
SGPictGetChannelDeviceList function obtains a list of devices associated with the channel component.
The SGPictSetChannelDevice function allows the sequence grabber to specify a channel device. In this
code sample, there are no devices associated with the channel component.

Listing 5-6 Coordinating devices for the channel component

pascal ComponentResult SGPictGetChannelDeviceList
 (SGPictGlobals store,
 long selectionFlags,
 SGDeviceList *list)
{
 *list = (SGDeviceList) NewHandleClear
 (sizeof (SGDeviceListRecord)); /* no devices */

100 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 return MemError();
}

pascal ComponentResult SGPictSetChannelDevice
 (SGPictGlobals store, StringPtr name)
{
 /* you have no devices, so no problem */
 return noErr;
}

Utility Functions for Recording Image Data

To record image data, the channel component must allow the sequence grabber to do the following:

 ■ Obtain an appropriate time scale with the SGGetChannelTimeScale function.

 ■ Retrieve the sample description of the image that is to be recorded with the
SGGetChannelSampleDescription function.

 ■ Create a track and media in which to record the sample image by calling the SGWriteSamples function.
SGWriteSamples writes the captured data to a movie file after a record operation.

 ■ Obtain references from the sequence grabber and add them to the newly created media using the
SGGetNextFrameReference function so that the channel component can retrieve the sample references
it stored.

 ■ Determine how many bytes of captured data the channel is collecting each second using the
SGGetDataRate function.

The code in Listing 5-7 shows how the channel component uses these utility functions to record PICT image
data.

Listing 5-7 Recording image data

pascal ComponentResult SGPictGetChannelTimeScale
 (SGPictGlobals store, TimeScale *scale)
{
 scale = kMediaTimeScale; / a reasonable default time scale */
 return noErr;
}

pascal ComponentResult SGPictGetChannelSampleDescription
 (SGPictGlobals store, Handle sampleDesc)
{
 OSErr err;
 SampleDescriptionPtr sdp;

 SetHandleSize (sampleDesc, sizeof(SampleDescription));
 if (err = MemError()) goto bail;

 /* make up a minimal sample description */
 sdp = (SampleDescriptionPtr)*sampleDesc;
 sdp->descSize = sizeof(SampleDescription);
 sdp->dataFormat = 'PICT';
 sdp->resvd1 = 0;
 sdp->resvd2 = 0;

A Sample Sequence Grabber Channel Component 101
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 sdp->dataRefIndex = 0;

bail:
 return err;
}

pascal ComponentResult SGPictWriteSamples (SGPictGlobals store,
 Movie m, AliasHandle theFile)
{
 OSErr err = 0;
 Track pictT;
 Media pictM;
 long i;
 MatrixRecord aMatrix;
 Rect from, to;
 seqGrabFrameInfo fi;
 TimeRecord tr;
 TimeValue mediaDuration;
 SampleDescriptionHandle sampleDesc = 0;

 /* after SGStop, this function creates the track and media */
 if (!(store->usage & seqGrabRecord))
 return err;

 /* get the sample description */
 sampleDesc = (SampleDescriptionHandle)NewHandle(4);
 if (err = MemError()) goto bail;
 if (err = SGGetChannelSampleDescription (store->self,
 (Handle)sampleDesc)) goto bail;

 /* figure out the track matrix */
 SetRect (&from, 0, 0, store->srcRect.right,
 store->srcRect.bottom);
 to = from;

 TransformRect (&store->displayMatrix, &to, nil);

 /* create the track and media */
 pictT = NewMovieTrack (m, (long)from.right << 16,
 (long)from.bottom << 16, 0);
 pictM = NewTrackMedia (pictT, 'PICT', kMediaTimeScale,
 (Handle)theFile, rAliasType);

 /* spin in a loop getting sample references from the
 sequence grabber and adding them to the media */
 fi.frameChannel = store->self;
 i = -1;
 do {
 TimeValue frameDuration;

 err = SGGetNextFrameReference (store->grabber,
 &fi, &frameDuration, &i);
 if (err) {
 if (err == paramErr)
 err = 0;
 break;
 }

102 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 err = AddMediaSampleReference (pictM,
 fi.frameOffset, fi.frameSize,
 frameDuration,
 sampleDesc, 1,
 0, 0);

 if (err == invalidDuration) {
 err = noErr;
 break;
 }
 } while (!err);

done:
 if (err) goto bail;

 GetTimeBaseTime (store->base, 0, &tr);
 ConvertTimeScale (&tr, kMediaTimeScale);
 /* trim media inserted to not extend beyond end time */
 mediaDuration = GetMediaDuration(pictM);

 /* add media to track */
 err = InsertMediaIntoTrack (pictT, 0, 0, tr.value.lo, kFix1);

 /* set track matrix */
 RectMatrix (&aMatrix, &from, &to);
 SetTrackMatrix (pictT, &aMatrix);

 /* set track clipping region */
 SetTrackClipRgn (pictT, store->clip);

bail:
 if (sampleDesc) DisposHandle ((Handle)sampleDesc);
 return err;
}

pascal ComponentResult SGPictGetDataRate (SGPictGlobals store,
 long *bytesPerSecond)
{
 /* take a guess at the data rate */
 *bytesPerSecond = 24 * 1024;
 if (store->bytesWritten) {
 TimeValue timeNow = GetTimeBaseTime (store->base, 8, nil);
 /* one-eighth second resolution */

 if (!timeNow)
 return seqGrabInfoNotAvailable;

 *bytesPerSecond = (store->bytesWritten / timeNow) * 8;
 /* convert back to seconds */
 }
 return noErr;
}

A Sample Sequence Grabber Channel Component 103
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

Providing Media-Specific Functions

The channel can provide media-specific functions for a particular channel type. These functions are analogous
to the SGSetVideoCompressorType and SGGetVideoCompressorType functions. These functions allow
the sequence grabber to specify and determine the type of image compression the channel component is
to apply to the captured video images.

The code in Listing 5-8 provides two specialized channel component functions, SGPictSetShowTickCount
and SGPictGetShowTickCount, which set and retrieve the tick count, respectively. Note that both the
functions refer to the showTickCount field in the SGPictGlobals structure.

Listing 5-8 Showing the tick count

pascal ComponentResult SGPictSetShowTickCount
 (SGPictGlobals store, Boolean show)
{
 store->showTickCount = show;
 return noErr;
}

pascal ComponentResult SGPictGetShowTickCount
 (SGPictGlobals store, Boolean *show)
{
 *show = store->showTickCount;
 return noErr;
}

Managing the Settings Dialog Box

The channel allows the sequence grabber to manage the placement of your channel data in the sequence
grabber’s settings dialog box. This is how it works:

1. To prepare to add the channel component’s items to the settings dialog box, the sequence grabber
obtains your item list by calling the sequence grabber panel component’s SGPanelGetDITL function.
It retrieves and detaches the dialog box template from the sequence grabber panel component.

2. Once it has installed the items, the sequence grabber uses the SGPanelInstall function so initial
values can be set. This function resets the channel to use the dialog window and preview mode. It also
updates the boundaries to match the size of the user item list.

3. To provide idle time in which to draw the channel’s information in the settings dialog box, the sequence
grabber uses the SGPanelEvent function. It allows the sequence grabber component to receive and
process dialog events in a manner similar to a modal-dialog filter function. In this example, the information
is the tick count.

4. Prior to the removal of items from the settings dialog box, the sequence grabber component calls the
SGPanelRemove function. The sequence grabber supplies information that specifies the channel that
the panel is to configure, the dialog box, and the offset of the panel’s items into the dialog box.

The code in Listing 5-9 calls the sequence grabber panel component and indicates that the channel component
will display a tick count checkbox in the panel settings.

104 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

Listing 5-9 Including a tick count checkbox in a dialog box in the panel component

pascal ComponentResult SGPictPanelGetDitl (SGPictGlobals store,
 Handle *ditl)
{
 /* get and detach your dialog template */
 *ditl = GetResource('DITL', 7000);
 if (!*ditl) return resNotFound;
 DetachResource(*ditl);
 return noErr;
}

pascal ComponentResult SGPictPanelInstall (SGPictGlobals store,
 SGChannel c,
 DialogPtr d,
 short itemOffset)
{
 Rect newBounds;
 short kind;
 Handle h;

 /* reset this channel to use the dialog window and be in
 preview mode with no clip */
 SGSetGWorld (store->self, (CGrafPtr)d, GetMainDevice());
 SGGetChannelUsage (store->self, &store->saveUsage);
 SGSetChannelUsage (store->self, seqGrabPreview);
 SGSetChannelClip (c, nil);

 /* update boundaries to match size of user item */
 GetDItem (d, 1 + itemOffset, &kind, &h, &newBounds);
 SGSetChannelBounds (c, &newBounds);
 SGStartPreview (store->self);
 return noErr;
}

pascal ComponentResult SGPictPanelEvent (SGPictGlobals store,
 SGChannel c, DialogPtr d,
 short itemOffset,
 EventRecord *theEvent,
 short *itemHit,
 Boolean *handled)
{
 /* use idle time to draw */
 if (theEvent->what == nullEvent)
 return SGIdle (store->self);

 return noErr;
}

pascal ComponentResult SGPictPanelRemove (SGPictGlobals store,
 SGChannel c, DialogPtr d,
 short itemOffset)
{
 /* stop playing */
 SGStop (store->self);
 SGRelease (store->self);

 /* note that the clip and bounds are automatically restored

A Sample Sequence Grabber Channel Component 105
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 for you because you stored them using the SGGetSettings
 function */

 /* restore usage */
 SGSetChannelUsage(store->self, store->saveUsage);

 return noErr;
}

Displaying Channel Information in the Settings Dialog Box

The final step in the implementation of a sequence grabber channel component is the display of the channel
preview in the settings dialog box. Two sequence grabber functions, SGSettingsDialog and
SGGetSettingsDialog, facilitate this process.

1. The channel component instructs the sequence grabber to display its settings dialog box to the user by
calling the sequence grabber component’s SGSettingsDialog function. The user can specify the
configuration of a sequence grabber channel in this dialog box.

2. To retrieve the current settings of all channels used by the sequence grabber, call the SGGetSettings
function. The sequence grabber places all of this configuration information into a Movie Toolbox user
data list.

Listing 5-10 illustrates code that creates a user data list to contain the tick count information for the sequence
grabber’s settings dialog box, adds a matrix to the list, and stores clipping information (if any exists). The
sample code then restores the clipping and the matrix.

Listing 5-10 Displaying channel settings

pascal ComponentResult SGPictPanelGetSettings
 (SGPictGlobals store, SGChannel c,
 UserData *result, long flags)
{
 OSErr err = noErr;
 UserData ud = 0;
 MatrixRecord matrix;
 RgnHandle clip;

 /* create a user data list to hold your state */

 if (err = NewUserData (&ud)) goto bail;

 /* add matrix to user data */

 if (SGGetChannelMatrix (c, &matrix) == noErr) {
 if (err = SetUserDataItem (ud, &matrix, sizeof(matrix),
 sgMatrixType, 1))
 goto bail;
 }

 /* store clip, if there is one */
 if (SGGetChannelClip (c, &clip) == noErr) {
 if (clip)
 err = AddUserData (ud, (Handle)clip, sgClipType);

106 A Sample Sequence Grabber Channel Component
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 else
 err = SetUserDataItem (ud, nil, 0, sgClipType, 1);
 /* add a dummy to indicate none */
 DisposeRgn(clip);
 if (err) goto bail;
 }
bail:
 if (err) {
 DisposeUserData (ud);
 ud = 0;
 }
 *result = ud;
 return err;
}

pascal ComponentResult SGPictPanelSetSettings
 (SGPictGlobals store,
 SGChannel c, UserData ud, long flags)
{
 OSErr err;
 RgnHandle clip = NewRgn();
 MatrixRecord matrix;

 /* restore clip, if one was stored */
 if (GetUserData (ud, (Handle)clip, sgClipType, 1) == noErr) {
 if (err = SGSetChannelClip
 (c, GetHandleSize ((Handle)clip) ? clip : 0))
 goto bail;
 }

 /* restore matrix */
 if (err = GetUserDataItem (ud, &matrix, sizeof(matrix),
 sgMatrixType, 1)) goto bail;
 if (err = SGSetChannelMatrix (c, &matrix))
 goto bail;

bail:
 DisposeRgn (clip);
 return err;
}

Support for Sound Capture at Any Sample Rate

The sequence grabber sound channel allows sound to be captured at any sample rate. The sample rate is
specified by using SGSetSoundInputRate. If the requested rate is not one of the hardware rates, the sound
will be captured using the closest available hardware sample rate and will be rate-converted in software to
the requested rate.

In most cases, sound capture hardware does not run at the same clock rate as the motherboard crystal used
to generate time stamps. Sound capture hardware also rarely runs on the same clock as video capture
hardware. Over time, drift between these clocks can result in the loss of synchronization between sound and
video.

Support for Sound Capture at Any Sample Rate 107
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

QuickTime measures the drift over the duration of the capture and applies an adjustment to the sample rate
of the audio to keep things synchronized. In nearly all cases, this is the right thing to do. If your hardware
really knows that it always captures at the correct sample rate, it can tell QuickTime not to adjust the sample
rate.

To prohibit adjustment of the sample rate, implement the 'qtrt' resource in your sound input device’s
GetInfo routine. The argument passed is a pointer to a short. Set the short to true to indicate you don’t
want sample rate adjustment to be applied.

Channel Source Names

The sequence grabber supports two functions, SGChannelSetDataSourceName and
SGChannelGetDataSourceName, that allow you to specify the source identification information associated
with a sequence grabber channel.

Capturing to Multiple Files

In QuickTime, sequence grabber channel components can capture data into multiple files. Capturing to
multiple files can improve the performance and flexibility of captures and enable larger total captures.

Creating a Sequence Grabber Component that Captures Multiple
Files

You can create a sequence grabber component that can capture to multiple files by doing the following in
your sequence grabber component:

 ■ Use SGAddExtendedMovieData rather than SGAddMovieData to write data.

 ■ In the SGWriteSamples routine, instead of using SGGetNextFrameReference, use
SGGetNextExtendedFrameReference.

An example of how to do this is shown in Listing 5-11. This example also shows how to use the
SGAddOutputDataRefToMedia helper routine to easily manage the multiple files in which the captured
data is stored.

Listing 5-11 Channel capture and managing multiple output files

Track aTrack = NewMovieTrack(theMovie, width, height, 0);
Media aMedia = NewTrackMedia(aTrack, TextMediaType,
 kMediaTimeScale, nil, 0);
SeqGrabExtendedFrameInfo fi;
SGOutput lastOutput = nil;
long i;
OSErr err;
fi.frameChannel = store->self;
i = -1;
do {

108 Channel Source Names
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

 TimeValue frameDuration;
 err = SGGetNextExtendedFrameReference(store->grabber, &fi,
 &frameDuration, &i);
 if (err) {
 if (err == paramErr)
 err = noErr;
 break;
 }
 // switch to the next data reference
 if (lastOutput != fi.frameOutput) {
 err = SGAddOutputDataRefToMedia(store->grabber,
 fi.frameOutput, aMedia, sampleDescription);
 if (err) goto exit;
 lastOutput = fi.frameOutput;
 }
 //note that only the low 32 bits of the file offset are used here
 err = AddMediaSampleReference(aMedia,
 fi.frameOffset.lo, fi.frameSize,
 frameDuration,
 sampleDescription, 1,
 0, 0);
} while (err == noErr);
exit:
 if (alias) DisposeHandle((Handle)alias);
 return err;

In this example, the default data reference is not defined when NewTrackMedia is called. Instead, the default
data reference is defined by the first call to SGAddOutputDataRefToMedia. This approach provides added
flexibility by allowing movies to be captured to data handlers other than the standard file system data handler.

Capturing to Multiple Files 109
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

110 Capturing to Multiple Files
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Sequence Grabber Channel Components

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

This chapter gives an overview of the services your channel component needs to provide. Your component
will primarily be used to preview and record digital data. Your component must also make calls to
application-defined callback functions if so directed. Finally, your component must provide utility functions
that will perform default procedures for the application’s callback functions.

In response to application requests, sequence grabber components can use channel components in two
ways: to preview digitized data for the user or to record captured data in a QuickTime movie. Applications
can use previewing to allow the user to prepare to make a recording. Applications that use previewing can
move directly from the preview operation to a record operation, without stopping the process.

The next two sections provide an overview of preview and record operations. A third section discusses the
callback functions that are supported by some channel components.

Previewing

Previewing captured data involves playing that data for the user as it is digitized. For video data, this means
displaying the video images on the computer screen. For audio data, this means playing the sound through
the computer’s sound system. The following paragraphs outline the steps the sequence grabber component
follows to preview captured data.

1. First, the sequence grab ber component opens a connection to your channel component, using the
Component Manager’s OpenComponent function. The sequence grabber component then calls your
SGInitChannel function to initialize your component.

2. The sequence grabber component then configures your channel component for the preview operation.
The SGSetGWorld function sets the graphics world in which the preview is to be displayed. The
SGSetChannelUsage function specifies that your channel is to be used for previewing. The application
can then use the appropriate channel configuration functions to prepare your channel for the preview
operation. For video channels, it uses the functions discussed in Configuration Functions for Video
Channel Components (page 113). For sound channels, the sequence grabber uses the functions discussed
in Configuration Functions for Sound Channel Components (page 114).

3. The sequence grabber component starts the preview operation by calling your SGStartPreview
function. The sequence grabber component then begins collecting data from all of the channels
participating in the preview and plays that data appropriately. The sequence grabber component can
pause and restart the preview by calling the SGPause function. The sequence grabber component uses
the SGStop function to stop the preview. During the preview operation, the sequence grabber component
calls your SGIdle function frequently, so that your channel can perform its operation.

Previewing 111
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel
Components

4. When the application is done previewing, the sequence grabber component can start recording or close
its connection to your component.

The following functions allow sequence grabber components to control your channel component:

 ■ SGStartPreview

 ■ SGStartRecord

 ■ SGIdle

 ■ SGUpdate

 ■ SGStop

 ■ SGWriteSamples

 ■ SGPause

 ■ SGPrepare

 ■ SGRelease

Configuring Sequence Grabber Channel Components

This section discusses the functions that allow sequence grabber components to configure your channel
component.

Sequence grabber components use a number of functions to establish the environment for grabbing or
previewing digitized data. This section describes the channel component functions that allow the sequence
grabber component to establish the environment for recording or previewing captured data.

The sequence grabber component uses the SGInitChannel function to initialize your channel prior to a
record or preview operation.

The SGSetGWorld function allows the sequence grabber component to assign a graphics world to your
component.

Configuration Functions for All Channel Components

Your channel is assigned to a sequence grabber component when the application calls the sequence grabber
component’s SGNewChannel function, described in the chapter Sequence Grabber Component
Functions (page 49) in this document. The sequence grabber component must configure your channel
before a preview or record operation. Your channel component must provide a number of functions that
allow the sequence grabber to configure the characteristics of your channel. Several of these functions work
on any channel component. This section discusses these general channel configuration functions.

In addition, channel components provide functions that are specific to the channel type. The sequence
grabber component supplied by Apple uses two types of channel components: video channel components
and sound channel components. See Configuration Functions for Video Channel Components (page 113) for
information about the configuration functions that work only with video channels. See Configuration Functions
for Sound Channel Components (page 114) for information about the configuration functions that work only
with sound channels.

112 Configuring Sequence Grabber Channel Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

 ■ The SGSetChannelUsage function specifies how your channel is to be used. The sequence grabber
component can restrict a channel to use during record or preview operations. In addition, this function
allows the sequence grabber component to specify whether your channel plays during a record operation.
The SGGetChannelUsage function allows the sequence grabber component to determine a channel’s
usage.

 ■ The SGGetChannelInfo function allows the sequence grabber component to determine some of the
characteristics of your channel. For example, this function returns information indicating whether your
channel has a visual or an audio representation.

 ■ The SGSetChannelPlayFlags function lets the sequence grabber component influence the speed and
quality with which your channel plays captured data. The SGGetChannelPlayFlags function allows
the sequence grabber component to determine these flag settings.

 ■ The SGSetChannelMaxFrames function establishes a limit on the number of frames that your channel
component will capture from a channel.

 ■ The SGGetChannelMaxFrames function enables the sequence grabber component to determine that
limit.

 ■ The SGSetChannelRefCon function allows the sequence grabber component to set the value of a
reference constant that your component passes to its callback functions. See Using Callback Functions
for Video Channel Components (page 116) for information about the callback functions that are supported
by video channels.

 ■ The SGGetDataRate function allows the sequence grabber component to determine how many bytes
of captured data your channel is collecting each second.

 ■ TheSGGetChannelSampleDescription function allows the sequence grabber to retrieve your channel’s
sample description. The SGGetChannelTimeScale function allows it to obtain your channel’s time
scale.

 ■ The sequence grabber can modify or retrieve your channel’s clipping region by calling the
SGSetChannelClip or SGGetChannelClip function, respectively. The sequence grabber can work
with your channel’s transformation matrix by calling the SGSetChannelMatrix and
SGGetChannelMatrix functions.

Configuration Functions for Video Channel Components

Video channel components provide a number of functions that allow the sequence grabber to configure the
channel’s video characteristics. This section describes these video channel configuration functions, which
the sequence grabber component uses only with video channels:

 ■ The SGSetChannelBounds function allows the sequence grabber to set the display boundary rectangle
for a video channel. The SGGetChannelBounds function determines a channel’s boundary rectangle.

 ■ The sequence grabber component uses the SGGetSrcVideoBounds function to determine the
coordinates of the source video boundary rectangle. This rectangle defines the size of the source video
image being captured by a video channel. The SGSetVideoRect function specifies a part of the source
video boundary rectangle to be captured by the channel. The SGGetVideoRect function retrieves this
active source video rectangle.

 ■ Typically, video channel components use the Image Compression Manager to compress the video data
they capture. The sequence grabber component can control many aspects of this image-compression
process. The SGSetVideoCompressorType function specifies the type of image compressor to use.
The sequence grabber can determine the type of image compressor currently in use by calling the

Configuring Sequence Grabber Channel Components 113
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

SGGetVideoCompressorType function. The sequence grabber component can specify a particular
image compressor and set many image-compression parameters by calling the SGSetVideoCompressor
function. The sequence grabber component can determine which image compressor is being used and
its parameter settings by calling the SGGetVideoCompressor function.

 ■ Video channel components typically work with a video digitizer component (see About Video Digitizer
Components (page 125) for a discussion of video digitizer components). Sequence grabber components
provide functions that allow an application to work with a channel’s video digitizer component. Video
channel components, in turn, must provide support for these functions. The sequence grabber component
uses the SGGetVideoDigitizerComponent function to determine which video digitizer component
is supplying data to your video channel component. The sequence grabber component sets a channel’s
video digitizer component by calling the SGSetVideoDigitizerComponent function. If an application
changes any video digitizer settings by calling the video digitizer component directly, the sequence
grabber component informs your video channel component by calling the SGVideoDigitizerChanged
function.

 ■ Some video source data may contain unacceptable levels of visual noise or artifacts. One technique for
removing this noise is to capture the image and then reduce it in size. During the size reduction process,
the noise can be filtered out. Some video channel components may provide functions that allow the
sequence grabber component to filter the input video data. The SGSetCompressBuffer function sets
a filter buffer for a video channel. The SGGetCompressBuffer function returns information about your
filter buffer.

 ■ The sequence grabber can work with a video channel’s frame rate by calling the SGSetFrameRate and
SGGetFrameRate functions. The sequence grabber can control whether your channel uses an offscreen
buffer by calling your SGSetUseScreenBuffer and SGGetUseScreenBuffer functions.

 ■ Your SGAlignChannelRect function allows the sequence grabber to determine a channel’s optimum
screen position.

Configuration Functions for Sound Channel Components

Sound channel components provide a number of functions that allow sequence grabber components to
configure the component’s sound channel. This section describes these sound channel configuration functions.
The sequence grabber component uses these functions only with sound channels.

 ■ The SGSetChannelVolume function allows the sequence grabber component to control a channel’s
sound volume. The sequence grabber component uses the SGGetChannelVolume function to determine
a channel’s volume.

 ■ The SGSetSoundInputDriver specifies a channel’s sound input device. The sequence grabber
component can determine a channel’s sound input device by calling the SGGetSoundInputDriver
function. If an application changes any attributes of the sound input device, the sequence grabber
component notifies your sound component by calling the SGSoundInputDriverChanged function.

 ■ The sequence grabber component can control the amount of sound data your channel works with at
one time by calling the SGSetSoundRecordChunkSize function. The sequence grabber component
can determine this value by calling the SGGetSoundRecordChunkSize function.

 ■ The sequence grabber component controls the rate at which your sound channel samples the input
data by calling the SGSetSoundInputRate function. The sequence grabber component can determine
the sample rate by calling the SGGetSoundInputRate function.

 ■ The sequence grabber can control other sound input parameters by using your
SGSetSoundInputParameters and SGGetSoundInputParameters functions.

114 Configuring Sequence Grabber Channel Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

Controlling Sequence Grabber Channel Components

Sequence grabber channel components must provide a full set of functions that allow the sequence grabber
component to control the preview or record operation. The sequence grabber component can use these
functions to start and stop the operation, to pause data collection, and to write captured data to a movie.
This section describes these functions.

 ■ The sequence grabber component uses the SGStartPreview function to start a preview operation.
The SGStartRecord function starts a record operation. The SGStop function stops your channel
component after a preview or record operation.

 ■ The sequence grabber component grants processing time to your channel component by calling the
SGIdle function. The sequence grabber notifies you of update events by calling your SGUpdate function.

 ■ The sequence grabber pauses the current operation by calling the SGPause function.

 ■ The sequence grabber component calls your SGWriteSamples function to write captured data to a
movie file after a record operation.

 ■ The sequence grabber component prepares your channel component for an upcoming preview or record
operation by calling the SGPrepare function. This function also allows the sequence grabber component
to verify that your component can support the parameters an application has specified. The SGRelease
function releases system resources allocated during the SGPrepare function.

Recording

During a record operation, a sequence grabber component collects the data it captures and formats that
data into a QuickTime movie. During a record operation, the sequence grabber component can also play the
captured data for the user.

The following are the steps the sequence grabber component follows to record captured data.

1. As with a preview operation, the sequence grabber component establishes a connection to your channel
component by calling the Component Manager’s OpenComponent function. It then initializes your
component by calling your SGInitChannel function.

2. The sequence grabber component then configures your component for the record operation. The
SGSetGWorld function sets the graphics world in which the data is to be displayed. The
SGSetChannelUsage function specifies each channel that is to be used for recording. At this time, the
sequence grabber component can also specify whether your component is to play its data while recording.
The application can then use the appropriate channel configuration functions to prepare your channel
for the record operation. For video channels, it uses the functions discussed in Configuration Functions
for Video Channel Components (page 113). For sound channels, the sequence grabber uses the functions
discussed in Configuration Functions for Sound Channel Components (page 114).

3. The sequence grabber component starts the record operation by calling your SGStartRecord function.
The sequence grabber component then begins collecting data from the channels it has assigned, stores
the data in a QuickTime movie, and, optionally, plays that data appropriately. The sequence grabber can
pause and restart the record process by calling the SGPause function. During the record operation, the
sequence grabber component calls your SGIdle function frequently, so that your channel can perform

Controlling Sequence Grabber Channel Components 115
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

its operation. The sequence grabber component uses the SGStop function to stop the record operation.
At this time, your component saves the movie in the appropriate movie file if the sequence grabber
component instructs your component to do so by calling your SGWriteSamples function.

4. When the application is done recording, it either returns to previewing or closes its connection to your
component.

Working With Callback Functions

Sequence grabber components provide callback functions that allow application developers to customize
some aspects of capturing video data. It is your channel component’s responsibility to call these callback
functions at specified points in the data capture process. The application’s function can then perform any
special processing that is appropriate for the application. For example, an application can overlay text, such
as a frame number, on each frame of video data as it is captured.

Note: Sound channel components do not support any callback functions.

Using Callback Functions for Video Channel Components

Sequence grabber components allow application developers to define a number of callback functions in
their applications. Your channel component calls these functions at specific points in the process of collecting,
compressing, and displaying the source visual data. By defining callback functions, a developer can control
the process more precisely or customize the operation of the sequence grabber component and its channel
components.

For example, you could use a callback function to draw a frame number on each video frame as it is collected.
In this case, you could use either a compress callback function or a grab-complete callback function. You call
the compress function after each frame is collected, in order to compress the frame. You call the grab-complete
function just before the compress function or as soon as the frame has been captured.

Note that your channel component need not call each and every callback function. If some functions are
inappropriate to the operation of your channel, do not call them. However, if your component calls one
function of a pair, be sure to call the other. For example, if your component calls an application’s grab function,
you must also call its grab-complete function.

The sequence grabber component uses the SGSetVideoBottlenecks function to assign callback functions
to your video channel. The SGGetVideoBottlenecks function allows the sequence grabber to determine
the callback functions that have been assigned to your video channel. See the chapter Sequence Grabber
Component Functions (page 49) in this document for details on SGSetVideoBottlenecks and
SGGetVideoBottlenecks.

The following application-defined functions are supported by video channels and are described in
Application-Defined Functions (page 65).

 ■ MyAddFrameFunction

 ■ MyGrabCompressCompleteFunction

 ■ MyCompressCompleteFunction

116 Working With Callback Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

 ■ MyGrabFunction

 ■ MyCompressFunction

 ■ MyTransferFrameFunction

 ■ MyDisplayFunction

 ■ MyGrabCompleteFunction

Using Utility Functions for Video Channel Component Callback
Functions

Sequence grabber components provide a number of functions that application-defined functions can use.
Several channel functions support those sequence grabber component functions.

The sequence grabber component uses the SGGetBufferInfo function to obtain information about a buffer
that contains data to be manipulated by a callback function. Application callback functions can use the
SGGetBufferInfo function to obtain information about a buffer that you have passed. This information is
valid only during record operations, or after your channel has been prepared to record. The SGGetBufferInfo
function is described in the chapter Sequence Grabber Component Functions (page 49).

The following functions provide default behavior for application-defined grab, grab-complete, display,
compress, compress-complete, add-frame, transfer-frame, display-compress, and grab-compress-complete
functions:

 ■ Your video channel component’s SGGrabFrame function provides the default behavior for an application’s
grab function. Applications should call this function only from their grab function.

 ■ Your channel component’s SGGrabFrameComplete function provides the default behavior for an
application’s grab-complete function. Applications should call this function only from their grab-complete
functions.

 ■ Your channel component’s SGDisplayFrame function provides the default behavior for an application’s
display function. Applications should call this function only from their display functions.

 ■ Your video channel component’s SGCompressFrame function provides the default behavior for an
application’s compress function. Applications should call this function only from their compress functions.

 ■ Your channel component’s SGCompressFrameComplete function provides the default behavior for an
application’s compress-complete function. Applications should call this function only from their
compress-complete functions.

 ■ Your component’s SGAddFrame function provides the default behavior for an application’s add-frame
function. Applications should call this function only from their add-frame functions.

 ■ Your component’s SGTransferFrameForCompress function provides the default behavior for an
application’s transfer-frame function. Applications should call this function only from their transfer-frame
functions.

 ■ Your component’s SGGrabCompressComplete function provides the default behavior for an application’s
grab-compress-complete function. Applications should call this function only from their
grab-compress-complete function.

 ■ Your component’s SGDisplayCompress function provides the default behavior for an application’s
display-compress function. Applications should call this function only from their display-compress
function.

Working With Callback Functions 117
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

Working With Channel Devices

Sequence grabbers provide a number of functions that allow applications to determine the devices that can
be, or the device that is, attached to a given sequence grabber channel. These devices, in turn, allow the
channel component to control the digitizing equipment. For example, video channels use video digitizer
components, and sound channels use sound input drivers. Applications can use these functions to present
a list of available devices to the user, allowing the user to select a specific device for each channel. The
sequence grabber passes these functions on to your channel component.

The sequence grabber may use the SGGetChannelDeviceList function to retrieve a list of devices that
may be used by your channel.

The sequence grabber can use the SGSetChannelDevice function to assign a device to your channel.

The SGGetChannelDeviceList function uses a device list structure to pass information about one or more
channel devices. The SGDeviceListRecord data type defines the format of the device list structure.

typedef struct SGDeviceListRecord {
 short count; /* count of devices */
 short selectedIndex; /* current device */
 long reserved; /* set to 0 */
 SGDeviceName entry[1]; /* device names */
} SGDeviceListRecord, *SGDeviceListPtr, **SGDeviceList;

DescriptionField

Indicates the number of devices described by this structure. The value of this field
corresponds to the number of entries in the device name array defined by the entry
field.

count

Identifies the currently active device. The value of this field corresponds to the
appropriate entry in the device name array defined by the entry field. Note that this
value is 0-relative; that is, the first entry has an index number of 0, the second's value
is 1, and so on.

selectedIndex

Reserved for Apple. Always set to 0.reserved

Contains an array of device name structures. Each structure corresponds to one valid
device. The count field indicates the number of entries in this array. The SGDeviceName
data type defines the format of a device name structure; this data type is discussed
next.

entry

Device list structures contain an array of device name structures. Each device name structure identifies a
single device that may be used by the channel. The SGDeviceName data type defines the format of a device
name structure.

typedef struct SGDeviceName {
 Str63 name; /* device name */
 Handle icon; /* device icon */
 long flags; /* flags */
 long refCon; /* set to 0 */
 long reserved; /* set to 0 */
} SGDeviceName;

118 Working With Channel Devices
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

DescriptionParameter

Contains the name of the device. For video digitizer components, this field contains the
component's name as specified in the component resource. For sound input drivers, this field
contains the driver name.

name

Contains a handle to the device's icon. Some devices may support an icon, which applications
may choose to present to the user. If the device does not support an icon, or if the sequence
grabber chooses not to retrieve this information (by setting the sgDeviceListWithIcons
flag to 0 when it calls the SGGetChannelDeviceList function), set this field to nil.

icon

Reflects the current status of the device. The sgDeviceNameFlagDeviceUnavailable flag
is defined. When set to 1, this flag indicates that this device is not currently available.

flags

Reserved for Apple. Always set to 0.refCon

Reserved for Apple. Always set to 0.reserved

Utility Functions for Sequence Grabber Channel Components

This section describes several utility functions that sequence grabber components provide to sequence
grabber channel components.

 ■ The SGAddMovieData function lets you add data and sample references to a movie.

 ■ Alternatively, you can use the SGWriteMovieData function to add data to a movie, and the
SGAddFrameReference and SGGetNextFrameReference functions to keep track of sample references
prior to creating a QuickTime movie from recorded data.

 ■ The SGSortDeviceList function allows you to sort the entries in the device list that you create for the
sequence grabber when it calls your SGGetChannelDeviceList function.

 ■ The SGChangedSource function allows you to tell the sequence grabber that you have changed your
source device.

 ■ The SGAddFrameReference and SGGetNextFrameReference functions take a pointer to a frame
information structure as a parameter. The SeqGrabFrameInfo data type defines the format of a frame
information structure.

struct SeqGrabFrameInfo {
 long frameOffset; /* offset to the sample */
 long frameTime; /* time that frame was captured */
 long frameSize; /* number of bytes in sample */
 SGChannel frameChannel; /* current connection to channel */
 long frameRefCon; /* reference constant for channel */
};

DescriptionField

Specifies the offset to the sample. Your channel component obtains this value from the
SGWriteMovieData function.

frameOffset

Utility Functions for Sequence Grabber Channel Components 119
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

DescriptionField

Specifies the time at which your channel component captured the frame. This time value
is relative to the data sequence. That is, this time is not represented in the context of any
fixed time scale. Rather, your channel component must choose and use a time scale
consistently for all sample references.

frameTime

Specifies the number of bytes in the sample described by the sample reference.frameSize

Identifies the current connection to your channel.frameChannel

Contains a reference constant for use by your channel component. You can use this value
in any way that is appropriate for your channel component. For example, video channel
components may use this value to store a reference to frame differencing information
for a temporally compressed image sequence.

frameRefCon

120 Utility Functions for Sequence Grabber Channel Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Sequence Grabber Channel Components

Important: This chapter contains legacy content. Apple recommends that developers explore QTKit and
Core Video for new development in this technology area. See QTKit Framework Reference and Core Video
Programming Guide for more information.

Text channel components are a type of sequence grabber channel component. A text channel component
captures text for use in QuickTime movies. It is controlled by a sequence grabber component. Applications
programmers will normally interact with the higher-level sequence grabber component, and do not need
to read this chapter.

Text channel components make use of text digitizer components, which digitze text from particular sources,
such as the closed-caption text from a video input. Text channel components abstract this level of detail,
allowing the sequence grabber component to work with a stream of text without regard to its source.

You should read this chapter if you are developing a text channel component, a text digitizer, or a sequence
grabber component.

About the QuickTime Text Channel Component

The QuickTime text channel component allows an application to obtain text from an external source. Once
obtained, this text can be previewed or recorded into a QuickTime movie. The source of the text is unknown
to the text channel component; a text digitizer component ('tdig') is responsible for acquiring the text
from the external source. The text channel component is provided by QuickTime.

Text digitizers are separate components; they are the mechanism for presenting new sources of text data to
QuickTime. Several text digitizer components are available, including one that captures closed-captioned
data using an Apple TV Tuner card.

To retrieve text for previewing or for recording in a QuickTime movie, the application uses the text channel
the same way in which it would use a video channel. The application calls a sequence grabber component,
which, in turn, calls the text channel component. The text channel component calls the appropriate text
digitizer component to retrieve the text.

Once text has been retrieved, the application can request that the sequence grabber component store the
text in a text track of a QuickTime movie.

Text Channel Component Functions

The following channel component functions are unique to text channel components. These functions allow
captured text to be formatted prior to being previewed or added to a movie.

About the QuickTime Text Channel Component 121
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Text Channel Components

 ■ SGSetFontName

 ■ SGSetFontSize

 ■ SGSetTextForeColor

 ■ SGSetTextBackColor

 ■ SGSetJustification

 ■ SGGetTextReturnToSpaceValue

 ■ SGSetTextReturnToSpaceValue

The QuickTime text channel component also supports some, but not all, functions defined for sequence
grabber channel components and sequence grabber panel components. The supported functions are the
following:

 ■ General sequence grabber component functions:

 ❏ SGSetGWorld

 ❏ SGNewChannel

 ❏ SGStartPreview

 ❏ SGStartRecord

 ❏ SGIdle

 ❏ SGStop

 ❏ SGPause

 ❏ SGPrepare

 ❏ SGRelease

 ❏ SGGetChannelDeviceList

 ❏ SGUpdate

 ■ Functions for getting and setting channel characteristics:

 ❏ SGSetChannelUsage

 ❏ SGGetChannelUsage

 ❏ SGSetChannelBounds

 ❏ SGGetChannelBounds

 ❏ SGGetChannelInfo

 ❏ SGSetChannelClip

 ❏ SGGetChannelClip

 ❏ SGGetChannelSampleDescription

 ❏ SGSetChannelDevice

 ❏ SGSetChannelMatrix

 ❏ SGGetChannelMatrix

 ❏ SGGetChannelTimeScale

122 Text Channel Component Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Text Channel Components

 ■ Text channel component functions called by sequence grabber components:

 ❏ SGInitChannel

 ❏ SGWriteSamples

 ❏ SGGetDataRate

 ■ Sequence grabber panel component functions:

 ❏ SGPanelGetDitl

 ❏ SGPanelInstall

 ❏ SGPanelEvent

 ❏ SGPanelRemove

 ❏ SGPanelGetSettings

 ❏ SGPanelSetSettings

 ❏ SGPanelItem

For further information about these functions, see Sequence Grabber Component Functions (page 49).

Text Channel Component Functions 123
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Text Channel Components

124 Text Channel Component Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Text Channel Components

Video digitizer components convert video input into a digitized color image that is compatible with the
graphics system of a computer. For example, a video digitizer may convert input analog video into a specified
digital format. The input may be any video format and type, whereas the output must be intelligible to the
computer’s display system. Once the digitizer has converted the input signal to an appropriate digital format,
it then prepares the image for display by resizing the image, performing necessary color conversions, and
clipping to the output window. At the end of this process, the digitizer component places the converted
image into a buffer you specify. If that buffer is the current frame buffer, the image appears on the user’s
computer screen.

Analog-to-Digital Conversion

Figure 8-1 shows the steps involved in converting the analog video signal to digital format and preparing
the digital data for display. Some video digitizer components perform all these steps in hardware. Others
perform some or all of these steps in software. Others may perform only a few of these steps, in which case
it is up to the program that is using the video digitizer to perform the remaining tasks.

Resize

Convert depth
and dither

Clip

Analog in Digitize incoming
signal

Video digitizer components resize the image by applying a transformation matrix to the digitized image.
Your application specifies the matrix that is applied to the image. Matrix operations can enlarge or shrink an
image, distort the image, or move the location of an image. The Movie Toolbox provides a set of functions
that make it easy for you to work with transformation matrices.

Before the digitized image can be displayed on your computer, the video digitizer component must convert
the image into an appropriate color representation. This conversion may involve dithering or pixel depth
conversion. The digitizer component handles this conversion based on the destination characteristics you
specify.

Video digitizer components may support clipping. Digitizers that do support clipping can display the resulting
image in regions of arbitrary shapes. See Clipping (page 140) for a discussion of the techniques that digitizer
components can use to perform clipping.

Analog-to-Digital Conversion 125
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

Types of Video Digitizer Components

Video digitizer components fall into four categories, distinguished by their support for clipping a digitized
video image:

 ■ basic digitizers, which do not support clipping

 ■ alpha channel digitizers, which clip by means of an alpha channel

 ■ mask plane digitizers, which clip by means of a mask plane

 ■ key color digitizers, which clip by means of key colors

Basic video digitizer components are capable of placing the digitized video into memory, but they do not
support any graphics overlay or video blending. If you want to perform these operations, you must do so in
your application. For example, you can stop the digitizer after each frame and do the work necessary to blend
the digitized video with a graphics image that is already being displayed. Unfortunately, this may cause
jerkiness or discontinuity in the video stream. Other types of digitizers that support clipping make this
operation much easier for your application.

Alpha channel digitizer components use a portion of each display pixel to represent the blending of video
and graphical image data. This part of each pixel is referred to as an alpha channel. The size of the alpha
channel differs depending upon the number of bits used to represent each pixel. For 32 bits per pixel modes,
the alpha channel is represented in the 8 high-order bits of each 32-bit pixel. These 8 bits can define up to
256 levels of blend. For 16 bits per pixel modes, the alpha channel is represented in the high-order bit of the
pixel and defines one level of blend (on or off).

Mask plane digitizer components use a pixel map to define blending. Values in this mask correspond to
pixels on the screen, and they define the level of blend between video and graphical image data.

Key color digitizer components determine where to display video data based upon the color currently being
displayed on the output device. These digitizers reserve one or more colors in the color table; these colors
define where to display video. For example, if blue is reserved as the key color, the digitizer replaces all blue
pixels in the display rectangle with the corresponding pixels of video from the input video source.

Source Coordinate Systems

Your application can control what part of the source video image is extracted. The digitizer then converts
the specified portion of the source video signal into a digital format for your use. Video digitizer components
define four areas you may need to manipulate when you define the source image for a given operation.
These areas are

 ■ the maximum source rectangle

 ■ the active source rectangle

 ■ the vertical blanking rectangle

 ■ the digitizer rectangle

Figure 8-2 shows the relationships between these rectangles.

126 Types of Video Digitizer Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

(20,650)

Digitizer
rectangle

Active source rectangle
(500,650)
(500,652)

(0,0)
(10,10)

(20,10)

Maximum source rectangle

Vertical blanking rectangle

The maximum source rectangle defines the maximum source area that the digitizer component can grab.
This rectangle usually encompasses both the vertical and horizontal blanking areas. The active source
rectangle defines that portion of the maximum source rectangle that contains active video. The vertical
blanking rectangle defines that portion of the input video signal that is devoted to vertical blanking. This
rectangle occupies lines 10 through 19 of the input signal. Broadcast video sources may use this portion of
the input signal for closed captioning, teletext, and other nonvideo information. Note that the blanking
rectangle might not be contained in the maximum source rectangle.

You specify the digitizer rectangle, which defines that portion of the active source rectangle that you want
to capture and convert.

Using Video Digitizer Components

This section describes how you can control a video digitizer component. It is divided into the following topics:

 ■ Specifying Destinations (page 127) discusses how you tell the digitizer where to put the converted video
data.

 ■ Starting and Stopping the Digitizer (page 128) discusses how you control digitization.

 ■ Multiple Buffering (page 129) describes a technique for improving performance.

 ■ Obtaining an Accurate Time of Frame Capture (page 129) tells how the sequence grabber usually supplies
video digitizers with a time base. This time base lets your application get an accurate time for the capture
of any specified frame.

Specifying Destinations

Video digitizer components provide several functions that allow applications to specify the destination for
the digitized video stream produced by the digitizer component. You have two options for specifying the
destination for the video data stream in your application.

 ■ The first option requires that the video be digitized as RGB pixels and placed into a destination pixel
map. This option allows the video to be placed either onscreen or offscreen, depending upon the
placement of the pixel map. Your application can use the VDSetPlayThruDestination function to
set the characteristics for this option. Your application can use the VDPreflightDestination function
to determine the capabilities of the digitizer. All video digitizer components must support this option.

Using Video Digitizer Components 127
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

 ■ The second option uses a global boundary rectangle to define the destination for the video. This option
always results in onscreen images and is useful with digitizers that support hardware direct memory
access (DMA) across multiple screens. The digitizer component is responsible for any required color
depth conversions, image clipping and resizing, and so on. Your application can use the
VDSetPlayThruGlobalRect function to set the characteristics for this option. Your application can
use the VDPreflightGlobalRect function to determine the capabilities of the digitizer. Not all video
digitizer components support this option.

Setting Video Destinations

Video digitizer components provide several functions that allow applications to specify the destination for
the digitized video stream produced by the digitizer component. Applications have two options for specifying
the destination for the video data stream:

 ■ The first option requires that the video be digitized as RGB pixels and placed into a destination pixel
map. This option allows the video to be placed either onscreen or offscreen, depending upon the
placement of the pixel map. You can use the VDSetPlayThruDestination function in your application
to set the characteristics for this option. The VDPreflightDestination function lets you determine
the capabilities of the digitizer in your application. All video digitizer components must support this
option. The VDGetPlayThruDestination function lets you get data about the current video destination.

 ■ The second option uses a global boundary rectangle to define the destination for the video. This option
is useful only with digitizers that support hardware DMA. You can use the VDSetPlayThruGlobalRect
function in your application to set the characteristics for this option. You can use the
VDPreflightGlobalRect function in your application to determine the capabilities of the digitizer.
Not all video digitizer components support this option.

The VDGetMaxAuxBuffer function returns information about a buffer that may be located on some special
hardware.

Starting and Stopping the Digitizer

You can control digitization on a frame-by-frame basis in your application. The VDGrabOneFrame function
digitizes a single video frame. All video digitizer components support this function.

Alternatively, you can use the VDSetPlayThruOnOff function to enable or disable digitization. When
digitization is enabled, the video digitizer component places video into the specified destination continuously.
The application stops the digitizer by disabling digitization. This function can be used with both destination
options. However, not all video digitizer components support this function.

Controlling Digitization

This section describes the video digitizer component functions that allow applications to control video
digitization.

128 Using Video Digitizer Components
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

Video digitizer components allow applications to start and stop the digitizing process. Your application can
request continuous digitization or single-frame digitization. When a digitizer component is operating
continuously, it automatically places successive frames of digitized video into the specified destination. When
a digitizer component works with a single frame at a time, the application and other software, such as an
image compressor component, control the speed at which the digitized video is processed.

You can use the VDSetPlayThruOnOff function in your application to enable or disable digitization. When
digitization is enabled, the video digitizer component places digitized video frame into the specified destination
continuously. The application stops the digitizer by disabling digitization. This function can be used with
both destination options.

Alternatively, your application can control digitization on a frame-by-frame basis. The VDGrabOneFrame and
VDGrabOneFrameAsync functions digitize a single video frame; VDGrabOneFrame works synchronously,
returning control to your application when it has obtained a complete frame, while VDGrabOneFrameAsync
works asynchronously. The VDDone function helps you to determine when the VDGrabOneFrameAsync
function is finished with a video frame. Your application can define the buffers for use with asynchronous
digitization by calling the VDSetupBuffers function. Free the buffers by calling the
VDReleaseAsyncBuffers function.

The VDSetFrameRate function allows applications to control the digitizer’s frame rate. The VDGetDataRate
function returns the digitizer’s current data rate.

Multiple Buffering

You can improve the performance of frame-by-frame digitization by using multiple destination buffers for
the digitized video. Your application defines a number of destination buffers to the video digitizer component
and specifies the order in which those buffers are to be used. The digitizer component then fills the buffers,
allowing you to switch between the buffers more quickly than your application otherwise could. In this
manner, you can grab a video sequence at a higher rate with less chance of data loss. This technique can be
used with both destination options.

You define the buffers to the digitizer by calling the VDSetupBuffers function. The VDGrabOneFrameAsync
function starts the process of grabbing a single video frame. The VDDone function allows you to determine
when the digitizer component has finished a given frame.

Obtaining an Accurate Time of Frame Capture

The sequence grabber typically gives video digitizers a time base so your application can obtain an accurate
time for the capture of any given frame. Applications can set the digitizer’s time base by calling the
VDSetTimeBase function.

Controlling Compressed Source Devices

Some video digitizer components may provide functions that allow applications to work with digitizing
devices that can provide compressed image data directly. Such devices allow applications to retrieve
compressed image data without using the Image Compression Manager. However, in order to display images
from the compressed data stream, there must be an appropriate decompressor component available to
decompress the image data.

Controlling Compressed Source Devices 129
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

Video digitizers that can support compressed source devices set the digiOutDoesCompress flag to 1 in
their capability flags. See Capability Flags (page 141) for more information about these flags.

Applications can use theVDGetCompressionTypes function to determine the image-compression capabilities
of a video digitizer. The VDSetCompression function allows applications to set some parameters that govern
image compression.

Applications control digitization by calling the VDCompressOneFrameAsync function, which instructs the
video digitizer to create one frame of compressed image data. The VDCompressDone function returns that
frame. When an application is done with a frame, it calls the VDReleaseCompressBuffer function to free
the buffer. An application can force the digitizer to place a key frame into the sequence by calling the
VDResetCompressSequence function. Applications can turn compression on and off by calling
VDSetCompressionOnOff.

Applications can obtain the digitizer’s image description structure by calling the VDGetImageDescription
function. Applications can set the digitizer’s time base by calling the VDSetTimeBase function.

All of the digitizing functions described in this section support only asynchronous digitization. That is, the
video digitizer works independently to digitize each frame. Applications are free to perform other work while
the digitizer works on each frame.

The video digitizer component manages its own buffer pool for use with these functions. In this respect,
these functions differ from the other video digitizer functions that support asynchronous digitization. See
Controlling Digitization (page 128) for more information about these functions.

130 Controlling Compressed Source Devices
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

About Video Digitizer Components

Video digitizer components are the most convenient mechanism for presenting new sources of video data
to QuickTime. For example, if you are developing special-purpose video hardware that digitizes video images
from a previously unsupported source device, you should create a video digitizer component so that
applications or sequence grabber components can obtain data from your device.

Video digitizer components support a rich functional interface that can accommodate devices with quite
varied capabilities. To relieve you from having to support irrelevant functions, Apple has made several video
digitizer functions optional. For information about the functions your digitizer component must support, see
Required Functions (page 131). For information about other functions, see Optional Functions (page 132).

Required Functions

At a minimum, your video digitizer component must support the following functions:

 ■ VDGetActiveSrcRect

 ■ VDGetCurrentFlags

 ■ VDGetDigitizerInfo

 ■ VDGetDigitizerRect

 ■ VDGetFieldPreference

 ■ VDGetInput

 ■ VDGetInputFormat

 ■ VDGetMaxSrcRect

 ■ VDGetNumberOfInputs

 ■ VDGetPlayThruDestination

 ■ VDGetVBlankRect

 ■ VDGetVideoDefaults

 ■ VDGrabOneFrame

 ■ VDPreflightDestination

 ■ VDSetDigitizerRect

 ■ VDSetFieldPreference

 ■ VDSetInput

 ■ VDSetInputStandard

 ■ VDSetPlayThruDestination

Required Functions 131
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

 ■ VDGetCompressionTime

 ■ VDSetDataRate

All of these functions are required for all video digitizer components.

Optional Functions

Based on the type of device your component supports, you may have to implement functions other than
those listed in Required Functions (page 131) and you may have to set some of your component’s capability
flags. Read this section to learn which additional functions your component needs to support and how to
set your capability flags properly.

If your component does not support a particular function, be sure to return a result code value of
digiUnimpErr.

Note: Hardware support for the simultaneous capture and display of frames on the screen is called
playthrough in these sections.

Frame Grabbers Without Playthrough

Suppose your video digitization hardware grabs frames but cannot simultaneously display the frames on
the screen. Suppose also that your hardware supplies the grabbed frames in QuickDraw pixel maps at specific
pixel depths (say, 16 and 32 bits per pixel).

In this case, you should set the following component capability flags:

SettingFlag

Set this flag to 1.digiOutDoes16

Set this flag to 1. Set other depth flags to 0.digiOutDoes32

Set this flag to 0.digiOutDoesHWPlayThru

Set this flag to 0.digiOutDoesDMA

If your component can operate asynchronously, you should also set the following flag:

SettingFlag

Set this flag to 1 if your component can operate asynchronously.digiOutDoesAsyncGrabs

Frame grabbers that support asynchronous operation must support the following optional functions:

 ■ VDDone

 ■ VDGrabOneFrameAsync

132 Optional Functions
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

 ■ VDReleaseAsyncBuffers

 ■ VDSetupBuffers

Frame Grabbers With Hardware Playthrough

If your frame grabber hardware provides support for playing the captured images directly, you need to
support one additional function beyond those discussed in Frame Grabbers Without Playthrough (page 132).
The VDSetPlayThruOnOff function allows the application to turn playthrough on and off.

You should also set the digiOutDoesHWPlayThru capability flag to 1. In addition, be sure to use the gdh
field in the digitizer information structure to identify your component’s display device. For details on the
video digitizer information structure, see The Digitizer Information Structure (page 146) .

Key Color and Alpha Channel Devices

As a further elaboration on a basic frame grabber, your device could support the display or mixing of output
data via an alpha channel or through the use of key colors (see Types of Video Digitizer Components (page
126) for more information about alpha channels and key colors). In either case, image data cannot be read
directly from the screen. Therefore, you must set the digiOutDoesUnreadableScreenBits capability flag
to 1. For more on the video digitizer capability flags, see Capability Flags (page 141) .

Your component must load its alpha channel or fill in the key color whenever playthrough is enabled or
when the destination changes.

Compressed Source Devices

You may create a video digitizer component that supports a device that delivers compressed image data. In
this case, your component is not capable of displaying the data directly.

Your component should set the following capability flags:

SettingFlag

Set this flag to 1.digiOutDoesCompress

Set this flag to 1 if your component cannot display the images
directly.

digiOutDoesCompressOnly

Set this flag to 1 if your component cannot display the images
directly.

digiOutDoesPlayThruDuringCompress

In addition, frame grabbers that support compressed source devices must support the following optional
functions:

 ■ VDCompressDone

 ■ VDCompressOneFrameAsync

 ■ VDGetCompressionTypes

Optional Functions 133
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

 ■ VDGetDataRate

 ■ VDGetImageDescription

 ■ VDResetCompressSequence

 ■ VDSetCompression

 ■ VDSetCompressionOnOff

 ■ VDSetFrameRate

 ■ VDSetTimeBase

If your hardware generates compressed data that cannot be decompressed by any standard QuickTime image
decompressor components, be sure to provide an appropriate decompressor component so that the data
you provide can be displayed.

Function Request Codes

You can use the following enumerators to refer to the request codes for each of the functions that your
component must support.

enum {
 kSelectVDGetMaxSrcRect = 0x1, /* VDGetMaxSrcRect (required) */
 kSelectVDGetActiveSrcRect = 0x2, /* VDGetActiveSrcRect
 (required) */
 kSelectVDSetDigitizerRect = 0x3, /* VDSetDigitizerRect
 (required) */
 kSelectVDGetDigitizerRect = 0x4, /* VDGetDigitizerRect
 (required) */
 kSelectVDGetVBlankRect = 0x5, /* VDGetVBlankRect (required) */
 kSelectVDGetMaskPixMap = 0x6, /* VDGetMaskPixMap */
 kSelectVDGetPlayThruDestination = 0x8, /* VDGetPlayThruDestination
 (required) */
 kSelectVDUseThisCLUT = 0x9, /* VDUseThisCLUT */
 kSelectVDSetInputGammaValue = 0xA, /* VDSetInputGammaValue */
 kSelectVDGetInputGammaValue = 0xB, /* VDGetInputGammaValue */
 kSelectVDSetBrightness = 0xC, /* VDSetBrightness */
 kSelectVDGetBrightness = 0xD, /* VDGetBrightness */
 kSelectVDSetContrast = 0xE, /* VDSetContrast */
 kSelectVDSetHue = 0xF, /* VDSetHue */
 kSelectVDSetSharpness = 0x10, /* VDSetSharpness */
 kSelectVDSetSaturation = 0x11, /* VDSetSaturation */
 kSelectVDGetContrast = 0x12, /* VDGetContrast */
 kSelectVDGetHue = 0x13, /* VDGetHue */
 kSelectVDGetSharpness = 0x14,/* VDGetSharpness */
 kSelectVDGetSaturation = 0x15, /* VDGetSaturation */
 kSelectVDGrabOneFrame = 0x16, /* VDGrabOneFrame
 (required) */
 kSelectVDGetMaxAuxBuffer = 0x17, /* VDGetMaxAuxBuffer */
 kSelectVDGetDigitizerInfo = 0x19, /* VDGetDigitizerInfo
 (required) */
 kSelectVDGetCurrentFlags = 0x1A, /* VDGetCurrentFlags
 (required) */
 kSelectVDSetKeyColor = 0x1B, /* VDSetKeyColor */

134 Function Request Codes
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

 kSelectVDGetKeyColor = 0x1C, /* VDGetKeyColor */
 kSelectVDAddKeyColor = 0x1D, /* VDAddKeyColor */
 kSelectVDGetNextKeyColor = 0x1E, /* VDGetNextKeyColor */
 kSelectVDSetKeyColorRange = 0x1F, /* VDSetKeyColorRange */
 kSelectVDGetKeyColorRange = 0x20, /* VDGetKeyColorRange */
 kSelectVDSetDigitizerUserInterrupt = 0x21,
 /* VDSetDigitizerUserInterrupt */
 kSelectVDSetInputColorSpaceMode = 0x22, /* VDSetInputColorSpaceMode */
 kSelectVDGetInputColorSpaceMode = 0x23, /* VDGetInputColorSpaceMode */
 kSelectVDSetClipState = 0x24, /* VDSetClipState */
 kSelectVDSetClipState = 0x25, /* VDGetClipState */
 kSelectVDSetClipRgn = 0x26, /* VDSetClipRgn */
 kSelectVDClearClipRgn = 0x27, /* VDClearClipRgn */
 kSelectVDGetCLUTInUse = 0x28, /* VDGetCLUTInUse */
 kSelectVDSetPLLFilterType = 0x29, /* VDSetPLLFilterType */
 kSelectVDGetPLLFilterType = 0x2A, /* VDGetPLLFilterType */
 kSelectVDGetMaskandValue = 0x2B, /* VDGetMaskandValue */
 kSelectVDSetMasterBlendLevel = 0x2C, /* VDSetMasterBlendLevel */
 kSelectVDSetPlayThruDestination = 0x2D, /* VDSetPlayThruDestination */
 kSelectVDSetPlayThruOnOff = 0x2E, /* VDSetPlayThruOnOff */
 kSelectVDSetFieldPreference = 0x2F, /* VDSetFieldPreference
 (required) */
 kSelectVDGetFieldPreference = 0x30, /* VDGetFieldPreference
 (required) */
 kSelectVDPreflightDestination = 0x32, /* VDPreflightDestination
 (required) */
 kSelectVDPreflightGlobalRect = 0x33, /* VDPreflightGlobalRect */
 kSelectVDSetPlayThruGlobalRect = 0x34, /* VDSetPlayThruGlobalRect */
 kSelectVDSetInputGammaRecord = 0x35, /* VDSetInputGammaRecord */
 kSelectVDGetInputGammaRecord = 0x36, /* VDGetInputGammaRecord */
 kSelectVDSetBlackLevelValue = 0x37,/* VDSetBlackLevelValue */
 kSelectVDGetBlackLevelValue = 0x38, /* VDGetBlackLevelValue */
 kSelectVDSetWhiteLevelValue = 0x39, /* VDSetWhiteLevelValue */
 kSelectVDGetWhiteLevelValue = 0x3A, /* VDGetWhiteLevelValue */
 kSelectVDGetVideoDefaults = 0x3B, /* VDGetVideoDefaults */
 kSelectVDGetNumberOfInputs = 0x3C,/* VDGetNumberOfInputs */
 kSelectVDGetInputFormat = 0x3D, /* VDGetInputFormat */
 kSelectVDSetInput = 0x3E, /* VDSetInput */
 kSelectVDGetInput = 0x3F, /* VDGetInput */
 kSelectVDSetInputStandard = 0x40, /* VDSetInputStandard */
 kSelectVDSetupBuffers = 0x41, /* VDSetupBuffers */
 kSelectVDGrabOneFrameAsync = 0x42, /* VDGrabOneFrameAsync */
 kSelectVDDone = 0x43, /* VDDone */
 kSelectVDSetCompression = 0x44, /* VDSetCompression */
 kSelectVDCompressOneFrameAsync = 0x45, /* VDCompressOneFrameAsync */
 kSelectVDCompressDone = 0x46, /* VDCompressDone */
 kSelectVDReleaseCompressBuffer = 0x47, /* VDReleaseCompressBuffer */
 kSelectVDGetImageDescription = 0x48, /* VDGetImageDescription */
 kSelectVDResetCompressSequence = 0x49, /* VDResetCompressSequence */
 kSelectVDSetCompressionOnOff = 0x4A, /* VDSetCompressionOnOff */
 kSelectVDGetCompressionTypes = 0x4B, /* VDGetCompressionTypes */
 kSelectVDSetTimeBase = 0x4C, /* VDSetTimeBase */
 kSelectVDSetFrameRate = 0x4D, /* VDSetFrameRate */
 kSelectVDGetDataRate = 0x4E, /* VDGetDataRate */
 kSelectVDGetSoundInputDriver = 0x4F, /* VDGetSoundInputDriver */
 kSelectVDGetDMADepths = 0x50, /* VDGetDMADepths */
 kSelectVDGetPreferredTimeScale = 0x51, /* VDGetPreferredTimeScale */
 kSelectVDReleaseAsyncBuffers = 0x52,/* VDReleaseAsyncBuffers */

Function Request Codes 135
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

};

136 Function Request Codes
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Creating Video Digitizer Components

Introduction

This chapter describes the functions that are provided by video digitizer components. These functions are
described from the perspective of an application that uses video digitizer components. If you are developing
a video digitizer component, your digitizer component must behave as described here.

These functions specify the video digitizer components for their requests with a reference obtained from the
Component Manager’s OpenComponent or OpenAComponent function.

Note: If you are developing an application that uses video digitizer components, you should read the sections
that are appropriate to your application. If you are developing a video digitizer component, you should read
all the sections.

Component Type and Subtype Values

Apple has defined a type value for video digitizer components. All video digitizer components have a
component type value of 'vdig'. You can use the following constant to specify the component type value.

#define videoDigitizerComponentType = 'vdig'

There are no special conventions applied to the subtype value of video digitizer components.

Getting Information About Video Digitizer Components

You can use the VDGetDigitizerInfo function in your application to retrieve information about the
capabilities of a video digitizer component. You can use the VDGetCurrentFlags function to obtain current
status information from a video digitizer component.

Setting Source Characteristics

This section discusses the video digitizer component functions that allow applications to set the spatial
characteristics of the source video signal. You can use these functions in your application to set and retrieve
information about the maximum source rectangle, the active source rectangle, the vertical blanking rectangle,
and the digitizer rectangle. For a complete discussion of the relationship between these rectangles, see About
Video Digitizer Components (page 125).

Introduction 137
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

You can use the VDGetMaxSrcRect function in your application to get the size and location of the maximum
source rectangle. Similarly, the VDGetActiveSrcRect function allows you to get this information about the
active source rectangle, and the VDGetVBlankRect function enables you to obtain information about the
vertical blanking rectangle.

You can use the VDSetDigitizerRect function to set the size and location of the digitizer rectangle. The
VDGetDigitizerRect function lets you retrieve the size and location of this rectangle.

Selecting an Input Source

This section discusses the video digitizer component functions that allow applications to select an input
video source.

Some of these functions provide information about the available video inputs. Applications can use the
VDGetNumberOfInputs function to determine the number of video inputs supported by the digitizer
component. The VDGetInputFormat function allows applications to find out the video format (composite,
s-video, or component) employed by a specified input.

You can use the VDSetInput function in your application to specify the input to be used by the digitizer
component. The VDGetInput function returns the currently selected input.

The VDSetInputStandard function allows you to specify the video signaling standard to be used by the
video digitizer component.

Controlling Color

Video digitizer components support color digitization. Therefore, these components provide several functions
that allow applications to control the color digitization process.

You can use VDSetInputColorSpaceMode in your application to enable and disable color digitization; you
can use the VDGetInputColorSpaceMode function to determine whether color digitization is enabled. The
VDUseThisCLUT function allows you to specify a color lookup table to be used by the video digitizer
component. In cases where the component cannot accommodate a particular lookup table, your application
can use the VDGetCLUTInUse function to retrieve the color lookup table used by the digitizer component.

Your application can determine whether a digitizer component supports color digitization by examining the
input capability flags of the component. Specifically, if the digiInDoesColor flag is set to 1, the component
supports color digitization. Applications can use the VDGetCurrentFlags function to obtain the input
capability flags of a component. See Getting Information About Video Digitizer Components (page 137) for
more information.

Your application can determine a digitizer’s supported pixel depths by calling the VDGetDMADepths function.

138 Selecting an Input Source
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

Controlling Analog Video

Some video digitizer components may provide functions that allow applications to control the characteristics
of the input analog video signal. This section describes these analog video functions.

The VDGetVideoDefaults function returns the suggested default values for the analog video parameters
that can be affected by functions described in this section.

A number of functions affect gamma correction. The VDSetInputGammaRecord and
VDGetInputGammaRecord functions work with gamma structures. You can use the VDSetInputGammaValue
and VDGetInputGammaValue functions to allow your application to set particular gamma values.

The VDSetBlackLevelValue, VDGetBlackLevelValue, VDSetWhiteLevelValue, and
VDGetWhiteLevelValue functions allow applications to work with black levels and white levels in the
source video. Black level refers to the degree of blackness in an image. This is a common setting on a video
digitizer. The highest setting produces an all-black image; on the other hand, the lowest setting yields little,
if any, black even with black objects in the scene. Black level is a significant setting because it can be adjusted
so that there is little or no noise in an image. White level refers to the degree of whiteness in an image. It is
also a common video digitizer setting.

TheVDSetContrast,VDGetContrast,VDSetSharpness, andVDGetSharpness functions allow applications
to work with contrast and sharpness values in the source video. The VDGetBrightness and
VDSetBrightness functions allow applications to work with the image brightness setting.

The VDSetHue, VDGetHue, VDSetSaturation, and VDGetSaturation functions allow applications to work
with hue and saturation settings in the source video.

Selectively Displaying Video

Video digitizer components may support one of three methods of selectively displaying video on the computer
screen. The three methods are key colors, alpha channels, and blend masks. For a complete description of
these techniques for selectively displaying video, see About Video Digitizer Components (page 125).

Your application can determine whether a video digitizer component supports selective video display by
examining the component’s digitizer information structure. Specifically, the vdigType field indicates the
type of blending supported by the digitizer. Applications can use the VDGetDigitizerInfo function to
retrieve a component’s digitizer information structure.

Some video digitizer components support the use of key colors as a mechanism for selectively displaying
video on the computer screen. When a key color is active, the digitizer component replaces all screen
occurrences of that color with the appropriate portion of the source video. Video digitizer components that
support key colors provide a number of functions to applications. Those functions are described in this
section.

Your applications can use the VDSetKeyColor, VDAddKeyColor, and VDSetKeyColorRange functions to
set one or more key colors for a video digitizer component. The VDGetKeyColor, VDGetNextKeyColor,
and VDGetKeyColorRange functions allow your application to retrieve information about the currently
active key colors.

Controlling Analog Video 139
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

Alpha channels and blend masks work similarly to one another. Digitizer components that support alpha
channels use a portion of each pixel value to indicate the degree of video display for that pixel. Digitizer
components that support blend masks use the mask to indicate the degree of video display for corresponding
pixels.

Your applications can use the VDGetMaskandValue function to determine the appropriate mask value for
a desired blend level. The VDSetMasterBlendLevel function allows applications to set a blend level that
applies to the entire source video image. The VDGetMaskPixMap function allows applications to retrieve
the pixel map that defines the blend mask.

Clipping

Some video digitizer components can clip the output video image based on an arbitrary clipping region.
Your application can determine whether a video digitizer component supports clipping by examining the
digitizer information structure of the component. Specifically, if the digiOutDoesMask flag is set to 1 in the
outputCapabilityFlags field of the appropriate digitizer information structure, the component supports
clipping. See The Digitizer Information Structure (page 146) for details. Your application can obtain a
component’s digitizer information structure by calling the VDGetDigitizerInfo function. This section
describes the functions provided to applications by components that support clipping.

Applications can use the VDSetClipState and VDGetClipState functions to enable and disable clipping,
and to determine whether clipping is enabled. Applications can use the VDSetClipRgn and VDClearClipRgn
functions to manipulate the clipping region. Applications can use these functions only during an active grab
sequence. Applications set the initial clipping settings by calling either VDSetPlayThruDestination or
VDSetPlayThruGlobalRect.

Note: The functions that manipulate clipping and clipping state operate on a clipping region in addition
to the one specified by the mask passed by the VDSetPlayThruDestination and VDSetUpBuffers
functions. To determine the final clipping regions, intersect these two clippings.

Utility Functions

A number of utility functions may be supported by some video digitizer components:

 ■ The VDSetPLLFilterType and VDGetPLLFilterType functions allow applications to control which
phase-locked loop (PLL) is used by a video digitizer component that supports multiple PLLs.

 ■ The VDSetFieldPreference and VDGetFieldPreference functions allow applications to control
which field is used for some vertical scaling operations.

 ■ The VDSetDigitizerUserInterrupt function allows applications to install custom interrupt functions
that are called by the video digitizer component.

 ■ The VDGetSoundInputDriver function allows an application to retrieve information about a digitizer’s
sound input driver.

 ■ The VDGetPreferredTimeScale function allows an application to determine a digitizer’s preferred
time scale.

 ■ The VDGetTimeCode function allows an application to retrieve timecode information.

140 Clipping
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

 ■ The VDGetSoundInputSource function allows an application to retrieve information about a digitizer’s
sound input source.

 ■ Video digitizers may return timecode information for an incoming video signal by responding to
VDGetTimeCode.

 ■ You can use the VDGetInputFormat function to find out the video format employed by a specified
input.

Application-Defined Function

Applications can provide a custom interrupt function in the userInterruptProc parameter of the
VDSetDigitizerUserInterrupt function. Every custom interrupt function must support the following
interface:

pascal void MyInterruptProc (long flags, long refcon);

The flags parameter indicates when the interrupt function has been called. The video digitizer component
sets these flags to indicate the circumstances in which the function has been called. The following flags are
defined:

DescriptionFlag

Even-line field interrupt. If this flag is set to 1, the video digitizer component is about to display an
even-line field.

Bit 0

Odd-line field interrupt. If this flag is set to 1, the video digitizer component is about to display an
odd-line field.

Bit 1

The refcon parameter contains parameter data that is appropriate for the interrupt function. The application
assigns the value of the reference constant when it sets the interrupt function.

Capability Flags

Video digitizer components report their capabilities to your application by means of capability flags. These
flags are formatted as part of the digitizer information structure you obtain by calling the
VDGetDigitizerInfo function. There are two sets of flags: one set describes the input capabilities of the
video digitizer component, and the other describes its output capabilities.

Video digitizer components support the following input capability flags:

DescriptionFlag

Indicates that the video digitizer supports National Television System Committee
(NTSC) format input video signals. This flag is set to 1 if the digitizer component
supports NTSC video.

digiInDoesNTSC

Application-Defined Function 141
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionFlag

Indicates that the video digitizer component supports Phase Alternation Line
(PAL) format input video signals. This flag is set to 1 if the digitizer component
supports PAL video.

digiInDoesPAL

Indicates that the video digitizer component supports Systeme Electronique
Couleur avec Memoire (SECAM) format input video signals. This flag is set to 1
if the digitizer component supports SECAM video.

digiInDoesSECAM

Indicates that the video digitizer component supports genlock; that is, the
digitizer can derive its timing from an external time base. This flag is set to 1 if
the digitizer component supports genlock.

digiInDoesGenLock

Indicates that the video digitizer component supports composite input video.
This flag is set to 1 if the digitizer component supports composite input.

digiInDoesComposite

Indicates that the video digitizer component supports s-video input video. This
flag is set to 1 if the digitizer component supports s-video input.

digitInDoesSVideo

Indicates that the video digitizer component supports RGB input video. This
flag is set to 1 if the digitizer component supports RGB input.

digiInDoesComponent

Indicates that the video digitizer component can distinguish between an input
signal that emanates from a videotape player and a broadcast signal. This flag
is set to 1 if the digitizer component can differentiate between the two different
signal types.

digiInVTR_Broadcast

Indicates that the video digitizer component supports color input. This flag is
set to 1 if the digitizer component can accept color input.

digiInDoesColor

Indicates that the video digitizer component supports grayscale input. This flag
is set to 1 if the digitizer component can accept grayscale input.

digiInDoesBW

Video digitizer components support the following output capability flags:

DescriptionFlag

Indicates that the video digitizer component can work with pixel maps that
contain 1-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 1-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes1

Indicates that the video digitizer component can work with pixel maps that
contain 2-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 2-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes2

Indicates that the video digitizer component can work with pixel maps that
contain 4-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 4-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes4

142 Capability Flags
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionFlag

Indicates that the video digitizer component can work with pixel maps that
contain 8-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 8-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes8

Indicates that the video digitizer component can work with pixel maps that
contain 16-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 16-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes16

Indicates that the video digitizer component can work with pixel maps that
contain 32-bit pixels. If this flag is set to 1, then the digitizer component can
write images that contain 32-bit pixels. If this flag is set to 0, then the digitizer
component cannot handle such images.

digiOutDoes32

Indicates that the video digitizer component supports dithering. If this flag is
set to 1, the component supports dithering of colors. If this flag is set to 0, the
digitizer component does not support dithering.

digiOutDoesDither

Indicates that the video digitizer component can stretch images to arbitrary
sizes. If this flag is set to 1, the digitizer component can stretch images. If this
flag is set to 0, the digitizer component does not support stretching.

digiOutDoesStretch

Indicates that the video digitizer component can shrink images to arbitrary
sizes. If this flag is set to 1, the digitizer component can shrink images. If this
flag is set to 0, the digitizer component does not support shrinking.

digiOutDoesShrink

Indicates that the video digitizer component can handle clipping regions. If
this flag is set to 1, the digitizer component can mask to an arbitrary clipping
region. If this flag is set to 0, the digitizer component does not support clipping
regions.

digiOutDoesMask

Indicates that the video digitizer component supports stretching to quadruple
size when displaying the output video. The parameters for the stretch operation
are specified in the matrix structure for the request; the component modifies
the scaling attributes of the matrix. If this flag is set to 1, the digitizer
component can stretch an image to exactly four times its original size, up to
the maximum size specified by the maxDestHeight and maxDestWidth fields
in the digitizer information structure. If this flag is set to 0, the digitizer
component does not support stretching to quadruple size.

digiOutDoesDouble

Indicates that the video digitizer component supports stretching an image to
16 times its original size when displaying the output video. The parameters
for the stretch operation are specified in the matrix structure for the request;
the component modifies the scaling attributes of the matrix. If this flag is set
to 1, the digitizer component can stretch an image to exactly 16 times its
original size, up to the maximum size specified by the maxDestHeight and
maxDestWidth fields in the digitizer information structure. If this flag is set
to 0, the digitizer component does not support this capability.

digiOutDoesQuad

Capability Flags 143
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionFlag

Indicates that the video digitizer component can shrink an image to one-quarter
of its original size when displaying the output video. The parameters for the
shrink operation are specified in the matrix structure for the request; the
component modifies the scaling attributes of the matrix. If this flag is set to 1,
the digitizer component can shrink an image to exactly one-quarter of its
original size, down to the minimum size specified by the minDestHeight and
minDestWidth fields in the digitizer information structure. If this flag is set
to 0, the digitizer component does not support this capability.

digiOutDoesQuarter

Indicates that the video digitizer component can shrink an image to 1/16 of
its original size when displaying the output video. The parameters for the
shrink operation are specified in the matrix structure for the request; the
digitizer component modifies the scaling attributes of the matrix. If this flag
is set to 1, the digitizer component can shrink an image to exactly 1/16 of its
original size, down to the minimum size specified by the minDestHeight and
minDestWidth fields in the digitizer information structure. If this flag is set
to 0, the digitizer component does not support this capability.

digiOutDoesSixteenth

Indicates that the video digitizer component can rotate an image when
displaying the output video. The parameters for the rotation are specified in
the matrix structure for an operation. If this flag is set to 1, the digitizer
component can rotate the image. If this flag is set to 0, the digitizer component
cannot rotate the resulting image.

digiOutDoesRotate

Indicates that the video digitizer component can flip an image horizontally
when displaying the output video. The parameters for the horizontal flip are
specified in the matrix structure for an operation. If this flag is set to 1, the
digitizer component can flip the image. If this flag is set to 0, the digitizer
component cannot flip the resulting image.

digiOutDoesHorizFlip

Indicates that the video digitizer component can flip an image vertically when
displaying the output video. The parameters for the vertical flip are specified
in the matrix structure for an operation. If this flag is set to 1, the digitizer
component can flip the image. If this flag is set to 0, the digitizer component
cannot flip the resulting image.

digiOutDoesVertFlip

Indicates that the video digitizer component can skew an image when
displaying the output video. Skewing an image distorts it linearly along only
a single axis; for example, drawing a rectangular image into a
parallelogram-shaped region. The parameters for the skew operation are
specified in the matrix structure for the request. If this flag is set to 1, the
digitizer component can skew an image. If this flag is set to 0, the digitizer
component does not support this capability.

digiOutDoesSkew

Indicates that the video digitizer component can blend the resulting image
with a matte when displaying the output video. The matte is provided by the
application by defining either an alpha channel or a mask plane. If this flag is
set to 1, the digitizer component can blend. If this flag is set to 0, the digitizer
component does not support this capability.

digiOutDoesBlend

144 Capability Flags
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionFlag

Indicates that the video digitizer component can warp an image when
displaying the output video. Warping an image distorts it along one or more
axes, perhaps nonlinearly, in effect "bending" the result region. The parameters
for the warp operation are specified in the matrix structure for the request. If
this flag is set to 1, the digitizer component can warp an image. If this flag is
set to 0, the digitizer component does not support this capability.

digiOutDoesWarp

Indicates that the video digitizer component can write to any screen or to
offscreen memory. If this flag is set to 1, the digitizer component can use DMA
to write to any screen or memory location.

digiOutDoesDMA

Indicates that the video digitizer component does not need idle time in order
to display its video. If this flag is set to 1, your application does not need to
grant processor time to the digitizer component at normal display speeds.

digiOutDoes-
HWPlayThru

Indicates that the video digitizer component supports inverse lookup tables
for indexed color modes. If this flag is set to 1, the digitizer component uses
inverse lookup tables when appropriate.

digiOutDoesILUT

Indicates that the video digitizer component supports clipping by means of
key colors. If this flag is set to 1, the digitizer component can clip to a region
defined by a key color.

digiOutDoesKeyColor

Indicates that the video digitizer component can operate asynchronously. If
this flag is set to 1, your application can use the VDSetupBuffers and
VDGrabOneFrameAsync functions.

digiOutDoes-
AsyncGrabs

Indicates that the video digitizer may place pixels on the screen that cannot
be used when compressing images.

digiOutDoes-
UnreadableScreenBits

Indicates that the video digitizer component supports compressed source
devices. These devices provide compressed data directly, without having to
use the Image Compression Manager.

digiOutDoesCompress

Indicates that the video digitizer component only provides compressed image
data; the component cannot provide displayable data. This flag only applies
to digitizers that support compressed source devices.

digiOutDoesCompress-
Only

Indicates that the video digitizer component can draw images on the screen
at the same time that it is delivering compressed image data. This flag only
applies to digitizers that support compressed source devices.

digiOutDoesPlayThru-
DuringCompress

Data Types

This section discusses the data structures that are used by video digitizer components and by applications
that use video digitizer components.

Data Types 145
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

The Digitizer Information Structure

Your application can retrieve information about the capabilities and current status of a video digitizer
component. You call the VDGetDigitizerInfo function to retrieve all this information from a video digitizer
component. In response, the component formats a digitizer information structure. The contents of this
structure fully define the capabilities and current status of the video digitizer component.

Note: If you are interested only in the current status information, you can call the VDGetCurrentFlags
function. This function returns the input and output current flags of the video digitizer component.

The DigitizerInfo data type defines the layout of the digitizer information structure:

struct DigitizerInfo {
 short vdigType;
 long inputCapabilityFlags;
 long outputCapabilityFlags;
 long inputCurrentFlags;
 long outputCurrentFlags;
 short slot;
 GDHandle gdh;
 GDHandle maskgdh;
 short minDestHeight;
 short minDestWidth;
 short maxDestHeight;
 short maxDestWidth;
 short blendLevels;
 long reserved;
 };

DescriptionField

Specifies the type of video digitizer component. Valid values are listed below.vdigType

Specifies the capabilities of the video digitizer component with respect to
the input video signal.

inputCapabilityFlags

Specifies the capabilities of the video digitizer component with respect to
the output digitized video information.

outputCapabilityFlags

Specifies the current status of the video digitizer with respect to the input
video signal.

inputCurrentFlags

Specifies the current status of the video digitizer with respect to the output
digitized video information.

outputCurrentFlags

Identifies the slot that contains the video digitizer interface card.slot

Contains a handle to the graphics device that defines the screen to which
the digitized data is to be written. Set this field to nil if your application is
not constrained to a particular graphics device.

gdh

Contains a handle to the graphics device that contains the mask plane. This
field is used only by digitizers that clip by means of mask planes.

maskgdh

146 Data Types
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionField

Indicates the smallest height value the digitizer component can accommodate
in its destination.

minDestHeight

Indicates the smallest width value the digitizer component can accommodate
in its destination.

minDestWidth

Indicates the largest height value the digitizer component can accommodate
in its destination.

maxDestHeight

Indicates the largest width value the digitizer component can accommodate
in its destination.

maxDestWidth

Specifies the number of blend levels the video digitizer component supports.blendLevels

Reserved. Set this field to 0.reserved

The inputCapabilityFlags and outputCapabilityFlags values are listed in Capability Flags (page
141).

The vdigType field may contain these values:

DescriptionConstant

Basic video digitizer; does not support any clippingvdTypeBasic

Supports clipping by means of an alpha channelvdTypeAlpha

Supports clipping by means of a mask planevdTypeMask

Supports clipping by means of key colorsvdTypeKey

The Buffer List Structure

If you are using more than one asynchronous output buffer, you must define the output buffers to the video
digitizer component. You define these output buffers by calling the VDSetupBuffers function. You specify
the buffers to that function in a buffer list structure. Note that all the output buffers must be the same size
and must accommodate output rectangles of the same dimensions.

The VdigBufferRecList data type defines a buffer list structure.

struct VdigBufferRecList {
 short count;
 MatrixRecordPtr matrix;
 RgnHandle mask;
 VdigBufferRec list[1];
};

Data Types 147
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

DescriptionField

Specifies the number of buffers defined by this structure. The value of this field must correspond
to the number of entries in the list array.

count

Specifies the transformation matrix that is applied to all of the destination rectangles before the
video image is displayed. You must specify a matrix. If you do not want to perform any
transformations, use the identity matrix.

matrix

Specifies a clipping region that is applied to the destination rectangle before the video image is
displayed. Note that this region applies to only the first destination buffer. If you want the region
to apply to all of your destination buffers, you must do this yourself. If you do not want to specify
a clipping region, set this field to nil.

mask

Contains an array of output buffer specifications. Each buffer is represented by a buffer structure.
The format and content of this structure are described in the next section.

list

The Buffer Structure

The VdigBufferRec data type defines a buffer structure.

typedef struct {
 PixMapHandle dest;
 Point location;
 long reserved;
} VdigBufferRec;

DescriptionField

Contains a handle to the pixel map that defines the destination buffer.dest

Specifies the location of the video destination in the pixel map specified by the dest field.
This point identifies the upper-left corner of the destination rectangle. The size and scaling of
the destination rectangle are governed by the matrix and mask fields of the buffer list structure
that contains this structure.

location

Reserved for use by Apple. Set this field to 0.reserved

148 Data Types
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

Video Digitizer Component API

This table describes the changes to QuickTime Movie Creation Guide.

NotesDate

Marked chapters on sequence grabber and text channel as legacy.2009-06-01

Revised artwork2007-01-08

New document that describes how to create a QuickTime movie from within
an application.

2006-01-10

Replaces "Movie Toolbox: Creating Movies," "Sequence Grabber Components,"
"Sequence Grabber Channel Components," "Sequence Grabber Panel
Components," "Text Channel Components," and "Video Digitizer Components."

New document that describes the QuickTime functions that an application can
use to construct movies.

2002-09-17

149
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

150
2009-06-01 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QuickTime Movie Creation Guide
	Contents
	Listings
	Introduction
	Creating Movies
	Movie Structures
	Tracks
	Media Structures

	QuickTime Movie Characteristics
	Movie Characteristics
	Track Characteristics
	Media Characteristics
	Spatial Properties
	The Transformation Matrix

	Audio Properties
	Sound Playback
	Adding Sound to Video
	Sound Data Formats

	Sample Programs
	Main Function
	Creating and Opening a Movie File
	Creating a Video Track in a New Movie
	Adding Video Samples to a Media
	Creating Video Data for a Movie
	Creating a Sound Track
	Creating a Sound Description Structure
	Parsing a Sound Resource

	Sequence Grabber Components
	Working With Sequence Grabber Settings
	Features of Sequence Grabber Components
	Working with Sequence Grabber Outputs
	Storing Captured Data in Multiple Files
	Application Examples
	Using Sequence Grabber Components

	Sequence Grabber Component Functions
	Configuring Sequence Grabber Components
	Controlling Sequence Grabber Components
	Working With Sequence Grabber Characteristics
	Working With Channel Characteristics
	Working With Channel Devices
	The Device List Structure
	The Device Name Structure
	Working With Video Channels
	Working With Sound Channels
	Video Channel Callback Functions

	Previewing and Recording Captured Data
	Previewing
	Recording

	Playing Captured Data and Saving It in a QuickTime Movie
	Initializing a Sequence Grabber Component
	Creating a Sound Channel and a Video Channel
	Previewing Sound and Video Sequences in a Window
	Capturing Sound and Video Data
	Setting Up the Video Bottleneck Functions
	Drawing Information Over Video Frames During Capture

	Application-Defined Functions
	MyGrabFunction
	MyGrabCompleteFunction
	MyDisplayFunction
	MyCompressFunction
	MyCompressCompleteFunction
	MyAddFrameFunction
	MyTransferFrameFunction
	MyGrabCompressCompleteFunction
	MyDisplayCompressFunction
	MyDataFunction
	MyModalFilter

	Data Types
	The Compression Information Structure
	Frame Information Structure

	Sequence Grabber Panel Components
	How Sequence Grabber Panel Components Work
	Creating Sequence Grabber Panel Components
	Managing Your Panel Component
	Managing Your Panel's Settings
	Component Flags for Sequence Grabber Panel Components
	Processing Your Panel's Events
	Implementing the Required Component Functions

	Managing the Dialog Box

	Sequence Grabber Channel Components
	Creating Sequence Grabber Channel Components
	Component Type and Subtype Values
	Required Functions
	Component Manager Request Codes

	A Sample Sequence Grabber Channel Component
	Implementing the Required Component Functions
	Initializing the Sequence Grabber Channel Component
	Setting and Retrieving the Channel State
	Managing Spatial Properties
	Controlling Previewing and Recording Operations
	Managing Channel Devices
	Utility Functions for Recording Image Data
	Providing Media-Specific Functions
	Managing the Settings Dialog Box
	Displaying Channel Information in the Settings Dialog Box

	Support for Sound Capture at Any Sample Rate
	Channel Source Names
	Capturing to Multiple Files
	Creating a Sequence Grabber Component that Captures Multiple Files

	Using Sequence Grabber Channel Components
	Previewing
	Configuring Sequence Grabber Channel Components
	Configuration Functions for All Channel Components
	Configuration Functions for Video Channel Components
	Configuration Functions for Sound Channel Components

	Controlling Sequence Grabber Channel Components
	Recording
	Working With Callback Functions
	Using Callback Functions for Video Channel Components
	Using Utility Functions for Video Channel Component Callback Functions

	Working With Channel Devices
	Utility Functions for Sequence Grabber Channel Components

	Text Channel Components
	About the QuickTime Text Channel Component
	Text Channel Component Functions

	About Video Digitizer Components
	Analog-to-Digital Conversion
	Types of Video Digitizer Components
	Source Coordinate Systems
	Using Video Digitizer Components
	Specifying Destinations
	Setting Video Destinations
	Starting and Stopping the Digitizer
	Controlling Digitization
	Multiple Buffering
	Obtaining an Accurate Time of Frame Capture

	Controlling Compressed Source Devices

	Creating Video Digitizer Components
	Required Functions
	Optional Functions
	Frame Grabbers Without Playthrough
	Frame Grabbers With Hardware Playthrough
	Key Color and Alpha Channel Devices
	Compressed Source Devices

	Function Request Codes

	Video Digitizer Component API
	Introduction
	Component Type and Subtype Values
	Getting Information About Video Digitizer Components
	Setting Source Characteristics
	Selecting an Input Source
	Controlling Color
	Controlling Analog Video
	Selectively Displaying Video
	Clipping
	Utility Functions
	Application-Defined Function
	Capability Flags
	Data Types
	The Digitizer Information Structure
	The Buffer List Structure
	The Buffer Structure

	Revision History

