
JavaScript Scripting Guide for QuickTime
Networking, Internet, & Web

2008-02-08

Apple Inc.
© 2004, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, Panther, QuickTime, and Safari are
trademarks of Apple Inc., registered in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to JavaScript Scripting Guide for QuickTime 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Chapter 1 QuickTime and JavaScript 9

Using JavaScript to Detect QuickTime 9
Using JavaScript to Embed QuickTime Content 11
Executing JavaScript Functions From QuickTime 12
Controlling QuickTime Using JavaScript 15

Supported Interfaces 15
Supported Browsers and Operating Systems 15
Before You Start 16
Addressing QuickTime Movies 17
JavaScript Usage Example 17

QuickTime DOM Events 18
Summary of DOM Events 19
Enabling DOM Events 20
Listening For DOM Events 21
Using DOM Events to Monitor Movie Loading 21
Monitoring and Controlling Multiple Movies 23

QuickTime JavaScript Reference 25
Movie Commands 25
QuickTime Properties 26
Movie Properties 27
Track Properties 36

Document Revision History 39

3
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

4
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 1 QuickTime and JavaScript 9

Table 1-1 User data strings 34
Listing 1-1 Detecting QuickTime with JavaScript 10
Listing 1-2 Executing a JavaScript function from QuickTime using an invisible Iframe 14
Listing 1-3 Load QuickTime, enable JavaScript, assign a name 16
Listing 1-4 Enabling JavaScript Using AC_QuickTime.js 16
Listing 1-5 Using JavaScript to play, stop, and replace a QuickTime movie 17
Listing 1-6 Enabling DOM Events Using AC_QuickTime.js 20
Listing 1-7 Enabling DOM Events Manually 20
Listing 1-8 Cross-platform event listener registration 21
Listing 1-9 Monitoring movie loading using DOM events 21
Listing 1-10 Web page that monitors and controls two movies using JavaScript and DOM events

23

5
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

6
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

JavaScript can interact with QuickTime in various ways. You can use JavaScript in a browser to detect whether
QuickTime is installed, you can use JavaScript to create the tags used to embed QuickTime content in a web
page, and you can use JavaScript to query and control the QuickTime plug-in directly.

This document describes client-side scripting using JavaScript and QuickTime browser plug-ins.

All QuickTime browser plug-ins expose the exact same interfaces to JavaScript, whether the plug-in is an
ActiveX control, a Cocoa plug-in, or a Netscape-style plug-in, allowing the same script to operate identically
for Internet Explorer, Safari, FireFox, Mozilla, and other browsers that support plug-in scripting.

Browsers that support the W3C’s DOM Level 3 specification can receive DOM events from QuickTime, allowing
movie events to trigger JavaScript functions without having to set timers or poll QuickTime for status events.

Important: Starting with QuickTime 7.1.5, you can no longer issue javascript:// URLs or call JavaScript functions
directly from within a QuickTime movie. This feature was removed from QuickTime for security reasons. This
document includes techniques for working around this change.

Who Should Read This Document

If you create QuickTime movies that are embedded in web pages, or if you create web pages that include
QuickTime movies, you should read this document.

Organization of This Document

This document provides a detailed description of the different ways to use JavaScript for client-side scripting
of QuickTime browser plug-ins:

 ■ “Using JavaScript to Detect QuickTime” (page 9)

 ■ “Using JavaScript to Embed QuickTime Content” (page 11)

 ■ “Executing JavaScript Functions From QuickTime” (page 12)

 ■ “Controlling QuickTime Using JavaScript” (page 15)

 ■ “QuickTime DOM Events” (page 18)

 ■ “QuickTime JavaScript Reference” (page 25)

Who Should Read This Document 7
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to JavaScript Scripting Guide for
QuickTime

See Also

If you want to do Windows application development or server-side scripting using the QuickTime ActiveX
control and JavaScript, Visual Basic, or C#, see QuickTime 7 for Windows Update Guide.

For information on how to embed QuickTime content in a web page, or how to control the QuickTime browser
plug-in using HTML tags and attributes, see HTML Scripting Guide for QuickTime.

For information on how to control QuickTime and the QuickTime browser plug-in using SMIL, see SMIL
Scripting Guide for QuickTime.

8 See Also
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to JavaScript Scripting Guide for QuickTime

Recent versions of the QuickTime plug-in are fully scriptable using JavaScript in most browsers for the Mac
OS and Windows.

There are a few different ways to use JavaScript with QuickTime: you can use JavaScript to detect whether
QuickTime is installed; you can use JavaScript to write the OBJECT and EMBED tags used to display QuickTime
content; and you can control the QuickTime plug-in directly using JavaScript.

The QuickTime browser plug-in comes in multiple flavors. There are traditional Netscape-style plug-ins for
the Mac OS and Windows, COM objects and ActiveX controls for Internet Explorer on Windows, and a Cocoa
plug-in for Safari. All of these plug-ins present the exact same interfaces to JavaScript, as described in this
document.

In addition to the QuickTime browser plug-in, QuickTime 7 and later include an ActiveX control that is
scriptable using the COM interface from Visual Basic, JavaScript, or C#. That ActiveX control is not the same
as the ActiveX version of the QuickTime browser plug-in. This document describes the JavaScript interface
to QuickTime browser plug-ins, for client-side scripts running in a browser. If you want to develop Windows
desktop applications or server-side scripts on the Windows OS using JavaScript and QuickTime, seeQuickTime
7 for Windows Update Guide.

Important: Starting with QuickTime 7.1.5, you can no longer issue javascript:// URLs or call JavaScript functions
directly from within a QuickTime movie. This feature was removed from QuickTime for security reasons. There
are workarounds, however. See “Executing JavaScript Functions From QuickTime” (page 12) for examples.

Using JavaScript to Detect QuickTime

JavaScript can be used to detect the QuickTime plug-in in most versions of most browsers on Windows and
the Mac OS. The details vary slightly by browser, but a single script can be written that works with all supported
browsers.

Most browsers other than Internet Explorer for Windows (including Netscape, Mozilla-based browsers, Safari,
and Internet Explorer for Macintosh version 5) support the JavaScript navigator.plugins.name array.
You can detect whether the user has the QuickTime plug-in installed by testing this array for “QuickTime.”

Internet Explorer for Windows does not support the navigator.plugins array, but does allow you to use
VBScript to detect whether the QuickTime plug-in is installed (by testing for the presence of the QuickTime
ActiveX control).

Using JavaScript to Detect QuickTime 9
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Note: The QuickTime ActiveX control was introduced as part of QuickTime 4.1

The following listing contains an example script that detects the user’s operating system, browser type, and
browser version, uses JavaScript to test for the QuickTime plug-in, uses VBScript to test for the QuickTime
COM object, and detects users running older versions of Internet Explorer for Macintosh (making the
assumption that these users also have QuickTime installed). This listing sets the variable haveqt either true
or false.

Listing 1-1 Detecting QuickTime with JavaScript

<HEAD>
<TITLE>Test for QuickTime</TITLE>

<SCRIPT LANGUAGE="Javascript" type="text/javascript">
var haveqt = false;
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
On Error Resume Next
Set theObject =
CreateObject("QuickTimeCheckObject.QuickTimeCheck.1")
On Error goto 0
If IsObject(theObject) Then
If theObject.IsQuickTimeAvailable(0) Then
haveqt = true
End If
End If
</SCRIPT>

<SCRIPT LANGUAGE="Javascript" type="text/javascript">

if (navigator.plugins) {
for (i=0; i < navigator.plugins.length; i++) {
if (navigator.plugins[i].name.indexOf
("QuickTime") >= 0)
{ haveqt = true; }
}
}

if ((navigator.appVersion.indexOf("Mac") > 0)
&& (navigator.appName.substring(0,9) == "Microsoft")
&& (parseInt(navigator.appVersion) < 5))
{ haveqt = true; }

</SCRIPT>
</HEAD>

If you insert this JavaScript into the <HEAD> element of your HTML, you can test the variable haveqt for the
presence of QuickTime. You might, for example, want to write the <EMBED> and <OBJECT> tags for a movie
using JavaScript, writing the tags only if QuickTime is installed. Or you might want to redirect users without
QuickTime to an alternate page.

10 Using JavaScript to Detect QuickTime
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Using JavaScript to Embed QuickTime Content

Apple provides a JavaScript utility to generate the required tags to embed QuickTime content in a web page.
Using this utility greatly simplifies the necessary code to embed a movie, as it automatically supplies such
information as the QuickTime Class ID, code base, and plugins page. This has two main advantages over
typing the tags manually: it requires much less code; and it works seamlessly with Internet Explorer for
Windows, versions 6 and later, avoiding the “Click OK to enable ActiveX control” dialog box.

To use the utility, first download the JavaScript file, AC_QuickTime.js, from http://developer.apple.com/in-
ternet/licensejs.html.

Include it in your web page by inserting the following line of code into your HTML head:

<script src="AC_QuickTime.js" language="javascript" type="text/javascript">
</script>

Wherever you want QuickTime content to appear in your web page, place a line of JavaScript that calls the
function QT_WriteOBJECT(), passing the URL of the QuickTime content, the width and height of the
display area, the preferred ActiveX version (typically left blank) and any optional QuickTime attributes.

Important: The fourth parameter, the preferred ActiveX version, is typically left blank, but it can not be
omitted. It is a mandatory entry.

A simple example follows.

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '320', '240', '');
</script>

At run time, this will generate the correct <OBJECT> and <EMBED> tags and insert them into your web page.
This example passes the URL MyMovie.mov, the filename of a QuickTime movie in the same directory as the
web page. The allocated width is 320 pixels, and the allocated height is 240 pixels. The ActiveX version is left
blank, so it defaults to the most recent version.

Optional QuickTime parameters are passed as name/value pairs, that is, the name of the attribute is passed,
followed by the value. An example follows.

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('../Movies/MyMovie.mov', '100%', '95%', '', 'AUTOPLAY',
'True', 'SCALE', 'Aspect') ;
</script>

In this example, the URL is ../Movies/MyMovie.mov, the allocated width is 100% of the browser window,
the allocated height is 95% of the browser window, the ActiveX version is left blank, the AUTOPLAY attribute
is set to True, and the SCALE attribute is set to Aspect. The movie will autoplay, scaled to fill almost the
entire browser window, while preserving the movie’s aspect ratio.

Using JavaScript to Embed QuickTime Content 11
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

http://developer.apple.com/internet/licensejs.html
http://developer.apple.com/internet/licensejs.html

Important: Sometimes you need to pass a parameter only to the <OBJECT> tag, or only to the <EMBED>
tag. For example, if you are using DOM events, you need to address objects by ID and the <EMBED> object
and the <OBJECT> object must have unique ID values. To set a parameter for only the <OBJECT> tag, use
the prefix obj#. To set a parameter for only the <EMBED> tag, use the emb# prefix.

The following example passes different IDs to the <OBJECT> and <EMBED> tags, and sets a name parameter
for the <EMBED> tag that matches the <OBJECT> id. This allows you to monitor DOM events using the ID,
regardless of whether the browser uses the <OBJECT> or <EMBED> tag, and also allows you to address the
movie by name using the QuickTime JavaScript commands.

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '100%', '95%', '', 'SCALE', 'aspect', 'obj#ID',
 'movieOBJ', 'emb#ID', 'movieEMBED') ;
</script>

The AC_QuickTime.js script provides three additional functions which use the same input syntax as
QT_WriteOBJECT:

 ■ QT_GenerateOBJECTText—generates the same output as QT_WriteOBJECT, but instead of inserting
it into your HTML, it returns the output as a text string, allowing you to inspect it or modify it.

 ■ QT_WriteOBJECT_XHTML—generates and inserts the OBJECT and EMBED tags in your file using strict
XHTML syntax, and should be used if you are embedding QuickTime in XHTML rather than HTML.

 ■ QT_GenerateOBJECTText_XHTML—generates the same output as QT_WriteOBJECT_XHTML, but
instead of inserting it into your XHTML, it returns it as a text strting.

For more information on embedding QuickTime content in HTML, see HTML Scripting Guide for QuickTime.

Executing JavaScript Functions From QuickTime

Important: Starting with QuickTime 7.1.5, you can no longer issue javascript:// URLs or call JavaScript functions
directly from within a QuickTime movie. This feature was removed from QuickTime for security reasons. If
you need to call a JavaScript function from a movie, the recommended practice is to load an HTML page into
an Iframe, and call the JavaScript function in the ONLOAD parameter of the Iframe page.

Several things can cause QuickTime to send a URL to the browser, such as the user clicking a hotspot in a
QuickTimeVR panorama, clicking a movie that has an associated HREF, loading a sample in an HREF track (a
type of text track containing URLs), or as the result of a wired action. Wired actions can be triggered by user
interaction, as a result of a frame in the movie being displayed, or as the result of arbitrary wired calculations.

Sending URLs to a browser is supported in QuickTime 3 and later for movie HREFs, visual track HREFs, HREF
track HREFs, and VR hotspots. Wired sprite actions in general are supported in QuickTime 4 and later (new
wired actions have been introduced with various releases of QuickTime, so a particular wired action may
require a later QuickTime version).

Sending javascript: URLs directly to the browser as part of a QuickTime URL is no longer supported.

12 Executing JavaScript Functions From QuickTime
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

In order to execute a JavaScript function from a movie in QuickTime 7.1.5 or later, you must load an HTML
page that calls the desired JavaScript function. One way to make the user experience as seamless as possible
is to load an HTML page into a hidden Iframe, with a single JavaScript function defined in the <head> element,
set to execute onload. This way, loading the page is essentially the same as executing the JavaScript function.

If you need to call a JavaScript function defined on page that loads the movie, call it from the Iframe page
using parent.FunctionName() addressing syntax.

For example, suppose you have a JavaScript function called MyFunction() that you wish to call from
QuickTime. In the past you could call it directly. Now, you must call it indirectly. Here's how:

1. In the page that contains MyFunction(), create an invisible Iframe, like this:

<iframe id="Iframe1" name="Iframe1"
frameborder="0" vspace="0" hspace="0"
marginwidth="0" marginheight="0" width="0" height="0"
src="blank.html">
</iframe>

Note that the Iframe needs an initial source URL. This example uses "blank.html", an html page that
has no content:

<HTML>
<HEAD> <TITLE>blank.html</TITLE> </HEAD>
<BODY> </BODY>
</HTML>

2. Create a page intended to load into the Iframe. This page contains a single JavaScript function that calls
MyFunction(). This new function, named CallMyFunction(), is called when the page loads, using
the onload attribute of the <BODY> tag:

<HTML>
<HEAD>
<TITLE>callmyfunction.html</TITLE>
<Script language="javascript" type="text/javascript">
function CallMyFunction()
{ parent.MyFunction(); }
</Script>
</HEAD>
<BODY onload="CallMyFunction()"> </BODY>
</HTML>

3. Modify the URL called by the movie, from "javascript:MyFunction();" to
"<http://CallMyFunction.html> T<Iframe1>"

This changes the URL from javascript: to http:// protocol, and loads the new page into the Iframe
named "Iframe1". The new page calls MyFunction() in the parent page when it loads. For the user,
the experience is the same as if the movie had called MyFunction() directly.

The following code example shows two HTML pages. The first page creates an Iframe, defines a function,
test(), to be called from QuickTime, and embeds a movie. The second page, which will be loaded into the
Iframe, defines a JavaScript function, CallParentTest(), that calls the test() function in the parent page.
The onload attribute of the BODY tag is set to execute the CallParentTest() function when the second
page loads.

Executing JavaScript Functions From QuickTime 13
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Listing 1-2 Executing a JavaScript function from QuickTime using an invisible Iframe

<html>
 <head>
 <Title>calltest.html (Page That Executes JavaScript test() Function
Indirectly)</Title>
 <script language="javascript" type="text/javascript">
 function CallParentTest()
 {
 parent.test();
 }
 </script>

 <body onload="CallParentTest()">
 </body>
</html>

<html>
 <head>
 <Title><Page that contains in invisible iFrame>
 <script src="AC_QuickTime.js" language="javascript" type="text/javascript">
 </script>
 <script language="javascript" type="text/javascript">
 function test()
 {
 alert("JavaScript function called from QuickTime!");
 }
 </script>
 </head>

 <body>
 <h2>This Movie Calls JavaScript idirectly using an Iframe</h2>

 <iframe id="Iframe1" name="Iframe1" frameborder="0" vspace="0" hspace="0"
 marginwidth="0" marginheight="0" width="2" height="2" src="blank.html">
 </iframe>

 <script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '320', '240', '', 'HREF', '<Calltest.html>
T<Iframe1>');
 </script>

 <p>Click on the display portion of the movie to execute the JavaScript
alert() function.
 </p>
 </body>
</html>

You can use this technique to execute any number of JavaScript functions from a movie. Just call each
JavaScript function from its own HTML page with the page set to execute the function using the onload
attribute of the <body> element. The JavaScript function can be defined entirely within the Iframe page, or
it can call other JavaScript functions defined on the parent page using the parent.functionName() syntax.

Call the URL of the page with the target set to the name of the Iframe. Note that the syntax for specifying
the URL includes the target Iframe: ‘<url> T<frameID>’. This is true whether the URL is invoked from an
HREF, QTNEXTn, or HOTSPOT parameter, for example.

14 Executing JavaScript Functions From QuickTime
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Important: A URL called from QuickTime cannot cross local/remote zone boundaries. If the movie is loaded
using a remote protocol, such as http://, any URL called from the movie must also use a remote protocol
(http:// or https:/ or rtsp://). A movie loaded via http:// cannot call a file:/// URL. Similarly, if
the movie is loaded using a local file:/// URL, it cannot call a remote URL (http://, for example).

Controlling QuickTime Using JavaScript

QuickTime exposes a powerful set of objects, properties, and methods to JavaScript. The objects include
QuickTime itself, the browser plug-in, any embedded movies, and all the tracks within those movies.

The methods allow you to control a movie—start it, stop it, step it forward or back, or replace it with another
movie. Setting properties allows you to control how a movie behaves—enable and disable tracks, select a
language, change a video track’s size, position, and rotation, modify a sound track’s volume, set the movie’s
rate of play and direction, set or unset looping, and so on.

Getting properties allows you to obtain information—the installed version of the QuickTime plug-in, the
duration of a movie, what percentage of it has been downloaded, whether it is playing or has finished, how
many tracks it has, and more.

Recent versions of the QuickTime plug-in are fully scriptable using JavaScript in most browsers for the Mac
OS and Windows. There are exceptions, however, depending on the QuickTime version, browser type, browser
version, and operating system.

Supported Interfaces

Not all browsers support communication between JavaScript and plug-ins. Those that support such
communication do so using a variety of interfaces, including LiveConnect, COM (ActiveX), XPCOM, npruntime,
and Cocoa. QuickTime currently supports all of these interfaces.

Note: Netscape first introduced JavaScript support using the LiveConnect interface. Netscape 6, FireFox,
and Mozilla 1.0 support JavaScript using the newer XPCOM interface. Safari 1.3 and later for Macintosh also
support a Cocoa interface. Internet Explorer for Windows allows JavaScript to interact with plug-ins using
the COM interface. Current versions of Mozilla, Opera, and Safari for Windows and Macintosh support
npruntime.

Support for LiveConnect was added to QuickTime in version 4.1. Support for COM, XPCOM, and Cocoa were
added in QuickTime 6. Support for npruntime was added in QuickTime 7.1.6.

Supported Browsers and Operating Systems

The QuickTime plug-in is scriptable from all browsers that support the LiveConnect, XPCOM, Cocoa, npruntime,
or COM interface. This includes all versions of Netscape and Mozilla for Windows and Macintosh, AOL 5 and
later for Windows, Firefox, Opera, MSN 6 and later, and all versions of Internet Explorer for Windows.

In QuickTime 7 and later, the QuickTime plug-in is scriptable from the Safari browser; Safari 2.0 or later is
required (Safari 1.3 or later is supported on Panther). Safari for Windows is also supported.

Controlling QuickTime Using JavaScript 15
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Before You Start

The browser must load a copy of the QuickTime plug-in before you can query or control QuickTime using
JavaScript. In addition, the interface between the browser and the plug-in must be initialized. In most cases,
you also want to give an embedded movie a name so it can be addressed by name in your script.

This is accomplished by the following steps:

 ■ Use the HTML <EMBED> tag and <OBJECT> tag to cause the browser to load a copy of the QuickTime
plug-in.

 ■ Set the attribute EnableJavaScript=”true” in the <EMBED> tag.

 ■ Set the <OBJECT> id attribute and the <EMBED>NAME attribute to a name for the movie. Use the same
name for both attributes.

 ■ If you are using QuickTime DOM events, set an id attribute for the <EMBED> tag as well, using a unique
value.

The easiest way to perform these steps is to include the AC_QuickTime.js script and pass the name and
id attributes, set to the same value, along with the movie url and other parameters.

An example that loads the QuickTime plug-in, enables JavaScript, and gives a name to a movie is shown in
listing 1-3.

Listing 1-3 Load QuickTime, enable JavaScript, assign a name

<OBJECT
classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
codebase="http://www.apple.com/qtactivex/qtplugin.cab"
width="320" height="256"
id="movie1">

<PARAM name="src" value="MyMovie.mov">

<EMBED HEIGHT=256 WIDTH=320
SRC="MyMovie.mov"
TYPE="video/quicktime"
PLUGINSPAGE="www.apple.com/quicktime/download"
EnableJavaScript="true"
NAME="movie1"
/>

</OBJECT>

You can dramatically shorten the previous code example by taking advantage of the AC_QuickTime.js
file, as described in “Using JavaScript to Detect QuickTime” (page 9). The shortened code is shown in Listing
1-4.

Listing 1-4 Enabling JavaScript Using AC_QuickTime.js

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '320', '256', '', 'EnableJavaScript', 'True',
 'emb#NAME' , 'movie1' , 'obj#id' , 'movie1') ;
</script>

16 Controlling QuickTime Using JavaScript
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

See HTML Scripting Guide for QuickTimefor more information about the <EMBED> and <OBJECT> tags and the
attributes or parameters that can be passed to QuickTime.

Addressing QuickTime Movies

JavaScript treats each embedded QuickTime movie in a web page as a separately addressable object.

All methods are addressed to a movie. Methods that act on a movie are addressed to the target movie.
Methods that operate on a track are addressed to the track’s parent movie (the track is specified in a
parameter). Methods that operate on QuickTime or the QuickTime plug-in can be addressed to any movie
embedded in the document.

Movies can be identified by name if there is a NAME attribute in the movie’s EMBED tag and an id attribute
in the movie’s OBJECT tag. Internet Explorer for Windows uses the id attribute. All other browsers use the
NAME parameter. Both NAME and id should be set to the same value.

Because Internet Explorer and some other browsers do not always support the embeds[] array, it is
recommended that you assign a name to each movie and address the movie by name in your script, instead
of addressing movies by their place in the document.embeds[] array.

JavaScript Usage Example

Listing 1-5 gives an example of JavaScript usage with QuickTime.

Listing 1-5 Using JavaScript to play, stop, and replace a QuickTime movie

<html>
 <head>
 <title>Simple QuickTime Movie Controls</title>

<script src="AC_QuickTime.js" language="JavaScript" type="text/javascript">
</script>
 </head>

 <body >

 <P>
 This page uses JavaScript to control a QuickTime movie...
 </P>
<div align=center>
 <table>
 <tr>
 <td width=200>
 <script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov', '180','160', '',
 'obj#id', 'movie1', 'emb#name', 'movie1', 'enablejavascript', 'true');
 </script>
 <P> Movie1 </P>
 </td>

 <td width=200>
 <script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyOtherMovie.mov', '180','160', '',

Controlling QuickTime Using JavaScript 17
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

 'obj#id', 'movie2', 'emb#name', 'movie2', 'enablejavascript', 'true');
 </script>
 <P> Movie2 </P>
 </td>
 </tr>
 </table>
</div>

 <P>Play and Stop Movies:

 Play Movie1

 Stop Movie1

 Play Movie2

 Stop Movie2

 </P>

 <P>Replace One Movie with Another:

 movie1.SetURL(MyOtherMovie.mov)

 movie1.SetURL(MyMovie.mov)

 movie2.SetURL(MyOtherMovie.mov)

movie2.SetURL(MyMovie.mov)

 </P>

 </body>
 </html>

QuickTime DOM Events

The browser plug-ins for QuickTime 7.2.1 and later include the ability to emit Document Object Model (DOM)
events. DOM events can be emitted when the plug-in is instantiated and ready to interact with JavaScript,
at various points during a movie’s loading process, when playback has begun, paused, or ended, or in the
event of an error. JavaScript functions can be set to "listen" for particular DOM events. Whenever the DOM
event occurs, the listener function is called.

This allows you to create web pages that detect events such as movie loading, playing, pausing, or ending,
without having to create JavaScript timing loops or constantly poll the plug-in for status. It also allows you
to execute JavaScript functions in response to various movie events without sending javascript:// URLs
from a movie.

The plug-in posts standard DOM events, so in browsers that support the W3C's DOM Level 2 Event Specification
(http://www.w3.org/TR/DOM-Level-2-Events/) you use the addEventListener() method to monitor for
the events.

Safari 3.0 and FireFox 2.0 are examples of browsers that support the W3C standards sufficiently to work with
the methods described in this document.

Internet Explorer version 5 and later supports a slightly different method that is essentially equivalent:
attachEvent().

18 QuickTime DOM Events
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

http://www.w3.org/TR/DOM-Level-2-Events/

For a page to work correctly whether visitors are using browsers that support the W3C standards or using
Internet Explorer, you must include JavaScript code for both the addEventListener() function and the
attachEvent() function.

All the examples in this document use both methods and should work with all W3C-compliant browsers,
and well as with Internet Explorer.

Important: The user must have QuickTime 7.2.1 or later installed in order to receive DOM events.

Summary of DOM Events

QuickTime can emit DOM events when the plug-in is instantiated and ready to interact with JavaScript, at
various points during a movie’s loading process, when playback has begun, paused, or ended, or in the event
of an error. The following list shows the DOM events that can be listened for. Note that all QuickTime DOM
events begin with the prefix “qt_” to prevent name space collisions.

 ■ qt_begin — The plug in has been instantiated and can interact with JavaScript.

 ■ qt_loadedmetadata — The movie header information has been loaded or created. The duration,
dimensions, looping state, and so on are now known.

 ■ qt_loadedfirstframe — The first frame of the movie has been loaded and can be displayed. (The
frame is displayed automatically at this point.)

 ■ qt_canplay — Enough media data has been loaded to begin playback (but not necessarily enough to
play the entire file without pausing).

 ■ qt_canplaythrough — Enough media data has been loaded to play through to the end of the file
without having to pause to buffer, assuming data continues to come in at the current rate or faster. (If
the movie is set to autoplay, it will begin playing now.)

 ■ qt_durationchange — The media file’s duration is available or has changed. (A streaming movie, a
SMILmovie, or a movie with a QTNEXT attribute may load multiple media segments or additional movies,
causing a duration change.)

 ■ qt_load — All media data has been loaded.

 ■ qt_ended — Playback has stopped because end of the file was reached. (If the movie is set to loop, this
event will not occur.)

 ■ qt_error — An error occurred while loading the file. No more data will be loaded.

 ■ qt_pause — Playback has paused. (This happens when the user presses the pause button before the
movie ends.)

 ■ qt_play — Playback has begun.

 ■ qt_progress — More media data has been loaded. This event is fired no more than three times per
second.

This event occurs repeatedly until the qt_load event or qt_error event. The last progress event may
or may not coincide with the loading of the last media data. Use the progress function to monitor
progress, but do not rely on it to determine whether the movie is completely loaded. Use the qt_load
function in conjunction with the qt_progress function to monitor load progress and determine when
loading is complete.

QuickTime DOM Events 19
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

 ■ qt_waiting — Playback has stopped because no more media data is available, but more data is
expected. (This usually occurs if the user presses the play button prior to the qt_canplaythrough
event. It can also occur if the data throughput slows during movie playback, and the buffer runs dry.)

 ■ qt_stalled — No media has been received for approximately three seconds.

 ■ qt_timechanged — The current time has been changed (current time is indicated by the position of
the playhead).

 ■ qt_volumechange — The audio volume or mute attribute has changed.

Enabling DOM Events

The QuickTime plug-in will emit DOM events only if this feature is explicitly enabled by setting postdomevents
true in the <OBJECT> or <EMBED> tag.

In Internet Explorer you must also ensure that the <HEAD> element contains an <OBJECT> element for the
“binary behavior” object (clsid CB927D12-4FF7-4a9e-A169-56E4B8A75598) that emits DOM events.
The <OBJECT> tag that invokes the plug-in must include a style attribute that references the “binary
behavior” object's ID, using the following syntax: style="behavior:url(#BinaryBehaviorID)".

For example, if the binary behavior object has the ID “qt_event_source”, the object tag that embeds the
movie must include the attribute style='behavior:url(#qt_event_source)'. The necessary tags to
perform these actions are automatically inserted by the AC_QuickTime.js script when the postdomevents
parameter is set true.

Note: The ID for the <EMBED> and <OBJECT> tags must have unique values, but the <EMBED> NAME parameter
can have the same value as the <OBJECT> ID to simplify movie addressing from JavaScript.

Listing 1-6 Enabling DOM Events Using AC_QuickTime.js

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '320', '256', '', 'EnableJavaScript', 'True',
 'postdomevents', 'True', 'emb#NAME' , 'movie1' , 'obj#id' , 'movie1', 'emb#id',
 'movie_embed1') ;
</script>

If you prefer not to use the AC_QuickTime.js script to create the <OBJECT> and <EMBED> tags, the following
listing shows the syntax for creating the necessary tags manually.

Listing 1-7 Enabling DOM Events Manually

<object id="qt_event_source" classid="clsid:CB927D12-4FF7-4a9e-A169-56E4B8A75598"
 codebase="http://www.apple.com/qtactivex/qtplugin.cab#version=7,2,1,0"
 ></object>
<object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 codebase="http://www.apple.com/qtactivex/qtplugin.cab#version=7,2,1,0"

 width="320" height="256" type="video/quicktime" id="movie1"
 style="behavior:url(#qt_event_source);">

 <param name="src" value="MyMovie.mov" /> <param name="postdomevents"
 value="true" />
 <embed

20 QuickTime DOM Events
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

 src="MyMovie.mov"
 width="320" height="256"
 id="movie_embed1"
 name="movie1"
 postdomevents="true">
 </embed>
 </object>

Listening For DOM Events

In order to respond to DOM events, you need to create and register a “listener” function for each DOM event
you are interested in.

For browsers that work with the W3C DOM Level 2 Event Specification, use the addEventListener()
function; for Internet Explorer, use the attachEvent() function and add the prefix “on” to the event. The
following listing gives an example.

Listing 1-8 Cross-platform event listener registration

<script language="javascript" type="text/javascript">
function myAddListener(obj, evt, handler, captures)
 {
 if (document.addEventListener)
 obj.addEventListener(evt, handler, captures);
 else
 // IE
 obj.attachEvent('on' + evt, handler);
 }
</script>

Using DOM Events to Monitor Movie Loading

Here’s an example of a web page that listens for the DOM event emitted periodically when a movie is loading,
and displays the percent of the movie loaded so far. It also monitors for the movie loaded event, and overwrites
the progress message with a “movie loaded” message when the movie is fully loaded.

Listing 1-9 Monitoring movie loading using DOM events

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html140/DTD/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <script src="AC_QuickTime.js" language="JavaScript" type="text/javascript">
 </script>

 <script language ="JavaScript" type="text/javascript">
 <!--
 /* define function that shows percentage of movie loaded */
 function showProgress()
 {
 var percentLoaded = 0 ;
 percentLoaded = parseInt((document.movie1.GetMaxTimeLoaded() /
document.movie1.GetDuration()) * 100);

QuickTime DOM Events 21
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

 document.getElementById("loadStatus").innerHTML = 'Movie loading: ' +
percentLoaded + '% complete...';
 }
 /* define function that executes when movie loading is complete */
 function movieLoaded()
 {
 document.getElementById("loadStatus").innerHTML = "Movie Loaded" ;
 }

 /* define function that adds another function as a DOM event listener */
 function myAddListener(obj, evt, handler, captures)
 {
 if (document.addEventListener)
 obj.addEventListener(evt, handler, captures);
 else
 // IE
 obj.attachEvent('on' + evt, handler);
 }

 /* define functions that register each listener */
 function RegisterListener(eventName, objID, embedID, listenerFcn)
 {
 var obj = document.getElementById(objID);
 if (!obj)
 obj = document.getElementById(embedID);
 if (obj)
 myAddListener(obj, eventName, listenerFcn, false);
 }

 /* define a single function that registers all listeners to call onload */
 function RegisterListeners()
 {
 RegisterListener('qt_progress', 'movie1', 'qtmovie_embed', showProgress);
 RegisterListener('qt_load', 'movie1', 'qtmovie_embed', movieLoaded);
 }

 //-->
 </script>
 <title>JavaScript Movie Monitor</title>
 </head>

<body onload="RegisterListeners()">
<div align=center>
<h2>Movie with JavaScript Progress/Load Monitors</h2>

<script language="javascript" type="text/javascript">
 QT_WriteOBJECT('MyMovie.mov' , '320', '256', '', 'EnableJavaScript', 'True',
'postdomevents', 'True', 'emb#NAME' , 'movie1' , 'obj#id' , 'movie1', 'emb#id',
 'qtmovie_embed') ;
</script>

 <p ID="loadStatus">
 MOVIE LOADING...
 </p>
 <p> Play </p>
 <p> Stop </p>
</div>
</body>

22 QuickTime DOM Events
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

</html>

Monitoring and Controlling Multiple Movies

You can control and monitor multiple movies on a single web page using JavaScript controls and DOM
events. You need to give each movie a unique name in the <EMBED> tag, a matching ID in the <object>
tag, as well as a unique ID in the <EMBED> tag.

Create and register DOM event listeners for each movie, using the <EMBED> and <OBJECT> IDs.

Create JavaScript controls for each movie, using the <EMBED> NAME, which is the same as the <OBJECT>
ID.

For example, you might have two movies, the first with an <OBJECT> ID and <EMBED> NAME of movie1,
and an <EMBED> ID of movie_embed1, and a second movie with an <OBJECT> ID and <EMBED> NAME of
movie2, and an <EMBED> ID of movie_embed2. Register DOM event listeners for movie1/movie_embed1
and movie2/movie_embed2, and create JavaScript controls for movie1 and movie2.

The following listing is an example of a web page that monitors the load progress and load completion of
two movies, and provides play and stop controls for each movie in JavaScript.

Listing 1-10 Web page that monitors and controls two movies using JavaScript and DOM events

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html140/DTD/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <script src="AC_QuickTime.js" language="JavaScript" type="text/javascript">
 </script>

 <script language ="JavaScript" type="text/javascript">
 <!--
 /* define function that shows percentage of movie 1 loaded */
 function showProgress()
 {
 var percentLoaded = 0 ;
 percentLoaded = parseInt((document.movie1.GetMaxTimeLoaded() /
document.movie1.GetDuration()) * 100);
 document.getElementById("loadStatus1").innerHTML = 'Movie loading: ' +
 percentLoaded + '% complete...';
 }
 /* define function that executes when movie1 loading is complete */
 function movieLoaded()
 {
 document.getElementById("loadStatus1").innerHTML = "Movie Loaded" ;
 }
 /* define function that shows percentage of movie 2 loaded */
 function showProgress2()
 {
 var percentLoaded = 0 ;
 percentLoaded = parseInt((document.movie2.GetMaxTimeLoaded() /
document.movie2.GetDuration()) * 100);
 document.getElementById("loadStatus2").innerHTML = 'Movie loading: ' +
 percentLoaded + '% complete...';
 }

QuickTime DOM Events 23
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

 /* define function that executes when movie2 loading is complete */
 function movieLoaded2()
 {
 document.getElementById("loadStatus2").innerHTML = "Movie Loaded" ;
 }
 /* define function that adds another function as a listener for a DOM event
 */
 function myAddListener(obj, evt, handler, captures)
 {
 if (document.addEventListener)
 obj.addEventListener(evt, handler, captures);
 else
 // IE
 obj.attachEvent('on' + evt, handler);
 }

 /* define functions that register each listener */
 function RegisterListener(eventName, objID, embedID, listenerFcn)
 {
 var obj = document.getElementById(objID);
 if (!obj)
 obj = document.getElementById(embedID);
 if (obj)
 myAddListener(obj, eventName, listenerFcn, false);
 }

 /* define a single function that registers all listeners to call onload */
 function RegisterListeners()
 {
 RegisterListener('qt_progress', 'movie1', 'qtmovie_embed', showProgress);
 RegisterListener('qt_load', 'movie1', 'qtmovie_embed', movieLoaded);
 RegisterListener('qt_progress', 'movie2', 'qtmovie_embed2', showProgress2);
 RegisterListener('qt_load', 'movie2', 'qtmovie_embed2', movieLoaded2);
 }
 //-->
 </script>
 <title>JavaScript Movie Controls and Monitors</title>
 </head>
<body onload="RegisterListeners()">

<div align=center>
<h2>Two Movies with JavaScript Play/Stop Controls
and Progress/Load
Monitors</h2>
<script language="javascript" type="text/javascript">
QT_WriteOBJECT('MyMovie.mov', '360','256', '', 'obj#id', 'movie1', 'emb#id',
'qtmovie_embed', 'emb#name', 'movie1', 'postdomevents', 'true',
'enablejavascript', 'true');
</script>

<script language="javascript" type="text/javascript">
QT_WriteOBJECT('MyOtherMovie.mov', '360','256', '', 'obj#id', 'movie2', 'emb#id',
 'qtmovie_embed2', 'emb#name', 'movie2', 'postdomevents', 'true',
'enablejavascript', 'true');
</script>

<table width="100%">
<tr>
<td align=center>

24 QuickTime DOM Events
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

<P ID="loadStatus1">
MOVIE LOADING...
</p>
</td>
<td align=center>
<P ID="loadStatus2">
MOVIE LOADING...
</p>
</td>
</tr>

<tr>
<td align=center>
 <P> Play 1 </P>
</td>
<td align=center>
 <P> Play 2 </P>
</td>
</tr>
<tr>
<td align=center>
 <P> Stop 1 </P>
</td>
<td align=center>
 <P> Stop 2 </P>
</td>
</tr>
</table>
</div>
</body>
</html>

QuickTime JavaScript Reference

QuickTime exposes a number of methods to JavaScript. Some take the form of commands that operate on
movies, such as Play(),Stop(),Rewind(), and so on. The rest operate on properties of QuickTime as a
whole, the QuickTime plug-in, movies, or tracks. Most of these properties can be read or written using
complementary Get and Set methods. Other properties, such as the QuickTime version, are read-only.

Movie Commands

Movie commands are addressed to a specific movie. For example, the following line of code plays a movie
whose NAME and id are set to “Movie1.”

document.movie1.Play();

Play

void Play()

Plays the movie at the default rate, starting from the movie’s current time.

Stop

QuickTime JavaScript Reference 25
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

void Stop() Example:
document.movie1.Stop();

Stops the movie without changing the movie’s current time.

Rewind

void Rewind()

Sets the current time to the movie’s start time and pauses the movie.

Step

void Step(int count)

Steps the movie forward or backward the specified number of frames from the point at which the command
is received. If the movie’s rate is non-zero, it is paused.

ShowDefaultView

void ShowDefaultView()

Displays a QuickTime VR movie’s default node, using the default pan angle, tilt angle, and field of view as
set by the movie’s author.

GoPreviousNode

void GoPreviousNode()

Returns to the previous node in a QuickTime VR movie (equivalent to clicking the Back button on the VR
movie controller).

GoToChapter

void GoToChapter(string chapterName)

Takes a chapter name and sets the movie's current time to the beginning of that chapter. See also:
GetChapterName and GetChapterCount in movie properties.

QuickTime Properties

Methods that get or set a QuickTime property can be addressed to any movie embedded in the document.
For example, both lines in the following code snippet return the same information from a page with two
embedded movies, named MovieOne and MovieTwo.

myVar1=document.MovieOne.GetQuickTimeVersion();
myVar2=document.MovieTwo.GetQuickTimeVersion();

GetQuickTimeVersion

string GetQuickTimeVersion()

Returns the version of QuickTime.

GetQuickTimeLanguage

26 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

string GetQuickTimeLanguage()

Returns the user’s QuickTime language (set through the plug-in’s Set Language dialog).

GetQuickTimeConnectionSpeed

int GetQuickTimeConnectionSpeed()

Returns the connection speed setting from the users QuickTime preferences.

GetIsQuickTimeRegistered

boolean GetIsQuickTimeRegistered()

Returns true if the user is registered for the Pro version of QuickTime; otherwise returns false.

GetComponentVersion

string GetComponentVersion(string type, string subType, string manufacturer)

Returns the version of a specific QuickTime component. The component is specified using a four character
string for the type, subtype, and manufacturer. For example, to check the version of Apple’s JPEG graphics
importer call GetComponentVersion> 'grip','JPEG','appl').'0' is a wildcard for any field. If the
component is not available, 0.0 is returned.

Plug-in Properties

GetPluginVersion

string GetPluginVersion()

Returns the version of the QuickTime plug-in.

ResetPropertiesOnReload

boolean GetResetPropertiesOnReload()

void SetResetPropertiesOnReload(boolean reset)

By default, most movie and plug-in properies are reset when a new movie is loaded. For example, when a
new movie loads, the default controller setting is true for a linear movie and false for a VR movie, regardless
of the prior setting. If this property is set to false, the new movie inherits the settings in use with the
current movie.

Movie Properties

Like movie commands, methods that get or set movie properties are addressed to a specific movie. For
example, the following code snippet set the movie named MovieOne to autoplay.

document.MovieOne.SetAutoPlay(true);

GetPluginStatus

string GetPluginStatus()

QuickTime JavaScript Reference 27
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

GetPluginStatus returns a string with the status of the current movie. Possible states are:

”Waiting”—waiting for the movie data stream to begin
”Loading”—data stream has begun, not able to play/display the movie yet
”Playable”—movie is playable, although not all data has been downloaded
”Complete”—all data has been downloaded
”Error: <error number>”—the movie failed with the specified error number

Note: Even though the method is named GetPluginStatus it gets the status of a specific movie, not the
status of the plug-in as a whole. If more than one movie is embedded in a document, there can be a different
status for each movie. For example, one movie could be playable while another is still loading.

AutoPlay

boolean GetAutoPlay()

void SetAutoPlay(boolean autoPlay)

Get and set whether a movie automatically starts playing as soon as it can. The Set method is roughly
equivalent to setting the AUTOPLAY parameter in the <EMBED> tag, but the @HH:MM:SS:FF feature is not yet
supported in JavaScript.

ControllerVisible

boolean GetControllerVisible()

void SetControllerVisible(boolean visible)

Get and set whether a movie has a visible controller. The Set method is equivalent to setting the CONTROLLER
parameter in the <EMBED> tag.

Rate

float GetRate()

void SetRate(float rate)

Get and set the playback rate of the movie. A rate of 1 is the normal playback rate. A paused movie has a
rate of 0. Fractional values are slow motion, and values greater than one are fast-forward. Negative values
indicate that the movie is playing backward. Setting the rate of a paused movie to a nonzero value starts the
movie playing.

Note: Rate goes to zero when the movie finishes playing or is stopped (by the user, for example). You can
use the GetTime and GetDuration functions to determine whether the movie is stopped at the end, the
beginning (time zero), or at some point in between. You may also want the call GetIsLooping to determine
whether the movie will end spontaneously.

Time

int GetTime()

void SetTime(int time)

28 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Get and set the current time of a movie. Setting this property causes a movie to go to that time in the movie
and stop.

Volume

int GetVolume()

void SetVolume(int volume)

Get and set the audio volume of the movie. A negative value mutes the movie. The Set method is equivalent
to setting the VOLUME parameter in the <EMBED> tag.

Mute

boolean GetMute()

void SetMute(boolean mute)

Get and set the audio mute of a movie while maintaining the magnitude of the volume, so turning mute off
restores the volume.

MovieName

string GetMovieName()

void SetMovieName(string movieName)

Get and set a name that can be used by a wired sprite when targeting an external movie. The Set method is
equivalent to setting the MOVIENAME parameter in the <EMBED> tag.

MovieID

int GetMovieID()

void SetMovieID(int movieID)

Get and set an ID that can be used by a wired sprite when targeting an external movie. The Set method is
equivalent to setting the MOVIEID parameter in the <EMBED> tag.

Note: MovieID is not the same as the NAME parameter in the <EMBED> tag or the id parameter in the
<OBJECT> tag. MovieID is used for wired sprite addressing, not JavaScript addressing.

GetChapterCount

int GetChapterCount()

Returns the number of chapters in the movie.

GetChapterName

string GetChapterName(int)

Takes a chapter number and returns the chapter name.

StartTime

void SetStartTime(int time)

QuickTime JavaScript Reference 29
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Get and set the time at which a movie begins to play and the time at which it stops or loops when playing
in reverse. Initially, the start time of a movie is set to 0 unless specified in the STARTTIME parameter in the
<EMBED> tag. The start time cannot be set to a time greater than the end time. The Set method is equivalent
to setting the STARTTIME parameter in the <EMBED> tag.

EndTime

int GetEndTime()

void SetEndTime(int time)

Get and set the time at which a movie stops playing or loops. The end time of a movie is initially set to its
duration, unless specified in the ENDTIME parameter in the <EMBED> tag. The end time cannot be set to a
time greater than the movie’s duration. The Set method is equivalent to setting the ENDTIME parameter in
the <EMBED> tag.

BgColor

string GetBgColor()

void SetBgColor(string color)

Get and set the color used to fill any space allotted to the plug-in by the <EMBED> tag and not covered by
the movie. The Set method is equivalent to setting the BGCOLOR parameter in the <EMBED> tag and takes
the same values. Regardless of the syntax used to specify the color, GetBgColor() always returns the color
as a number—for example, if the background color is set to Navy,GetBgColor() returns #000080.

IsLooping

boolean GetIsLooping()

void SetIsLooping(boolean loop)

Get and set whether a movie loops when it reaches its end. A movie can loop either by restarting when it
reaches the end or by playing backward when it reaches the end, then restarting when it reaches the
beginning, depending on the LoopIsPalindrome value. Using the SetIsLooping method is equivalent
to setting the LOOP parameter to true or false in the <EMBED> tag.

LoopIsPalindrome

boolean GetLoopIsPalindrome()

void SetLoopIsPalindrome(boolean loop)

Get and set whether a looping movie reverses direction when it loops, alternately playing backward and
forward. The loop property must be true for this to have any effect. Setting both IsLooping and
LoopIsPalindrome to true is equivalent to setting the LOOP parameter to Palindrome in the <EMBED>
tag.

PlayEveryFrame

boolean GetPlayEveryFrame()

void SetPlayEveryFrame(boolean playAll)

30 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Get and set whether QuickTime should play every frame in a movie even if it gets behind (playing in slow
motion rather than dropping frames). The sound is muted when playAll is set true. The Set method is
equivalent to setting the PLAYEVERYFRAME parameter in the <EMBED> tag.

HREF

string GetHREF()

void SetHREF(string url)

Get and set the URL that is invoked by a mouse click in a movie’s display area. The URL can specify a web
page, a QuickTime movie, a live streaming session, or be a JavaScript function name. The Set method is
equivalent to setting the HREF parameter in the <EMBED> tag.

Target

string GetTarget()

void SetTarget(string target)

Get and set the target for a movie’s HREF parameter. The target can be an existing frame or browser window,
a new browser window, myself (the QuickTime plug-in), or quicktimeplayer. The Set method is equivalent
to setting the TARGET parameter in the <EMBED> tag.

QTNEXTUrl

string GetQTNEXTUrl(int index)

void SetQTNEXTUrl(int index, string url)

Get and set the URL and target for a specified item in a sequence. The URL of the first item in the sequence
is invoked when the currently selected movie finishes. If the URL specifies a QuickTime movie and the special
target myself, the next specified URL in the sequence is invoked when that movie finishes, and so on. The
Set method is equivalent to setting the QTNEXTn parameter in the <EMBED> tag.

URL

string GetURL()

Returns a movie’s full URL.

void SetURL(string url)

Replaces a movie with another movie specified by the URL.

KioskMode

boolean GetKioskMode()

void SetKioskMode(boolean kioskMode)

Set and get whether kiosk mode is currently set. In kiosk mode, the QuickTime plug-in does not allow the
viewer to save a movie to disk. Setting kioskMode to true is equivalent to setting the KIOSKMODE parameter
in the <EMBED> tag.

GetDuration

int GetDuration()

QuickTime JavaScript Reference 31
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Returns the length of the movie (in the movie’s time scale units).

GetMaxTimeLoaded

int GetMaxTimeLoaded()

Returns the amount of the movie that has been downloaded (in the movie’s time scale units).

GetTimeScale

int GetTimeScale()

Returns the time scale of the movie in units per second. For example, if GetTimeScale() returns 30, each
movie time scale unit represents 1/30 of a second.

GetMovieSize

int GetMovieSize()

Returns the size of the movie in bytes.

GetMaxBytesLoaded

int GetMaxBytesLoaded()

Returns the number of bytes of the movie that have been downloaded.

GetTrackCount

int GetTrackCount()

Returns the total number of tracks in the movie.

Matrix

string GetMatrix()

void SetMatrix(string matrix)

Get and set a movie’s transformation matrix. QuickTime uses a 3 x 3 transformation matrix, represented in
JavaScript by three lines of three numbers separated by commas:

a, b, u
c, d, v
h, k, w

You can use a movie’s transformation matrix to scale, translate, and rotate the movie image. For details on
the transformation matrix, see Movie Internals.

Rectangle

string GetRectangle()

void SetRectangle(string rect)

Get and set the location and dimensions of the movie within the embed area.

32 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Note: Normally, the QuickTime plug-in keeps the movie centered within the embed area, even if the embed
area changes. Once a movie’s location is changed with SetRect or SetMatrix, the movie’s absolute location
within the embed area is maintained rather than centering it.

Language

string GetLanguage()

void SetLanguage(string language)

Get and set the movie’s current language. Setting the language causes any tracks associated with that
language to be enabled and tracks associated with other languages to be disabled. If no tracks are associated
with the specified language, the movie’s language is not changed.

Supported language names:

Albanian
Arabic
Belorussian
Bulgarian
Croatian
Czech
Danish
Dutch
English
Estonian
Faeroese
Farsi
Finnish
Flemish
French
German
Greek
Hebrew
Hindi
Hungarian
Icelandic
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Maltese
Norwegian
Polish
Portuguese
Romanian

QuickTime JavaScript Reference 33
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

Russian
Saamisk
Serbian
Simplified Chinese
Slovak
Slovenian
Spanish
Swedish
Thai
Traditional Chinese
Turkish
Ukrainian
Urdu
Yiddish

GetMIMEType

string GetMIMEType()

Returns the movie’s MIME type.

GetUserData

string GetUserData(string type)

Returns the movie user data text with the specified tag. The tag is specified with a four-character string; for
example, '©cpy' returns a movie’s copyright string. The following table contains a list of user data tags.

Table 1-1 User data strings

DataString

Movie’s name'©nam'

Copyright statement'©cpy'

Date the movie content was created'©day'

Name of movie’s director'©dir'

Edit dates and descriptions'©ed1' to '© ed9'

Indication of movie format (computer-generated, digitized, and so on)'©fmt'

Information about the movie'©inf'

Name of movie’s producer'©prd'

Names of performers'©prf'

Special hardware and software requirements'©req'

Credits for those who provided movie source content'©src'

34 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

DataString

Name of movie’s writer'©wrt'

GetIsVRMovie

boolean GetIsVRMovie()

Returns true if the movie is a QuickTime VR movie, false otherwise.

VR Movie Properties

VR movie properties are movie properties that are present only for movies that contain VR panoramas or VR
objects. To test for these properties, use the method GetIsVRMovie().

HotspotURL

string GetHotspotUrl(int hotspotID)

void SetHotspotUrl(int hotspotID, string url)

Get and set the URL associated with a specified VR movie hot spot. The Set method is equivalent to setting
the HOTSPOTn parameter in the <EMBED> tag.

HotspotTarget

string GetHotspotTarget(int hotspotID)

void SetHotspotTarget(int hotspotID, string target)

Get and set the target for a specified VR movie hot spot. The Set method is equivalent to setting the TARGETn
parameter in the <EMBED> tag.

PanAngle

float GetPanAngle()

void SetPanAngle(float angle)

Get and set the QuickTime VR movie’s pan angle (in degrees). The Set method is equivalent to setting the
PAN parameter in the <EMBED> tag.

TiltAngle

float GetTiltAngle()

void SetTiltAngle(float angle)

Get and set the QuickTime VR movie’s tilt angle (in degrees).The Set method is equivalent to setting the TILT
parameter in the <EMBED> tag.

FieldOfView

float GetFieldOfView()

QuickTime JavaScript Reference 35
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

void SetFieldOfView(float fov)

Get and set the QuickTime VR movie’s field of view (in degrees). Setting a narrower field of view causes the
VR to “zoom in.” Setting a wider field of view causes the VR to “zoom out.” The Set method is equivalent to
setting the FOV parameter in the <EMBED> tag.

GetNodeCount

int GetNodeCount()

Returns the number of nodes in a QuickTime VR movie.

GetNodeID

int GetNodeID()

Returns the ID of the current node in a QuickTime VR movie.

SetNodeID

void SetNodeID(int id)

Sets the current node (by ID) in a QuickTime VR movie (the movie goes to the node with the specified ID).

Track Properties

Track properties belong to a specific track within a movie. To get or set a track property, you must know
the track’s parent movie and the ordinal number of the track within the movie. When you get a movie’s
properties in QuickTime Player, the tracks are listed in numerical order: the first track listed is track 1, the
second is track 2, and so on. For example, the following code snippet disables the third track in a movie
named MovieOne.

document.MovieOne.SetTrackEnabled(3,false);

GetTrackName

string GetTrackName(int index)

Returns the name of the specified track.

GetTrackType

string GetTrackType(int index)

Returns the type of the specified track, such as video, sound, text, music, sprite, 3D, VR, streaming, movie,
Flash, or tween.

TrackEnabled

boolean GetTrackEnabled(int index)

void SetTrackEnabled(int index, boolean enabled)

Get and set the enabled state of a track.

SpriteTrackVariable

36 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

string GetSpriteTrackVariable(int trackIndex, int variableIndex)

void SetSpriteTrackVariable(int trackIndex, int variableIndex, string value)

Get and set the specified sprite track variable value in the specified track.

Note: You can get and set sprite variable values only in sprite tracks that already have defined variables.
You cannot use JavaScript to create a new variable or add it to a track.

QuickTime JavaScript Reference 37
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

38 QuickTime JavaScript Reference
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

QuickTime and JavaScript

This table describes the changes to JavaScript Scripting Guide for QuickTime.

NotesDate

Added new QuickTime JavaScript DOM events, workarounds for calling JavaScript
functions from QuickTime using Iframes, and JavaScript chapter functions.

2008-02-08

Documents new restrictions on using JavaScript from within QuickTime movies,
and a new JavaScript utility for generating tags to embed QuickTime in a
webpage.

2007-03-26

Updated to include Safari 1.3 for Panther and to reference the new ActiveX
control for Windows.

2005-10-04

Expanded the partial list of supported languages from 21 to the full set of 46.
Added replacing a movie to the sample code.

2005-06-04

New document describing how to use JavaScript with the QuickTime browser
plug-in and ActiveX control.

2005-04-08

39
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2008-02-08 | © 2004, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	JavaScript Scripting Guide for QuickTime
	Contents
	Tables and Listings
	Introduction
	QuickTime and JavaScript
	Using JavaScript to Detect QuickTime
	Using JavaScript to Embed QuickTime Content
	Executing JavaScript Functions From QuickTime
	Controlling QuickTime Using JavaScript
	Supported Interfaces
	Supported Browsers and Operating Systems
	Before You Start
	Addressing QuickTime Movies
	JavaScript Usage Example

	QuickTime DOM Events
	Summary of DOM Events
	Enabling DOM Events
	Listening For DOM Events
	Using DOM Events to Monitor Movie Loading
	Monitoring and Controlling Multiple Movies

	QuickTime JavaScript Reference
	Movie Commands
	QuickTime Properties
	Plug-in Properties

	Movie Properties
	VR Movie Properties

	Track Properties

	Revision History

