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Memory is an important system resource that all programs use. Programs must be loaded into memory before
they can run and, while running, they allocate additional memory (both explicitly and implicitly) to store and
manipulate program-level data. Making room in memory for a program’s code and data requires time and
resources and therefore affect the overall performance of the system. Although you cannot avoid using
memory altogether, there are ways to minimize the impact your memory usage has on the rest of the system.

This document provides background information about the memory systems of Mac OS X and iOS and how
you use them efficiently. You can use this information to tune your program’s memory usage by ensuring
you are allocating the right amount of memory at the right time. This document also provides tips on how
to detect memory-related performance issues in your program.

Organization of This Document

This programming topic includes the following articles:

 ■ “About the Virtual Memory System” (page 9) introduces the terminology and provides a high-level
overview of the virtual memory systems of Mac OS X and iOS.

 ■ “Tips for Allocating Memory” (page 15) describes the best techniques for allocating, initializing, and
copying memory. It also describes the proper ways to respond to low-memory notifications in iOS.

 ■ “Tracking Memory Usage” (page 25) describes the tools and techniques for analyzing your application’s
memory usage.

 ■ “Finding Memory Leaks” (page 37) describes the tools and techniques for finding memory leaks in your
application.

 ■ “Enabling the Malloc Debugging Features” (page 43) describes the environment variables used to enable
malloc history logging. You must set some of these variables before using some of the memory analysis
tools.

 ■ “Viewing Virtual Memory Usage” (page 47) describes the tools and techniques for analyzing your
application’s in-memory footprint.

Organization of This Document 7
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Efficient memory management is an important aspect of writing high performance code in both Mac OS X
and iOS. Tuning your memory usage can reduce both your application’s memory footprint and the amount
of CPU time it consumes. In order to properly tune your code though, you need to understand something
about how the underlying system manages memory.

Both Mac OS X and iOS include a fully-integrated virtual memory system that you cannot turn off; it is always
on. Both system also provide up to 4 gigabytes of addressable space per 32-bit process. In addition, Mac OS
X provides approximately 18 exabytes of addressable space for 64-bit processes. Even for computers that
have 4 or more gigabytes of RAM available, the system rarely dedicates this much RAM to a single process.

To give processes access to their entire 4 gigabyte or 18 exabyte address space, Mac OS X uses the hard disk
to hold data that is not currently in use. As memory gets full, sections of memory that are not being used
are written to disk to make room for data that is needed now. The portion of the disk that stores the unused
data is known as the backing store because it provides the backup storage for main memory.

Although Mac OS X supports a backing store, iOS does not. In iPhone applications, read-only data that is
already on the disk (such as code pages) is simply removed from memory and reloaded from disk as needed.
Writable data is never removed from memory by the operating system. Instead, if the amount of free memory
drops below a certain threshold, the system asks the running applications to free up memory voluntarily to
make room for new data. Applications that fail to free up enough memory are terminated.

Note:  Unlike most UNIX-based operating systems, Mac OS X does not use a preallocated disk partition for
the backing store. Instead, it uses all of the available space on the machine’s boot partition.

The following sections introduce terminology and provide a brief overview of the virtual memory system
used in both Mac OS X and iOS. For more detailed information on how the virtual memory system works,
see Kernel Programming Guide.

About Virtual Memory

Virtual memory allows an operating system to escape the limitations of physical RAM. The virtual memory
manager creates a logical address space (or “virtual” address space) for each process and divides it up into
uniformly-sized chunks of memory called pages. The processor and its memory management unit (MMU)
maintain a page table to map pages in the program’s logical address space to hardware addresses in the
computer’s RAM. When a program’s code accesses an address in memory, the MMU uses the page table to
translate the specified logical address into the actual hardware memory address. This translation occurs
automatically and is transparent to the running application.

As far as a program is concerned, addresses in its logical address space are always available. However, if an
application accesses an address on a memory page that is not currently in physical RAM, a page fault occurs.
When that happens, the virtual memory system invokes a special page-fault handler to respond to the fault
immediately. The page-fault handler stops the currently executing code, locates a free page of physical
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memory, loads the page containing the needed data from disk, updates the page table, and then returns
control to the program’s code, which can then access the memory address normally. This process is known
as paging.

If there are no free pages available in physical memory, the handler must first release an existing page to
make room for the new page. How the system release pages depends on the platform. In Mac OS X, the
virtual memory system often writes pages to the backing store. The backing store is a disk-based repository
containing a copy of the memory pages used by a given process. Moving data from physical memory to the
backing store is called paging out (or “swapping out”); moving data from the backing store back in to physical
memory is called paging in (or “swapping in”). In iOS, there is no backing store and so pages are are never
paged out to disk, but read-only pages are still be paged in from disk as needed.

In both Mac OS X and iOS, the size of a page is 4 kilobytes. Thus, every time a page fault occurs, the system
reads 4 kilobytes from disk. Disk thrashing can occur when the system spends a disproportionate amount
of time handling page faults and reading and writing pages, rather than executing code for a program.

Paging of any kind, and disk thrashing in particular, affects performance negatively because it forces the
system to spend a lot of time reading and writing to disk. Reading a page in from the backing store takes a
significant amount of time and is much slower than reading directly from RAM. If the system has to write a
page to disk before it can read another page from disk, the performance impact is even worse.

Details of the Virtual Memory System

The logical address space of a process consists of mapped regions of memory. Each mapped memory region
contains a known number of virtual memory pages. Each region has specific attributes controlling such things
as inheritance (portions of the region may be mapped from “parent” regions), write-protection, and whether
it is wired (that is, it cannot be paged out). Because regions contain a known number of pages, they are
page-aligned, meaning the starting address of the region is also the starting address of a page and the
ending address also defines the end of a page.

The kernel associates a VM object with each region of the logical address space. The kernel uses VM objects
to track and manage the resident and nonresident pages of the associated regions. A region can map to part
of the backing store or to a memory-mapped file in the file system. Each VM object contains a map that
associates regions with either the default pager or the vnode pager. The default pager is a system manager
that manages the nonresident virtual memory pages in the backing store and fetches those pages when
requested. The vnode pager implements memory-mapped file access. The vnode pager uses the paging
mechanism to provide a window directly into a file. This mechanism lets you read and write portions of the
file as if they were located in memory.

In addition to mapping regions to either the default or vnode pager, a VM object may also map regions to
another VM object. The kernel uses this self referencing technique to implement copy-on-write regions.
Copy-on-write regions allow different processes (or multiple blocks of code within a process) to share a page
as long as none of them write to that page. When a process attempts to write to the page, a copy of the
page is created in the logical address space of the process doing the writing. From that point forward, the
writing process maintains its own separate copy of the page, which it can write to at any time. Copy-on-write
regions let the system share large quantities of data efficiently in memory while still letting processes
manipulate those pages directly (and safely) if needed. These types of regions are most commonly used for
the data pages loaded from system frameworks.

Each VM object contains several fields, as shown in Table 1.
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Table 1 Fields of the VM object

DescriptionField

A list of the pages of this region that are currently resident in physical memory.Resident pages

The size of the region, in bytes.Size

The pager responsible for tracking and handling the pages of this region in backing store.Pager

Used for copy-on-write optimizations.Shadow

Used for copy-on-write optimizations.Copy

Flags indicating the state of various implementation details.Attributes

If the VM object is involved in a copy-on-write (vm_copy) operation, the shadow and copy fields may point
to other VM objects. Otherwise both fields are usually NULL.

Wired Memory

Wired memory (also called resident memory) stores kernel code and data structures that must never be
paged out to disk. Applications, frameworks, and other user-level software cannot allocate wired memory.
However, they can affect how much wired memory exists at any time. For example, an application that creates
threads and ports implicitly allocates wired memory for the required kernel resources that are associated
with them.

Table 2 lists some of the wired-memory costs for application-generated entities.

Table 2 Wired memory generated by user-level software

Wired Memory Used by KernelResource

16 kilobytesProcess

blocked in a continuation—5 kilobytes; blocked—21 kilobytesThread

116 bytesMach port

32 bytesMapping

2 kilobytes plus 200 bytes for each task that uses itLibrary

160 bytesMemory region

Wired Memory 11
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Note:  These measurements may change with each new release of the operating system. They are provided
here to give you a rough estimate of the relative cost of system resource usage.

As you can see, every thread, process, and library contributes to the resident footprint of the system. In
addition to your application using wired memory, however, the kernel itself requires wired memory for the
following entities:

 ■ VM objects

 ■ the virtual memory buffer cache

 ■ I/O buffer caches

 ■ drivers

Wired data structures are also associated with the physical page and map tables used to store virtual-memory
mapping information, Both of these entities scale with the amount of available physical memory. Consequently,
when you add memory to a system, the amount of wired memory increases even if nothing else changes.
When a computer is first booted into the Finder, with no other applications running, wired memory can
consume approximately 14 megabytes of a 64 megabyte system and 17 megabytes of a 128 megabyte
system.

Wired memory is not immediately released back to the free list when it becomes invalid. Instead it is “garbage
collected” when the free-page count falls below the threshold that triggers page out events.

Page Lists in the Kernel

The kernel maintains and queries three system-wide lists of physical memory pages:

 ■ The active list contains pages that are currently mapped into memory and have been recently accessed.

 ■ The inactive list contains pages that are currently resident in physical memory but have not been
accessed recently. These pages contain valid data but may be released from memory at any time.

 ■ The free list contains pages of physical memory that are not associated with any address space of VM
object. These pages are available for immediate use by any process that needs them.

When the number of pages on the free list falls below a threshold (determined by the size of physical memory),
the pager attempts to balance the queues. It does this by pulling pages from the inactive list. If a page has
been accessed recently, it is reactivated and placed on the end of the active list. In Mac OS X, if an inactive
page contains data that has not been written to the backing store recently, its contents must be paged out
to disk before it can be placed on the free list. (In iOS, modified but inactive pages must remain in memory
and be cleaned up by the application that owns them.) If an inactive page has not been modified and is not
permanently resident (wired), it is stolen (any current virtual mappings to it are destroyed) and added to the
free list. Once the free list size exceeds the target threshold, the pager rests.

The kernel moves pages from the active list to the inactive list if they are not accessed; it moves pages from
the inactive list to the active list on a soft fault (see “Paging In Process” (page 13)). When virtual pages are
swapped out, the associated physical pages are placed in the free list. Also, when processes explicitly free
memory, the kernel moves the affected pages to the free list.
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Paging Out Process

In Mac OS X, when the number of pages in the free list dips below a computed threshold, the kernel reclaims
physical pages for the free list by swapping inactive pages out of memory. To do this, the kernel iterates all
resident pages in the active and inactive lists, performing the following steps:

1. If a page in the active list is not recently touched, it is moved to the inactive list.

2. If a page in the inactive list is not recently touched, the kernel finds the page’s VM object.

3. If the VM object has never been paged before, the kernel calls an initialization routine that creates and
assigns a default pager object.

4. The VM object’s default pager attempts to write the page out to the backing store.

5. If the pager succeeds, the kernel frees the physical memory occupied by the page and moves the page
from the inactive to the free list.

Note:  In iOS, the kernel does not write pages out to a backing store. When the amount of free memory dips
below the computed threshold, the kernel flushes pages that are inactive and unmodified and may also ask
the running application to free up memory directly. For more information on responding to these notifications,
see “Responding to Low-Memory Warnings in iOS” (page 22).

Paging In Process

The final phase of virtual memory management moves pages into physical memory, either from the backing
store or from the file containing the page data. A memory access fault initiates the page-in process. A memory
access fault occurs when code tries to access data at a virtual address that is not mapped to physical memory.
There are two kinds of faults:

 ■ A soft fault occurs when the page of the referenced address is resident in physical memory but is currently
not mapped into the address space of this process.

 ■ A hard fault occurs when the page of the referenced address is not in physical memory but is swapped
out to backing store (or is available from a mapped file). This is what is typically known as a page fault.

When any type of fault occurs, the kernel locates the map entry and VM object for the accessed region. The
kernel then goes through the VM object’s list of resident pages. If the desired page is in the list of resident
pages, the kernel generates a soft fault. If the page is not in the list of resident pages, it generates a hard
fault.

For soft faults, the kernel maps the physical memory containing the pages to the virtual address space of
the process. The kernel then marks the specific page as active. If the fault involved a write operation, the
page is also marked as modified so that it will be written to backing store if it needs to be freed later.

For hard faults, the VM object’s pager finds the page in the backing store or from the file on disk, depending
on the type of pager. After making the appropriate adjustments to the map information, the pager moves
the page into physical memory and places the page on the active list. As with a soft fault, if the fault involved
a write operation, the page is marked as modified.

Paging Out Process 13
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Memory is an important resource for your application so it’s important to think about how your application
will use memory and what might be the most efficient allocation approaches. Most applications do not need
to do anything special; they can simply allocate objects or memory blocks as needed and not see any
performance degradation. For applications that use large amount of memory, however, carefully planning
out your memory allocation strategy could make a big difference.

The following sections describe the basic options for allocating memory along with tips for doing so efficiently.
To determine if your application has memory performance problems in the first place, you need to use the
Xcode tools to look at your application’s allocation patterns while it is running. For information on how to
do that, see “Tracking Memory Usage” (page 25).

Tips for Improving Memory-Related Performance

As you design your code, you should always be aware of how you are using memory. Because memory is an
important resource, you want to be sure to use it efficiently and not be wasteful. Besides allocating the right
amount of memory for a given operation, the following sections describe other ways to improve the efficiency
of your program’s memory usage.

Defer Your Memory Allocations

Every memory allocation has a performance cost. That cost includes the time it takes to allocate the memory
in your program’s logical address space and the time it takes to assign that address space to physical memory.
If you do not plan to use a particular block of memory right away, deferring the allocation until the time
when you actually need it is the best course of action. In particular, avoid allocating memory at launch time
if you do not plan on using that memory immediately. Instead, focus your initial memory allocations on the
objects needed to display your user interface and respond to input from the user. Defer other allocations
until the user issues starts interacting with your application and issuing commands. This lazy allocation of
memory saves time right away and ensures that any memory that is allocated is actually used.

Once place where lazy initialization can be somewhat tricky is with global variables. Because they are global
to your application, you need to make sure global variables are initialized properly before they are used by
the rest of your code. The basic approach often taken with global variables is to define a static variable in
one of your code modules and use a public accessor function to get and set the value, as shown in Listing
1.

Listing 1 Lazy allocation of memory through an accessor

MyGlobalInfo* GetGlobalBuffer()
{
    static MyGlobalInfo* sGlobalBuffer = NULL;
    if ( sGlobalBuffer == NULL )
        {
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            sGlobalBuffer = malloc( sizeof( MyGlobalInfo ) );
        }
        return sGlobalBuffer;
}

The only time you have to be careful with code of this sort is when it might be called from multiple threads.
In a multithreaded environment, you need to use locks to protect the if statement in your accessor method.
The downside to that approach though is that acquiring the lock takes a nontrivial amount of time and must
be done every time you access the global variable, which is a performance hit of a different kind. A simpler
approach would be to initialize all global variables from your application’s main thread before it spawns any
additional threads.

Initialize Memory Blocks Efficiently

Small blocks of memory, allocated using the malloc function, are not guaranteed to be initialized with
zeroes. Although you could use the memset function to initialize the memory, a better choice is to use the
calloc routine to allocate the memory in the first place. The calloc function reserves the required virtual
address space for the memory but waits until the memory is actually used before initializing it. This approach
is much more efficient than using memset, which forces the virtual memory system to map the corresponding
pages into physical memory in order to zero-initialize them. Another advantage of using the calloc function
is that it lets the system initialize pages as they’re used, as opposed to all at once.

Reuse Temporary Memory Buffers

If you have a highly-used function that creates a large temporary buffer for some calculations, you might
want to consider reusing that buffer rather than reallocating it each time you call the function. Even if your
function needs a variable buffer space, you can always grow the buffer as needed using the realloc function.
For multithreaded applications, the best way to reuse buffers is to add them to your thread-local storage.
Although you could store the buffer using a static variable in your function, doing so would prevent you
from using that function on multiple threads at the same time.

Caching buffers eliminates much of the overhead for functions that regularly allocate and free large blocks
of memory. However, this technique is only appropriate for functions that are called frequently. Also, you
should be careful not to cache too many large buffers. Caching buffers does add to the memory footprint of
your application and should only be used if testing indicates it would yield better performance.

Release Unused Memory

It is always important to release memory as soon as you are done using it. Forgetting to releasememory can
cause memory leaks, which reduce the amount of memory available to your application and impact
performance. Left unchecked, memory leaks can also put your application into a state where it cannot do
anything because it cannot allocate the required memory.

No matter which platform you are targeting, you should always eliminate memory leaks in your application.
In iPhone applications, you should also be more diligent about releasing memory the moment it is no longer
needed. Although being lazy is fine for allocating memory, you should never be lazy about releasing memory.
Use additional autorelease pools to release autoreleased objects more quickly or avoid autoreleased objects
altogether and simply release the memory immediately when you are done with it.

16 Tips for Improving Memory-Related Performance
2008-07-02   |   © 2003, 2008 Apple Inc. All Rights Reserved.

Tips for Allocating Memory



To help track down memory leaks, use the Instruments or MallocDebug applications or use the leaks
command-line tool. For more information about finding memory leaks, see “Finding Memory Leaks” (page
37).

Avoid Handles in Carbon

If you still have legacy code that you are moving from Mac OS 9 to Mac OS X, get rid of any code that uses
handles. The benefit offered by handles in Mac OS 9 is not relevant for applications built for Mac OS X.
Specifically, if you have code that calls HLock, HUnlock. HSetState, or HGetState, remove that code
entirely.

Memory Allocation Techniques

Because memory is such a fundamental resource, Mac OS X and iOS both provide several ways to allocate
it. Which allocation techniques you use will depend mostly on your needs, but in the end all memory allocations
eventually use the malloc library to create the memory. Even Cocoa objects are allocated using the malloc
library eventually. The use of this single library makes it possible for the performance tools to report on all
of the memory allocations in your application.

If you are writing a Cocoa application, you might allocate memory only in the form of objects using the alloc
method of NSObject. Even so, there may be times when you need to go beyond the basic object-related
memory blocks and use other memory allocation techniques. For example, you might allocate memory
directly using malloc in order to pass it to a low-level function call.

The following sections provide information about the malloc library and virtual memory system and how
they perform allocations. The purpose of these sections is to help you identify the costs associated with each
type of specialized allocation. You should use this information to optimize memory allocations in your code.

Note:  These sections assume you are using the system supplied version of the malloc library to do your
allocations. If you are using a custom malloc library, these techniques may not apply.

Allocating Objects

For Objective-C based applications, you allocate objects using one of two techniques. You can either use the
alloc class method, followed by a call to a class initialization method, or you can use the new class method
to allocate the object and call its default init method in one step. Regardless of which technique you use
to allocate objects, memory management for Objective-C objects is governed by the memory model you
use for your application. Mac OS X applications can choose between a managed memory model or a
garbage-collected memory model. (In iOS, applications can use only the managed memory model.) Which
model you choose is a matter of choice but has implications on other aspects of your application’s design
and memory behavior.

Applications that use the managed memory model are responsible for managing the deallocation of objects
through a proper set of retain, release, and autorelease messages. For optimal performance, you
should always release objects whenever possible and not autorelease them. The release method requires
less overhead than the autorelease method and lets the Objective-C runtime free up objects immediately
when their reference count reaches 0. If you must create large numbers of autoreleased objects, you should
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create more localized autorelease pools in your code so that you can release the objects they contain more
frequently. In both cases, you should use the Instruments application to look for leaked objects. In Mac OS
X, you can also use the leaks command-line tool to locate memory leaks. For more information on finding
leaks, see “Finding Memory Leaks” (page 37).

If you are writing a Mac OS X application and choose the garbage-collected memory model, you do not have
to worry about leaks but you should still be aware of other performance concerns. The garbage collector
takes cues from your code when determining which objects to release and which ones to keep. You may not
need to call the releasemethod explicitly any more but you still need to set instance variables to nilwhen
you no longer need the objects they reference. For efficiency, you should also minimize your use of finalize
methods for cleaning up your objects.

For more information about managing memory in Objective-C applications, see Memory Management
Programming Guide. For more information on the garbage collection memory model and how to use it in
Mac OS X applications, see Garbage Collection Programming Guide.

Allocating Small Memory Blocks

For small memory allocations, where small is anything less than a few virtual memory pages, malloc
suballocates the requested amount of memory from a list (or “pool”) of free blocks of increasing size. Any
small blocks you deallocate using the free routine are added back to the pool and reused on a “best fit”
basis. The memory pool is itself is comprised of several virtual memory pages that are allocated using the
vm_allocate routine and managed for you by the system.

When allocating any small blocks of memory, remember that the granularity for blocks allocated by the
malloc library is 16 bytes. Thus, the smallest block of memory you can allocate is 16 bytes and any blocks
larger than that are a multiple of 16. For example, if you call malloc and ask for 4 bytes, it returns a block
whose size is 16 bytes; if you request 24 bytes, it returns a block whose size is 32 bytes. Because of this
granularity, you should design your data structures carefully and try to make them multiples of 16 bytes
whenever possible.

Note:  By their nature, allocations smaller than a single virtual memory page in size cannot be page aligned.

Allocating Large Memory Blocks

For large memory allocations, where large is anything more than a few virtual memory pages, malloc
automatically uses the vm_allocate routine to obtain the requested memory. The vm_allocate routine
assigns an address range to the new block in the logical address space of the current process, but it does
not assign any physical memory to those pages right away. Instead, the kernel does the following:

1. It maps a range of memory in the virtual address space of this process by creating a map entry; the map
entry is a simple structure that defines the starting and ending addresses of the region.

2. The range of memory is backed by the default pager.

3. The kernel creates and initializes a VM object, associating it with the map entry.
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At this point there are no pages resident in physical memory and no pages in the backing store. Everything
is mapped virtually within the system. When your code accesses part of the memory block, by reading or
writing to a specific address in it, a fault occurs because that address has not been mapped to physical
memory. In Mac OS X, the kernel also recognizes that the VM object has no backing store for the page on
which this address occurs. The kernel then performs the following steps for each page fault:

1. It acquires a page from the free list and fills it with zeroes.

2. It inserts a reference to this page in the VM object’s list of resident pages.

3. It maps the virtual page to the physical page by filling in a data structure called the pmap. The pmap
contains the page table used by the processor (or by a separate memory management unit) to map a
given virtual address to the actual hardware address.

The granularity of large memory blocks is equal to the size of a virtual memory page, or 4096 bytes. In other
words, any large memory allocations that are not a multiple of 4096 are rounded up to this multiple
automatically. Thus, if you are allocating large memory buffers, you should make your buffer a multiple of
this size to avoid wasting memory.

Note:  Large memory allocations are guaranteed to be page-aligned.

For large allocations, you may also find that it makes sense to allocate virtual memory directly using
vm_allocate, rather than using malloc. The example in Listing 2 shows how to use the vm_allocate
function.

Listing 2 Allocating memory with vm_allocate

void* AllocateVirtualMemory(size_t size)
{
    char*          data;
    kern_return_t   err;

    // In debug builds, check that we have
    // correct VM page alignment
    check(size != 0);
    check((size % 4096) == 0);

    // Allocate directly from VM
    err = vm_allocate(  (vm_map_t) mach_task_self(),
                        (vm_address_t*) &data,
                        size,
                        VM_FLAGS_ANYWHERE);

    // Check errors
    check(err == KERN_SUCCESS);
    if(err != KERN_SUCCESS)
    {
        data = NULL;
    }

    return data;
}
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Allocating Memory in Batches

If your code allocates multiple, identically-sized memory blocks, you can use themalloc_zone_batch_malloc
function to allocate those blocks all at once. This function offers better performance than a series of calls to
malloc to allocate the same memory. Performance is best when the individual block size is relatively
small—less than 4K in size. The function does its best to allocate all of the requested memory but may return
less than was requested. When using this function, check the return values carefully to see how many blocks
were actually allocated.

Batch allocation of memory blocks is supported in Mac OS X version 10.3 and later and in iOS. For information,
see the /usr/include/malloc/malloc.h header file.

Allocating Shared Memory

Shared memory is memory that can be written to or read from by two or more processes. Shared memory
can be inherited from a parent process, created by a shared memory server, or explicitly created by an
application for export to other applications. Uses for shared memory include the following:

 ■ Sharing large resources such as icons or sounds

 ■ Fast communication between one or more processes

Shared memory is fragile and is generally not recommended when other, more reliable alternatives are
available. If one program corrupts a section of shared memory, any programs that also use that memory
share the corrupted data. The functions used to create and manage shared memory regions are in the
/usr/include/sys/shm.h header file.

Using Memory Zones

All memory blocks are allocated within a malloc zone (also referred to as a malloc heap). A zone is a
variable-size range of virtual memory from which the memory system can allocate blocks. A zone has its own
free list and pool of memory pages, and memory allocated within the zone remains on that set of pages.
Zones are useful in situations where you need to create blocks of memory with similar access patterns or
lifetimes. You can allocate many objects or blocks of memory in a zone and then destroy the zone to free
them all, rather than releasing each block individually. In theory, using a zone in this way can minimize wasted
space and reduce paging activity. In reality, the overhead of zones often eliminates the performance
advantages associated with the zone.

Note:  The term zone is synonymous with the terms heap, pool, and arena in terms of memory allocation
using the malloc routines.

By default, allocations made using the malloc function occur within the default malloc zone, which is created
when malloc is first called by your application. Although it is generally not recommended, you can create
additional zones if measurements show there to be potential performance gains in your code. For example,
if the effect of releasing a large number of temporary (and isolated) objects is slowing down your application,
you could allocate them in a zone instead and simply deallocate the zone.
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If you are create objects (or allocate memory blocks) in a custom malloc zone, you can simply free the entire
zone when you are done with it, instead of releasing the zone-allocated objects or memory blocks individually.
When doing so, be sure your application data structures do not hold references to the memory in the custom
zone. Attempting to access memory in a deallocated zone will cause a memory fault and crash your application.

Warning: You should never deallocate the default zone for your application.

If you are a Cocoa developer, you can use the NSCreateZone function to create a custom malloc zone and
the NSDefaultMallocZone function to get the default zone for your application. To create new objects in
a custom zone, use the allocWithZone: class method, which is available to all subclasses of NSObject. If
your class does not descend from NSObject, use the NSAllocateObject function to allocate the memory
for your new instances. For more information, see the function descriptions in Foundation FrameworkReference.

At the malloc library level, support for zones is defined in /usr/include/malloc/malloc.h. Use the
malloc_create_zone function to create a custom malloc zone or the malloc_default_zone function
to get the default zone for your application. To allocate memory in a particular zone, use the
malloc_zone_malloc , malloc_zone_calloc , malloc_zone_valloc , or malloc_zone_realloc
functions. To release the memory in a custom zone, call malloc_destroy_zone.

Copying Memory

There are two main approaches to copying memory in Mac OS X: direct and delayed. For most situations,
the direct approach offers the best overall performance. However, there are times when using a delayed-copy
operation has its benefits. The goal of the following sections is to introduce you to the different approaches
for copying memory and the situations when you might use those approaches.

Copying Memory Directly

The direct copying of memory involves using a routine such as memcpy or memmove to copy bytes from one
block to another. Both the source and destination blocks must be resident in memory at the time of the copy.
However, these routines are especially suited for the following situations:

 ■ The size of the block you want to copy is small (under 16 kilobytes).

 ■ You intend to use either the source or destination right away.

 ■ The source or destination block is not page aligned.

 ■ The source and destination blocks overlap.

If you do not plan to use the source or destination data for some time, performing a direct copy can decrease
performance significantly for large memory blocks. Copying the memory directly increases the size of your
application’s working set. Whenever you increase your application’s working set, you increase the chances
of paging to disk. If you have two direct copies of a large memory block in your working set, you might end
up paging them both to disk. When you later access either the source or destination, you would then need
to load that data back from disk, which is much more expensive than using vm_copy to perform a delayed
copy operation.
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Note:  If the source and destination blocks overlap, you should prefer the use of memmove over memcpy. The
implementation of memmove handles overlapping blocks correctly in Mac OS X, but the implementation of
memcpy is not guaranteed to do so.

Delaying Memory Copy Operations

If you intend to copy many pages worth of memory, but don’t intend to use either the source or destination
pages immediately, then you may want to use the vm_copy function to do so. Unlike memmove or memcpy,
vm_copy does not touch any real memory. It modifies the virtual memory map to indicate that the destination
address range is a copy-on-write version of the source address range.

The vm_copy routine is more efficient than memcpy in very specific situations. Specifically, it is more efficient
in cases where your code does not access either the source or destination memory for a fairly large period
of time after the copy operation. The reason that vm_copy is effective for delayed usage is the way the kernel
handles the copy-on-write case. In order to perform the copy operation, the kernel must remove all references
to the source pages from the virtual memory system. The next time a process accesses data on that source
page, a soft fault occurs, and the kernel maps the page back into the process space as a copy-on-write page.
The process of handling a single soft fault is almost as expensive as copying the data directly.

Copying Small Amounts of Data

If you need to copy a small blocks of non-overlapping data, you should prefer memcpy over any other routines.
For small blocks of memory, the GCC compiler can optimize this routine by replacing it with inline instructions
to copy the data by value. The compiler may not optimize out other routines such as memmove or
BlockMoveData.

Copying Data to Video RAM

When copying data into VRAM, use the BlockMoveDataUncachedfunction instead of functions such as
bcopy. The bcopy function uses cache-manipulation instructions that may cause exception errors. The kernel
must fix these errors in order to continue, which slows down performance tremendously.

Responding to Low-Memory Warnings in iOS

The virtual memory system in iOS does not use a backing store and instead relies on the cooperation of
applications to release memory. When the number of free pages dips below the computed threshold, the
system releases unmodified pages whenever possible but may also send the currently running application
a low-memory notification. If your application receives this notification, heed the warning. Upon receiving
it, your application must free up as much memory as possible by releasing objects that it does not need or
clearing out memory caches that it can recreate later.

UIKit provides several ways to receive low-memory notifications, including the following:

 ■ Implement the applicationDidReceiveMemoryWarning: method of your application delegate.

 ■ Override the didReceiveMemoryWarning method in your custom UIViewController subclass.
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 ■ Register to receive the UIApplicationDidReceiveMemoryWarningNotification notification.

Upon receiving any of these notifications, your handler method should respond by immediately freeing up
any unneeded memory. View controllers automatically purge any views that are currently offscreen, but you
should also override the didReceiveMemoryWarning method and use it to release objects retained by
outlets or other data objects managed by your view controller.

If your custom objects have known purgeable resources, you can have those objects register for the
UIApplicationDidReceiveMemoryWarningNotification notification and release their purgeable
resources directly. Registering for the UIApplicationDidReceiveMemoryWarningNotification
notification is appropriate if you have a few objects that manage most of your purgeable resources and it is
appropriate to purge all of those resources. If you have many purgeable objects or want to coordinate the
release of only a subset of those objects, however, you might want to use your application delegate to release
the desired objects.

Important:  Like the system applications, your applications should always handle low-memory warnings,
even if they do not receive those warnings during your testing. System applications consume small amounts
of memory while processing requests. When a low-memory condition is detected, the system delivers
low-memory warnings to all running programs (including your application) and may terminate some
background applications (if necessary) to ease memory pressure. If not enough memory is released—perhaps
because your application is leaking or still consuming too much memory—the system may still terminate
your application.
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If you suspect your code is not using memory as efficiently as it could, the first step in determining if there
is a problem is to gather some baseline data. Monitoring your code using one of the Apple-provided
performance tools can give you a picture of your code’s memory usage and may highlight potential problems
or point to areas that need further examination. The following sections describe the tools most commonly
used for memory analysis and when you might want to use them.

Tracking Allocations With Instruments

The Instruments application is always a good starting point for doing any sort of performance analysis.
Instruments is an integrated, data-gathering environment that uses special modules (called instruments) to
gather all sorts of information about a process. Instruments can operate on your application’s shipping binary
file—you do not need to compile special modules into your application to use it. The library of the Instruments
application contains four modules that are designed specifically for gathering memory-related data. These
modules are as follows:

 ■ The ObjectAlloc instrument records and displays a history of all memory allocations since the launch of
your application.

 ■ The Leaks instrument looks for allocated memory that is no longer referenced by your program’s code;
see “Finding Leaks Using Instruments” (page 37).

 ■ The Shared Memory instrument monitors the opening and unlinking of shared memory regions.

 ■ The Memory Monitor instrument measures and records the system’s overall memory usage.

You can add any or all of these instruments to a single trace document and gather data for each of them
simultaneously. Being able to gather the data all at once lets you correlate information from one instrument
with the others. For example, the Leaks instrument is often combined with the ObjectAlloc instrument so
that you can both track the allocations and find out which ones were leaked.

After gathering data for your application, you need to analyze it. The following sections provide tips on how
to analyze data using several of the memory-related instruments. For information on how to use the Leaks
instrument, see “Finding Leaks Using Instruments” (page 37).

Analyzing Memory Allocations with the ObjectAlloc Instrument

You use the ObjectAlloc instrument to track the memory allocation activity for your application. This instrument
tracks memory allocations from the time your application is launched until you stop recording data. The
instrument shows you the allocations in terms of the number of objects created and the size (or type) of the
objects that were created. In the icon viewing mode, the instrument displays a real-time histogram that lets
you see changes and trends directly as they occur. It also retains a history of allocations and deallocations,
giving you an opportunity to go back and see where those objects were allocated.
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The information displayed by the ObjectAlloc instrument is recorded by an allocation statistics facility built
into the Core Foundation framework. When this facility is active, every allocation and deallocation is recorded
as it happens. For Objective-C objects, copy, retain, release, and autorelease messages are also
recorded.

Using the Allocation Graph

In icon mode, the ObjectAlloc instrument displays a table with a listing of all memory blocks ever allocated
in the application, as shown in Figure 1. The Category column shows the type of the memory block—either
an Objective-C class name or a Core Foundation object name. If ObjectAlloc cannot deduce type information
for the block, it uses “GeneralBlock-” followed by the size of the block (in bytes). The Net column shows the
number of blocks of each type currently present in the application’s memory heap. The Overall column shows
the total number of blocks of each type that were allocated, including blocks that have since been released.

Figure 1 Output from the ObjectAlloc instrument
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The histogram bars in the Allocations (Net/Overall) column give you a graphical representations of the column
data. The dark portion of the bar indicates the Net value while the complete length of the bar indicates the
overall value. If you see long bars and only a portion of the bar is dark, this indicates that you are allocating
and releasing similar sized blocks frequently. Rather than releasing the blocks each time, you might investigate
to see whether you can allocate the blocks once and reuse them later.

Clicking the checkboxes in the Graph column changes the information displayed in the track pane next to
the ObjectAlloc instrument. By default, the track pane displays a running sum of the total number of bytes
allocated by the application over time. You can change this setting to display the sum of allocations for one
or more specific block types to see when those allocations occurred. Steep jumps in the slope of the graph
indicate places where a lot of memory was allocated quickly.

In addition to display the total number of bytes allocated, you can change the type of information displayed
in the track pane by changing the settings of the ObjectAlloc instrument. Clicking the information button
on the instrument displays an inspector, which you can use to choose the display options for the track pane.
Changing the Style field to Allocation Density shows you the number of allocations that occurred every
millisecond. Spikes in this graph also indicate places where your code was allocating a lot of memory in a
short amount of time.

Browsing Object Instances

The Detail pane of the ObjectAlloc instrument is where you go to find specific information about each memory
allocation that was made. By default, the detail pane shows the net and overall allocations for each object
type. Moving the mouse over an object type in the Category column, however, reveals an arrow button that
when pressed displays details about the allocated blocks of that type. You can find out when the block was
allocated along with details about the code module that allocated it.

While browsing the specific block allocations, clicking the button next to the address of a given block shows
you the history of the memory allocations at that address. You can find out what type of block was allocated,
when it was allocated, when it was released, who did it, and when they did it. Because allocations are tracked
by address, the size and category of the block is also included. You can use this view to see all the types of
data that were loaded into that particular address.

Browsing Memory By Caller

In addition to icon mode, the ObjectAlloc instrument supports an outline mode that organizes memory
allocations by type and then shows the call tree that was used to make those allocations. Using this mode,
you can look at how many blocks of a specific type were allocated within a given call tree of your application.
In addition to viewing allocations for specific types of blocks, there is an entry for all allocations that mixes
all of the memory allocations together into a single call tree, so you can see the total amount of memory
allocated by your code at any given time.

You can use the outline mode to identify objects that were allocated by the same portion of code, whether
directly by one of your routines or indirectly through a system routine. If you see some unexpected allocations
in one of your application’s routines, you might look to see why and adjust your own memory usage
accordingly. You can also use this mode to see if a particular branch of your code is allocating more memory
than you expect.
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Analyzing Shared Memory Usage

For Mac OS X applications, the Shared Memory instrument tracks calls to any shm_open and shm_unlink
functions, which are used for opening and closing regions of shared memory in the system. You can use this
information to find out where your application is getting references to shared memory regions and to examine
how often those calls are being made. The detail pane displays the list of each function call along with
information about the calling environment at the time of the call. Specifically, the pane lists the executable
that initiated the call and the function parameters. Opening the Extended Detail pane shows the stack trace
associated with the call.

Analyzing Data from the Memory Monitor Instrument

For Mac OS X applications, the Memory Monitor instrument displays assorted statistics about system memory
usage. You can use this instrument to view the memory usage trends in your application or on the entire
system. For example, you can see how much memory is currently active, inactive, wired, and free. You can
also see the amount of memory that has been paged in or out. You might use this instrument in conjunction
with other instruments to track the amount of memory your application uses with respect to specific
operations.

Tracking Allocations With MallocDebug

The MallocDebug application is an alternative to the Instruments application that you can use to inspect
your program’s memory allocations and look for leaks. MallocDebug shows currently allocated blocks of
memory, organized by the call stack at the time of allocation. You can use MallocDebug to determine how
much memory your application allocates, where it allocates that memory, and which functions allocated
large amounts of memory. It gathers data from the Carbon Memory Manager, Core Foundation object
allocations, Cocoa object allocations, and mallocallocations.

Like Instruments, MallocDebug does not require prior instrumentation of the program—that is, you don’t
need to link with special libraries or call special functions. Instead, MallocDebug launches your application
using its own instrumented version of the malloc library calls. MallocDebug does not operate on applications
running on iPhone or iPod touch devices.

Note:  The custom malloc library used by MallocDebug may hold on to memory blocks longer than normal
for analysis purposes. As a result, you should not try to gather metrics regarding the size of your program’s
memory footprint while running it under MallocDebug.

MallocDebug includes a number of features you can use to refine your memory analysis:

 ■ It provides a hex-dump view for examining raw memory.

 ■ It allows you to mark off any period of execution for analysis.

 ■ It allows you to export performance data for detailed examination or for further analysis and refinement
by command-line tools. The export feature gives you the freedom to look at or summarize the data in
the form most relevant to your executable.
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For information on how to use MallocDebug to identify memory leaks in your program, see “Finding Leaks
With MallocDebug ” (page 38).

Using MallocDebug

After launching MallocDebug, the main window appears (Figure 2). There are three basic sections in the
MallocDebug window. Information about the launched program is at the top of the window. The center
portion displays the call stack browser. The bottom portion displays the memory buffer browser.

Figure 2 MallocDebug main window
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Call Stack Browser

Memory Buffer List

Launch information

To start a new MallocDebug session, you must select and launch the application you want to analyze by
doing the following:

1. Enter the full path to the program in the Executable field, or click the Browse button and select the
program using the file-system browser.

2. If you want to run the executable with command-line arguments, enter them in the Arguments field.

3. Click the Launch button.

MallocDebug launches the program and performs an initial query about memory usage. Further updates
occur whenever you press the Update button.

The Call Stack Browser

The main focus of memory analysis in MallocDebug is the call stack browser (see Figure 2 (page 29)). This
browser shows you where memory allocations occurred by gathering stack snapshots whenever one of the
malloc library routines was encountered. Figure 3 shows a sample set of data for calls to the malloc routine.
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Figure 3 Function call stacks gathered at runtime
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MallocDebug coalesces the call stack information it gathers into a call tree by overlapping equivalent sequences
of functions. It then presents this information in the call stack browser. The call stack browser has three
display modes: standard, inverted, and flat. Each display mode presents the data in a different way to help
you identify trends. You can choose which mode you want from the left-most pop-up menu and toggle back
and forth as needed.

Standard mode presents each call stack hierarchically from the function at the top of the stack (for instance,
main) to the function that performs the allocation: malloc, calloc, and so on. Each element of the browser
shows the amount of memory that has been allocated in the call stack involving that method or function.
Figure 4 illustrates the structure of the call stack in standard mode.

Figure 4 View of function call tree in standard mode
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Inverted mode reverses the hierarchy of standard mode and shows the call tree from the allocation functions
to the bottom of each stack. This mode is useful for highlighting the ways in which specific allocation functions
are called. By seeing all the calls to malloc or the Core Foundation allocators, you can more easily detect
wasteful patterns in lower-level libraries. Use inverted mode if you’re working on a low-level framework or
if you want to focus on how you’re calling malloc in your own code. Figure 5 illustrates the structure of the
call stack in inverted mode.

Figure 5 View of function call tree in inverted mode
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Flat mode shows memory usage for every method and function of an application in a single list, sorted by
allocated amount. All of the instances of a function call are collapsed into one browser item corresponding
to that function. A function’s memory use includes the sum of all the allocations performed in that function
and all allocations performed in functions that it calls. This allows you to see the total amount of memory
allocated by a specific function and every function it called, not just those at the top or bottom of the call
stack.

The analysis mode pop-up menu (located to the right of the viewing-mode pop-up menu) affects the type
of allocations that are displayed in the call stack browser. You have several options:

 ■ All Allocations Gives you the call trees for all currently allocated buffers in your application.
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 ■ Allocations since Mark Displays functions and methods in which an allocation has occurred since launch
time or the last mark. See “Taking a Snapshot of Memory Usage” (page 31) for information on how to
display allocations over a specific period of time.

 ■ Leaks This item displays a call tree showing leaked memory blocks in your program. For further discussion
of this analysis mode, see “Finding Memory Leaks” (page 37).

 ■ Overruns/underruns Displays a call tree with a list of buffers that were written to incorrectly, caused by
writing to memory before or after the buffer boundary. If the program wrote past the end of a buffer, a
right arrow (>) appears by the buffer. Similarly, if the application wrote before the start of a buffer, a left
arrow (<) appears by the buffer. For more on MallocDebug’s memory-detail features, see “Analyzing Raw
Memory” (page 31).

Taking a Snapshot of Memory Usage

When you launch a program with MallocDebug, the main window displays the allocation activity that occurred
during launch time. When you click the Update button, MallocDebug shows memory usage up to the current
point in time. If you want to display allocations from a particular point in time, you can do the following:

1. Press the Mark button.

2. Exercise a portion of your program.

3. Select the "Allocations from mark" item from the analysis mode pop-up list.

MallocDebug shows the buffers allocated since the mark was set. Note that MallocDebug displays only the
buffers that are still currently allocated, so you will see only those buffers allocated since you clicked the
Mark button that have not been freed.

Analyzing Raw Memory

When you select an allocation buffer in the call stack browser, the memory buffer list (shown in Figure 2 (page
29)) might show one or more lines of data. Each line in this list represents a block of memory allocated by
the currently selected function or by a function eventually called by that function. Each line contains the
address of the buffer, its size (in bytes), and the zone in which it was allocated. Double-clicking one of these
lines opens the Memory Viewer Panel window, which you can use to inspect the contents of memory at that
location.

If code attempts to write before the start or past the end of a buffer, the memory buffer list shows an
appropriate indicator in the Status column. If bytes were written before the buffer, the column displays a
less-than < character. If bytes were written after the buffer, the column contains a greater-than > character.
Use the popup menu below the list to sort the list contents.

MallocDebug helps you catch some types of problems by writing certain hexadecimal patterns into the hex
values displayed in the Memory Viewer Panel window. It overwrites freed memory with 0X55 and it guards
against writing beyond a block’s boundaries by putting the values 0xDEADBEEF and 0xBEEFDEAD, respectively,
at the beginning and end of each allocated buffer.

The memory buffer inspector can be particularly helpful for determining why an object is leaking. For example,
if a string is being leaked, the text of the string might indicate where it was created. If an event structure is
leaked, you might be able to identify the type of event from the contents of memory and thus find the
corresponding event-handling code responsible for the leak.
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Evaluating MallocDebug Problem Reports

Some of the reports that MallocDebug presents identify obvious problems that you should fix immediately.
Some of these problems include leaks, buffer overruns, and references to freed memory. Other problems are
more subjective in nature and require you to make a determination as to whether there is a problem.

To improve your program’s overall allocation behavior, use MallocDebug’s detailed accounting of memory
usage to explore the memory usage of your program. This can help you identify wasted memory allocations
or unexpected allocation patterns and thus optimize your program’s memory usage. As you analyze your
memory allocations, consider the following items:

 ■ Don’t ignore small buffers. A small leaked buffer might itself contain references to larger buffers, which
then also become leaks. (The leaks tool is better at reporting leaks of this nature.)

 ■ Look at allocation patterns during specific intervals of typical program use, especially where you suspect
memory usage might be a problem.

 ■ The inverted display mode for the call stack browser can sometimes yield results faster because it shows
which routines are actually calling malloc. The normal display mode is better for seeing memory
allocations in particular modules of your code.

 ■ Keep track of important statistics, such as private memory usage and total allocated memory, so you
can compare them against previous measurements.

Limitations of MallocDebug

You can use MallocDebug to gather data for applications running in Mac OS X only. The following section
describes some of the other issues you may run into when running MallocDebug.

Allocated Memory Reporting

MallocDebug shows the current amount of allocated memory at a given point in a program’s execution; it
does not show the total amount of memory allocated by the program during its entire span of execution.
Memory that has been freed is not shown.

To see memory that your program has allocated and freed, use the malloc_history tool. See “Tracking
Memory Allocations With malloc_history” (page 34) for more information.

Crashing Under MallocDebug

If a program crashes under MallocDebug, a diagnostic message is printed to the console that explains why
the program crashed. Listing 1 gives an example of MallocDebug’s crash diagnostic message.

Listing 1 Diagnostic output from crashing under MallocDebug

MallocDebug: Target application attempted to read address 0x55555555, which can’t be 
read.
MallocDebug: MallocDebug trashes freed memory with the value 0x55,
MallocDebug: strongly suggesting the application or a library is referencing
MallocDebug: memory it already freed.
MallocDebug: MallocDebug can’t do anything about this, so the app’s just going to have
 to be terminated.
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MallocDebug: libMallocDebug cannot help the application recover from this error,
MallocDebug: so we’ll just have to shut down the application.
MallocDebug: *************************************************
MallocDebug: THIS IS A BUG IN THE PROGRAM BEING RUN UNDER MALLOC DEBUG,
MallocDebug: NOT A BUG IN MALLOC DEBUG!
MallocDebug: *************************************************

Usually a crash results from subtle memory problems, such as referencing freed memory or dereferencing
pointers found outside an allocated buffer. Check suspected buffers of memory with the memory-buffer
inspector (see “Analyzing Raw Memory” (page 31)). If your program is referencing memory at 0x55555555,
then it is referencing freed memory.

Important:  You should always investigate and fix bugs that cause your program to crash. Subtle problems
may indicate a design flaw that could cost more time to fix later.

Programs Calling setuid or setgid

For security reasons, the operating system does not allow programs running setuid (set the user id at
execution) or setgid (set the group id at execution) to load new libraries, such as the heap debugging library
used by MallocDebug. As a result, MallocDebug cannot display information about these programs unless
they are run by the target user or by a member of the target group.

If you want to examine a setuid or setgid program with MallocDebug, you have two options:

 ■ Use MallocDebug on a copy of the program without the setuid or setgid permissions set. This approach
may not work if the permissions are needed to access files normally not accessible by you.

 ■ Run MallocDebug while logged in as the user who owns the file, or use the su tool to log in as another
user. Note that you must run your program by calling the executable file directly in the latter case since
the open tool runs the program as if it was launched by the user who logged in.

Running Under libMallocDebug

If you’re writing a simple program that runs from the command-line, you may need to statically link the
malloc routines into your executable before MallocDebug can attach to your program. Most programs link
to the System framework, which is instrumented for use by MallocDebug. If your program does not use this
framework, you can explicitly link your program with the /usr/lib/libMallocDebug.a library. (If you are
running in Mac OS X 10.3.9 or later, you can also execute the command set env DYLD_INSERT_LIBRARIES
/usr/lib/libMallocDebug.A.dylib from the debugger console to attach your program to
libMallocDebug.) You should not notice any difference in your program’s allocation behavior when linking
with this library.

If you do link your application to libMallocDebug, you should be aware of the following caveats:

 ■ If your code runs in versions of Mac OS X prior to 10.4, you must need to set the
DYLD_FORCE_FLAT_NAMESPACE environment variable to force the linker to use the malloc routines in
libMallocDebug. If you are running in Mac OS X v10.4 or later, you do not need to set this variable.

 ■ When running your program in Mac OS X v10.4 or later under gdb with libMallocDebug installed, your
program automatically drops into the debugger when libMallocDebug detects that memory has been
corrupted by a malloc or free call. To continue running your program, you need to jump over the
affected instruction without executing it. You can do this using the jump command in GDB.
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 ■ If your program runs on a version of Mac OS X prior to version 10.3.9, you may need to execute the
command " set start-with-shell 0 " in gdb to debug your program with libMallocDebug . .

 ■ In Mac OS X v10.4 and later, child processes created by a fork and exec now properly inherit the
DYLD_INSERT_LIBRARIES environment variable setting. Thus, if the parent is running under
libMallocDebug , so will the child.

Setting Environment Variables

MallocDebug does not contain any built-in mechanism for setting environment variables. You can work
around this limitation by setting your environment variables from Terminal and then launching MallocDebug
from there. When launched in this manner, your application inherits the Terminal environment, including
any environment variables.

Do not launch MallocDebug from Terminal using the open command. Instead, run the MallocDebug executable
directly. The executable is located in the MallocDebug.app application bundle, usually in the
MallocDebug.app/Contents/MacOS directory.

Tracking Memory Allocations With malloc_history

In Mac OS X, the malloc_history tool displays backtrace data showing exactly where your program made
calls to the malloc and free functions. If you specify an address when calling malloc_history, the tool
tracks memory allocations occurring at that address only. If you specify the -all_by_size or -all_by_count
options, the tool displays all allocations, grouping frequent allocations together.

Before using the malloc_history tool on your program, you must first enable the malloc library logging
features by setting the MallocStackLogging to 1. You may also want to set the
MallocStackLoggingNoCompact environment variable to retain information about freed blocks. For more
information on these variables, see “Enabling the Malloc Debugging Features” (page 43).

The malloc_history tool is best used in situations where you need to find the previous owner of a block
of memory. If you determine that a particular data is somehow becoming corrupted, you can put checks into
your code to print the address of the block when the corruption occurs. You can then use malloc_history
to find out who owns the block and identify any stale pointers.

The malloc_history tool is also suited for situations where Sampler or MallocDebug cannot be used. For
example, you might use this tool from a remote computer or in situations where you want a minimal impact
on the behavior of your program.

For more information on using the malloc_history tool, see malloc_history man page.

Examining Memory With the heap Tool

In Mac OS X, the heap command-line tool displays a snapshot of the memory allocated by the malloc library
and located in the address space of a specified process. For Cocoa applications, this tool identifies Objective-C
objects by name. For both memory blocks and objects, the tool organizes the information by heap, showing
all items in the same heap together.
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The heap tool provides much of the same information as the ObjectAlloc instrument, but does so in a much
less intrusive manner. You can use this tool from a remote session or in situations where the use of Instruments
might slow the system down enough to affect the resulting output.

For more information about using the heap tool, see heap(1) man page.
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Memory leaks are blocks of allocated memory that the program no longer references. Memory leaks are bugs
and should always be fixed. Leaks waste space by filling up pages of memory with inaccessible data and
waste time due to extra paging activity. Leaked memory eventually forces the system to allocate additional
virtual memory pages for the application, the allocation of which could have been avoided by reclaiming
the leaked memory.

The malloc library can only reclaim the memory you tell it to reclaim. If you call malloc or any routine that
allocates memory, you must balance that call with a corresponding free. A typical memory leak occurs when
a developer forgets to deallocate memory for a pointer embedded in a data structure. If you allocate memory
for embedded pointers in your code, make sure you release the memory for that pointer prior to deallocating
the data structure itself.

Another typical memory leak example occurs when a developer allocates memory, assigns it to a pointer,
and then assigns a different value to the pointer without freeing the first block of memory. In this example,
overwriting the address in the pointer erases the reference to the original block of memory, making it
impossible to release.

Apple provides the MallocDebug application and leaks command-line tool for automatically tracking down
memory leaks. You can also track down leaks manually using other analysis tools, but that task falls under
the category of finding memory problems in general and is covered in “Tracking Memory Usage” (page 25).
The following sections describe the MallocDebug and leaks tools and show you how to use them to track
down memory leaks.

Finding Leaks Using Instruments

The Instruments application can be used to find leaks in both Mac OS X and iPhone applications. To find
leaks, create a new document template in the application and add the Leaks instrument to it. The Leaks
instrument provides leak-detection capabilities identical to those in the leaks command-line tool. The Leaks
instrument records all allocation events that occur in your application and then periodically searches the
application’s writable memory, registers, and stack for references to any active memory blocks. If it does not
find a reference to a block in one of these places, it deems the block a “leak” and displays the relevant
information in the Detail pane.

In the Detail pane, you can view leaked memory blocks using Table and Outline modes. In Table mode,
Instruments displays the complete list of leaked blocks, sorted by size. Selecting an entry in the table and
clicking the arrow button next to the memory address shows the allocation history for the memory block at
that address. Selecting an entry from this allocation history then shows the stack trace for that event in the
Extended Detail pane of the document window. In Outline mode, the Leaks instrument displays leaks organized
by call tree, which you can use to get information about the leaks in a particular branch of your code.

For more information about using the Instruments application, including more information about the
information displayed by the Leaks instrument, see Instruments User Guide.
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Finding Leaks With MallocDebug

The MallocDebug application includes a memory-leak analysis tool that you can use to identify leaks in your
Mac OS X applications. The interface for MallocDebug displays potential leaks using a call-graph structure
so that you can easily locate the function that generated the leak.

Performing a Global Leak Analysis

MallocDebug uses a conservative garbage-collection algorithm for detecting leaks. This algorithm searches
the program’s memory for pointers to each malloc-allocated block. Any block that is not referenced at all by
the program is marked as a leak.

To initiate a leak search in MallocDebug, do the following:

1. Launch MallocDebug.

2. Open a new window and select the executable you want to examine.

3. Click the Launch button.

4. Exercise the application features to build its memory profile.

5. In MallocDebug, select “Leaks” from the analysis popup menu to display the memory leaks in your
application.

6. Use the call-graph data in the browser to find where the memory was allocated.

Figure 1 shows the MallocDebug main window with the Leaks option selected for viewing. When you select
any of the leak-related options from this popup menu, MallocDebug initiates its leak-detection analysis. It
then displays the results of the analysis in the browser window. Each entry in the browser includes the amount
of memory leaked from that function.
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Figure 1 MallocDebug main window

The leak analysis performed by MallocDebug identifies all memory that has been leaked since the application
was launched. “Finding Leaks for Specific Features” (page 39) describes a way you can use MallocDebug to
isolate memory leaks in your application.

Finding Leaks for Specific Features

The leak analysis tools in MallocDebug perform a global search for leaks in your program. However, there
are other types of leaks that MallocDebug cannot identify. These are leaks caused by your code allocating a
block and then not freeing it. You must identify these leaks yourself using the MallocDebug sampling features.
To find these leaks, do the following:

1. In the MallocDebug window, select "Allocations from mark" from the analysis popup button.

2. Click the Mark button.

3. Exercise the target feature of your application.

4. In MallocDebug, click the Update button to display the memory allocated since the Mark button was
clicked.

5. Look for any newly-allocated buffers. These may be buffers your code forgot to free after it was done
with them.
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Using the leaks Tool

In Mac OS X, the leaks command-line tool searches the virtual memory space of a process for buffers that
were allocated by malloc but are no longer referenced. For each leaked buffer it finds, leaks displays the
following information:

 ■ the address of the leaked memory

 ■ the size of the leak (in bytes)

 ■ the contents of the leaked buffer

If leaks can determine that the object is an instance of an Objective-C or Core Foundation object, it also
displays the name of the object. If you do not want to view the contents of each leaked buffer, you can specify
the -nocontext option when calling leaks. If the MallocStackLogging environment variable is set and
you are running your application in gdb, leaks displays a stack trace describing where the buffer was
allocated. For more information on malloc debugging options, see “Enabling the Malloc Debugging
Features” (page 43).

The leaks tool has some advantages over MallocDebug when it comes to detecting leaks in complex data
structures. For example, the leaks tool correctly handles leaks in circularly linked structures. It can also
identify leaks in groups of connected nodes. MallocDebug may not correctly identify leaks in these types of
structures.

Note:  The leaks command-line tool is located in /usr/bin.

Finding Leaked Autoreleased Objects

If a Cocoa object is autoreleased without an autorelease pool in place, Xcode sends an a message to the
console warning you that the object is just leaking. Even if you are not writing a Cocoa application, it is
possible to see this same type of console warning. The implementation of many Cocoa classes is based on
Core Foundation types. If your application uses Core Foundation, it is possible that the leaks are occurring
as a result of calls to that framework.

To find memory leaks of this type, use the debugger to put a breakpoint on the _NSAutoreleaseNoPool
function. This function is declared in NSDebug.h in the Foundation framework. When the debugger reaches
that function, you should be able to look at the stack crawl and see what piece of code caused the leak.

Tips for Improving Leak Detection

The following guidelines can help you find memory leaks quickly in your program. Most of these guidelines
are intended to be used with the leaks tool but some are also applicable for use with MallocDebug and
general use.

 ■ Run leaks during unit testing. Because unit testing exercises all code paths in a repeatable manner,
you are more likely to find leaks than you would be if you were testing your code in a production
environment.
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 ■ Enable the MallocScribble and MallocPreScribble environment variables before running your
leak tests. For more information, see “Enabling the Malloc Debugging Features” (page 43).

 ■ Use the -exclude option of leaks to filter out leaks in functions with known memory leaks. This option
helps reduce the amount of extraneous information reported by leaks.

 ■ If leaks reports a leak intermittently, set up a loop around the target code path and run the code
hundreds or thousands of times. This increases the likelihood of the leak reappearing more regularly.

 ■ Run your program against libgmalloc.dylib in gdb. This library is an aggressive debugging malloc
library that can help track down insidious bugs in your code. For more information, see the libgmalloc
man page.

 ■ For Cocoa and iPhone applications, if you fix a leak and your program starts crashing, your code is
probably trying to use an already-freed object or memory buffer. Set the NSZombieEnabled environment
variable to YES to find messages to already freed objects.

Most unit testing code executes the desired code paths and exits. Although this is perfectly normal for unit
testing, it creates a problem for the leaks tool, which needs time to analyze the process memory space. To
fix this problem, you should make sure your unit-testing code does not exit immediately upon completing
its tests. You can do this by putting the process to sleep indefinitely instead of exiting normally.
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Debugging memory-related bugs can be time consuming if you do not know where to start looking. This is
usually compounded by the problem that many memory bugs occur well after the memory in question was
manipulated by the code. Fortunately, Mac OS X includes options for identifying memory problems closer
to when those problems actually happen.

Enabling Guard Malloc

Guard Malloc is a special version of the malloc library that replaces the standard library during debugging.
Guard Malloc uses several techniques to try and crash your application at the specific point where a memory
error occurs. For example, it places separate memory allocations on different virtual memory pages and then
deletes the entire page when the memory is freed. Subsequent attempts to access the deallocated memory
cause an immediate memory exception rather than a blind access into memory that might now hold other
data. When the crash occurs, you can then go and inspect the point of failure in the debugger to identify
the problem.

To enable debugging using Guard Malloc, choose the Run > Enable Guard Malloc option in Xcode before
running your project. Building and running your application with this option enabled runs your application
using the Guard Malloc library automatically. You can use this option both Mac OS X applications and also
for iPhone applications running in the simulator.

For more information about the types of memory problems that Guard Malloc can help you track down, see
the libgmalloc man page in Mac OS X Man Pages.

Configuring the Malloc Environment Variables

The malloc library provides debugging features to help you track down memory smashing bugs, heap
corruption, references to freed memory, and buffer overruns. You enable these debugging options through
a set of environment variables. With the exception of MallocCheckHeapStart and MallocCheckHeapEach,
the value for most of these environment variables is ignored. To disable a variable from Terminal, use the
unset command. Table 1 lists some of the key environment variables and describes their basic function. For
a complete list of variables, see the malloc man page.

Table 1 Malloc environment variables

DescriptionVariable

If set, malloc remembers the function call stack at the time of each
allocation.

MallocStackLogging
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DescriptionVariable

This option is similar to MallocStackLogging but makes sure that all
allocations are logged, no matter how small or how short lived the buffer
may be.

MallocStackLogging-
NoCompact

If set, free sets each byte of every released block to the value 0x55.MallocScribble

If set, malloc sets each byte of a newly allocated block to the value 0xAA.
This increases the likelihood that a program making assumptions about
freshly allocated memory fails.

MallocPreScribble

If set, malloc adds guard pages before and after large allocations.MallocGuardEdges

Fine-grain control over the behavior of MallocGuardEdges: If set,
malloc does not place a guard page at the head of each large block
allocation.

MallocDoNotProtectPrelude

Fine-grain control over the behavior of MallocGuardEdges: If set,
malloc does not place a guard page at the tail of each large block
allocation.

MallocDoNotProtect-
Postlude

Set this variable to the number of allocations before malloc will begin
validating the heap. If not set, malloc does not validate the heap.

MallocCheckHeapStart

Set this variable to the number of allocations before malloc should
validate the heap. If not set, malloc does not validate the heap.

MallocCheckHeapEach

The following example enables stack logging and heap checking in the current shell before running an
application. The value for MallocCheckHeapStart is set to 1 but is irrelevant and can be set to any value
you want. You could also set these variables from your shell’s startup file, although if you do be sure to
export each variable.

% MallocStackLogging=1
% MallocCheckHeapStart=1000
% MallocCheckHeapEach=100
% ./my_tool

If you want to run your program in gdb, you can set environment variables from the Xcode debugging console
using the command set env, as shown in the following example:

% gdb
(gdb) set env MallocStackLogging 1
(gdb) run

Some of the performance tools require these options to be set in order to gather their data. For example,
the malloc_history tool can identify the allocation site of specific blocks if the MallocStackLogging
flag is set. This tool can also describe the blocks previously allocated at an address if the
MallocStackLoggingNoCompact environment variable is set. The leaks command line tool will name
the allocation site of a leaked buffer if MallocStackLogging is set. See the man pages for leaks and
malloc_history for more details.
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Detecting Double Freed Memory

The malloc library reports attempts to call free on a buffer that has already been freed. If you have enabled
the MallocStackLoggingNoCompact option, you can use the logged stack information to find out where
in your code the second free call was made. You can then use this information to set up an appropriate
breakpoint in the debugger and track down the problem.

The malloc library reports information to stderr.

Detecting Heap Corruption

To enable heap checking, assign values to the MallocCheckHeapStart and MallocCheckHeapEach
environment variables. You must set both of these variables to enable heap checking. The
MallocCheckHeapStart variable tells the malloc library how many malloc calls to process before initiating
the first heap check. Set the second to the number of malloc calls to process between heap checks.

The MallocCheckHeapStart variable is useful when the heap corruption occurs at a predictable time. Once
it hits the appropriate start point, the malloc library starts logging allocation messages to the Terminal
window. You can watch the number of allocations and use that information to determine approximately
where the heap is being corrupted. Adjust the values for MallocCheckHeapStart and
MallocCheckHeapEach as necessary to narrow down the actual point of corruption.

Detecting Memory Smashing Bugs

To find memory smashing bugs, enable the MallocScribble variable. This variable writes invalid data to
freed memory blocks, the execution of which causes an exception to occur. When using this variable, you
should also set the MallocStackLogging and MallocStackLoggingNoCompact variables to log the
location of the exception. When the exception occurs, you can then use the malloc_history command to
track down the code that allocated the memory block. You can then use this information to track through
your code and look for any lingering pointers to this block.
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In addition to the Instruments application, Mac OS X provides the top, vm_stat, pagestuff, and vmmap
command-line tools for viewing statistics about virtual memory usage. The Memory Monitor instrument in
the Instruments application lets you view all sorts of information about virtual memory usage in your
application. This information displayed by this instrument is analogous to what you would see running the
top command-line tool.

If you need more detailed information about virtual memory usage, you can use the vm_stat, pagestuff,
and vmmap command-line tools for analyzing your Mac OS X applications. The information returned by these
tools ranges from summary information about all the system processes to detailed information about a
specific process.

The following sections provide information on using the vm_stat, pagestuff, and vmmap tools to gather
detailed memory information. For more information on using Instruments to analyze memory, see Instruments
UserGuide and the other articles in this document. For information on how to use the top tool, see Performance
Overview.

Viewing Virtual Memory Statistics

The vm_stat tool displays high-level statistics about the current virtual memory usage of the system. By
default, vm_stat displays these statistics once, but you can specify an interval value (in seconds) to update
these statistics continuously. For information on the usage of this tool, see the vm_stat man page.

Listing 1 shows an example of the output from vm_stat.

Listing 1 Output of vm_stat tool

Mach Virtual Memory Statistics: (page size of 4096 bytes)
Pages free:                     3194.
Pages active:                  34594.
Pages inactive:                17870.
Pages wired down:               9878.
"Translation faults":        6333197.
Pages copy-on-write:           81385.
Pages zero filled:           3180051.
Pages reactivated:            343961.
Pageins:                       33043.
Pageouts:                      78496.
Object cache: 66227 hits of 96952 lookups (68% hit rate)
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Viewing Mach-O Code Pages

The pagestufftool displays information about the specified logical pages of a file conforming to the Mach-O
executable format. For each specified page of code, symbols (function and static data structure names) are
displayed. All pages in the __TEXT, __text section are displayed if no page numbers are given.

Listing 2 shows part of the output from pagestuff for the TextEdit application. This output is the result of
running the tool with the -a option, which prints information about all of the executable’s code pages. It
includes the virtual address locations of each page and the type of information on that page.

Listing 2 Partial output of pagestuff tool

File Page 0 contains Mach-O headers
File Page 1 contains Mach-O headers
File Page 2 contains contents of section (__TEXT,__text)
Symbols on file page 2 virtual address 0x3a08 to 0x4000
File Page 3 contains contents of section (__TEXT,__text)
Symbols on file page 3 virtual address 0x4000 to 0x5000
File Page 4 contains contents of section (__TEXT,__text)
Symbols on file page 4 virtual address 0x5000 to 0x6000

...

File Page 22 contains contents of section (__TEXT,__cstring)
File Page 22 contains contents of section (__TEXT,__literal4)
File Page 22 contains contents of section (__TEXT,__literal8)
File Page 22 contains contents of section (__TEXT,__const)
Symbols on file page 22 virtual address 0x17000 to 0x17ffc
File Page 23 contains contents of section (__DATA,__data)
File Page 23 contains contents of section (__DATA,__la_symbol_ptr)
File Page 23 contains contents of section (__DATA,__nl_symbol_ptr)
File Page 23 contains contents of section (__DATA,__dyld)
File Page 23 contains contents of section (__DATA,__cfstring)
File Page 23 contains contents of section (__DATA,__bss)
File Page 23 contains contents of section (__DATA,__common)
Symbols on file page 23 virtual address 0x18000 to 0x18d48
 0x00018000 _NXArgc
 0x00018004 _NXArgv
 0x00018008 _environ
 0x0001800c ___progname
...

In the preceding listing, if a page exports any symbols, those symbols are also displayed by the -a option.
If you want to view the symbols for a single page, pass in the desired page number instead of the -a option.
For more information about the pagestuff tool and its supported options, see the pagestuff man page.
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Viewing Virtual Memory Regions

The vmmap and vmmap64 tools display the virtual memory regions allocated for a specified process. These
tools provide access to the virtual memory of 32-bit and 64-bit applications, respectively. You can use them
to understand the purpose of memory at a given address and how that memory is being used. For each
virtual-memory region, these tools display the type of page, the starting address, region size (in kilobytes),
read/write permissions, sharing mode, and the purpose of the pages in that region.

The following sections show you how to interpret the output from the vmmap tool. For more information
about the vmmap and vmmap64 tools, see the vmmap or vmmap64 man pages.

Sample Output From vmmap

Listing 3 shows some sample output from the vmmap tool. This example is not a full listing of the tool’s output
but is an abbreviated version showing the primary sections.

Listing 3 Typical output of vmmap

==== Non-writable regions for process 313
__PAGEZERO              0 [   4K] ---/--- SM=NUL ...ts/MacOS/Clock
__TEXT               1000 [  40K] r-x/rwx SM=COW ...ts/MacOS/Clock
__LINKEDIT           e000 [   4K] r--/rwx SM=COW ...ts/w/Clock
                    90000 [   4K] r--/r-- SM=SHM
                   340000 [3228K] r--/rwx SM=COW 00000100 00320...
                   789000 [3228K] r--/rwx SM=COW 00000100 00320...
Submap           90000000-9fffffff r--/r-- machine-wide submap
__TEXT           90000000  [ 932K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib
__LINKEDIT       900e9000   [ 260K] r--/r-- SM=COW /usr/lib/libSystem.B.dylib
__TEXT           90130000 [ 740K] r-x/r-x SM=COW .../Versions/A/CoreFoundation
__LINKEDIT       901e9000 [ 188K] r--/r-- SM=COW .../Versions/A/CoreFoundation
__TEXT           90220000 [2144K] r-x/r-x SM=COW .../Versions/A/CarbonCore
__LINKEDIT       90438000 [ 296K] r--/r-- SM=COW .../Versions/A/CarbonCore

[...data omitted...]

==== Writable regions for process 606
__DATA             18000 [   4K] rw-/rwx SM=PRV /Contents/MacOS/TextEdit
__OBJC             19000 [   8K] rw-/rwx SM=COW /Contents/MacOS/TextEdit
MALLOC_OTHER       1d000 [ 256K] rw-/rwx SM=PRV
MALLOC_USED(DefaultMallocZone_0x5d2c0)     5d000 [ 256K] rw-/rwx SM=PRV
                   9d000 [ 372K] rw-/rwx SM=COW 33320000 00000020 00000000 00001b84...
VALLOC_USED(DefaultMallocZone_0x5d2c0)     ff000 [  36K] rw-/rwx SM=PRV
MALLOC_USED(CoreGraphicsDefaultZone_0x10  108000 [ 256K] rw-/rwx SM=PRV
MALLOC_USED(CoreGraphicsRegionZone_0x148  148000 [ 256K] rw-/rwx SM=PRV

[...data omitted...]

Submap           a000b000-a012ffff r--/r-- process-only submap
__DATA           a0130000 [  28K] rw-/rw- SM=COW .../Versions/A/CoreFoundation
Submap           a0137000-a021ffff r--/r-- process-only submap
__DATA           a0220000 [  20K] rw-/rw- SM=COW .../Versions/A/CarbonCore
Submap           a0225000-a048ffff r--/r-- process-only submap
__DATA           a0490000 [  12K] rw-/rw- SM=COW .../IOKit.framework/Versions/A/IOKit
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Submap           a0493000-a050ffff r--/r-- process-only submap
__DATA           a0510000 [  36K] rw-/rw- SM=COW .../Versions/A/OSServices
                 b959e000 [   4K] rw-/rw- SM=SHM
                 b95a0000 [   4K] rw-/rw- SM=SHM
                 b9630000 [ 164K] rw-/rw- SM=SHM
                 b965a000 [ 896K] rw-/rw- SM=SHM
                 bff80000 [ 504K] rw-/rwx SM=ZER
STACK[0]         bfffe000 [   4K] rw-/rwx SM=PRV
                 bffff000 [   4K] rw-/rwx SM=PRV
__DATA           c000c000 [   4K] rw-/rwx SM=PRV .../Versions/A/ApplicationEnhancer
STACK[1]         f0001000 [ 512K] rw-/rwx SM=PRV
                 ff002000 [12272K] rw-/rw- SM=SHM

==== Legend
SM=sharing mode:
    COW=copy_on_write PRV=private NUL=empty ALI=aliased
    SHM=shared ZER=zero_filled S/A=shared_alias

==== Summary for process 313
ReadOnly portion of Libraries: Total=27420KB resident=12416KB(45%) 
swapped_out_or_unallocated=15004KB(55%)
Writable regions: Total=21632KB written=536KB(2%) resident=1916KB(9%) swapped_out=0KB(0%)
 unallocated=19716KB(91%)

If you specify the -d parameter (plus an interval in seconds), vmmap takes two snapshots of virtual-memory
usage—one at the beginning of a specified interval and the other at the end—and displays the differences.
It shows three sets of differences:

 ■ individual differences

 ■ regions in the first snapshot that are not in the second

 ■ regions in the second snapshot that are not in the first

Interpreting vmmap’s Output

The columns of vmmap output have no headings. Instead you can interpret the type of data in each column
by its format. Table 1 describes these columns.

Table 1 Column descriptions for vmmap

DescriptionExampleColumn
Number

The purpose of the memory. This column can contain the name
of a Mach-O segment or the memory allocation technique.

__TEXT, __LINKEDIT,
MALLOC_USED, STACK, and
so on

1

If present, the zone used for allocation.(DefaultMallocZone_-
0x5d2c0)

2

The virtual memory address of the region.4eee0003

The size of the region, measured in kilobytes[ 124K]4
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DescriptionExampleColumn
Number

Read, write and execution permissions for the region. The first set
of flags specifies the current protection for the region. The second
set of values specifies the maximum protection for the region. If
an entry contains a dash (-), the process does not have the target
permission.

rw-/rwx5

Sharing mode for the region, either COW (copy-on-write), PRV
(private), NUL (empty), ALI (aliased), or SHM (shared).

SM=PRV6

The end of the pathname identifying the executable mapped into
this region of virtual memory. If the region is stack or heap
memory, nothing is displayed in this column.

...ts/MacOS/Clock7

Column 1 identifies the purpose of the memory. A __TEXT segment contains read-only code and data. A
__DATA segment contains data that may be both readable and writable. For allocated data, this column
shows how the memory was allocated, such as on the stack, using malloc, and so on. For regions loaded
from a library, the far right column shows the name of the library loaded into memory.

The size of the virtual memory region (column 4) represents the total size reserved for that region. This
number may not reflect the actual number of memory pages allocated for the region. For example, calling
vm_allocate reserves a set of memory pages but does not allocate any physical memory until the pages
are actually touched. Similarly, a memory-mapped file may reserve a set of pages, but the system does not
load pages until a read or write event occurs on the file.

The protection mode (column 5) describes the access restrictions for the memory region. A memory region
contains separate flags for read, write, and execution permissions. Each virtual memory region has a current
permission, and a maximum permission. In the output from vmmap, the current permission appears first
followed by the maximum permission. Thus, if the permissions are “r--/rwx“ the page is currently read-only
but allows read, write, and execution access as its maximum allowed permissions. Typically, the current
permissions do not permit writing to a region. However, these permissions may change under certain
circumstances. For example, a debugger may request write access to a page in order to set a breakpoint.

Note:  Pages representing part of a Mach-O executable are usually not writable. The first page (__PAGEZERO,
starting at address 0x00000000) has no permissions set. This ensures that any reference to a NULL pointer
immediately causes an error. The page just before the stack is similarly protected so that stack overflows
cause the application to crash immediately.

The sharing mode (SM= field) tells you whether pages are shared between processes and what happens when
pages are modified. Private pages (PRV) are visible only to the process and are allocated as they are used.
Private pages can also be paged out to disk. Copy-on-write (COW) pages are shared by multiple processes (or
shared by a single process in multiple locations). When the page is modified, the writing process then receives
its own copy of the page. Empty (NUL) sharing implies that the page does not really exist in physical memory.
Aliased (ALI) and shared (SHM) memory are shared between processes.

The sharing mode typically describes the general mode controlling the region. For example, as copy-on-write
pages are modified, they become private to the application. However, the region containing those private
pages is still copy-on-write until all pages become private. Once all pages are private, the sharing mode
changes to private.
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Some lines in the output of vmmap describe submaps. A submap is a shared set of virtual memory page
descriptions that the operating system can reuse between multiple processes. For example, the memory
between0x90000000 and0xAFFFFFFF is a submap containing the most common dynamic libraries. Submaps
minimize the operating system’s memory usage by representing the virtual memory regions only once.
Submaps can either be shared by all processes (machine-wide) or be local to the process (process-only). If
the contents of a machine-wide submap are changed—for example, the debugger makes a section of memory
for a dynamic library writable so it can insert debugging traps—then the submap becomes local, and the
kernel allocates memory to store the extra copy.
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This table describes the changes to Memory Usage Performance Guidelines.

NotesDate

Reorganized the contents of the document and updated it to reflect iOS support.2008-07-02

Clarified where to get the leaks tool.2006-06-28

Updated information related to using libMallocDebug and malloc zones.2005-07-07

Fixed some minor bugs. Added new sections on batch allocation of memory
and finding leaks of autoreleased objects.

2005-04-29

Added tips for detecting leaks more quickly.

Document title changed. Old title was Memory Performance.

Added Carbon-specific performance tips.2003-07-25

First revision of this programming topic. Some of the information appeared in
the document Inside Mac OS X: Performance.

2003-05-15
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