
CFNetwork Programming Guide
Networking, Internet, & Web

2009-05-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, iChat,
iPhone, Keychain, Mac, Mac OS, Objective-C,
and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to CFNetwork Programming Guide 7

Organization of This Document 7
See Also 7

Chapter 1 CFNetwork Concepts 9

When to Use CFNetwork 9
CFNetwork Infrastructure 10

CFSocket API 10
CFStream API 10

CFNetwork API Concepts 11
CFFTP API 12
CFHTTP API 12
CFHTTPAuthentication API 13
CFHost API 13
CFNetServices API 14
CFNetDiagnostics API 14

Chapter 2 Working with Streams 17

Working with Read Streams 17
Working with Write Streams 18
Preventing Blocking When Working with Streams 19

Using Polling to Prevent Blocking 20
Using a Run Loop to Prevent Blocking 21

Navigating Firewalls 23

Chapter 3 Communicating with HTTP Servers 27

Creating a CFHTTP Request 27
Creating a CFHTTP Response 28
Deserializing an Incoming HTTP Request 28
Deserializing an Incoming HTTP Response 29
Using a Read Stream to Serialize and Send HTTP Requests 29

Serializing and Sending an HTTP Request 29
Checking the Response 30
Handling Authentication Errors 30
Handling Redirection Errors 30

Cancelling a Pending Request 31

3
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

Chapter 4 Communicating with Authenticating HTTP Servers 33

Handling Authentication 33
Keeping Credentials in Memory 37
Keeping Credentials in a Persistent Store 38
Authenticating Firewalls 42

Chapter 5 Working with FTP Servers 43

Downloading a File 43
Setting Up the FTP Streams 43
Implementing the Callback Function 45

Uploading a File 46
Creating a Remote Directory 47
Downloading a Directory Listing 47

Chapter 6 Using Network Diagnostics 49

Document Revision History 51

4
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 CFNetwork Concepts 9

Figure 1-1 CFNetwork and other software layers on Mac OS X 9
Figure 1-2 CFStream API structure 11
Figure 1-3 Network diagnostics assistant 15

Chapter 2 Working with Streams 17

Listing 2-1 Creating a read stream from a file 17
Listing 2-2 Opening a read stream 17
Listing 2-3 Reading from a read stream (blocking) 18
Listing 2-4 Releasing a read stream 18
Listing 2-5 Creating, opening, writing to, and releasing a write stream 18
Listing 2-6 Polling a read stream 20
Listing 2-7 Polling a write stream 20
Listing 2-8 Scheduling a stream on a run loop 22
Listing 2-9 Opening a nonblocking read stream 22
Listing 2-10 Network events callback function 22
Listing 2-11 Navigating a stream through a proxy server 23
Listing 2-12 Creating a handle to a dynamic store session 24
Listing 2-13 Adding a dynamic store reference to the run loop 24
Listing 2-14 Loading the proxy dictionary 24
Listing 2-15 Proxy callback function 24
Listing 2-16 Adding proxy information to a stream 25
Listing 2-17 Cleaning up proxy information 25

Chapter 3 Communicating with HTTP Servers 27

Listing 3-1 Creating an HTTP request 27
Listing 3-2 Releasing an HTTP request 28
Listing 3-3 Deserializing a message 28
Listing 3-4 Serializing an HTTP request with a read stream 30
Listing 3-5 Redirecting an HTTP stream 31

Chapter 4 Communicating with Authenticating HTTP Servers 33

Figure 4-1 Handling authentication 34
Figure 4-2 Finding an authentication object 34
Listing 4-1 Creating an authentication object 35
Listing 4-2 Finding a valid authentication object 35
Listing 4-3 Finding credentials (if necessary) and applying them 36

5
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

Listing 4-4 Applying the authentication object to a request 37
Listing 4-5 Looking for a matching authentication object 38
Listing 4-6 Searching the credentials store 38
Listing 4-7 Searching the keychain 40
Listing 4-8 Loading server credentials from the keychain 40
Listing 4-9 Modifying the keychain entry 41
Listing 4-10 Storing a new keychain entry 41

Chapter 5 Working with FTP Servers 43

Listing 5-1 A stream structure 43
Listing 5-2 Writing data to a write stream from the read stream 45
Listing 5-3 Writing data to the write stream 46
Listing 5-4 Loading data for a directory listing 47
Listing 5-5 Loading the directory listing and parsing it 48

Chapter 6 Using Network Diagnostics 49

Listing 6-1 Using the CFNetDiagnostics API when a stream error occurs 49

6
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

CFNetwork is a framework in the Core Services framework that provides a library of abstractions for network
protocols. These abstractions make it easy to perform a variety of network tasks, such as:

 ■ Working with BSD sockets

 ■ Creating encrypted connections using SSL or TLS

 ■ Resolving DNS hosts

 ■ Working with HTTP, authenticating HTTP and HTTPS servers

 ■ Working with FTP servers

 ■ Publishing, resolving and browsing Bonjour services

This book is intended for developers who want to use network protocols in their applications. In order to
fully understand this book, the reader should have a good understanding of network programming concepts
such as BSD sockets, streams and HTTP protocols. Additionally, the reader should be familiar Mac OS X
programming concepts including run loops. For more information about Mac OS X please read Mac OS X
Technology Overview.

Organization of This Document

This book contains the following chapters:

 ■ "CFNetwork Concepts" (page 9) describes each of the CFNetwork APIs and how they interact.

 ■ "Working with Streams" (page 17) describes how to use the CFStream API to send and receive network
data.

 ■ "Communicating with HTTP Servers" (page 27) describes how to send and receive HTTP messages.

 ■ "Communicating with Authenticating HTTP Servers" (page 33) describes how to communicate with
secure HTTP servers.

 ■ "Working with FTP Servers" (page 43) describes how to upload and download files from an FTP server,
and how to download directory listings.

 ■ "Using Network Diagnostics" (page 49) describes how to add network diagnostics to your application.

See Also

For more information about the networking APIs in Mac OS X, read:

 ■ Getting Started With Networking

Organization of This Document 7
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to CFNetwork Programming
Guide

Refer to the following reference documents for CFNetwork:

 ■ CFFTPStream Reference is the reference documentation for the CFFTPStream API.

 ■ CFHTTPMessage Reference is the reference documentation for the CFHTTPMessage API.

 ■ CFHTTPStream Reference is the reference documentation for the CFHTTPStream API.

 ■ CFHTTPAuthentication Reference is the reference documentation for the CFHTTPAuthentication API.

 ■ CFHost Reference is the reference documentation for the CFHost API.

 ■ CFNetServices Reference is the reference documentation for the CFNetServices API.

 ■ CFNetDiagnostics Reference is the reference documentation for the CFNetDiagnostics API.

In addition to the documentation provided by Apple, the following is the reference book for socket-level
programming:

 ■ UNIX Network Programming, Volume 1 (Stevens, Fenner and Rudoff)

8 See Also
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to CFNetwork Programming Guide

CFNetwork is a low-level, high-performance framework that gives you the ability to have detailed control
over the protocol stack. It is an extension to BSD sockets, the standard socket abstraction API that provides
objects to simplify tasks such as communicating with FTP and HTTP servers or resolving DNS hosts. CFNetwork
is based, both physically and theoretically, on BSD sockets.

Just as CFNetwork relies on BSD sockets, there are a number of Cocoa classes that rely on CFNetwork. NSURL
is one such class used for communicating with servers using standard Internet protocols. In addition, the
Web Kit is a set of Cocoa classes to display web content in windows. Both of these classes are very high level
and implement most of the details of the networking protocols by themselves. Thus, the structure of the
software layers looks like the image in Figure 1-1.

Figure 1-1 CFNetwork and other software layers on Mac OS X

Web Kit

NSURL

CFNetwork

BSD sockets

When to Use CFNetwork

CFNetwork has a number of advantages over BSD sockets. It provides run-loop integration, so if your
application is run loop based you can use network protocols without implementing threads. CFNetwork also
contains a number of objects to help you use network protocols without having to implement the details
yourself. For example, you can use FTP protocols without having to implement all of the details with the
CFFTP API. If you understand the networking protocols and need the low-level control they provide but don't
want to implement them yourself, then CFNetwork is probably the right choice.

There are a number of advantages of using CFNetwork instead of the Cocoa framework NSURL. CFNetwork
is focused more on the network protocols, whereas NSURL is focused more on data access, such as transferring
data over HTTP or FTP. Although NSURL does provide some configurability, CFNetwork provides a lot more.
Additionally, NSURL requires that you use Objective-C. If that is not feasible, then you should use CFNetwork.
For more information on the Foundation networking frameworks, read URL Loading System Programming
Guide.

Now that you understand how CFNetwork interacts with the other Mac OS X networking APIs, you're ready
to become familiar with the CFNetwork APIs along with two APIs that form the infrastructure for CFNetwork.

When to Use CFNetwork 9
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

CFNetwork Infrastructure

Before learning about the CFNetwork APIs, you must first understand the APIs which are the foundation for
the majority of CFNetwork. CFNetwork relies on two APIs that are part of the Core Foundation framework,
CFSocket and CFStream. Understanding these APIs is essential to using CFNetwork.

CFSocket API

Sockets are the most basic level of network communications. A socket acts in a similar manner to a telephone
jack. It allows you to connect to another socket (either locally or over a network) and send data to that socket.

The most common socket abstraction is BSD sockets. CFSocket is an abstraction for BSD sockets. With very
little overhead, CFSocket provides almost all the functionality of BSD sockets, and it integrates the socket
into a run loop. CFSocket is not limited to stream-based sockets (for example, TCP), it can handle any type
of socket.

You could create a CFSocket object from scratch using the CFSocketCreate function, or from a BSD socket
using the CFSocketCreateWithNative function. Then, you could create a run-loop source using the
functionCFSocketCreateRunLoopSource and add it to a run loop with the functionCFRunLoopAddSource.
This would allow your CFSocket callback function to be run whenever the CFSocket object receives a message.

Read CFSocket Reference for more information about the CFSocket API.

CFStream API

Read and write streams provide an easy way to exchange data to and from a variety of media in a
device-independent way. You can create streams for data located in memory, in a file, or on a network (using
sockets), and you can use streams without loading all of the data into memory at once.

A stream is a sequence of bytes transmitted serially over a communications path. Streams are one-way paths,
so to communicate bidirectionally an input (read) stream and output (write) stream are necessary. Except
for ones that are file based, streams are nonseekable; after stream data has been provided or consumed, it
cannot be retrieved again from the stream.

CFStream is an API that provides an abstraction for these streams with two new CFType objects: CFReadStream
and CFWriteStream. Both types of stream follow all of the usual Core Foundation API conventions. For more
information about Core Foundation types, read Core Foundation Design Concepts.

CFStream is built on top of CFSocket and is the foundation for CFHTTP and CFFTP. As you can see in Figure
1-2, even though CFStream is not officially part of CFNetwork, it is the basis for almost all of CFNetwork.

10 CFNetwork Infrastructure
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

Figure 1-2 CFStream API structure

CFSocket

CFStream

CFSocketStream

CFFTP CFHTTP

CFHTTPAuthentication

Framework

CFNetwork

Core Foundation

You can use read and write streams in much the same way as you do UNIX file descriptors. First, you instantiate
the stream by specifying the stream type (memory, file, or socket) and set any options. Next, you open the
stream and read or write any number of times. While the stream exists, you can get information about the
stream by asking for its properties. A stream property is any information about the stream, such as its source
or destination, that is not part of the actual data being read or written. When you no longer need the stream,
close and dispose of it.

CFStream functions that read or write a stream will suspend, or block, the current process until at least one
byte of the data can be read or written. To avoid trying to read from or write to a stream when the stream
would block, use the asynchronous version of the functions and schedule the stream on a run loop. Your
callback function is called when it is possible to read and write without blocking.

In addition, CFStream has built-in support for the Secure Sockets Layer (SSL) protocol. You can set up a
dictionary containing the stream's SSL information, such as the security level desired or self-signed certificates.
Then pass it to your stream as the kCFStreamPropertySSLSettings property to make the stream an SSL
stream.

It is not possible to construct a custom flavor of CFStream. For example, if you want to stream data from an
object embedded within a custom database file, you can't do this by creating your own CFStream flavor.
Instead, you implement a custom subclass of NSStream (using Objective-C). Since NSStream is toll free bridged
to CFStream, your NSStream subclass can be used wherever a CFStream is required. For more information
about the NSStream classes, read Stream Programming Guide for Cocoa.

The chapter "Working with Streams" (page 17) describes how to use read and write streams.

CFNetwork API Concepts

To understand the CFNetwork framework, you need to be familiar with the building blocks that compose it.
The CFNetwork framework is broken up into separate APIs, each covering a specific network protocol. These
APIs can be used in combination, or separately, depending on your application. Most of the programming
conventions are common among the APIs, so it's important to comprehend each of them.

CFNetwork API Concepts 11
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

CFFTP API

Communicating with an FTP server is made easier with CFFTP. Using the CFFTP API, you can create FTP read
streams (for downloading) and FTP write streams (for uploading). Using FTP read and write streams you can
perform functions such as:

 ■ Download a file from an FTP server

 ■ Upload a file to an FTP server

 ■ Download a directory listing from an FTP server

 ■ Create directories on an FTP server

An FTP stream works like all other CFNetwork streams. For example, you can create an FTP read stream by
calling the function CFReadStreamCreateWithFTPURL function. Then, you can call the function
CFReadStreamGetError at any time to check the status of the stream.

By setting properties on FTP streams, you can adapt your stream for its particular application. For example,
if the server that the stream is connecting to requires a user name and password, you need to set the
appropriate properties so the stream can work properly. For more information about the different properties
available to FTP streams read "Setting up the Streams" (page 43).

A CFFTP stream can be used synchronously or asynchronously. To open the connection with the FTP server
that was specified when the FTP read stream was created, call the function CFReadStreamOpen. To read
from the stream, use the CFReadStreamRead function and provide the read stream reference,
CFReadStreamRef, that was returned when the FTP read stream was created. The CFReadStreamRead
function fills a buffer with the output from the FTP server.

For more information on using CFFTP, see "Working with FTP Servers" (page 43).

CFHTTP API

To send and receive HTTP messages, use the CFHTTP API. Just as CFFTP is an abstraction for FTP protocols,
CFHTTP is an abstraction for HTTP protocols.

Hypertext Transfer Protocol (HTTP) is a request/response protocol between a client and a server. The client
creates a request message. This message is then serialized, a process that converts the message into a raw
byte stream. Messages cannot be transmitted until they are serialized first. Then the request message is sent
to the server. The request typically asks for a file, such as a webpage. The server responds, sending back a
string followed by a message. This process is repeated as many times as is necessary.

To create an HTTP request message, you specify the following:

 ■ The request method, which can be one of the request methods defined by the Hypertext Transfer
Protocol, such as OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, and CONNECT

 ■ The URL, such as http://www.apple.com

 ■ The HTTP version, such as version 1.0 or 1.1

 ■ The message’s headers, by specifying the header name, such as User-Agent, and its value, such as
MyUserAgent

 ■ The message’s body

12 CFNetwork API Concepts
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

After the message has been constructed, you serialize it. Following serialization, a request might look like
this:

 GET / HTTP/1.0\r\nUser-Agent: UserAgent\r\nContent-Length: 0\r\n\r\n

Deserialization is the opposite of serialization. With deserialization, a raw byte stream received from a client
or server is restored to its native representation. CFNetwork provides all of the functions needed to get the
message type (request or response), HTTP version, URL, headers, and body from an incoming, serialized
message.

More examples of using CFHTTP are available in "Communicating with HTTP Servers" (page 27).

CFHTTPAuthentication API

If you send an HTTP request to an authentication server without credentials (or with incorrect credentials),
the server returns an authorization challenge (more commonly known as a 401 or 407 response). The
CFHTTPAuthentication API applies authentication credentials to challenged HTTP messages.
CFHTTPAuthentication supports the following authentication schemes:

 ■ Basic

 ■ Digest

 ■ NT LAN Manager (NTLM)

 ■ Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

New in Mac OS X v10.4 is the ability to carry persistency across requests. In Mac OS X v10.3 each time a
request was challenged, you had to start the authentication dialog from scratch. Now, you maintain a set of
CFHTTPAuthentication objects for each server. When you receive a 401 or 407 response, you find the correct
object and credentials for that server and apply them. CFNetwork uses the information stored in that object
to process the request as efficiently as possible.

By carrying persistency across request, this new version of CFHTTPAuthentication provides much better
performance. More information about how to use CFHTTPAuthentication is available in "Communicating
with Authenticating HTTP Servers" (page 33).

CFHost API

You use the CFHost API to acquire host information, including names, addresses, and reachability information.
The process of acquiring information about a host is known as resolution.

CFHost is used just like CFStream:

 ■ Create a CFHost object.

 ■ Start resolving the CFHost object.

 ■ Retrieve either the addresses, host names, or reachability information.

 ■ Destroy the CFHost object when you are done with it.

Like all of CFNetwork, CFHost is IPv4 and IPv6 compatible. Using CFHost, you could write code that handles
IPv4 and IPv6 completely transparently.

CFNetwork API Concepts 13
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

CFHost is integrated closely with the rest of CFNetwork. For example, there is a CFStream function called
CFStreamCreatePairWithSocketToCFHost that will create a CFStream object directly from a CFHost
object. For more information about the CFHost object functions, see CFHost Reference.

CFNetServices API

If you want your application to use Bonjour to register a service or to discover services, use the CFNetServices
API. Bonjour is Apple's implementation of zero-configuration networking (ZEROCONF), which allows you to
publish, discover, and resolve network services.

To implement Bonjour the CFNetServices API defines three object types: CFNetService, CFNetServiceBrowser,
and CFNetServiceMonitor. A CFNetService object represents a single network service, such as a printer or a
file server. It contains all the information needed for another computer to resolve that server, such as name,
type, domain and port number. A CFNetServiceBrowser is an object used to discover domains and network
services within domains. And a CFNetServiceMonitor object is used to monitor a CFNetService object for
changes, such as a status message in iChat.

For a full description of Bonjour, see Bonjour Overview. For more information about using CFNetServices and
implementing Bonjour, see NSNetServices and CFNetServices Programming Guide.

CFNetDiagnostics API

Applications that connect to networks depend on a stable connection. If the network goes down, this causes
problems with the application. By adopting the CFNetDiagnostics API, the user can self-diagnose network
issues such as:

 ■ Physical connection failures (for example, a cable is unplugged)

 ■ Network failures (for example, DNS or DHCP server no longer responds)

 ■ Configuration failures (for example, the proxy configuration is incorrect)

Once the network failure has been diagnosed, CFNetDiagnostics guides the user to fix the problem. You may
have seen CFNetDiagnostics in action if Safari failed to connect to a website. The CFNetDiagnostics assistant
can be seen in Figure 1-3.

14 CFNetwork API Concepts
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

Figure 1-3 Network diagnostics assistant

By providing CFNetDiagnostics with the context of the network failure, you can call the
CFNetDiagnosticDiagnoseProblemInteractively function to lead the user through the prompts to
find a solution. Additionally, you can use CFNetDiagnostics to query for connectivity status and provide
uniform error messages to the user.

To see how to integrate CFNetDiagnotics into your application read "Using Network Diagnostics" (page 49).
CFNetDiagnostics is a new API in Mac OS X v10.4.

CFNetwork API Concepts 15
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

16 CFNetwork API Concepts
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CFNetwork Concepts

This chapter discusses how to create, open, and check for errors on read and write streams. It also describes
how to read from a read stream, how to write to a write stream, how to prevent blocking when reading from
or writing to a stream, and how to navigate a stream through a proxy server.

Working with Read Streams

Start by creating a read stream. Listing 2-1 creates a read stream for a file.

Listing 2-1 Creating a read stream from a file

CFReadStreamRef myReadStream = CFReadStreamCreateWithFile(kCFAllocatorDefault,
 fileURL);

In this listing, the kCFAllocatorDefault parameter specifies that the current default system allocator be
used to allocate memory for the stream and the fileURL parameter specifies the name of the file for which
this read stream is being created, such as file:///Users/joeuser/Downloads/MyApp.sit.

Now that the stream has been created, it can be opened. Opening a stream causes the stream to reserve any
system resources that it requires, such as the file descriptor needed to open the file. Listing 2-2 is an example
of opening the read stream.

Listing 2-2 Opening a read stream

if (!CFReadStreamOpen(myReadStream)) {
 CFStreamError myErr = CFReadStreamGetError(myReadStream);
 // An error has occurred.
 if (myErr.domain == kCFStreamErrorDomainPOSIX) {
 // Interpret myErr.error as a UNIX errno.
 } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
 // Interpret myErr.error as a MacOS error code.
 OSStatus macError = (OSStatus)myErr.error;
 // Check other error domains.
 }
}

The CFReadStreamOpen function returns TRUE to indicate success and FALSE if the open fails for any reason.
If CFReadStreamOpen returns FALSE, the example calls the CFReadStreamGetError function, which
returns a structure of type CFStreamError consisting of two values: a domain code and an error code. The
domain code indicates how the error code should be interpreted. For example, if the domain code is
kCFStreamErrorDomainPOSIX, the error code is a UNIX errno value. The other error domains are
kCFStreamErrorDomainMacOSStatus, which indicates that the error code is an OSStatus value defined
in MacErrors.h, and kCFStreamErrorDomainHTTP, which indicates that the error code is the one of the
values defined by the CFStreamErrorHTTP enumeration.

Working with Read Streams 17
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

Opening a stream can be a lengthy process, so the CFReadStreamOpen and CFWriteStreamOpen functions
avoid blocking by returning TRUE to indicate that the process of opening the stream has begun. To check
the status of the open, call the functions CFReadStreamGetStatus and CFWriteStreamGetStatus, which
return kCFStreamStatusOpening if the open is still in progress, kCFStreamStatusOpen if the open is
complete, or kCFStreamStatusErrorOccurred if the open has completed but failed. In most cases, it
doesn’t matter whether the open is complete because the CFStream functions that read and write will block
until the stream is open.

To read from a read stream, call the function CFReadStreamRead, which is similar to the UNIX read()
system call. Both take buffer and buffer length parameters. Both return the number of bytes read, 0 if at the
end of stream or file, or -1 if an error occurred. Both block until at least one byte can be read, and both
continue reading as long as they can do so without blocking. Listing 2-3 is an example of reading from the
read stream.

Listing 2-3 Reading from a read stream (blocking)

CFIndex numBytesRead;
do {
 UInt8 buf[kReadBufSize];
 numBytesRead = CFReadStreamRead(myReadStream, buf, sizeof(buf));
 if(numBytesRead > 0) {
 handleBytes(buf, numBytesRead);
 } else if(numBytesRead < 0) {
 CFStreamError error = CFReadStreamGetError(myReadStream);
 reportError(error);
 }
} while(numBytesRead > 0);

When all data has been read, you should call the CFReadStreamClose function to close the stream, thereby
releasing system resources associated with it. Then release the stream reference by calling the function
CFRelease. You may also want to invalidate the reference by setting it to NULL. See Listing 2-4 for an
example.

Listing 2-4 Releasing a read stream

CFReadStreamClose(myReadStream);
CFRelease(myReadStream);
myReadStream = NULL;

Working with Write Streams

Working with write streams is similar to working with read streams. One major difference is that the function
CFWriteStreamWrite does not guarantee to accept all of the bytes that you pass it. Instead,
CFWriteStreamWrite returns the number of bytes that it accepted. You'll notice in the sample code shown
in Listing 2-5 that if the number of bytes written is not the same as the total number of bytes to be written,
the buffer is adjusted to accommodate this.

Listing 2-5 Creating, opening, writing to, and releasing a write stream

CFWriteStreamRef myWriteStream =
 CFWriteStreamCreateWithFile(kCFAllocatorDefault, fileURL);
if (!CFWriteStreamOpen(myWriteStream)) {

18 Working with Write Streams
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

 CFStreamError myErr = CFWriteStreamGetError(myWriteStream);
 // An error has occurred.
 if (myErr.domain == kCFStreamErrorDomainPOSIX) {
 // Interpret myErr.error as a UNIX errno.
 } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
 // Interpret myErr.error as a MacOS error code.
 OSStatus macError = (OSStatus)myErr.error;
 // Check other error domains.
 }
}
UInt8 buf[] = "Hello, world";
UInt32 bufLen = strlen(buf);

while (!done) {
 CFTypeRef bytesWritten = CFWriteStreamWrite(myWriteStream, buf, strlen(buf));
 if (bytesWritten < 0) {
 CFStreamError error = CFWriteStreamGetError(myWriteStream);
 reportError(error);
 } else if (bytesWritten == 0) {
 if (CFWriteStreamGetStatus(myWriteStream) == kCFStreamStatusAtEnd) {
 done = TRUE;
 }
 } else if (bytesWritten != strlen(buf)) {
 // Determine how much has been written and adjust the buffer
 bufLen = bufLen - bytesWritten;
 memmove(buf, buf + bytesWritten, bufLen);

 // Figure out what went wrong with the write stream
 CFStreamError error = CFWriteStreamGetError(myWriteStream);
 reportError(error);

 }
}
CFWriteStreamClose(myWriteStream);
CFRelease(myWriteStream);
myWriteStream = NULL;

Preventing Blocking When Working with Streams

When using streams to communicate, there is always a chance, especially with socket-based streams, that a
data transfer could take a long time. If you are implementing your streams synchronously your entire
application will be forced to wait on the data transfer. Therefore, it is highly recommended that your code
use alternate methods to prevent blocking.

There are two ways to prevent blocking when reading from or writing to a CFStream object:

 ■ Polling — For read streams, find out if there are bytes to read before reading from the stream. For write
streams, find out whether the stream can be written to without blocking before writing to the stream.

 ■ Using a run loop — Register to receive stream-related events and schedule the stream on a run loop.
When a stream-related event occurs, your callback function (specified by the registration call) is called.

Each of these approaches is described in the following sections.

Preventing Blocking When Working with Streams 19
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

Using Polling to Prevent Blocking

To poll the read or write stream, you need to see if the streams are ready. When writing to a write stream,
this is done by calling the function CFWriteStreamCanAcceptBytes. If it returns TRUE, then you can use
the CFWriteStreamWrite function because it will be able to write immediately and will not block. Similarly,
for a read stream, before calling CFReadStreamRead, call the function CFReadStreamHasBytesAvailable.
By polling the stream, you avoid blocking the thread by waiting for the stream to become ready.

Listing 2-6 is a polling example for a read stream.

Listing 2-6 Polling a read stream

while (!done) {
 if (CFReadStreamHasBytesAvailable(myReadStream)) {
 UInt8 buf[BUFSIZE];
 CFIndex bytesRead = CFReadStreamRead(myReadStream, buf, BUFSIZE);
 if (bytesRead < 0) {
 CFStreamError error = CFReadStreamGetError(myReadStream);
 reportError(error);
 } else if (bytesRead == 0) {
 if (CFReadStreamGetStatus(myReadStream) == kCFStreamStatusAtEnd) {
 done = TRUE;
 }
 } else {
 handleBytes(buf, bytesRead);
 }
 } else {
 // ...do something else while you wait...
 }
}

Listing 2-7 is a polling example for a write stream.

Listing 2-7 Polling a write stream

UInt8 buf[] = "Hello, world";
UInt32 bufLen = strlen(buf);

while (!done) {
 if (CFWriteStreamCanAcceptBytes(myWriteStream)) {
 int bytesWritten = CFWriteStreamWrite(myWriteStream, buf, strlen(buf));
 if (bytesWritten < 0) {
 CFStreamError error = CFWriteStreamGetError(myWriteStream);
 reportError(error);
 } else if (bytesWritten == 0) {
 if (CFWriteStreamGetStatus(myWriteStream) == kCFStreamStatusAtEnd)
 {
 done = TRUE;
 }
 } else if (bytesWritten != strlen(buf)) {
 // Determine how much has been written and adjust the buffer
 bufLen = bufLen - bytesWritten;
 memmove(buf, buf + bytesWritten, bufLen);

 // Figure out what went wrong with the write stream
 CFStreamError error = CFWriteStreamGetError(myWriteStream);

20 Preventing Blocking When Working with Streams
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

 reportError(error);
 }
 } else {
 // ...do something else while you wait...
 }
}

Using a Run Loop to Prevent Blocking

The run loop of a thread watches for certain events to happen. When those events take place the run loop
calls a specified function. The run loop is constantly monitoring all of its input sources for events. In the case
of network transfers, your callback function will be executed by the run loop when the event you registered
for occurs. This allows you to not have to poll your socket stream, which would slow down the thread. Please
make sure you are familiar with run loops by reading Run Loops.

This example begins by creating a socket read stream:

CFStreamCreatePairWithSocketToCFHost(kCFAllocatorDefault, host, port,
 &myReadStream, NULL);

where the CFHost object reference, host, specifies the remote host with which the read stream is to be made
and the port parameter specifies the port number that the host uses. The
CFStreamCreatePairWithSocketToCFHost function returns the new read stream reference in
myReadStream. The last parameter, NULL, indicates that the caller does not want to create a write stream.
If you wanted to create a write steam, the last parameter would be, for example, &myWriteStream.

Before opening the socket read stream, create a context that will be used when you register to receive
stream-related events:

CFStreamClientContext myContext = {0, myPtr, myRetain, myRelease, myCopyDesc};

The first parameter is 0 to specify the version number. The info parameter, myPtr, is a pointer to data you
want to be passed to your callback function. Usually, myPtr is a pointer to a structure you’ve defined that
contains information relating to the stream. The retain parameter is a pointer to a function to retain the
info parameter. So if you set it to your function myRetain, as in the code above, CFStream will call
myRetain(myPtr) to retain the info pointer. Similarly, the release parameter, myRelease, is a pointer
to a function to release the info parameter. When the stream is disassociated from the context, CFStream
would call myRelease(myPtr). Finally, copyDescription is a parameter to a function to provide a
description of the stream. For example, if you were to call CFCopyDesc(myReadStream) with the stream
client context shown above, CFStream would call myCopyDesc(myPtr).

The client context also allows you the option of setting the retain, release, and copyDescription
parameters to NULL. If you set the retain and release parameters to NULL, then the system will expect
you to keep the memory pointed to by the info pointer alive until the stream itself is destroyed. If you set
the copyDescription parameter to NULL, then the system will provide, if requested, a rudimentary
description of what is in the memory pointed to by the info pointer.

With the client context set up, call the function CFReadStreamSetClient to register to receive stream-related
events. CFReadStreamSetClient requires that you specify the callback function and the events you want
to receive. The following example in Listing 2-8 specifies that the callback function wants to receive the
kCFStreamEventHasBytesAvailable, kCFStreamEventErrorOccurred, and
kCFStreamEventEndEncountered events. Then schedule the stream on a run loop with the
CFReadStreamScheduleWithRunLoop function. See Listing 2-8 for an example of how to do this.

Preventing Blocking When Working with Streams 21
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

Listing 2-8 Scheduling a stream on a run loop

CFOptionFlags registeredEvents = kCFStreamEventHasBytesAvailable |
 kCFStreamEventErrorOccurred | kCFStreamEventEndEncountered;
if (CFReadStreamSetClient(myReadStream, registeredEvents, myCallBack, &myContext)
{
 CFReadStreamScheduleWithRunLoop(myReadStream, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);
}

With the stream scheduled on the run loop, you are ready to open the stream as shown in Listing 2-9.

Listing 2-9 Opening a nonblocking read stream

if (!CFReadStreamOpen(myReadStream)) {
 CFStreamError myErr = CFReadStreamGetError(myReadStream);
 if (myErr.error != 0) {
 // An error has occurred.
 if (myErr.domain == kCFStreamErrorDomainPOSIX) {
 // Interpret myErr.error as a UNIX errno.
 strerror(myErr.error);
 } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
 OSStatus macError = (OSStatus)myErr.error;
 }
 // Check other domains.
 } else
 // start the run loop
 CFRunLoopRun();
}

Now, wait for your callback function to be executed. In your callback function, check the event code and take
appropriate action. See Listing 2-10.

Listing 2-10 Network events callback function

void myCallBack (CFReadStreamRef stream, CFStreamEventType event, void *myPtr)
 {
 switch(event) {
 case kCFStreamEventHasBytesAvailable:
 // It is safe to call CFReadStreamRead; it won’t block because bytes
 // are available.
 UInt8 buf[BUFSIZE];
 CFIndex bytesRead = CFReadStreamRead(stream, buf, BUFSIZE);
 if (bytesRead > 0) {
 handleBytes(buf, bytesRead);
 }
 // It is safe to ignore a value of bytesRead that is less than or
 // equal to zero because these cases will generate other events.
 break;
 case kCFStreamEventErrorOccurred:
 CFStreamError error = CFReadStreamGetError(stream);
 reportError(error);
 CFReadStreamUnscheduleFromRunLoop(stream, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);
 CFReadStreamClose(stream);
 CFRelease(stream);
 break;

22 Preventing Blocking When Working with Streams
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

 case kCFStreamEventEndEncountered:
 reportCompletion();
 CFReadStreamUnscheduleFromRunLoop(stream, CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes);
 CFReadStreamClose(stream);
 CFRelease(stream);
 break;
 }
}

When the callback function receives the kCFStreamEventHasBytesAvailable event code, it calls
CFReadStreamRead to read the data.

When the callback function receives the kCFStreamEventErrorOccurred event code, it calls
CFReadStreamGetError to get the error and its own error function (reportError) to handle the error.

When the callback function receives the kCFStreamEventEndEncountered event code, it calls its own
function (reportCompletion) for handling the end of data and then calls the
CFReadStreamUnscheduleFromRunLoop function to remove the stream from the specified run loop. Then
the CFReadStreamClose function is run to close the stream and CFRelease to release the stream reference.

Navigating Firewalls

There are two ways to apply firewall settings to a stream. For most streams, you can retrieve the proxy settings
using the SCDynamicStoreCopyProxies function and then apply the result to the stream by setting the
kCFStreamHTTPProxy (or kCFStreamFTPProxy) property. The SCDynamicStoreCopyProxies function
is part of the System Configuration framework, so you need to include
<SystemConfiguration/SystemConfiguration.h> in your project to use the function. Then just release
the proxy dictionary reference when you are done with it. The process would look like that in Listing 2-11.

Listing 2-11 Navigating a stream through a proxy server

CFDictionaryRef proxyDict = SCDynamicStoreCopyProxies(NULL);
CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, proxyDict);

However, if you need to use the proxy settings often for multiple streams, it becomes a bit more complicated.
In this case retrieving the firewall settings of a user's machine requires five steps:

1. Create a single, persistent handle to a dynamic store session, SCDynamicStoreRef.

2. Put the handle to the dynamic store session into the run loop to be notified of proxy changes.

3. Use SCDynamicStoreCopyProxies to retrieve the latest proxy settings.

4. Update your copy of the proxies when told of the changes.

5. Clean up the SCDynamicStoreRef when you are through with it.

To create the handle to the dynamic store session, use the function SCDynamicStoreCreate and pass an
allocator, a name to describe your process, a callback function and a dynamic store context,
SCDynamicStoreContext. This is run when initializing your application. The code would be similar to that
in Listing 2-12.

Navigating Firewalls 23
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

Listing 2-12 Creating a handle to a dynamic store session

SCDynamicStoreContext context = {0, self, NULL, NULL, NULL};
systemDynamicStore = SCDynamicStoreCreate(NULL,
 CFSTR("SampleApp"),
 proxyHasChanged,
 &context);

After creating the reference to the dynamic store, you need to add it to the run loop. First, take the dynamic
store reference and set it up to monitor for any changes to the proxies. This is accomplished with the functions
SCDynamicStoreKeyCreateProxies and SCDynamicStoreSetNotificationKeys. Then, you can add
the dynamic store reference to the run loop with the functions SCDynamicStoreCreateRunLoopSource
and CFRunLoopAddSource. Your code should look like that in Listing 2-13.

Listing 2-13 Adding a dynamic store reference to the run loop

// Set up the store to monitor any changes to the proxies
CFStringRef proxiesKey = SCDynamicStoreKeyCreateProxies(NULL);
CFArrayRef keyArray = CFArrayCreate(NULL,
 (const void **)(&proxiesKey),
 1,
 &kCFTypeArrayCallBacks);
SCDynamicStoreSetNotificationKeys(systemDynamicStore, keyArray, NULL);
CFRelease(keyArray);
CFRelease(proxiesKey);

// Add the dynamic store to the run loop
CFRunLoopSourceRef storeRLSource =
 SCDynamicStoreCreateRunLoopSource(NULL, systemDynamicStore, 0);
CFRunLoopAddSource(CFRunLoopGetCurrent(), storeRLSource, kCFRunLoopCommonModes);
CFRelease(storeRLSource);

Once the dynamic store reference has been added to the run loop, use it to preload the proxy dictionary the
current proxy settings by calling SCDynamicStoreCopyProxies. See Listing 2-14 for how to do this.

Listing 2-14 Loading the proxy dictionary

gProxyDict = SCDynamicStoreCopyProxies(systemDynamicStore);

As a result of adding the dynamic store reference to the run loop, each time the proxies are changed your
callback function will be run. Release the current proxy dictionary and reload it with the new proxy settings.
A sample callback function would look like the one in Listing 2-15.

Listing 2-15 Proxy callback function

void proxyHasChanged() {
 CFRelease(gProxyDict);
 gProxyDict = SCDynamicStoreCopyProxies(systemDynamicStore);
}

Since all of the proxy information is up-to-date, apply the proxies. After creating your read or write stream,
set the kCFStreamPropertyHTTPProxy proxy by calling the functions CFReadStreamSetProperty or
CFWriteStreamSetProperty. If your stream was a read stream called readStream, your function call
would be like that in Listing 2-16.

24 Navigating Firewalls
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

Listing 2-16 Adding proxy information to a stream

CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, gProxyDict);

When you are all done with using the proxy settings, make sure to release the dictionary and dynamic store
reference, and to remove the dynamic store reference from the run loop. See Listing 2-17.

Listing 2-17 Cleaning up proxy information

if (gProxyDict) {
 CFRelease(gProxyDict);
}

// Invalidate the dynamic store's run loop source
// to get the store out of the run loop
CFRunLoopSourceRef rls = SCDynamicStoreCreateRunLoopSource(NULL,
systemDynamicStore, 0);
CFRunLoopSourceInvalidate(rls);
CFRelease(rls);
CFRelease(systemDynmaicStore);

Navigating Firewalls 25
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

26 Navigating Firewalls
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Working with Streams

This chapter explains how to create, send, and receive HTTP requests and responses.

Creating a CFHTTP Request

An HTTP request is a message consisting of a method for the remote server to execute, the object to operate
on (the URL), message headers, and a message body. The methods are usually one of the following: GET,
HEAD, PUT, POST, DELETE, TRACE, CONNECT or OPTIONS. Creating an HTTP request with CFHTTP requires
four steps:

1. Generate a CFHTTP message object using the CFHTTPMessageCreateRequest function.

2. Set the body of the message using the function CFHTTPMessageSetBody.

3. Set the message's headers using the CFHTTPMessageSetHeaderFieldValue function.

4. Serialize the message by calling the function CFHTTPMessageCopySerializedMessage.

Sample code would look like the code in Listing 3-1.

Listing 3-1 Creating an HTTP request

CFStringRef bodyData = CFSTR(""); // Usually used for POST data

CFStringRef headerFieldName = CFSTR("X-My-Favorite-Field");
CFStringRef headerFieldValue = CFSTR("Dreams");

CFStringRef url = CFSTR("http://www.apple.com");
CFURLRef myURL = CFURLCreateWithString(kCFAllocatorDefault, url, NULL);

CFStringRef requestMethod = CFSTR("GET");
CFHTTPMessageRef myRequest =
 CFHTTPMessageCreateRequest(kCFAllocatorDefault, requestMethod, myURL,
 kCFHTTPVersion1_1);

CFHTTPMessageSetBody(myRequest, bodyData);
CFHTTPMessageSetHeaderFieldValue(myRequest, headerFieldName, headerFieldValue);
CFDataRef mySerializedRequest = CFHTTPMessageCopySerializedMessage(myRequest);

In this sample code, url is first converted into a CFURL object by calling CFURLCreateWithString. Then
CFHTTPMessageCreateRequest is called with four parameters: kCFAllocatorDefault specifies that the
default system memory allocator is to be used to create the message reference, requestMethod specifies
the method, such as the POST method, myURL specifies the URL, such as http://www.apple.com, and
kCFHTTPVersion1_1 specifies that message’s HTTP version is to be 1.1.

Creating a CFHTTP Request 27
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

The message object reference (myRequest) returned by CFHTTPMessageCreateRequest is then sent to
CFHTTPMessageSetBody along with the body of the message (bodyData). Then call
CFHTTPMessageSetHeaderFieldValue using the same message object reference along with the name
of the header (headerField), and the value to be set (value). The header parameter is a CFString object
such as Content-Length, and the value parameter is a CFString object such as 1260. Finally, the message
is serialized by calling CFHTTPMessageCopySerializedMessage and should be sent via a write stream to
the intended recipient, in this example http://www.apple.com.

Note: The request body is usually omitted. The main place a request body is used is in a POST request to
contain the POST data. It may also be used in some other request types related to HTTP extensions such as
WebDAV. See RFC 2616 for more information.

When the message is no longer needed, release the message object and the serialized message. See Listing
3-2 for sample code.

Listing 3-2 Releasing an HTTP request

CFRelease(myRequest);
CFRelease(myURL);
CFRelease(url);
CFRelease(mySerializedRequest);
myRequest = NULL;
mySerializedRequest = NULL;

Creating a CFHTTP Response

The steps for creating an HTTP response are almost identical to those for creating an HTTP request. The only
difference is that rather than calling CFHTTPMessageCreateRequest, you call the function
CFHTTPMessageCreateResponse using the same parameters.

Deserializing an Incoming HTTP Request

To deserialize an incoming HTTP request, create an empty message using the CFHTTPMessageCreateEmpty
function, passing TRUE as the isRequest parameter to specify that an empty request message is to be
created. Then append the incoming message to the empty message using the function
CFHTTPMessageAppendBytes. CFHTTPMessageAppendBytes deserializes the message and removes any
control information it may contain. Continue to do this until the function CFHTTPMessageIsHeaderComplete
returns TRUE. If you do not check for CFHTTPMessageIsHeaderComplete to return TRUE, the message
may be incomplete and unreliable. A sample of using these two functions can be seen in Listing 3-3.

Listing 3-3 Deserializing a message

CFHTTPMessageRef myMessage = CFHTTPMessageCreateEmpty(kCFAllocatorDefault, TRUE);
if (!CFHTTPMessageAppendBytes(myMessage, &data, numBytes)) {
 //Handle parsing error
}

28 Creating a CFHTTP Response
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

http://www.w3.org/Protocols/rfc2616/rfc2616.html

In the example, data is the data that is to be appended and numBytes is the length of data. You may want
to call CFHTTPMessageIsHeaderComplete to verify that the header of the appended message is complete.

if (CFHTTPMessageIsHeaderComplete(myMessage)) {
 // Perform processing.
}

With the message deserialized, you can now call any of the following functions to extract information from
the message:

 ■ CFHTTPMessageCopyBody to get a copy of the message’s body

 ■ CFHTTPMessageCopyHeaderFieldValue to get a copy of a specific header field value

 ■ CFHTTPMessageCopyAllHeaderFields to get a copy of all of the message’s header fields

 ■ CFHTTPMessageCopyRequestURL to get a copy of the message’s URL

 ■ CFHTTPMessageCopyRequestMethod to get a copy of the message’s request method

When you no longer need the message, release and dispose of it properly.

Deserializing an Incoming HTTP Response

Just as creating an HTTP request is very similar to creating an HTTP response, deserializing an incoming HTTP
request is also very similar to deserializing an incoming HTTP response. The only important difference is that
when calling CFHTTPMessageCreateEmpty, you must pass FALSE as the isRequest parameter to specify
that the message to be created is a response message.

Using a Read Stream to Serialize and Send HTTP Requests

You can use a CFReadStream object to serialize and send CFHTTP requests. When you use a CFReadStream
object to send a CFHTTP request, opening the stream causes the message to be serialized and sent in one
step. Using a CFReadStream object to send CFHTTP requests makes it easy to get the response to the request
because the response is available as a property of the stream.

Serializing and Sending an HTTP Request

To use a CFReadStream object to serialize and send an HTTP request, first create a CFHTTP request and set
the message body and headers as described in "Creating a CFHTTP Request" (page 27). Then create a
CFReadStream object by calling the function CFReadStreamCreateForHTTPRequest and passing the
request you just created. Finally, open the read stream with CFReadStreamOpen.

When CFReadStreamCreateForHTTPRequest is called, it makes a copy of the CFHTTP request object that
it is passed. Thus, if necessary, you could release the CFHTTP request object immediately after calling
CFReadStreamCreateForHTTPRequest.

Deserializing an Incoming HTTP Response 29
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

Because the read stream opens a socket connection with the server specified by the myUrl parameter when
the CFHTTP request was created, some amount of time must be allowed to pass before the stream is considered
to be open. Opening the read stream also causes the request to be serialized and sent.

A sample of how to serialize and send an HTTP request can be seen in Listing 3-4.

Listing 3-4 Serializing an HTTP request with a read stream

CFHTTPMessageRef myRequest = CFHTTPMessageCreateRequest(kCFAllocatorDefault,
 requestMethod, myUrl, kCFHTTPVersion1_1);
CFHTTPMessageSetBody(myRequest, bodyData);
CFHTTPMessageSetHeaderFieldValue(myRequest, headerField, value);

CFReadStreamRef myReadStream =
CFReadStreamCreateForHTTPRequest(kCFAllocatorDefault, myRequest);

CFReadStreamOpen(myReadStream);

Checking the Response

Call CFReadStreamCopyProperty to get the message response from the read stream:

CFHTTPMessageRef myResponse = CFReadStreamCopyProperty(myReadStream,
kCFStreamPropertyHTTPResponseHeader);

You can get the complete status line from the response message by calling the function
CFHTTPMessageCopyResponseStatusLine:

CFStringRef myStatusLine = CFHTTPMessageCopyResponseStatusLine(myResponse);

Or get just the status code from the response message by calling the function
CFHTTPMessageGetResponseStatusCode:

UInt32 myErrCode = CFHTTPMessageGetResponseStatusCode(myResponse);

Handling Authentication Errors

If the status code returned by the function CFHTTPMessageGetResponseStatusCode is 401 (the remote
server requires authentication information) or 407 (a proxy server requires authentication), you need to
append authentication information to the request and send it again. Please read "Communicating with
Authenticating HTTP Servers" (page 33) for information on how to handle authentication.

Handling Redirection Errors

When CFReadStreamCreateForHTTPRequest creates a read stream, automatic redirection for the stream
is disabled by default. If the uniform resource locator, or URL, to which the request is sent is redirected to
another URL, sending the request will result in an error whose status code ranges from 300 to 307. If you
receive a redirection error, you need to close the stream, create the stream again, enable automatic redirection
for it, and open the stream. See Listing 3-5.

30 Using a Read Stream to Serialize and Send HTTP Requests
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

Listing 3-5 Redirecting an HTTP stream

CFReadStreamClose(myReadStream);
CFReadStreamRef myReadStream =
 CFReadStreamCreateForHTTPRequest(kCFAllocatorDefault, myRequest);
if (CFReadStreamSetProperty(myReadStream, kCFStreamPropertyHTTPShouldAutoredirect,
 kCFBooleanTrue) == false) {
 // something went wrong, exit
}
CFReadStreamOpen(myReadStream);

You may want to enable automatic redirection whenever you create a read stream.

Cancelling a Pending Request

Once a request has been sent, it is not possible to prevent the remote server from acting on it. However, if
you no longer care about the response data, you can close the stream.

Important: Do not close a stream from any thread while another thread is waiting for content from that
stream. If you need to be able to terminate a request, you should use non-blocking I/O as described in
“Preventing Blocking When Working with Streams” (page 19). Be sure to remove the stream from your run
loop before closing it.

Cancelling a Pending Request 31
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

32 Cancelling a Pending Request
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Communicating with HTTP Servers

This chapter describes how to interact with authenticating HTTP servers by taking advantage of the
CFHTTPAuthentication API. It explains how to find matching authentication objects and credentials, apply
them to an HTTP request, and store them for later use.

In general, if an HTTP server returns a 401 or 407 response following your HTTP request, it means that the
server is authenticating and requires credentials. In the CFHTTPAuthentication API, each set of credentials is
stored in a CFHTTPAuthentication object. Therefore, every different authenticating server and every different
user connecting to that server requires a separate CFHTTPAuthentication object. To communicate with the
server, you need to apply your CFHTTPAuthentication object to the HTTP request. These steps are explained
in more detail next.

Handling Authentication

Adding support for authentication will allow your application to talk with authenticating HTTP servers (if the
server returns a 401 or 407 response). Even though HTTP authentication is not a difficult concept, it is a
complicated process to execute. The procedure is as follows:

1. The client sends an HTTP request to the server.

2. The server returns a challenge to the client.

3. The client bundles the original request with credentials and sends them back to the server.

4. A negotiation takes place between the client and server.

5. When the server has authenticated the client, it sends back the response to the request.

Performing this procedure requires a number of steps. A diagram of the entire procedure can be seen in
Figure 4-1 and Figure 4-2.

Handling Authentication 33
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP
Servers

Figure 4-1 Handling authentication

No

Done

Yes Find credentials

Apply CFHTTPAuthentication
to the old request:
without credentials

Apply CFHTTPAuthentication
to the old request:

with new credentials

Find a valid
CFHTTPAuthentication object

Need
credentials?

Figure 4-2 Finding an authentication object

Already have a
CFHTTPAuthentication?

No

No

Yes

Yes

Fail

Success

The server
won’t let us continue;

failDone

CFNetwork can’t
understand the response;

fail

Were the
credentials bad?

No

Yes

Create one

Throw away
CFHTTPAuthentication

and credentials
Is it valid?

Try again with a new
CFHTTPAuthentication

When an HTTP request returns a 401 or 407 response, the first step is for the client to find a valid
CFHTTPAuthentication object. An authentication object contains credentials and other information that,
when applied to an HTTP message request, verifies your identity with the server. If you've already authenticated
once with the server, you will have a valid authentication object. However, in most cases, you will need to
create this object from the response with the CFHTTPAuthenticationCreateFromResponse function.
See Listing 4-1.

34 Handling Authentication
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

Note: All the sample code regarding authentication is adapted from the ImageClient application.

Listing 4-1 Creating an authentication object

if (!authentication) {
 CFHTTPMessageRef responseHeader =
 (CFHTTPMessageRef) CFReadStreamCopyProperty(
 readStream,
 kCFStreamPropertyHTTPResponseHeader
);

 // Get the authentication information from the response.
 authentication = CFHTTPAuthenticationCreateFromResponse(NULL, responseHeader);
 CFRelease(responseHeader);
}

If the new authentication object is valid, then you are done and can continue to the second step of Figure
4-1 (page 34). If the authentication object is not valid, then throw away the authentication object and
credentials and check to see if the credentials were bad. For more information about credentials, read "Secu-
rity Credentials".

Bad credentials mean that the server did not accept the login information at it will continue to listen for new
credentials. However, if the credentials were good but the server still rejected your request, then the server
is refusing to speak with you, so you must give up. Assuming the credentials were bad, retry this entire
process beginning with creating an authentication object until you get working credentials and a valid
authentication object. In code, this procedure should look like the one in Listing 4-2.

Listing 4-2 Finding a valid authentication object

CFStreamError err;
if (!authentication) {
 // the newly created authentication object is bad, must return
 return;

} else if (!CFHTTPAuthenticationIsValid(authentication, &err)) {

 // destroy authentication and credentials
 if (credentials) {
 CFRelease(credentials);
 credentials = NULL;
 }
 CFRelease(authentication);
 authentication = NULL;

 // check for bad credentials (to be treated separately)
 if (err.domain == kCFStreamErrorDomainHTTP &&
 (err.error == kCFStreamErrorHTTPAuthenticationBadUserName
 || err.error == kCFStreamErrorHTTPAuthenticationBadPassword))
 {
 retryAuthorizationFailure(&authentication);
 return;
 } else {
 errorOccurredLoadingImage(err);
 }
}

Handling Authentication 35
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

http://developer.apple.com/qa/qa2001/qa1277.html
http://developer.apple.com/qa/qa2001/qa1277.html

Now that you have a valid authentication object, continue following the flowchart in Figure 4-1 (page 34).
First, determine whether you need credentials. If you don't, then apply the authentication object to the HTTP
request. The authentication object is applied to the HTTP request in Listing 4-4 (page 37)
(resumeWithCredentials).

Without storing credentials (as explained in "Keeping Credentials in Memory" (page 37) and "Keeping
Credentials in a Persistent Store" (page 38)), the only way to obtain valid credentials is by prompting the
user. Most of the time, a user name and password are needed for the credentials. By passing the authentication
object to the CFHTTPAuthenticationRequiresUserNameAndPassword function you can see if a user
name and password are necessary. If the credentials do need a user name and password, prompt the user
for them and store them in the credentials dictionary. For an NTLM server, the credentials also require a
domain. After you have the new credentials, you can apply the authentication object to the HTTP request
using the resumeWithCredentials function from Listing 4-4 (page 37). This whole process is shown in
Listing 4-3.

Note: In code listings, when comments are preceded and succeeded by ellipses, it means that that action
is outside the scope of this document, but does need to be implemented. This is different from normal
comments which describe what action is taking place.

Listing 4-3 Finding credentials (if necessary) and applying them

// ...continued from Listing 4-2
else {
 cancelLoad();
 if (credentials) {
 resumeWithCredentials();
 }
 // are a user name & password needed?
 else if (CFHTTPAuthenticationRequiresUserNameAndPassword(authentication))
 {
 CFStringRef realm = NULL;
 CFURLRef url = CFHTTPMessageCopyRequestURL(request);

 // check if you need an account domain so you can display it if necessary
 if (!CFHTTPAuthenticationRequiresAccountDomain(authentication)) {
 realm = CFHTTPAuthenticationCopyRealm(authentication);
 }
 // ...prompt user for user name (user), password (pass)
 // and if necessary domain (domain) to give to the server...

 // Guarantee values
 if (!user) user = (CFStringRef)@"";
 if (!pass) pass = (CFStringRef)@"";

 CFDictionarySetValue(credentials, kCFHTTPAuthenticationUsername, user);
 CFDictionarySetValue(credentials, kCFHTTPAuthenticationPassword, pass);

 // Is an account domain needed? (used currently for NTLM only)
 if (CFHTTPAuthenticationRequiresAccountDomain(authentication)) {
 if (!domain) domain = (CFStringRef)@"";
 CFDictionarySetValue(credentials,
 kCFHTTPAuthenticationAccountDomain, domain);
 }
 if (realm) CFRelease(realm);
 CFRelease(url);

36 Handling Authentication
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

 }
 else {
 resumeWithCredentials();
 }
}

Listing 4-4 Applying the authentication object to a request

void resumeWithCredentials() {
 // Apply whatever credentials we've built up to the old request
 if (!CFHTTPMessageApplyCredentialDictionary(request, authentication,
 credentials, NULL)) {
 errorOccurredLoadingImage();
 } else {
 // Now that we've updated our request, retry the load
 loadRequest();
 }
}

Keeping Credentials in Memory

If you plan on communicating with an authenticating server often, it may be worth reusing credentials to
avoid prompting the user for the server's user name and password multiple times. This section explains the
changes that should be made to one-time use authentication code (such as in "Handling Authentication" (page
33)) to store credentials in memory for reuse later.

To reuse credentials, there are three data structure changes you need to make to your code.

1. Create a mutable array to hold all the authentication objects.

CFMutableArrayRef authArray;

instead of:

CFHTTPAuthenticationRef authentication;

2. Create a mapping from authentication objects to credentials using a dictionary.

CFMutableDictionaryRef credentialsDict;

instead of:

CFMutableDictionaryRef credentials;

3. Maintain these structures everywhere you used to modify the current authentication object and the
current credentials.

CFDictionaryRemoveValue(credentialsDict, authentication);

instead of:

CFRelease(credentials);

Keeping Credentials in Memory 37
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

Now, after creating the HTTP request, look for a matching authentication object before each load. A simple,
unoptimized method for finding the appropriate object can be seen in Listing 4-5.

Listing 4-5 Looking for a matching authentication object

CFHTTPAuthenticationRef findAuthenticationForRequest {
 int i, c = CFArrayGetCount(authArray);
 for (i = 0; i < c; i ++) {
 CFHTTPAuthenticationRef auth = (CFHTTPAuthenticationRef)
 CFArrayGetValueAtIndex(authArray, i);
 if (CFHTTPAuthenticationAppliesToRequest(auth, request)) {
 return auth;
 }
 }
 return NULL;
}

If the authentication array has a matching authentication object, then check the credentials store to see if
the correct credentials are also available. Doing so prevents you from having to prompt the user for a user
name and password again. Look for the credentials using the CFDictionaryGetValue function as shown
in Listing 4-6.

Listing 4-6 Searching the credentials store

credentials = CFDictionaryGetValue(credentialsDict, authentication);

Then apply your matching authentication object and credentials to your original HTTP request and resend
it.

Warning: Do not apply credentials to the HTTP request before receiving a server challenge. The server
may have changed since the last time you authenticated and you could create a security risk.

With these changes, you application will be able to store authentication objects and credentials in memory
for use later.

Keeping Credentials in a Persistent Store

Storing credentials in memory prevents a user from having to reenter a server's user name and password
during that specific application launch. However, when the application quits, those credentials will be released.
To avoid losing the credentials, save them in a persistent store so each server's credentials need to be
generated only once. A keychain is the recommended place for storing credentials. Even though you can
have multiple keychains, this document refers to the user's default keychain as the keychain. Using the
keychain means that the authentication information that you store can also be used in other applications
trying to access the same server, and vice versa.

Storing and retrieving credentials in the keychain requires two functions: one for finding the credentials
dictionary for authentication and one for saving the credentials of the most recent request. These functions
will be declared in this document as:

CFMutableDictionaryRef findCredentialsForAuthentication(
 CFHTTPAuthenticationRef auth);

38 Keeping Credentials in a Persistent Store
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

void saveCredentialsForRequest(void);

The function findCredentialsForAuthentication first checks the credentials dictionary stored in
memory to see whether the credentials are cached locally. See Listing 4-6 (page 38) for how to implement
this.

If the credentials are not cached in memory, then search the keychain. To search the keychain, use the function
SecKeychainFindInternetPassword. This function requires a large number of parameters. The parameters,
and a short description of how they are used with HTTP authentication credentials, are:

keychainOrArray
NULL to specify the user's default keychain list.

serverNameLength
The length of serverName, usually strlen(serverName).

serverName
The server name parsed from the HTTP request.

securityDomainLength
The length of security domain, or 0 if there is no domain. In the sample code, realm ?
strlen(realm) : 0 is passed to account for both situations.

securityDomain
The realm of the authentication object, obtained from the CFHTTPAuthenticationCopyRealm
function.

accountNameLength
The length of accountName. Since the accountName is NULL, this value is 0.

accountName
There is no account name when fetching the keychain entry, so this should be NULL.

pathLength
The length of path, or 0 if there is no path. In the sample code, path ? strlen(path) : 0 is
passed to account for both situations.

path
The path from the authentication object, obtained from the CFURLCopyPath function.

port
The port number, obtained from the function CFURLGetPortNumber.

protocol
A string representing the protocol type, such as HTTP or HTTPS. The protocol type is obtained by
calling the CFURLCopyScheme function.

authenticationType
The authentication type, obtained from the function CFHTTPAuthenticationCopyMethod.

passwordLength
0, because no password is necessary when fetching a keychain entry.

passwordData
NULL, because no password is necessary when fetching a keychain entry.

itemRef
The keychain item reference object, SecKeychainItemRef, returned upon finding the correct
keychain entry

When called properly, the code should look like that in Listing 4-7.

Keeping Credentials in a Persistent Store 39
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

Listing 4-7 Searching the keychain

didFind =
 SecKeychainFindInternetPassword(NULL,
 strlen(host), host,
 realm ? strlen(realm) : 0, realm,
 0, NULL,
 path ? strlen(path) : 0, path,
 port,
 protocolType,
 authenticationType,
 0, NULL,
 &itemRef);

Assuming that SecKeychainFindInternetPassword returns successfully, create a keychain attribute list
(SecKeychainAttributeList) containing a single keychain attribute (SecKeychainAttribute). The
keychain attribute list will contain the user name and password. To load the keychain attribute list, call the
function SecKeychainItemCopyContent and pass it the keychain item reference object (itemRef) that
was returned by SecKeychainFindInternetPassword. This function will fill the keychain attribute with
the account's user name, and a void ** as its password.

The user name and password can then be used to create a new set of credentials. Listing 4-8 shows this
procedure.

Listing 4-8 Loading server credentials from the keychain

if (didFind == noErr) {

 SecKeychainAttribute attr;
 SecKeychainAttributeList attrList;
 UInt32 length;
 void *outData;

 // To set the account name attribute
 attr.tag = kSecAccountItemAttr;
 attr.length = 0;
 attr.data = NULL;

 attrList.count = 1;
 attrList.attr = &attr;

 if (SecKeychainItemCopyContent(itemRef, NULL, &attrList, &length, &outData)
 == noErr) {

 // attr.data is the account (username) and outdata is the password
 CFStringRef username =
 CFStringCreateWithBytes(kCFAllocatorDefault, attr.data,
 attr.length, kCFStringEncodingUTF8, false);
 CFStringRef password =
 CFStringCreateWithBytes(kCFAllocatorDefault, outData, length,
 kCFStringEncodingUTF8, false);
 SecKeychainItemFreeContent(&attrList, outData);

 // create credentials dictionary and fill it with the user name & password
 credentials =
 CFDictionaryCreateMutable(NULL, 0,
 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

40 Keeping Credentials in a Persistent Store
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

 CFDictionarySetValue(credentials, kCFHTTPAuthenticationUsername,
 username);
 CFDictionarySetValue(credentials, kCFHTTPAuthenticationPassword,
 password);

 CFRelease(username);
 CFRelease(password);
 }
 CFRelease(itemRef);
}

Retrieving credentials from the keychain is only useful if you can store credentials in the keychain first. The
steps are very similar to loading credentials. First, see if the credentials are already stored in the keychain.
Call SecKeychainFindInternetPassword, but pass the user name for accountName and the length of
accountName for accountNameLength.

If the entry exists, modify it to change the password. Set the data field of the keychain attribute to contain
the user name, so that you modify the correct attribute. Then call the function
SecKeychainItemModifyContent and pass the keychain item reference object (itemRef), the keychain
attribute list, and the new password. By modifying the keychain entry rather than overwriting it, the keychain
entry will be properly updated and any associated metadata will still be preserved. The entry should look
like the one in Listing 4-9.

Listing 4-9 Modifying the keychain entry

// Set the attribute to the account name
attr.tag = kSecAccountItemAttr;
attr.length = strlen(username);
attr.data = (void*)username;

// Modify the keychain entry
SecKeychainItemModifyContent(itemRef, &attrList, strlen(password),
 (void *)password);

If the entry does not exist, then you will need to create it from scratch. The function
SecKeychainAddInternetPassword accomplishes this task. Its parameters are the same as
SecKeychainFindInternetPassword, but in contrast with the call to
SecKeychainFindInternetPassword, you supply SecKeychainAddInternetPassword both a user
name and a password. Release the keychain item reference object following a successful call to
SecKeychainAddInternetPassword unless you need to use it for something else. See the function call
in Listing 4-10.

Listing 4-10 Storing a new keychain entry

SecKeychainAddInternetPassword(NULL,
 strlen(host), host,
 realm ? strlen(realm) : 0, realm,
 strlen(username), username,
 path ? strlen(path) : 0, path,
 port,
 protocolType,
 authenticationType,
 strlen(password), password,
 &itemRef);

Keeping Credentials in a Persistent Store 41
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

Authenticating Firewalls

Authenticating firewalls is very similar to authenticating servers except that every failed HTTP request must
be checked for both proxy authentication and server authentication. This means that you need separate
stores (both local and persistent) for proxy servers and origin servers. Thus, the procedure for a failed HTTP
response will now be:

 ■ Determine whether the response's status code was 407 (a proxy challenge). If it is, find a matching
authentication object and credentials by checking the local proxy store and the persistent proxy store.
If neither of those has a matching object and credentials, then request the credentials from the user.
Apply the authentication object to the HTTP request and try again.

 ■ Determine whether the response's status code was 401 (a server challenge). If it is, follow the same
procedure as with a 407 response, but use the origin server stores.

There are also a few minor differences to enforce when using proxy servers. The first is that the arguments
to the keychain calls come from the proxy host and port, rather than from the URL for an origin server. The
second is that when asking the user for a user name and password, make sure the prompt clearly states what
the password is for.

By following these instructions, your application should be able to work with authenticating firewalls.

42 Authenticating Firewalls
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Communicating with Authenticating HTTP Servers

This chapter explains how to use some of the basic features of the CFFTP API. Managing the FTP transactions
is performed asynchronously, while managing the file transfer is implemented synchronously.

Downloading a File

Using CFFTP is very similar to using CFHTTP because they are both based on CFStream. As with any other
API that uses CFStream asynchronously, downloading a file with CFFTP requires that you create a read stream
for the file, and a callback function for that read stream. When the read stream receives data, the callback
function will be run and you will need to appropriately download the bytes. This procedure should normally
be performed using two functions: one to set up the streams and one to act as the callback function.

Setting Up the FTP Streams

Begin by creating a read stream using the CFReadStreamCreateWithFTPURL function and passing it the
URL string of the file to be downloaded on the remote server. An example of a URL string might be
ftp://ftp.example.com/file.txt. Note that the string contains the server name, the path, and the file.
Next, create a write stream for the local location where the file will be downloaded. This is accomplished
using the CFWriteStreamCreateWithFile function, passing the path where the file will be downloaded.

Since the write stream and the read stream need to stay in sync, it is a good idea to create a structure that
contains all of the common information, such as the proxy dictionary, the file size, the number of bytes
written, the number of bytes left over, and a buffer. This structure might look like that in Listing 5-1.

Listing 5-1 A stream structure

typedef struct MyStreamInfo {

 CFWriteStreamRef writeStream;
 CFReadStreamRef readStream;
 CFDictionaryRef proxyDict;
 SInt64 fileSize;
 UInt32 totalBytesWritten;
 UInt32 leftOverByteCount;
 UInt8 buffer[kMyBufferSize];

} MyStreamInfo;

Initialize your structure with the read stream and write stream you just created. You can then define the info
field of your stream client context (CFStreamClientContext) to point to your structure. This will become
useful later.

Downloading a File 43
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

Open your write stream with the CFWriteStreamOpen function so you can begin writing to the local file.
To make sure the stream opens properly, call the function CFWriteStreamGetStatus and check whether
it returns either kCFStreamStatusOpen or kCFStreamStatusOpening.

With the write stream open, associate a callback function with the read stream. Call the function
CFReadStreamSetClient and pass the read stream, the network events your callback function should
receive, the callback function's name and the CFStreamClientContext object. By having earlier set the
info field of the stream client context, your structure will now be sent to your callback function whenever
it is run.

Some FTP servers may require a user name, and some may also require a password. If the server you are
accessing needs a user name for authentication, call the CFReadStreamSetProperty function and pass
the read stream, kCFStreamPropertyFTPUserName for the property, and a reference to a CFString object
containing the user name. In addition, if you need to set a password, set the
kCFStreamPropertyFTPPassword property.

Some computers may also use FTP proxies. Retrieve the proxy settings in a dictionary by calling the
SCDynamicStoreCopyProxies function and passing it NULL. The function then returns a dynamic store
reference. Then set the kCFStreamPropertyFTPProxy property of the read stream, and pass the proxy
dictionary as the value. This sets the proxy server, specifies the port, and returns a Boolean value indicating
whether passive mode is enforced for the FTP stream.

In addition to the properties mentioned, there are a number of other properties available for FTP streams.
The complete list follows.

 ■ kCFStreamPropertyFTPUserName — user name to use to log in (settable and retrievable; do not set
for anonymous FTP connections)

 ■ kCFStreamPropertyFTPPassword — password to use to log in (settable and retrievable; do not set
for anonymous FTP connections)

 ■ kCFStreamPropertyFTPUsePassiveMode — whether to use passive mode (settable and retrievable)

 ■ kCFStreamPropertyFTPResourceSize — the expected size of an item that is being downloaded, if
available (retrievable; available only for FTP read streams)

 ■ kCFStreamPropertyFTPFetchResourceInfo — whether to require that resource information, such
as size, be required before starting a download (settable and retrievable); setting this property may
impact performance

 ■ kCFStreamPropertyFTPFileTransferOffset — file offset at which to start a transfer (settable and
retrievable)

 ■ kCFStreamPropertyFTPAttemptPersistentConnection — whether to try to reuse connections
(settable and retrievable)

 ■ kCFStreamPropertyFTPProxy — CFDictionary type that holds key-value pairs of proxy dictionary
(settable and retrievable)

 ■ kCFStreamPropertyFTPProxyHost — name of an FTP proxy host (settable and retrievable)

 ■ kCFStreamPropertyFTPProxyPort — port number of an FTP proxy host (settable and retrievable)

After the correct properties have been assigned to the read stream, open the stream using the
CFReadStreamOpen function. Assuming that this does not return an error, all the streams have been properly
set up.

44 Downloading a File
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

Implementing the Callback Function

Your callback function will receive three parameters: the read stream, the type of event, and your
MyStreamInfo structure. The type of event determines what action must be taken.

The most common event is kCFStreamEventHasBytesAvailable, which is sent when the read stream
has received bytes from the server. First, check how many bytes have been read by calling the
CFReadStreamRead function. Make sure the return value is not less than zero (an error), or equal to zero
(download has completed). If the return value is positive, then you can begin writing the data in the read
stream to disk via the write stream.

Call the CFWriteStreamWrite function to write the data to the write stream. Sometimes
CFWriteStreamWrite can return without writing all of the data from the read stream. For this reason, set
up a loop to run as long as there is still data to be written. The code for this loop is in Listing 5-2, where info
is the MyStreamInfo structure from "Setting up the Streams" (page 43). This method of writing to the write
stream uses blocking streams. You can achieve better performance by making the write stream event driven,
but the code is more complex.

Listing 5-2 Writing data to a write stream from the read stream

bytesRead = CFReadStreamRead(info->readStream, info->buffer, kMyBufferSize);

//...make sure bytesRead > 0 ...

bytesWritten = 0;
while (bytesWritten < bytesRead) {
 CFIndex result;

 result = CFWriteStreamWrite(info->writeStream, info->buffer + bytesWritten,
 bytesRead - bytesWritten);
 if (result <= 0) {
 fprintf(stderr, "CFWriteStreamWrite returned %ld\n", result);
 goto exit;
 }
 bytesWritten += result;
}
info->totalBytesWritten += bytesWritten;

Repeat this entire procedure as long as there are available bytes in the read stream.

The other two events you need to watch out for are kCFStreamEventErrorOccurred and
kCFStreamEventEndEncountered. If an error occurs, retrieve the error using CFReadStreamGetError
and then exit. If the end of the file occurs, then your download has completed and you can exit.

Make sure to remove all your streams after everything is completed and no other process is using the streams.
First, close the write stream and set the client to NULL. Then unschedule the stream from the run loop and
release it. Remove the streams from the run loop when you are done.

Downloading a File 45
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

Uploading a File

Uploading a file is similar to downloading a file. As with downloading a file, you need a read stream and a
write stream. However, when uploading a file, the read stream will be for the local file and the write stream
will be for the remote file. Follow the instructions in "Setting up the Streams" (page 43), but wherever it
refers to the read stream, adapt the code for a write stream and visa versa.

In the callback function, rather than looking for the kCFStreamEventHasBytesAvailable event, now look
for the event kCFStreamEventCanAcceptBytes. First, read bytes from the file using the read stream and
place the data into the buffer in MyStreamInfo. Then, run the CFWriteStreamWrite function to push
bytes from the buffer into the write stream. CFWriteStreamWrite returns the number of bytes that have
been written to the stream. If the number of bytes written to the stream is fewer than the number read from
the file, calculate the leftover bytes and store them back into the buffer. During the next write cycle, if there
are leftover bytes, write them to the write stream rather than loading new data from the read stream. Repeat
this whole procedure as long as the write stream can accept bytes (CFWriteStreamCanAcceptBytes). See
this loop in code in Listing 5-3.

Listing 5-3 Writing data to the write stream

do {
 // Check for leftover data
 if (info->leftOverByteCount > 0) {
 bytesRead = info->leftOverByteCount;
 } else {
 // Make sure there is no error reading from the file
 bytesRead = CFReadStreamRead(info->readStream, info->buffer,
 kMyBufferSize);
 if (bytesRead < 0) {
 fprintf(stderr, "CFReadStreamRead returned %ld\n", bytesRead);
 goto exit;
 }
 totalBytesRead += bytesRead;
 }

 // Write the data to the write stream
 bytesWritten = CFWriteStreamWrite(info->writeStream, info->buffer,
bytesRead);
 if (bytesWritten > 0) {

 info->totalBytesWritten += bytesWritten;

 // Store leftover data until kCFStreamEventCanAcceptBytes event occurs
 again
 if (bytesWritten < bytesRead) {
 info->leftOverByteCount = bytesRead - bytesWritten;
 memmove(info->buffer, info->buffer + bytesWritten,
 info->leftOverByteCount);
 } else {
 info->leftOverByteCount = 0;
 }
 } else {
 if (bytesWritten < 0)
 fprintf(stderr, "CFWriteStreamWrite returned %ld\n", bytesWritten);
 break;
 }

46 Uploading a File
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

} while (CFWriteStreamCanAcceptBytes(info->writeStream));

Also account for the kCFStreamEventErrorOccurred and kCFStreamEventEndEncountered events as
you do when downloading a file.

Creating a Remote Directory

To create a directory on a remote server, set up a write stream as if you were going to be uploading a file.
However, provide a directory path, not a file, for the CFURL object that is passed to the
CFWriteStreamCreateWithFTPURL function. End the path with a forward slash. For example, a proper
directory path would be ftp://ftp.example.com/newDirectory/, not
ftp://ftp.example.com/newDirectory/newFile.txt. When the callback function is executed by the
run loop, it sends the event kCFStreamEventOpenCompleted, which means the directory has been created.

Only one level of directories can be created with each call to CFWriteStreamCreateWithFTPURL. Also, a
directory is created only if you have the correct permissions on the server.

Downloading a Directory Listing

Downloading a directory listing via FTP is slightly different from downloading or uploading a file. This is
because the incoming data has to be parsed. First, set up a read stream to get the directory listing. This should
be done as it was for downloading a file: create the stream, register a callback function, schedule the stream
with the run loop (if necessary, set up user name, password and proxy information), and finally open the
stream. In the following example you do not need both a read and a write stream when retrieving the directory
listing, because the incoming data is going to the screen rather than a file.

In the callback function, watch for the kCFStreamEventHasBytesAvailable event. Prior to loading data
from the read stream, make sure there is no leftover data in the stream from the previous time the callback
function was run. Load the offset from the leftOverByteCount field of your MyStreamInfo structure.
Then, read data from the stream, taking into account the offset you just calculated. The buffer size and
number of bytes read should be calculated too. This is all accomplished in Listing 5-4.

Listing 5-4 Loading data for a directory listing

// If previous call had unloaded data
int offset = info->leftOverByteCount;

// Load data from the read stream, accounting for the offset
bytesRead = CFReadStreamRead(info->readStream, info->buffer + offset,
 kMyBufferSize - offset);
if (bytesRead < 0) {
 fprintf(stderr, "CFReadStreamRead returned %ld\n", bytesRead);
 break;
} else if (bytesRead == 0) {
 break;
}
bufSize = bytesRead + offset;
totalBytesRead += bufSize;

Creating a Remote Directory 47
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

After the data has been read to a buffer, set up a loop to parse the data. The data that is parsed is not
necessarily the entire directory listing; it could (and probably will) be chunks of the listing. Create the loop
to parse the data using the function CFFTPCreateParsedResourceListing, which should be passed the
buffer of data, the size of the buffer, and a dictionary reference. It returns the number of bytes parsed. As
long as this value is greater than zero, continue to loop. The dictionary that
CFFTPCreateParsedResourceListing creates contains all the directory listing information; more
information about the keys is available in "Setting up the Streams" (page 43).

It is possible for CFFTPCreateParsedResourceListing to return a positive value, but not create a parse
dictionary. For example, if the end of the listing contains information that cannot be parsed,
CFFTPCreateParsedResourceListing will return a positive value to tell the caller that data has been
consumed. However, CFFTPCreateParsedResourceListing will not create a parse dictionary since it
could not understand the data.

If a parse dictionary is created, recalculate the number of bytes read and the buffer size as shown in Listing
5-5.

Listing 5-5 Loading the directory listing and parsing it

do
{
 bufRemaining = info->buffer + totalBytesConsumed;

 bytesConsumed = CFFTPCreateParsedResourceListing(NULL, bufRemaining,
 bufSize, &parsedDict);
 if (bytesConsumed > 0) {

 // Make sure CFFTPCreateParsedResourceListing was able to properly
 // parse the incoming data
 if (parsedDict != NULL) {
 // ...Print out data from parsedDict...
 CFRelease(parsedDict);
 }

 totalBytesConsumed += bytesConsumed;
 bufSize -= bytesConsumed;
 info->leftOverByteCount = bufSize;

 } else if (bytesConsumed == 0) {

 // This is just in case. It should never happen due to the large buffer
 size
 info->leftOverByteCount = bufSize;
 totalBytesRead -= info->leftOverByteCount;
 memmove(info->buffer, bufRemaining, info->leftOverByteCount);

 } else if (bytesConsumed == -1) {
 fprintf(stderr, "CFFTPCreateParsedResourceListing parse failure\n");
 // ...Break loop and cleanup...
 }

} while (bytesConsumed > 0);

When the stream has no more bytes available, clean up all the streams and remove them from the run loop.

48 Downloading a Directory Listing
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Working with FTP Servers

In many network-based applications, network-based errors may occur that are unrelated to your application.
However, most users are probably unaware of why an application is failing. The CFNetDiagnostics API allows
you a quick and easy way to help the user fix their network problems with little work on your end.

If your application is using a CFStream object, then create a network diagnostic reference
(CFNetDiagnosticRef) by calling the function CFNetDiagnosticCreateWithStreams.
CFNetDiagnosticCreateWithStreams takes an allocator, a read stream, and a write stream as arguments.
If your application uses only a read stream or a write stream, the unused argument should be set to NULL.

You can also create a network diagnostic reference straight from a URL if no stream exists. To do this, call
the CFNetDiagnosticCreateWithURL function and pass it an allocator, and the URL as a CFURLRef. It will
return a network diagnostic reference for you to use.

To diagnose the problem through the Network Diagnostic Assistant, call the
CFNetDiagnosticDiagnoseProblemInteractively function and pass the network diagnostic reference.
Listing 6-1 shows how to use CFNetDiagnostics with streams implemented on a run loop.

Listing 6-1 Using the CFNetDiagnostics API when a stream error occurs

 case kCFStreamEventErrorOccurred:
 CFNetDiagnosticRef diagRef =
 CFNetDiagnosticCreateWithStreams(NULL, stream, NULL);
 (void)CFNetDiagnosticDiagnoseProblemInteractively(diagRef);
 CFStreamError error = CFReadStreamGetError(stream);
 reportError(error);
 CFReadStreamClose(stream);
 CFRelease(stream);
 break;

CFNetworkDiagnostics also gives you the ability to retrieve the status of the problem rather than using the
Network Diagnostic Assistant. This is accomplished by calling
CFNetDiagnosticCopyNetworkStatusPassively, which returns a constant value such as
kCFNetDiagnosticConnectionUp or kCFNetDiagnosticConnectionIndeterminate.

49
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Network Diagnostics

50
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Network Diagnostics

This table describes the changes to CFNetwork Programming Guide.

NotesDate

Corrected typos.2009-05-06

Miscellaneous edits.2009-01-06

Made minor corrections to code samples.2008-10-15

Made minor typographical corrections and clarifications.2008-03-11

Updated information regarding CFReadStreamUnscheduleFromRunLoop.2007-01-08

Updated information regarding CFReadStreamCreateForHTTPRequest.2006-05-23

Updated sample code for communicating with HTTP servers.2006-04-04

Made minor editorial corrections throughout.2006-03-08

Updated content substantially and moved reference information to the new
document "CFNetwork Reference." Changed the title from "CFNetwork Services
Programming Guide."

2006-02-07

Corrected description of port parameter in CFNetServiceCreate.2005-08-11

Updated for Mac OS X v10.4. Changed "Rendezvous" to "Bonjour." Changed title
from "CFNetwork Services."

2005-04-29

Added description of CFFTP and CFHost and clarified the protocols that
CFNetwork Services currently supports. Corrected sample code in the sections
“Working With Write Streams and “Using a Run Loop to Prevent Blocking.”
Corrected the description of the clientContext parameter for the
CFReadStreamClientCallback and CFWriteStreamClientCallback
callbacks.

2004-02-01

51
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

52
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	CFNetwork Programming Guide
	Contents
	Figures and Listings
	Introduction
	CFNetwork Concepts
	When to Use CFNetwork
	CFNetwork Infrastructure
	CFSocket API
	CFStream API

	CFNetwork API Concepts
	CFFTP API
	CFHTTP API
	CFHTTPAuthentication API
	CFHost API
	CFNetServices API
	CFNetDiagnostics API

	Working with Streams
	Working with Read Streams
	Working with Write Streams
	Preventing Blocking When Working with Streams
	Using Polling to Prevent Blocking
	Using a Run Loop to Prevent Blocking

	Navigating Firewalls

	Communicating with HTTP Servers
	Creating a CFHTTP Request
	Creating a CFHTTP Response
	Deserializing an Incoming HTTP Request
	Deserializing an Incoming HTTP Response
	Using a Read Stream to Serialize and Send HTTP Requests
	Serializing and Sending an HTTP Request
	Checking the Response
	Handling Authentication Errors
	Handling Redirection Errors

	Cancelling a Pending Request

	Communicating with Authenticating HTTP Servers
	Handling Authentication
	Keeping Credentials in Memory
	Keeping Credentials in a Persistent Store
	Authenticating Firewalls

	Working with FTP Servers
	Downloading a File
	Setting Up the FTP Streams
	Implementing the Callback Function

	Uploading a File
	Creating a Remote Directory
	Downloading a Directory Listing

	Using Network Diagnostics
	Revision History

