
Mac OS X Technology Overview
General

2009-08-14

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

iDisk is a registered service mark of Apple Inc.

Apple, the Apple logo, AirPort, AirPort Extreme,
AppleScript, AppleShare, AppleTalk, Aqua,
Bonjour, Carbon, Cocoa, ColorSync, Dashcode,
eMac, Exposé, Final Cut, Final Cut Pro, FireWire,
iBook, iCal, iChat, Instruments, iTunes, Keychain,
Mac, Mac OS, Macintosh, Objective-C, Pages,
Quartz, QuickDraw, QuickTime, Rosetta, Safari,
Sherlock, Spaces, Spotlight, Tiger, Time
Machine, TrueType, Velocity Engine,
WebObjects, Xcode, and Xgrid are trademarks
of Apple Inc., registered in the United States
and other countries.

Finder, iPhone, OpenCL, and Xserve are
trademarks of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Mac OS X Technology Overview 13

Who Should Read This Document 13
Organization of This Document 13
Getting the Xcode Tools 14
Reporting Bugs 14
See Also 15

Developer Documentation 15
Information on BSD 15
Darwin and Open Source Development 16
Other Information on the Web 16

Chapter 1 Mac OS X System Overview 17

A Layered Approach 17
The Advantage of Layers 18
Developer Tools 19

Chapter 2 Darwin and Core Technologies 21

Kernel and Drivers 21
Mach 21
64-Bit Kernel 22
Device-Driver Support 22
File-System Support 23
Network Support 24

BSD 28
Caching API 29
Scripting Support 29
Threading Support 29
X11 30
Security 30

Core Technologies 30
Blocks 31
Grand Central Dispatch 31
OpenCL 32
Core Foundation 32
IPC and Notification Mechanisms 33

Software Development Support 36
Binary File Architecture 36
Language Support 40

3
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

Chapter 3 Graphics and Multimedia Technologies 43

Drawing Technologies 43
Quartz 43
Cocoa Drawing 45
OpenGL 46
Core Animation 46
Core Image 47
Image Kit 48
QuickDraw 48

Text and Fonts 48
Cocoa Text 49
Core Text 49
Apple Type Services 49
Apple Type Services for Unicode Imaging 50
Multilingual Text Engine 50

Audio Technologies 50
Core Audio 50
OpenAL 51

Video Technologies 51
QuickTime Kit 52
Core Video 52
DVD Playback 52
QuickTime 53

Color Management 54
Printing 54
Accelerating Your Multimedia Operations 55

Chapter 4 Application Technologies 57

Application Environments 57
Cocoa 57
Carbon 58
Java 59
WebObjects 59
BSD and X11 60

Application Technologies 60
Address Book Framework 60
Automator Framework 61
Bonjour 61
Calendar Store Framework 61
Core Data Framework 62
Disc Recording Framework 62
Help Support 63
Human Interface Toolbox 63
Identity Services 64

4
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Instant Message Framework 64
Image Capture Services 64
Ink Services 65
Input Method Kit Framework 65
Keychain Services 65
Latent Semantic Mapping Services 66
Launch Services 66
Open Directory 66
PDF Kit Framework 66
Publication Subscription Framework 67
Search Kit Framework 67
Security Services 67
Speech Technologies 68
SQLite Library 68
Sync Services Framework 69
WebKit Framework 69
Time Machine Support 70
Web Service Access 70
XML Parsing Libraries 70

Chapter 5 User Experience 71

Technologies 71
Aqua 71
Quick Look 71
Resolution-Independent User Interface 72
Spotlight 72
Bundles and Packages 73
Code Signing 73
Internationalization and Localization 74
Software Configuration 74
Fast User Switching 75
Spaces 75
Accessibility 75
AppleScript 76

System Applications 76
The Finder 76
The Dock 77
Dashboard 77
Automator 77
Time Machine 78

Chapter 6 Software Development Overview 79

Applications 79
Frameworks 79

5
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Plug-ins 80
Address Book Action Plug-Ins 80
Application Plug-Ins 80
Automator Plug-Ins 81
Contextual Menu Plug-Ins 81
Core Audio Plug-Ins 81
Image Units 81
Input Method Components 82
Interface Builder Plug-Ins 82
Metadata Importers 82
QuickTime Components 83
Safari Plug-ins 83

Dashboard Widgets 83
Agent Applications 84
Screen Savers 84

Slideshows 84
Programmatic Screen Savers 85

Services 85
Preference Panes 85
Web Content 86

Dynamic Websites 86
SOAP and XML-RPC 86
Sherlock Channels 87

Mail Stationery 87
Command-Line Tools 87
Launch Items, Startup Items, and Daemons 88
Scripts 88
Scripting Additions for AppleScript 89
Kernel Extensions 90
Device Drivers 90

Chapter 7 Choosing Technologies to Match Your Design Goals 93

High Performance 93
Easy to Use 95
Attractive Appearance 96
Reliability 97
Adaptability 98
Interoperability 99
Mobility 100

Chapter 8 Porting Tips 103

64-Bit Considerations 103
Windows Considerations 104
Carbon Considerations 105

6
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Migrating From Mac OS 9 105
Use the Carbon Event Manager 106
Use the HIToolbox 106
Use Nib Files 107

Appendix A Command Line Primer 109

Basic Shell Concepts 109
Getting Information 109
Specifying Files and Directories 110
Accessing Files on Volumes 110
Flow Control 111

Frequently Used Commands 112
Environment Variables 113
Running Programs 114

Appendix B Mac OS X Frameworks 115

System Frameworks 115
Accelerate Framework 121
Application Services Framework 121
Automator Framework 122
Carbon Framework 122
Core Services Framework 123
IMCore Framework 124
Quartz Framework 124
WebKit Framework 125

Xcode Frameworks 125
System Libraries 126

Appendix C Mac OS X Developer Tools 127

Applications 127
Xcode 127
Interface Builder 133
Dashcode 134
Instruments 135
Quartz Composer 136
Audio Applications 136
Graphics Applications 137
Java 138
Performance Applications 139
Utility Applications 140

Command-Line Tools 143
Compiler, Linker, and Source Code Tools 144
Debugging and Tuning Tools 146

7
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Documentation and Help Tools 149
Localization Tools 150
Version Control Tools 150
Packaging Tools 152
Scripting Tools 153
Java Tools 156
Kernel Extension Tools 157
I/O Kit Driver Tools 158

Glossary 159

Document Revision History 171

Index 173

8
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 Mac OS X System Overview 17

Figure 1-1 Layers of Mac OS X 17

Chapter 2 Darwin and Core Technologies 21

Table 2-1 Supported local volume formats 23
Table 2-2 Supported network file-sharing protocols 24
Table 2-3 Network protocols 25
Table 2-4 Network technology support 26

Chapter 3 Graphics and Multimedia Technologies 43

Figure 3-1 Quartz Compositor and the rendering APIs in Mac OS X 45
Table 3-1 Quartz technical specifications 44
Table 3-2 Partial list of formats supported by QuickTime 53
Table 3-3 Features of the Mac OS X printing system 55

Chapter 5 User Experience 71

Figure 5-1 Automator main window 78

Chapter 6 Software Development Overview 79

Table 6-1 Scripting language summary 89

Chapter 7 Choosing Technologies to Match Your Design Goals 93

Table 7-1 Technologies for improving performance 93
Table 7-2 Technologies for achieving ease of use 95
Table 7-3 Technologies for achieving an attractive appearance 96
Table 7-4 Technologies for achieving reliability 98
Table 7-5 Technologies for achieving adaptability 98
Table 7-6 Technologies for achieving interoperability 99
Table 7-7 Technologies for achieving mobility 100

Chapter 8 Porting Tips 103

Table 8-1 Required replacements for Carbon 105
Table 8-2 Recommended replacements for Carbon 106

9
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

Appendix A Command Line Primer 109

Table A-1 Getting a list of built-in commands 109
Table A-2 Special path characters and their meaning 110
Table A-3 Input and output sources for programs 111
Table A-4 Frequently used commands and programs 112

Appendix B Mac OS X Frameworks 115

Table B-1 System frameworks 115
Table B-2 Subframeworks of the Accelerate framework 121
Table B-3 Subframeworks of the Application Services framework 122
Table B-4 Subframeworks of the Automator framework 122
Table B-5 Subframeworks of the Carbon framework 123
Table B-6 Subframeworks of the Core Services framework 124
Table B-7 Subframeworks of the IMCore framework 124
Table B-8 Subframeworks of the Quartz framework 125
Table B-9 Subframeworks of the WebKit framework 125
Table B-10 Xcode frameworks 125

Appendix C Mac OS X Developer Tools 127

Figure C-1 Xcode application 129
Figure C-2 Xcode documentation window 131
Figure C-3 Interface Builder 3.0 133
Figure C-4 Dashcode canvas 134
Figure C-5 The Instruments application interface 135
Figure C-6 Quartz Composer editor window 136
Figure C-7 AU Lab mixer and palettes 137
Figure C-8 iSync Plug-in Maker application 142
Figure C-9 PackageMaker application 143
Table C-1 Graphics applications 138
Table C-2 Java applications 138
Table C-3 Performance applications 139
Table C-4 CHUD applications 139
Table C-5 Utility applications 140
Table C-6 Compilers, linkers, and build tools 144
Table C-7 Tools for creating and updating libraries 145
Table C-8 Code utilities 145
Table C-9 General debugging tools 146
Table C-10 Memory debugging and tuning tools 147
Table C-11 Tools for examining code 147
Table C-12 Performance tools 148
Table C-13 Instruction trace tools 149
Table C-14 Documentation and help tools 149

10
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Table C-15 Localization tools 150
Table C-16 Subversion tools 150
Table C-17 RCS tools 151
Table C-18 CVS tools 151
Table C-19 Comparison tools 152
Table C-20 Packaging tools 152
Table C-21 Script interpreters and compilers 153
Table C-22 Script language converters 154
Table C-23 Perl tools 154
Table C-24 Parsers and lexical analyzers 155
Table C-25 Scripting documentation tools 155
Table C-26 Java tools 156
Table C-27 Java utilities 156
Table C-28 JAR file tools 157
Table C-29 Kernel extension tools 157
Table C-30 Driver tools 158

11
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

12
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Mac OS X is a modern operating system that combines a stable core with advanced technologies to help
you deliver world-class products. The technologies in Mac OS X help you do everything from manage your
data to display high-resolution graphics and multimedia content, all while delivering the consistency and
ease of use that are hallmarks of the Macintosh experience. Knowing how to use these technologies can help
streamline your own development process, while providing you access to key Mac OS X features.

Who Should Read This Document

Mac OS X Technology Overview is an essential guide for anyone looking to develop software for Mac OS X. It
provides an overview of the technologies and tools that have an impact on the development process and
provides links to relevant documents and other sources of information. You should use this document to do
the following:

 ■ Orient yourself to the Mac OS X platform.

 ■ Learn about Mac OS X software technologies, why you might want to use them, and when.

 ■ Learn about the development opportunities for the platform.

 ■ Get tips and guidelines on how to move to Mac OS X from other platforms.

 ■ Find key documents relating to the technologies you are interested in.

This document does not provide information about user-level system features or about features that have
no impact on the software development process.

New developers should find this document useful for getting familiar with Mac OS X. Experienced developers
can use it as a road map for exploring specific technologies and development techniques.

Organization of This Document

This document has the following chapters and appendixes:

 ■ “Mac OS X System Overview” (page 17) provides background information for understanding the
terminology and basic development environment of Mac OS X. It also provides a high-level overview of
the Mac OS X system architecture.

 ■ “Darwin and Core Technologies” (page 21) describes the technologies that comprise the Darwin
environment along with other key technologies that are used throughout the system.

 ■ “Graphics and Multimedia Technologies” (page 43) describes the graphics foundations of the system,
including the technologies you use for drawing to the screen and for creating audio and video content.

Who Should Read This Document 13
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Technology
Overview

 ■ “Application Technologies” (page 57) describes the development environments (like Carbon and Cocoa)
and individual technologies (like Address Book) that you use to create your applications.

 ■ “User Experience” (page 71) describes the technologies that your application should use to provide the
best user experience for the platform. This chapter also describes some of the system technologies with
which your software interacts to create that experience.

 ■ “Software Development Overview” (page 79) describes the types of software you can create for Mac OS
X and when you might use each type.

 ■ “Choosing Technologies to Match Your Design Goals” (page 93) provides tips and guidance to help you
choose the technologies that best support the design goals of your application.

 ■ “Porting Tips” (page 103) provides starter advice for developers who are porting applications from Mac
OS 9, Windows, and UNIX platforms.

 ■ “Command Line Primer” (page 109) provides an introduction to the command-line interface for developers
who have never used it before.

 ■ “Mac OS X Frameworks” (page 115) describes the frameworks you can use to develop your software. Use
this list to find specific technologies or to find when a given framework was introduced to Mac OS X.

 ■ “Mac OS X Developer Tools” (page 127) provides an overview of the available applications and
command-line tools you can use to create software for Mac OS X.

Getting the Xcode Tools

Apple provides a comprehensive suite of developer tools for creating Mac OS X software. The Xcode Tools
include applications to help you design, create, debug, and optimize your software. This tools suite also
includes header files, sample code, and documentation for Apple technologies. You can download the Xcode
Tools from the members area of the Apple Developer Connection (ADC) website (http://connect.apple.com/).
Registration is required but free.

For additional information about the tools available for working with Mac OS X and its technologies, see
“Mac OS X Developer Tools” (page 127).

Reporting Bugs

If you encounter bugs in Apple software or documentation, you are encouraged to report them to Apple.
You can also file enhancement requests to indicate features you would like to see in future revisions of a
product or document. To file bugs or enhancement requests, go to the Bug Reporting page of the ADC
website, which is at the following URL:

http://developer.apple.com/bugreporter/

You must have a valid ADC login name and password to file bugs. You can obtain a login name for free by
following the instructions found on the Bug Reporting page.

14 Getting the Xcode Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Technology Overview

http://connect.apple.com/
http://developer.apple.com/bugreporter/

See Also

This document does not provide in-depth information on any one technology. However, it does point to
relevant documents in the ADC Reference Library. References of the form “<title> in <category>
Documentation” refer to documents in specific sections of the reference library.

For information about new features introduced in different versions of Mac OS X, see What's New In Mac OS
X.

The following sections list additional sources of information about Mac OS X and its technologies.

Developer Documentation

When you install Xcode, the installer places the tools you need for development as well as sample code and
developer documentation on your local hard drive. The default installation directory for Xcode is /Developer
but in Mac OS X v10.5 and later you can specify a custom installation directory if desired. (This document
uses the term <Xcode> to represent the root directory of your Xcode installation.) The Installer application
puts developer documentation into the following locations:

 ■ General documentation. Most documentation and sample code is installed in the
<Xcode>/Documentation/DocSets directory. All documents are available in HTML format, which you
can view from any web browser. To view the documentation, open the Xcode IDE and choose Help >
Show Documentation Window.

 ■ Additional sample code. Some additional sample programs are installed in <Xcode>/Examples. These
samples demonstrate different tasks involving Mac OS X technologies.

You can also get the latest documentation, release notes, Tech Notes, technical Q&As, and sample code from
the ADC Reference Library (http://developer.apple.com/referencelibrary). All documents are available in HTML
and most are also available in PDF format.

Information on BSD

Many developers who are new to Mac OS X are also new to BSD, an essential part of the operating system’s
kernel environment. BSD (for Berkeley Software Distribution) is based on UNIX. Several excellent books on
BSD and UNIX are available in bookstores.

You can also use the World Wide Web as a resource for information on BSD. Several organizations maintain
websites with manuals, FAQs, and other sources of information on the subject. For information about related
projects, see:

 ■ Apple’s Open Source page (http://developer.apple.com/opensource/)

 ■ The FreeBSD project (http://www.freebsd.org)

 ■ The NetBSD project (http://www.netbsd.org)

 ■ The OpenBSD project (http://www.openbsd.org)

For more references, see the bibliography in Kernel Programming Guide.

See Also 15
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Technology Overview

http://developer.apple.com/referencelibrary
http://developer.apple.com/opensource/
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org

Darwin and Open Source Development

Apple is the first major computer company to make open source development a key part of its ongoing
operating system strategy. Apple has released the source code to virtually all of the components of Darwin
to the developer community and continues to update the Darwin code base to include improvements as
well as security updates, bug fixes, and other important changes.

Darwin consists of the Mac OS X kernel environment, BSD libraries, and BSD command environment. For
more information about Darwin and what it contains, see “Kernel and Drivers” (page 21). For detailed
information about the kernel environment, see Kernel Programming Guide.

Information about the Darwin open source efforts is available at http://developer.apple.com/darwin/ and at
http://www.macosforge.org/.

Other Information on the Web

Apple maintains several websites where developers can go for general and technical information about Mac
OS X.

 ■ The Apple Macintosh products site (http://www.apple.com/mac) provides general information about
Macintosh hardware and software.

 ■ The Apple product information site (http://www.apple.com/macosx) provides information about Mac
OS X.

 ■ The ADC Reference Library (http://developer.apple.com/referencelibrary) features the same documentation
that is installed with the developer tools. It also includes new and regularly updated documents as well
as legacy documentation.

 ■ The Apple Care Knowledge Base (http://www.apple.com/support/) contains technical articles, tutorials,
FAQs, and other information.

16 See Also
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Mac OS X Technology Overview

http://developer.apple.com/darwin/
http://www.macosforge.org/
http://www.apple.com/mac
http://www.apple.com/macosx
http://developer.apple.com/referencelibrary
http://www.apple.com/support/

This chapter provides a high-level introduction to Mac OS X, describing its overall architecture and development
tools support. The goal of this chapter is to orient you to the Mac OS X operating system and to give you a
reference point from which to explore the available tools and technologies described throughout this
document. Developers who are already familiar with the Mac OS X system architecture and technologies
may want to skip this chapter.

Note: For a listing of commonly used Mac OS X terms, see “Glossary” (page 159).

A Layered Approach

The implementation of Mac OS X can be viewed as a set of layers. At the lower layers of the system are the
fundamental services on which all software relies. Subsequent layers contain more sophisticated services
and technologies that build on (or complement) the layers below. Figure 1-1 provides a graphical view of
this layered approach, highlighting a few of the key technologies found in each layer of Mac OS X.

Figure 1-1 Layers of Mac OS X

User Experience

Aqua Dashboard Spotlight Accessibility

Application Frameworks

Cocoa Carbon Java

Darwin

Graphics and Media

OpenGL Quartz Core Audio

Core Animation Core Image Core Video QuickTime

The bottom layer consists of the core environment layer, of which Darwin is the most significant component.
Darwin is the name given to the FreeBSD environment that comprises the heart of Mac OS X. FreeBSD is a
variant of the Berkeley Software Distribution UNIX environment, which provides a secure and stable foundation
for building software. Included in this layer are the kernel environment, device drivers, security support,
interprocess communication support, and low-level commands and services used by all programs on the
system. Besides Darwin, this layer contains several core services and technologies, many of which are simply
higher-level wrappers for the data types and functions in the Darwin layer. Among the available core services

A Layered Approach 17
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Mac OS X System Overview

are those for doing collection management, data formatting, memory management, string manipulation,
process management, XML parsing, stream-based I/O, and low-level network communication. For details
about the technologies in this layer, see “Darwin and Core Technologies” (page 21).

The Graphics and Media layer implements specialized services for playing audio and video and for rendering
2D and 3D graphics. One of the key technologies in this layer is Quartz, which provides the main rendering
environment and window management support for Mac OS X applications. QuickTime is Apple’s technology
for displaying video, audio, virtual reality, and other multimedia-related information. Apple’s core technologies,
including Core Image, Core Video, Core Animation, and Core Audio, provide advanced behavior for different
types of media. OpenGL is an implementation of the industry-standard application programming interface
(API) for rendering graphics and is used both as a standalone technology and as an underlying technology
for accelerating all graphics operations. For details about the technologies in this layer, see “Graphics and
Multimedia Technologies” (page 43).

The Application Frameworks layer embodies the technologies for building applications. At the heart of this
layer are the basic environments used to develop applications: Cocoa, Carbon, Java, and others. Each
environment is designed to provide a level of familiarity to certain types of developers. For example, Cocoa
and Java provide object-oriented environments using the Objective-C and Java languages while Carbon
provides a C-based environment. This layer also contains numerous supporting technologies, such as Core
Data, Address Book, Image Services, Keychain Services, Launch Services, HTML rendering, and many others.
These technologies provide advanced user features and can be used to shorten your overall development
cycle. For details about the technologies in this layer, see “Application Technologies” (page 57).

The User Experience layer identifies the methodologies, technologies, and applications that make Mac OS X
software unique. Apple provides countless technologies to implement the overall user experience. Many of
these technologies simply work, but some require interactions with the software you create. Understanding
what interactions are expected of your software can help you integrate it more smoothly into the Mac OS X
ecosystem. For details about the technologies in this layer, see “User Experience” (page 71).

The Advantage of Layers

The nice thing about the Mac OS X layered design is that writing software in one layer does not preclude
you from using technologies in other layers. Mac OS X technologies were built to interoperate with each
other whenever possible. In cases where a given technology is unsuitable, you can always use a different
technology that is suitable. For example, Cocoa applications can freely use Carbon frameworks and BSD
function calls. Similarly, Carbon applications can use Objective-C based frameworks in addition to other
object-oriented and C-based frameworks. Of course, in the case of Carbon, you might have to set up some
Cocoa-specific structures before creating any Cocoa objects, but doing so is relatively trivial.

Although you may feel more comfortable sticking with your chosen development environment, there are
advantages to straying outside of that environment. You might find that technologies in other layers offer
better performance or more flexibility. For example, using the POSIX interfaces in the Darwin layer might
make it easier to port your application to other platforms that conform to the POSIX specification. Having
access to technologies in other layers gives you options in your development process. You can pick and
choose the technologies that best suit your development needs.

18 The Advantage of Layers
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Mac OS X System Overview

Developer Tools

Mac OS X provides you with a full suite of free developer tools to prototype, compile, debug, and optimize
your applications. At the heart of Apple’s developer tools solution is Xcode, Apple’s integrated development
environment. You use Xcode to organize and edit your source files, compile and debug your code, view
documentation, and build all manner of software products.

In addition to the Xcode application, Mac OS X also provides you with a wide selection of open source tools,
such as the GNU Compiler Collection (GCC), which you use to build Mach-O programs, the native binary
format of Mac OS X. If you are used to building programs from the command line, all of the familiar tools are
there for you to use, including makefiles, the gdb debugger, analysis tools, performance tools, source-code
management tools, and many other code utilities.

Mac OS X also provides many other tools to make the development process easier:

 ■ Interface Builder lets you design your application’s user interface graphically and save those designs as
resource files that you can load into your program at runtime.

 ■ Instruments is a powerful performance analysis and debugging tool that lets you peer into your code
as it’s running and gather important metrics about what it is doing.

 ■ Shark is an advanced statistical analysis tool that turns your code inside out to help you find any
performance bottlenecks.

 ■ PackageMaker helps you build distributable packages for delivering your software to customers.

 ■ Mac OS X includes several OpenGL tools to help you analyze the execution patterns and performance
of your OpenGL rendering calls.

 ■ Mac OS X supports various scripting languages, including Perl, Python, Ruby, and others.

 ■ Mac OS X includes tools for creating and working with Java programs.

Installing the developer tools also installs the header files and development directories you need to develop
software. For information on how to get the developer tools, see “Getting the Xcode Tools” (page 14). For
more information about the tools themselves, see “Mac OS X Developer Tools” (page 127).

Developer Tools 19
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Mac OS X System Overview

20 Developer Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Mac OS X System Overview

This chapter summarizes the fundamental system technologies and facilities that are available to developers
in Mac OS X. The Darwin layer of Mac OS X comprises the kernel, drivers, and BSD portions of the system and
is based primarily on open source technologies. Mac OS X extends this low-level environment with several
core infrastructure technologies that make it easier for you to develop software.

If you are new to developing Mac OS X software, you should read through this chapter at least once to
understand the available technologies and how you might use them in your software. Even experienced
developers should revisit this chapter periodically to remind themselves of the available technologies and
look for recently introduced technologies.

Kernel and Drivers

Beneath the appealing, easy-to-use interface of Mac OS X is a rock-solid, UNIX-based foundation that is
engineered for stability, reliability, and performance. The kernel environment is built on top of Mach 3.0 and
provides high-performance networking facilities and support for multiple, integrated file systems.

The following sections describe some of the key features of the kernel and driver portions of Darwin. For
pointers to more information about the kernel environment, see Getting Started with Darwin.

Mach

Mach is at the heart of Darwin because it provides some of the most critical functions of the operating system.
Much of what Mach provides is transparent to applications. It manages processor resources such as CPU
usage and memory, handles scheduling, enforces memory protection, and implements a messaging-centered
infrastructure for untyped interprocess communication, both local and remote. Mach provides many important
advantages to Macintosh computing:

 ■ Protected memory. The stability of an operating system should not depend on all executing applications
being good citizens. Even a well-behaved process can accidentally write data into the address space of
the system or another process, which can result in the loss or corruption of data or even precipitate
system crashes. Mach ensures that an application cannot write in another application’s memory or in
the operating system’s memory. By walling off applications from each other and from system processes,
Mach makes it virtually impossible for a single poorly behaved application to damage the rest of the
system. Best of all, if an application crashes as the result of its own misbehavior, the crash affects only
that application and not the rest of the system.

 ■ Preemptive multitasking. With Mach, processes share the CPU efficiently. Mach watches over the
computer’s processor, prioritizing tasks, making sure activity levels are at the maximum, and ensuring
that every task gets the resources it needs. It uses certain criteria to decide how important a task is and
therefore how much time to allocate to it before giving another task its turn. Your process is not
dependent on another process yielding its processing time.

Kernel and Drivers 21
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

 ■ Advanced virtual memory. In Mac OS X, virtual memory is “on” all the time. The Mach virtual memory
system gives each process its own private virtual address space. For 32-bit applications, this virtual
address space is 4 GB. For 64-bit applications, the theoretical maximum is approximately 18 exabytes,
or 18 billion billion bytes. Mach maintains address maps that control the translation of a task’s virtual
addresses into physical memory. Typically only a portion of the data or code contained in a task’s virtual
address space resides in physical memory at any given time. As pages are needed, they are loaded into
physical memory from storage. Mach augments these semantics with the abstraction of memory objects.
Named memory objects enable one task (at a sufficiently low level) to map a range of memory, unmap
it, and send it to another task. This capability is essential for implementing separate execution
environments on the same system.

 ■ Real-time support. This feature guarantees low-latency access to processor resources for time-sensitive
media applications.

Mach also enables cooperative multitasking, preemptive threading, and cooperative threading.

64-Bit Kernel

Mac OS X v10.6 and later contains a 64-bit kernel. Although Mac OS X allows a 32-bit kernel to run 64-bit
applications, a 64-bit kernel provides several benefits:

 ■ The kernel can support large memory configurations more efficiently.

 ■ The maximum size of the buffer cache is increased, potentially improving I/O performance.

 ■ Performance is improved when working with specialized networking hardware that emulates memory
mapping across a wire or with multiple video cards containing over 2 GB of video RAM.

Because a 64-bit kernel does not support 32-bit drivers and kexts, those items must be built for 64-bit.
Fortunately, for most drivers, this is usually not as difficult as you might think. For the most part, transitioning
a driver to be 64-bit capable is just like transitioning any other piece of code. For details about how to make
the transition, including what things to check for in your code, see 64-Bit Transition Guide.

Device-Driver Support

Darwin offers an object-oriented framework for developing device drivers called the I/O Kit framework. This
framework facilitates the creation of drivers for Mac OS X and provides much of the infrastructure that they
need. It is written in a restricted subset of C++. Designed to support a range of device families, the I/O Kit is
both modular and extensible.

Device drivers created with the I/O Kit acquire several important features:

 ■ True plug and play

 ■ Dynamic device management (“hot plugging”)

 ■ Power management (for both desktops and portables)

22 Kernel and Drivers
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

If your device conforms to standard specifications, such as those for mice, keyboards, audio input devices,
modern MIDI devices, and so on, it should just work when you plug it in. If your device doesn’t conform to
a published standard, you can use the I/O Kit resources to create a custom driver to meet your needs. Devices
such as AGP cards, PCI and PCIe cards, scanners, and printers usually require custom drivers or other support
software in order to work with Mac OS X.

For information on creating device drivers, see I/O Kit Device Driver Design Guidelines.

File-System Support

The file-system component of Darwin is based on extensions to BSD and an enhanced Virtual File System
(VFS) design. The file-system component includes the following features:

 ■ Permissions on removable media. This feature is based on a globally unique ID registered for each
connected removable device (including USB and FireWire devices) in the system.

 ■ Access control lists (available in Mac OS X version 10.4 and later)

 ■ URL-based volume mount, which enables users (via a Finder command) to mount such things as
AppleShare and web servers

 ■ Unified buffer cache, which consolidates the buffer cache with the virtual-memory cache

 ■ Long filenames (255 characters or 755 bytes, based on UTF-8)

 ■ Support for hiding filename extensions on a per-file basis

 ■ Journaling of all file-system types to aid in data recovery after a crash

Because of its multiple application environments and the various kinds of devices it supports, Mac OS X
handles file data in many standard volume formats. Table 2-1 lists the supported formats.

Table 2-1 Supported local volume formats

DescriptionVolume format

Also called HFS (hierarchical file system) Plus, or HFS+. This is the default root and
booting volume format in Mac OS X. This extended version of HFS optimizes the
storage capacity of large hard disks by decreasing the minimum size of a single file.

Mac OS Extended
Format

Also called hierarchical file system, or HFS. This is the volume format in Mac OS systems
prior to Mac OS 8.1. HFS (like HFS+) stores resources and data in separate forks of a
file and makes use of various file attributes, including type and creator codes.

Mac OS Standard
Format

Universal Disk Format, used for hard drives and optical disks, including most types of
CDs and DVDs. Mac OS X v10.4 supports UDF revisions 1.02 through 1.50 (although
you cannot write out Finder Info, resource forks, and other extended attributes in
these revisions). Mac OS X v10.5 and later supports reading UDF revisions 1.02 through
2.60 on both block devices and most optical media, and it supports writing to block
devices and to DVD-RW and DVD+RW media using UDF 2.00 through 2.50 (except for
mirrored metadata partions in 2.50). You can find the UDF specification at
http://www.osta.org.

UDF

The standard format for CD-ROM volumes.ISO 9660

Kernel and Drivers 23
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

http://www.osta.org

DescriptionVolume format

The NT File System, used by Windows computers. Mac OS X can read NTFS-formatted
volumes but cannot write to them.

NTFS

UNIX File System is a flat (that is, single-fork) disk volume format, based on the BSD
FFS (Fast File System), that is similar to the standard volume format of most UNIX
operating systems; it supports POSIX file-system semantics, which are important for
many server applications. Although UFS is supported in Mac OS X, its use is
discouraged.

UFS

Mac OS X supports the FAT file systems used by many Windows computers. It can
read and write FAT-formatted volumes.

MS-DOS (FAT)

HFS+ volumes support aliases, symbolic links, and hard links, whereas UFS volumes support symbolic links
and hard links but not aliases. Although an alias and a symbolic link are both lightweight references to a file
or directory elsewhere in the file system, they are semantically different in significant ways. For more
information, see “Aliases and Symbolic Links” in File System Overview.

Note: Mac OS X does not support stacking in its file-system design.

Because Mac OS X is intended to be deployed in heterogeneous networks, it also supports several network
file-sharing protocols. Table 2-2 lists these protocols.

Table 2-2 Supported network file-sharing protocols

DescriptionFile protocol

Apple Filing Protocol, the principal file-sharing protocol in Mac OS 9 systems (available only
over TCP/IP transport).

AFP client

Network File System, the dominant file-sharing protocol in the UNIX world.NFS client

Web-based Distributed Authoring and Versioning, an HTTP extension that allows
collaborative file management on the web.

WebDAV

SMB/CIFS, a file-sharing protocol used on Windows and UNIX systems.SMB/CIFS

Network Support

Mac OS X is one of the premier platforms for computing in an interconnected world. It supports the dominant
media types, protocols, and services in the industry as well as differentiated and innovative services from
Apple.

The Mac OS X network protocol stack is based on BSD. The extensible architecture provided by network
kernel extensions, summarized in “Networking Extensions” (page 28), facilitates the creation of modules
implementing new or existing protocols that can be added to this stack.

24 Kernel and Drivers
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Standard Network Protocols

Mac OS X provides built-in support for a large number of network protocols that are standard in the computing
industry. Table 2-3 summarizes these protocols.

Table 2-3 Network protocols

DescriptionProtocol

802.1x is a protocol for implementing port-based network access over wired or wireless
LANs. It supports a wide range of authentication methods, including TLS, TTLS, LEAP,
MDS, and PEAP (MSCHAPv2, MD5, GTC).

802.1x

The Dynamic Host Configuration Protocol and the Bootstrap Protocol automate the
assignment of IP addresses in a particular network.

DHCP and BOOTP

Domain Name Services is the standard Internet service for mapping host names to IP
addresses.

DNS

The File Transfer Protocol and Secure File Transfer Protocol are two standard means
of moving files between computers on TCP/IP networks. (SFTP support was added in
Mac OS X version 10.3.)

FTP and SFTP

The Hypertext Transport Protocol is the standard protocol for transferring webpages
between a web server and browser. Mac OS X provides support for both the insecure
and secure versions of the protocol.

HTTP and HTTPS

The Lightweight Directory Access Protocol lets users locate groups, individuals, and
resources such as files and devices in a network, whether on the Internet or on a
corporate intranet.

LDAP

The Name Binding Protocol is used to bind processes across a network.NBP

The Network Time Protocol is used for synchronizing client clocks.NTP

The Printer Access Protocol is used for spooling print jobs and printing to network
printers.

PAP

For dialup (modem) access, Mac OS X includes PPP (Point-to-Point Protocol). PPP
support includes TCP/IP as well as the PAP and CHAP authentication protocols.

PPP

The Point-to-Point Protocol over Ethernet protocol provides an Ethernet-based dialup
connection for broadband users.

PPPoE

The Secure MIME protocol supports encryption of email and the attachment of digital
signatures to validate email addresses. (S/MIME support was added in Mac OS X version
10.3.)

S/MIME

Service Location Protocol is designed for the automatic discovery of resources (servers,
fax machines, and so on) on an IP network.

SLP

The Simple Object Access Protocol is a lightweight protocol for exchanging
encapsulated messages over the web or other networks.

SOAP

Kernel and Drivers 25
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

DescriptionProtocol

The Secure Shell protocol is a safe way to perform a remote login to another computer.
Session information is encrypted to prevent unauthorized snooping of data.

SSH

Mac OS X provides two transmission-layer protocols, TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol), to work with the network-layer Internet
Protocol (IP). (Mac OS X 10.2 and later includes support for IPv6 and IPSec.)

TCP/IP and UDP/IP

XML-RPC is a protocol for sending remote procedure calls using XML over the web.XML-RPC

Apple also implements a number of file-sharing protocols; see Table 2-2 (page 24) for a summary of these
protocols.

Legacy Network Services and Protocols

Apple includes the following legacy network products in Mac OS X to ease the transition from earlier versions
of the Mac OS.

 ■ AppleTalk is a suite of network protocols that is standard on the Macintosh and can be integrated with
other network systems. Mac OS X includes minimal support for compatibility with legacy AppleTalk
environments and solutions.

 ■ Open Transport implements industry-standard communications and network protocols as part of the
I/O system. It helps developers incorporate networking services in their applications without having to
worry about communication details specific to any one network.

These protocols are provided to support legacy applications, such as those running in the Classic environment.
You should never use these protocols for any active development. Instead, you should use newer networking
technologies such as CFNetwork.

Network Technologies

Mac OS X supports the network technologies listed in Table 2-4.

Table 2-4 Network technology support

DescriptionTechnology

For the Ethernet ports built into every new Macintosh.Ethernet 10/100Base-T

Also known as Gigabit Ethernet. For data transmission over fiber-optic cable and
standardized copper wiring.

Ethernet 1000Base-T

This Ethernet format uses 9 KB frames for interserver links rather than the standard
1.5 KB frame. Jumbo Frame decreases network overhead and increases the flow
of server-to-server and server-to-application data. Jumbo frames are supported
in Mac OS X version 10.3 and later. Systems running Mac OS X versions 10.2.4 to
10.3 can use jumbo frames only on third-party Ethernet cards that support them.

Jumbo Frame

Supports modem and ISDN capabilities.Serial

26 Kernel and Drivers
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

DescriptionTechnology

Supports the 802.11b, 802.11g, and 802.11n wireless network technology using
AirPort and AirPort Extreme.

Wireless

Routing and Multihoming

Mac OS X is a powerful and easy-to-use desktop operating system but can also serve as the basis for powerful
server solutions. Some businesses or organizations have small networks that could benefit from the services
of a router, and Mac OS X offers IP routing support for just these occasions. With IP routing, a Mac OS X
computer can act as a router or even as a gateway to the Internet. The Routing Information Protocol (RIP) is
used in the implementation of this feature.

Mac OS X also allows multihoming and IP aliasing. With multihoming, a computer host is physically connected
to multiple data links that can be on the same or different networks. IP aliasing allows a network administrator
to assign multiple IP addresses to a single network interface. Thus one computer running Mac OS X can serve
multiple websites by acting as if it were multiple servers.

Zero-Configuration Networking

Introduced in Mac OS X version 10.2, Bonjour is Apple’s implementation of zero-configuration networking.
Bonjour enables the dynamic discovery of computer services over TCP/IP networks without the need for any
complex user configuration of the associated hardware. Bonjour helps to connect computers and other
electronic devices by providing a mechanism for them to advertise and browse for network-based services.
See “Bonjour” (page 61) for more information.

NetBoot

NetBoot is most often used in school or lab environments where the system administrator needs to manage
the configuration of multiple computers. NetBoot computers share a single System folder, which is installed
on a centralized server that the system administrator controls. Users store their data in home directories on
the server and have access to a common Applications folder, both of which are also commonly installed on
the server.

To support NetBoot, applications must be able to run from a shared, locked volume and write a user’s personal
data to a different volume. Preferences and user-specific data should always be stored in the Preferences
folder of the user’s home directory. Users should also be asked where they want to save their data, with the
user’s Documents folder being the default location. Applications must also remember that multiple users
may run the application simultaneously.

See Technical Note TN1151, “Creating NetBoot Server–Friendly Applications,” for additional information. For
information on how to write applications that support multiple simultaneous users, see Multiple User
Environments.

Personal Web Sharing

Personal Web Sharing allows users to share information with other users on an intranet, no matter what type
of computer or browser they are using. Basically, it lets users set up their own intranet site. Apache, the most
popular web server on the Internet, is integrated as the system’s HTTP service. The host computer on which
the Personal Web Sharing server is running must be connected to a TCP/IP network.

Kernel and Drivers 27
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

http://developer.apple.com/technotes/tn/tn1151.html

Networking Extensions

Darwin offers kernel developers a technology for adding networking capabilities to the operating system:
network kernel extensions (NKEs). The NKE facility allows you to create networking modules and even entire
protocol stacks that can be dynamically loaded into the kernel and unloaded from it. NKEs also make it
possible to configure protocol stacks automatically.

NKE modules have built-in capabilities for monitoring and modifying network traffic. At the data-link and
network layers, they can also receive notifications of asynchronous events from device drivers, such as when
there is a change in the status of a network interface.

For information on how to write an NKE, see Network Kernel Extensions Programming Guide.

Network Diagnostics

Introduced in Mac OS X version 10.4, network diagnostics is a way of helping the user solve network problems.
Although modern networks are generally reliable, there are still times when network services may fail.
Sometimes the cause of the failure is beyond the ability of the desktop user to fix, but sometimes the problem
is in the way the user’s computer is configured. The network diagnostics feature provides a diagnostic
application to help the user locate problems and correct them.

If your application encounters a network error, you can use the new diagnostic interfaces of CFNetwork to
launch the diagnostic application and attempt to solve the problem interactively. You can also choose to
report diagnostic problems to the user without attempting to solve them.

For more information on using this feature, see the header files of CFNetwork.

BSD

Integrated with Darwin is a customized version of the Berkeley Software Distribution (BSD) operating system
(currently FreeBSD 5). Darwin’s implementation of BSD includes much of the POSIX API, which higher-level
applications can also use to implement basic application features. BSD serves as the basis for the file systems
and networking facilities of Mac OS X. In addition, it provides several programming interfaces and services,
including:

 ■ The process model (process IDs, signals, and so on)

 ■ Basic security policies such as file permissions and user and group IDs

 ■ Threading support (POSIX threads)

 ■ Networking support (BSD sockets)

Note: For more information about the FreeBSD operating system, go to http://www.freebsd.org/. For more
information about the boot process of Mac OS X, including how it launches the daemons used to implement
key BSD services, see System Startup Programming Topics.

The following sections describe some of the key features of the BSD Layer of Mac OS X.

28 BSD
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

http://www.freebsd.org/

Caching API

Introduced in Mac OS X v10.6, the libcache API is a low-level purgeable caching API. Aggressive caching
is an important technique in maximizing application performance. However, when caching demands exceed
available memory, the system must free up memory as necessary to handle new demands. Typically, this
means paging cached data to and from relatively slow storage devices, sometimes even resulting in
system-wide performance degradation. Your application should avoid potential paging overhead by actively
managing its data caches, releasing them as soon as it no longer needs the cached data.

In the wider system context, your application can now also help by creating caches that the operating system
can simply purge on a priority basis as memory pressure necessitates. Mac OS X v10.6 includes the libcache
library and Foundation framework’s NSCache class to create these purgeable caches.

For more information about the functions of the libcache library, see libcacheReference. For more information
about the NSCache class, see NSCache Class Reference.

Scripting Support

Darwin includes all of the scripting languages commonly found in UNIX-based operating systems. In addition
to the scripting languages associated with command-line shells (such as bash and csh), Darwin also includes
support for Perl, Python, Ruby, and others.

In Mac OS X v10.5, Darwin added support for several new scripting features. In addition to adding support
for Ruby on Rails, Mac OS X also added scripting bridges to the Objective-C classes of Cocoa. These bridges
let you use Cocoa classes from within your Python and Ruby scripts. For information about using these
bridges, see Ruby and Python Programming Topics for Mac OS X.

For information about scripting tools, see “Scripting Tools” (page 153). For information on using command-line
shells, see “Command Line Primer” (page 109).

Threading Support

Mac OS X provides full support for creating multiple preemptive threads of execution inside a single process.
Threads let your program perform multiple tasks in parallel. For example, you might create a thread to perform
some lengthy calculations in the background while a separate thread responds to user events and updates
the windows in your application. Using multiple threads can often lead to significant performance
improvements in your application, especially on computers with multiple CPU cores. Multithreaded
programming is not without its dangers though and requires careful coordination to ensure your application’s
state does not get corrupted.

All user-level threads in Mac OS X are based on POSIX threads (also known as pthreads). A pthread is a
lightweight wrapper around a Mach thread, which is the kernel implementation of a thread. You can use the
pthreads API directly or use any of the threading packages offered by Cocoa, Carbon, or Java, all of which
are implemented using pthreads. Each threading package offers a different combination of flexibility versus
ease-of-use. All offer roughly the same performance, however.

In general, you should try to use Grand Central Dispatch or operation objects to perform work concurrently.
However, there may still be situations where you need to create threads explicitly. For more information
about threading support and guidelines on how to use threads safely, see Threading Programming Guide.

BSD 29
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

X11

In Mac OS X v10.3 and later, the X11 windowing system is provided as an optional installation component
for the system. This windowing system is used by many UNIX applications to draw windows, controls, and
other elements of graphical user interfaces. The Mac OS X implementation of X11 uses the Quartz drawing
environment to give X11 windows a native Mac OS X feel. This integration also makes it possible to display
X11 windows alongside windows from native applications written in Carbon and Cocoa.

Security

The roots of Mac OS X in the UNIX operating system provide a robust and secure computing environment
whose track record extends back many decades. Mac OS X security services are built on top of two open-source
standards: BSD (Berkeley Software Distribution) and CDSA (Common Data Security Architecture). BSD is a
form of the UNIX operating system that provides basic security for fundamental services, such as file and
network access. CDSA provides a much wider array of security services, including finer-grained access
permissions, authentication of users’ identities, encryption, and secure data storage. Although CDSA has its
own standard API, it is complex and does not follow standard Macintosh programming conventions. Therefore,
Mac OS X includes its own security APIs that call through to the CDSA API for you.

In Mac OS X v10.5 several improvements were made to the underlying operating system security, including
the addition of the following features:

 ■ Adoption of the Mandatory Access Control (MAC) framework, which provides a fine-grained security
architecture for controlling the execution of processes at the kernel level. This feature enables the
“sandboxing” of applications, which lets you limit the access of a given application to only those features
you designate.

 ■ Support for code signing and installer package signing. This feature lets the system validate applications
using a digital signature and warn the user if an application is tampered with.

 ■ Compiler support for fortifying your source code against potential security threats. This support includes
options to disallow the execution of code located on the stack or other portions of memory containing
data. It also includes some new GCC compiler warnings.

 ■ Support for putting unknown files into quarantine. This is especially useful for developers of web browsers
or other network-based applications that receive files from unknown sources. The system prevents access
to quarantined files unless the user explicitly approves that access.

For an introduction to Mac OS X security features, see Security Overview.

Core Technologies

Some technologies are responsible for implementing key portions of your application’s infrastructure. The
following sections describe these technologies and how use them in your applications.

30 Core Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Blocks

Introduced in Mac OS X v10.6, blocks are a C-level mechanism that you can use to create an ad hoc function
body as an inline expression in your code. In other languages and environments, a block is sometimes called
a closure or a lambda. You use blocks when you need to create a reusable segment of code but defining a
function or method might be a heavyweight (and perhaps inflexible) solution—for example, if you want to
write callbacks with custom data or if you want to perform an operation on all the items in a collection.

The compiler provides support for blocks using the C, C++, and Objective-C languages. For more information
about how to create and use blocks, see Blocks Programming Topics.

Grand Central Dispatch

Introduced in Mac OS X v10.6, Grand Central Dispatch (GCD) provides a simple and efficient API for achieving
the concurrent execution of code in your application. Instead of threads, GCD provides the infrastructure for
executing any task in your application asynchronously using a dispatch queue. Dispatch queues collect your
tasks and work with the kernel to facilitate their execution on an underlying thread. A single dispatch queue
can execute tasks serially or concurrently and applications can have multiple dispatch queues executing
tasks in parallel.

There are several advantages to using dispatch queues over traditional threads. One of the most important
is performance. Dispatch queues work more closely with the kernel to eliminate the normal overhead
associated with creating threads. Serial dispatch queues also provide built-in synchronization for queued
tasks, eliminating many of the problems normally associated with synchronization and memory contention
normally encountered when using threads.

In addition to dispatch queues, GCD provides other interfaces to support the asynchronous design approach
offered by dispatch queues:

 ■ Dispatch sources provide a more efficient way to handle the following types of kernel-level events:

 ❏ Timer notifications

 ❏ Signal handling

 ❏ Events associated with file and socket operations

 ❏ Significant process-related events

 ❏ Mach-related events

 ❏ Custom events that you define and trigger

 ■ Dispatch groups allow one thread (or task) to block while it waits for one or more other tasks to finish
executing.

 ■ Dispatch semaphores provide a more efficient alternative to the traditional semaphore mechanism.

For more information about how to use GCD in your applications, see Concurrency Programming Guide.

Core Technologies 31
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

OpenCL

Introduced in Mac OS X v10.6, the Open Computing Language (OpenCL) makes the high-performance parallel
processing power of GPUs available for general-purpose computing. The OpenCL language is a general
purpose computer language, not specifically a graphics language, that abstracts out the lower-level details
needed to perform parallel data computation tasks on GPUs and CPUs. Using OpenCL, you create compute
kernels that are then offloaded to a graphics card or CPU for processing. Multiple instances of a compute
kernel can be run in parallel on one or more GPU or CPU cores, and you can link to your compute kernels
from Cocoa, C, or C++ applications.

For tasks that involve data-parallel processing on large data sets, OpenCL can yield significant performance
gains. There are many applications that are ideal for acceleration using OpenCL, such as signal processing,
image manipulation, or finite element modeling. The OpenCL language has a rich vocabulary of vector and
scalar operators and the ability to operate on multidimensional arrays in parallel.

For information about OpenCL and how to write compute kernels, see OpenCL Programming Guide for Mac
OS X.

Core Foundation

The Core Foundation framework (CoreFoundation.framework) is a set of C-based interfaces that provide
basic data management features for Mac OS X programs. Among the data types you can manipulate with
Core Foundation are the following:

 ■ Collections

 ■ Bundles and plug-ins

 ■ Strings

 ■ Raw data blocks

 ■ Dates and times

 ■ Preferences

 ■ Streams

 ■ URLs

 ■ XML data

 ■ Locale information

 ■ Run loops

 ■ Ports and sockets

Although it is C-based, the design of the Core Foundation interfaces is more object-oriented than C. As a
result, the opaque types you create with Core Foundation interfaces operate seamlessly with the Cocoa
Foundation interfaces. Core Foundation is used extensively in Mac OS X to represent fundamental types of
data, and its use in Carbon and other non-Cocoa applications is highly recommended. (For Cocoa applications,
use the Cocoa Foundation framework instead.)

For an overview of Core Foundation, see Core Foundation Design Concepts. For additional conceptual and
reference material, see the categories of Reference Library > Core Foundation.

32 Core Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

IPC and Notification Mechanisms

Mac OS X supports numerous technologies for interprocess communication (IPC) and for delivering notifications
across the system. The following sections describe the available technologies.

FSEvents API

Introduced in Mac OS X v10.5, the FSEvents API notifies your application when changes occur in the file
system. You can use file system events to monitor directories for any changes, such as the creation,
modification, or removal of contained files and directories. Although kqueues provide similar behavior, the
FSEvents API provides a much simpler way to monitor many directories at once. For example, you can use
file system events to monitor entire file system hierarchies rooted at a specific directory and still receive
notifications about individual directories in the hierarchy. The implementation of file system events is
lightweight and efficient, providing built-in coalescing when multiple changes occur within a short period
of time to one or many directories.

The FSEvents API is not intended for detecting fine-grained changes to individual files. You would not use
this to detect changes to an individual file as in a virus checker program. Instead, you might use FSEvents to
detect general changes to a file hierarchy. For example, you might use this technology in backup software
to detect what files changed. You might also use it to monitor a set of data files your application uses, but
which can be modified by other applications as well.

For information on how to use the FSEvents API, see File System Events Programming Guide.

Kernel Queues and Kernel Events

Kernel queues (also known as kqueues) and kernel events (also known as kevents) are an extremely powerful
technology you use to intercept kernel-level events. Although often used to detect file-system changes, you
can also use this technology to receive notifications about changes to sockets, processes, and other aspects
of the system. For example, you could use them to detect when a process exits or when it issues fork and
exec calls. Kernel queues and events are part of the FreeBSD layer of the operating system and are described
in the kqueue and kevent man pages.

BSD Notifications

Starting with Mac OS X version 10.3, applications can take advantage of a system-level notification API. This
notification mechanism is defined in the /usr/include/notify.h system header. BSD notifications offer
some advantages over the Core Foundation notification mechanism, including the following:

 ■ Clients can receive BSD notifications through several different mechanisms, including Mach ports, signals,
and file descriptors.

 ■ BSD notifications are more lightweight and efficient than other notification techniques.

 ■ BSD notifications can be coalesced if multiple notifications are received in quick succession.

You can add support for BSD notifications to any type of program, including Carbon and Cocoa applications.
For more information, see Mac OS X Notification Overview or the notify man page.

Core Technologies 33
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Sockets, Ports, and Streams

Sockets and ports provide a portable mechanism for communicating between applications in Mac OS X. A
socket represents one end of a communications channel between two processes either locally or across the
network. A port is a channel between processes or threads on the local computer. Applications can set up
sockets and ports to implement fast, efficient messaging between processes.

The Core Foundation framework includes abstractions for sockets (CFSocket/CFRunLoop) and ports
(CFMessagePort). You can use CFSocket with CFRunLoop to multiplex data received from a socket with data
received from other sources. This allows you to keep the number of threads in your application to an absolute
minimum, which conserves system resources and thus aids performance. Core Foundation sockets are also
much simpler to use than the raw socket interfaces provided by BSD. CFMessagePort provides similar features
for ports.

If you are communicating using an established transport mechanism such as Bonjour or HTTP, a better way
to transfer data between processes is with the Core Foundation or Cocoa stream interfaces. These interfaces
work with CFNetwork to provide a stream-based way to read and write network data. Like sockets, streams
and CFNetwork were designed with run loops in mind and operate efficiently in that environment.

CFSocket and its related functions are documented in CFSocket Reference. For information about Core
Foundation streams, see CFReadStream Reference and CFWriteStream Reference. For information about Cocoa
streams, see the description of the NSStream class in Foundation Framework Reference.

BSD Pipes

A pipe is a communications channel typically created between a parent and a child process when the child
process is forked. Data written to a pipe is buffered and read in first-in, first-out (FIFO) order. You create
unnamed pipes between a parent and child using the pipe function declared in /usr/include/unistd.h.
This is the simplest way to create a pipe between two processes; the processes must, however, be related.

You can also create named pipes to communicate between any two processes. A named pipe is represented
by a file in the file system called a FIFO special file. A named pipe must be created with a unique name known
to both the sending and the receiving process.

Note: Make sure you give your named pipes appropriate names to avoid unwanted collisions caused by the
presence of multiple simultaneous users.

Pipes are a convenient and efficient way to create a communications channel between related processes.
However, in general use, pipes are still not as efficient as using CFStream. The run loop support offered by
CFStream makes it a better choice when you have multiple connections or plan to maintain an open channel
for an extended period of time.

The interfaces for CFStream are documented in CFNetwork Programming Guide.

Shared Memory

Shared memory is a region of memory that has been allocated by a process specifically for the purpose of
being readable and possibly writable among several processes. You create regions of shared memory in
several different ways. Among the available options are the functions in /usr/include/sys/shm.h, the

34 Core Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

shm_open and shm_unlink routines, and the mmap routine. Access to shared memory is controlled through
POSIX semaphores, which implement a kind of locking mechanism. Shared memory has some distinct
advantages over other forms of interprocess communication:

 ■ Any process with appropriate permissions can read or write a shared memory region.

 ■ Data is never copied. Each process reads the shared memory directly.

 ■ Shared memory offers excellent performance.

The disadvantage of shared memory is that it is very fragile. When a data structure in a shared memory region
becomes corrupt, all processes that refer to the data structure are affected. In most cases, shared memory
regions should also be isolated to a single user session to prevent security issues. For these reasons, shared
memory is best used only as a repository for raw data (such as pixels or audio), with the controlling data
structures accessed through more conventional interprocess communication.

For information about shm_open, shm_unlink, and mmap, see the shm_open, shm_unlink, and mmap man
pages.

Apple Events

An Apple event is a high-level semantic event that an application can send to itself, to other applications on
the same computer, or to applications on a remote computer. Apple events are the primary technology used
for scripting and interapplication communication in Mac OS X. Applications can use Apple events to request
services and information from other applications. To supply services, you define objects in your application
that can be accessed using Apple events and then provide Apple event handlers to respond to requests for
those objects.

Apple events have a well-defined data structure that supports extensible, hierarchical data types. To make
it easier for scripters and other developers to access it, your application should generally support the standard
set of events defined by Apple. If you want to support additional features not covered by the standard suite,
you can also define custom events as needed.

Apple events are part of the Application Services umbrella framework. For information on how to use Apple
events, see Apple Events Programming Guide. See also Apple Event Manager Reference for information about
the functions and constants used to create, send, and receive Apple events.

Distributed Notifications

A distributed notification is a message posted by any process to a per-computer notification center, which
in turn broadcasts the message to any processes interested in receiving it. Included with the notification is
the ID of the sender and an optional dictionary containing additional information. The distributed notification
mechanism is implemented by the Core Foundation CFNotificationCenter object and by the Cocoa
NSDistributedNotificationCenter class.

Distributed notifications are ideal for simple notification-type events. For example, a notification might
communicate the status of a certain piece of hardware, such as the network interface or a typesetting machine.
However, notifications should not be used to communicate critical information to a specific process. Although
Mac OS X makes every effort possible, it does not guarantee the delivery of a notification to every registered
receiver.

Core Technologies 35
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Distributed notifications are true notifications because there is no opportunity for the receiver to reply to
them. There is also no way to restrict the set of processes that receive a distributed notification. Any process
that registers for a given notification may receive it. Because distributed notifications use a string for the
unique registration key, there is also a potential for namespace conflicts.

For information on Core Foundation support for distributed notifications, see CFNotificationCenter Reference.
For information about Cocoa support for distributed notifications, see Notification Programming Topics.

Distributed Objects for Cocoa

Cocoa distributed objects provide a transparent mechanism that allows different applications (or threads in
the same application) to communicate on the same computer or across the network. The implementation
of distributed objects lets you focus on the data being transferred rather than the connection. As a result,
implementing distributed objects takes less time than most other IPC mechanisms; however, this ease of
implementation comes at the cost of performance. Distributed objects are typically not as efficient as many
other techniques.

For information on how to use distributed objects in your Cocoa application, see Distributed Objects
Programming Topics.

Mach Messaging

Mach port objects implement a standard, safe, and efficient construct for transferring messages between
processes. Despite these benefits, messaging with Mach port objects is the least desirable way to communicate
between processes. Mach port messaging relies on knowledge of the kernel interfaces, which may change
in a future version of Mac OS X.

All other interprocess communications mechanisms in Mac OS X are implemented using Mach ports at some
level. As a result, low-level technologies such as sockets, ports, and streams all offer efficient and reliable
ways to communicate with other processes. The only time you might consider using Mach ports directly is
if you are writing software that runs in the kernel.

Software Development Support

The following sections describe some additional features of Mac OS X that affect the software development
process.

Binary File Architecture

The underlying architecture of Mac OS X executables was built from the beginning with flexibility in mind.
This flexibility has become important as Macintosh computers have transitioned from using PowerPC to Intel
CPUs and from supporting only 32-bit applications to 64-bit applications in Mac OS X v10.5. The following
sections provide an overview of the types of architectures you can support in your Mac OS X executables
along with other information about the runtime and debugging environments available to you.

36 Software Development Support
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Hardware Architectures

When Mac OS X was first introduced, it was built to support a 32-bit PowerPC hardware architecture. With
Apple’s transition to Intel-based Macintosh computers, Mac OS X added initial support for 32-bit Intel hardware
architectures. In addition to 32-bit support, Mac OS X v10.4 added some basic support for 64-bit architectures
as well and this support was expanded in Mac OS X v10.5. This means that applications and libraries can now
support four different architectures:

 ■ 32-bit Intel (i386)

 ■ 32-bit PowerPC (ppc)

 ■ 64-bit Intel (x86_64)

 ■ 64-bit PowerPC (ppc64)

Although applications can support all of these architectures in a single binary, doing so is not required. That
does not mean application developers can pick a single architecture and use that alone, however. It is
recommended that developers create their applications as “universal binaries” so that they run natively on
both 32-bit Intel and PowerPC processors. If performance or development need warrants it, you might also
add support for the 64-bit versions of each architecture.

Because libraries can be linked into multiple applications, you might consider supporting all of the available
architectures when creating them. Although supporting all architectures is not required, it does give developers
using your library more flexibility in how they create their applications and is recommended.

Supporting multiple architectures requires careful planning and testing of your code for each architecture.
There are subtle differences from one architecture to the next that can cause problems if not accounted for
in your code. For example, the PowerPC and Intel architectures use different endian structures for multi-byte
data. In addition, some built-in data types have different sizes in 32-bit and 64-bit architectures. Accounting
for these differences is not difficult but requires consideration to avoid coding errors.

Xcode provides integral support for creating applications that support multiple hardware architectures. For
information about tools support and creating universal binaries to support both PowerPC and Intel
architectures, see Universal Binary Programming Guidelines, Second Edition. For information about 64-bit
support in Mac OS X, including links to documentation for how to make the transition, see “64-Bit
Support” (page 37).

64-Bit Support

Mac OS X was initially designed to support binary files on computers using a 32-bit architecture. In Mac OS
X version 10.4, however, support was introduced for compiling, linking, and debugging binaries on a 64-bit
architecture. This initial support was limited to code written using C or C++ only. In addition, 64-bit binaries
could link against the Accelerate framework and libSystem.dylib only.

In Mac OS X v10.5, most system libraries and frameworks are now 64-bit ready, meaning they can be used
in both 32-bit and 64-bit applications. The conversion of frameworks to support 64-bit required some
implementation changes to ensure the proper handling of 64-bit data structures; however, most of these
changes should be transparent to your use of the frameworks. Building for 64-bit means you can create
applications that address extremely large data sets, up to 128TB on the current Intel-based CPUs. On Intel-based
Macintosh computers, some 64-bit applications may even run faster than their 32-bit equivalents because
of the availability of extra processor resources in 64-bit mode.

Software Development Support 37
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Although most APIs support 64-bit development, some older APIs were not ported to 64-bit or offer restricted
support for 64-bit applications. Many of these APIs are legacy Carbon managers that have been either wholly
or partially deprecated in favor of more modern equivalents. What follows is a partial list of APIs that will not
support 64-bit. For a complete description of 64-bit support in Carbon, see 64-Bit Guide for CarbonDevelopers.

 ■ Code Fragment Manager (use the Mach-O executable format instead)

 ■ Desktop Manager (use Icon Services and Launch Services instead)

 ■ Display Manager (use Quartz Services instead)

 ■ QuickDraw (use Quartz or Cocoa instead)

 ■ QuickTime Musical Instruments (use Core Audio instead)

 ■ Sound Manager (use Core Audio instead)

In addition to the list of deprecated APIs, there are a few modern APIs that are not deprecated, but which
have not been ported to 64-bit. Development of 32-bit applications with these APIs is still supported, but if
you want to create a 64-bit application, you must use alternative technologies. Among these APIs are the
following:

 ■ The entire QuickTime C API (not deprecated, but developers should use QuickTime Kit instead in 64-bit
applications)

 ■ HIToolbox, Window Manager, and most other Carbon user interface APIs (not deprecated, but developers
should use Cocoa user interface classes and other alternatives); see 64-Bit Guide for Carbon Developers
for the list of specific APIs and transition paths.

Mac OS X uses the LP64 model that is in use by other 64-bit UNIX systems, which means fewer headaches
when porting from other operating systems. For general information on the LP64 model and how to write
64-bit applications, see 64-Bit Transition Guide. For Cocoa-specific transition information, see 64-Bit Transition
Guide for Cocoa. For Carbon-specific transition information, see 64-Bit Guide for Carbon Developers.

Object File Formats

Mac OS X is capable of loading object files that use several different object-file formats, including the following:

 ■ Mach-O

 ■ Java bytecode

 ■ Preferred Executable Format (PEF)

Of these formats, the Mach-O format is the format used for all native Mac OS X application development.
The Java bytecode format is a format executed through the Hotspot Java virtual machine and used exclusively
for Java-based programs. The PEF format is handled by the Code Fragment Manager and is a legacy format
that was used for transitioning Mac OS 9 applications to Mac OS X.

For information about the Mach-O file format, see Mac OS X ABI Mach-O File Format Reference. For additional
information about using Mach-O files, see Mach-O Programming Topics. For information about Java support
in Mac OS X, see “Java Support” (page 41). For information about the PEF format and Code Fragment Manager,
see “CFM Runtime Environment” (page 40)

38 Software Development Support
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Debug File Formats

Whenever you debug an executable file, the debugger uses symbol information generated by the compiler
to associate user-readable names with the procedure and data address it finds in memory. Normally, this
user-readable information is not needed by a running program and is stripped out (or never generated) by
the compiler to save space in the resulting binary file. For debugging, however, this information is very
important to be able to understand what the program is doing.

Mac OS X supports two different debug file formats for compiled executables: stabs and DWARF. The stabs
format is present in all versions of Mac OS X and until the introduction of Xcode 2.4 was the default debugging
format. Code compiled with Xcode 2.4 and later uses the DWARF debugging format by default. When using
the stabs format, debugging symbols, like other symbols are stored in the symbol table of the executable;
see Mac OS X ABI Mach-O File Format Reference. With the DWARF format, however, debugging symbols are
stored either in a specialized segment of the executable or in a separate debug-information file.

For information about the DWARF standard, go to http://www.dwarfstd.org. For information about the stabs
debug file format, see STABS Debug Format. For additional information about Mach-O files and their stored
symbols, see Mach-O Programming Topics.

Runtime Environments

Since its first release, Mac OS X has supported several different environments for running applications. The
most prominent of these environments is the Dyld environment, which is also the only environment supported
for active development. Most of the other environments provided legacy support during the transition from
Mac OS 9 to Mac OS X and are no longer supported for active development. The following sections describe
the runtime environments you may encounter in various versions of Mac OS X.

Dyld Runtime Environment

The dyld runtime environment is the native environment in Mac OS X and is used to load, link, and execute
Mach-O files. At the heart of this environment is the dyld dynamic loader program, which handles the loading
of a program’s code modules and associated dynamic libraries, resolves any dependencies between those
libraries and modules, and begins the execution of the program.

Upon loading a program’s code modules, the dynamic loader performs the minimal amount of symbol
binding needed to launch your program and get it running. This binding process involves resolving links to
external libraries and loading them as their symbols are used. The dynamic loader takes a lazy approach to
binding individual symbols, doing so only as they are used by your code. Symbols in your code can be
strongly-linked or weakly-linked. Strongly-linked symbols cause the dynamic loader to terminate your program
if the library containing the symbol cannot be found or the symbol is not present in the library. Weakly-linked
symbols terminate your program only if the symbol is not present and an attempt is made to use it.

For more information about the dynamic loader program, see dyld. For information about building and
working with Mach-O executable files, see Mach-O Programming Topics.

Java Runtime Environment

The Java runtime environment consists of the HotSpot Java virtual machine, the “just-in-time” (JIT) bytecode
compiler, and code packages containing the standard Java classes. For more information about Java support
in Mac OS X, see “Java Support” (page 41).

Software Development Support 39
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

http://www.dwarfstd.org

CFM Runtime Environment

The Code Fragment Manager (CFM) runtime environment is a legacy environment inherited from Mac OS 9.
Mac OS X provides this environment to support applications that want to use the modern features of Mac
OS X but have not yet been converted over to the dyld environment for various reasons. The CFM runtime
environment expects code modules to be built using the Preferred Executable Format (PEF).

Unlike the dyld environment, the CFM runtime environment takes a static approach to symbol binding. At
runtime, the CFM library manager binds all referenced symbols when the code modules are first loaded into
memory. This binding occurs regardless of whether those symbols are actually used during the program’s
course of execution. If a particular symbol is missing, the program does not launch. (An exception to this rule
occurs when code modules are bound together using weak linking, which explicitly permits symbols to be
missing as long as they are never used.)

Because all system libraries are implemented using Mach-O and dyld, Mac OS X provides a set of libraries to
bridge calls between CFM code and system libraries. This bridging is transparent but incurs a small amount
of overhead for CFM-based programs. The Carbon library is one example of a bridged library.

Note: The libraries bridge only from CFM to dyld; they do not bridge calls going in the opposite direction.
It is possible for a dyld-based application to make calls into a CFM-based library using the CFBundle facility,
but this solution is not appropriate for all situations. If you want a library to be available to all Mac OS X
execution environments, build it as a dyld-based library.

On Intel-based Macintosh computers, CFM binaries are run under the Rosetta environment.

The Classic Environment

Important: The Classic environment was supported only on PowerPC-based Macintosh computers and was
deprecated in Mac OS X v10.5 and later. You should not be doing any active development using the Classic
environment. If you want to write programs to run in Mac OS X, you should use the dyld environment instead.

In early versions of Mac OS X, the Classic compatibility environment (or simply, Classic environment) was
called a “software compatibility” environment because it enabled Mac OS X to run applications built for Mac
OS 9.1 or 9.2. The Classic environment was not an emulator; it was a hardware abstraction layer between an
installed Mac OS 9 System Folder and the Mac OS X kernel environment. Because of architectural differences,
applications running in the Classic environment did not share the full advantages of the kernel environment.

The Classic environment is not supported on Intel-based Macintosh computers.

Language Support

The tools that come with Mac OS X provide direct support for developing software using the C, C++,
Objective-C, Objective-C++, languages along with numerous scripting languages. It also includes a Java
runtime that you can use to write Java applications. Support for other languages may also be provided by
third-party developers.

The following sections call out key features in some of these environments.

40 Software Development Support
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

Objective-C

Objective-C is a C-based programming language with object-oriented extensions. It is also the primary
development language for Cocoa applications. Unlike C++ and some other object-oriented languages,
Objective-C comes with its own dynamic runtime environment. This runtime environment makes it much
easier to extend the behavior of code at runtime without having access to the original source.

In Mac OS X v10.5, an update to the Objective-C language (called Objective-C 2.0) was introduced, adding
support for the following features:

 ■ Object properties, which offer an alternative way to declare member variables

 ■ Support for garbage collection; see Garbage Collection Programming Guide

 ■ A new for operator syntax for performing fast enumerations of collections

 ■ Protocol enhancements

 ■ Deprecation syntax

In Mac OS X v10.6, support was added for blocks, which are described in “Blocks” (page 31).

For information about the Objective-C language, see The Objective-C Programming Language.

Java Support

The following sections outline the support provided by Mac OS X for creating Java-based programs.

Note: The developer documentation on the Apple website contains an entire section devoted to Java. There
you can find detailed information on the Java environment and accompanying technologies for operating
in Mac OS X. For an introduction to the Java environment and pointers to relevant documentation on Java
programming in Mac OS X, see Getting Started with Java.

The Java Environment

The libraries, JAR files, and executables for the Java application environment are located in the
/System/Library/Frameworks/JavaVM.framework directory. The Java application environment has
three major components:

 ■ A development environment, comprising the Java compiler (javac) and debugger (jdb) as well as other
tools, including javap, javadoc, and appletviewer. You can also build Java applications using Xcode.

 ■ A runtime environment consisting of Sun’s high-performance HotSpot Java virtual machine, the
“just-in-time” (JIT) bytecode compiler, and several basic packages, including java.lang, java.util,
java.io, and java.net.

 ■ An application framework containing the classes necessary for building a Java application. This framework
contains the Abstract Windowing Toolkit (java.awt) and Swing (javax.swing) packages, among
others. These packages provide user interface components, basic drawing capabilities, a layout manager,
and an event-handling mechanism.

Like Carbon and Cocoa applications, a Java application can be distributed as a double-clickable bundle. The
Jar Bundler tool takes your Java packages and produces a Mac OS X bundle. This tool is installed along with
Xcode and the rest of the Apple developer tools on the Xcode Tools CD.

Software Development Support 41
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

If you want to run your Java application from the command line, you can use the java command. To launch
a Java application from another program, use the system exec call or the Java Runtime.exec method. To
run applets, embed the applet into an HTML page and open the page in Safari.

Java and Other Application Environments

Java applications can take advantage of Mac OS X technologies such as Cocoa and QuickTime through Sun’s
Java Native Interface (JNI). For details on using the JNI on Mac OS X, see Technical Note 2147.

42 Software Development Support
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Darwin and Core Technologies

The graphics and multimedia capabilities of Mac OS X set it apart from other operating systems. Mac OS X
is built on a modern foundation that includes support for advanced compositing operations with support
for hardware-based rendering on supported graphics hardware. On top of this core are an array of technologies
that provide support for drawing 2D, 3D, and video-based content. The system also provides an advanced
audio system for the generation, playback, and manipulation of multichannel audio.

Drawing Technologies

Mac OS X includes numerous technologies for rendering 2D and 3D content and for animating that content
dynamically at runtime.

Quartz

Quartz is at the heart of the Mac OS X graphics and windowing environment. Quartz provides rendering
support for 2D content and combines a rich imaging model with on-the-fly rendering, compositing, and
anti-aliasing of content. It also implements the windowing system for Mac OS X and provides low-level
services such as event routing and cursor management.

Quartz comprises both a client API (Quartz 2D) and a window server (Quartz Compositor). The client API
provides commands for managing the graphics context and for drawing primitive shapes, images, text, and
other content. The window server manages the display and device driver environment and provides essential
services to clients, including basic window management, event routing, and cursor management behaviors.

The Quartz 2D client API is implemented as part of the Application Services umbrella framework
(ApplicationServices.framework), which is what you include in your projects when you want to use
Quartz. This umbrella framework includes the Core Graphics framework (CoreGraphics.framework), which
defines the Quartz 2D interfaces, types, and constants you use in your applications.

The Quartz Services API (which is also part of the Core Graphics framework) provides direct access to some
low-level features of the window server. You can use this API to get information about the currently connected
display hardware, capture a display for exclusive use, or adjust display attributes, such as its resolution, pixel
depth, and refresh rate. Quartz Services also provides some support for operating a Mac OS X system remotely.

For information about the Quartz 2D API, seeQuartz 2DProgrammingGuide. For information about the Quartz
Services API, see Quartz Display Services Programming Topics.

Drawing Technologies 43
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Digital Paper Metaphor

The Quartz imaging architecture is based on a digital paper metaphor. In this case, the digital paper is PDF,
which is also the internal model used by Quartz to store rendered content. Content stored in this medium
has a very high fidelity and can be reproduced on many different types of devices, including displays, printers,
and fax machines. This content can also be written to a PDF file and viewed by any number of applications
that display the PDF format.

The PDF model gives application developers much more control over the final appearance of their content.
PDF takes into account the application’s choice of color space, fonts, image compression, and resolution.
Vector artwork can be scaled and manipulated during rendering to implement unique effects, such as those
that occur when the system transitions between users with the fast user switching feature.

Mac OS X also takes advantage of the flexibility of PDF in implementing some system features. For example,
in addition to printing, the standard printing dialogs offer options to save a document as PDF, preview the
document before printing, or transmit the document using a fax machine. The PDF used for all of these
operations comes from the same source: the pages formatted for printing by the application’s rendering
code. The only difference is the device to which that content is sent.

Quartz 2D Features

Quartz 2D provides many important features to user applications, including the following:

 ■ High-quality rendering on the screen

 ■ Resolution independent UI support

 ■ Anti-aliasing for all graphics and text

 ■ Support for adding transparency information to windows

 ■ Internal compression of data

 ■ A consistent feature set for all printers

 ■ Automatic PDF generation and support for printing, faxing, and saving as PDF

 ■ Color management through ColorSync

Table 3-1 describes some of technical specifications for Quartz.

Table 3-1 Quartz technical specifications

A minimum bit depth of 16 bits for typical users. An 8-bit depth in full-screen
mode is available for Classic applications, games, and other multimedia
applications.

Bit depth

Supports 800 pixels by 600 pixels as the minimum screen resolution for typical
users. A resolution of 640 x 480 is available for the iBook as well as for Classic
applications, games, and other multimedia applications.

Minimum resolution

Quartz takes advantage of any available vector unit hardware to boost
performance.

Velocity Engine and SSE
support

Quartz Extreme uses OpenGL to draw the entire Mac OS X desktop. Graphics
calls render in supported video hardware, freeing up the CPU for other tasks.

Quartz Extreme

44 Drawing Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Quartz Compositor

Quartz Compositor, the window server for Mac OS X, coordinates all of the low-level windowing behavior
and enforces a fundamental uniformity in what appears on the screen. It manages the displays available on
the user’s system, interacting with the necessary device drivers. It also provides window management,
event-routing, and cursor management behaviors.

In addition to window management, Quartz Compositor handles the compositing of all visible content on
the user’s desktop. It supports transparency effects through the use of alpha channel information, which
makes it possible to display drop shadows, cutouts, and other effects that add a more realistic and dimensional
texture to the windows.

The performance of Quartz Compositor remains consistently high because of several factors. To improve
window redrawing performance, Quartz Compositor supports buffered windows and the layered compositing
of windows and window content. Thus, windows that are hidden behind opaque content are never composited.
Quartz Compositor also incorporates Quartz Extreme, which speeds up rendering calls by handing them off
to graphics hardware whenever possible.

Figure 3-1 shows the high-level relationships between Quartz Compositor and the rendering technologies
available on Mac OS X. QuickTime and OpenGL have fewer dependencies on Quartz Compositor because
they implement their own versions of certain windowing capabilities.

Figure 3-1 Quartz Compositor and the rendering APIs in Mac OS X

Graphics hardware

Quartz Extreme
(hardware acceleration)

Quartz Compositor
(window server)

QuickTime
(streaming, multimedia)

OpenGL
(3D)

Quartz 2D

Graphics rendering libraries

Cocoa Drawing

The Cocoa application environment provides object-oriented wrappers for many of the features found in
Quartz. Cocoa provides support for drawing primitive shapes such as lines, rectangles, ovals, arcs, and Bezier
paths. It supports drawing in both standard and custom color spaces and it supports content manipulations
using graphics transforms. Because it is built on top of Quartz, drawing calls made from Cocoa are composited
along with all other Quartz 2D content. You can even mix Quartz drawing calls (and drawing calls from other
system graphics technologies) with Cocoa calls in your code if you wish.

For more information on how to draw using Cocoa, see Cocoa Drawing Guide.

Drawing Technologies 45
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

OpenGL

OpenGL is an industry-wide standard for developing portable three-dimensional (3D) graphics applications.
It is specifically designed for games, animation, CAD/CAM, medical imaging, and other applications that need
a rich, robust framework for visualizing shapes in two and three dimensions. The OpenGL API is one of the
most widely adopted graphics API standards, which makes code written for OpenGL portable and consistent
across platforms. The OpenGL framework (OpenGL.framework) in Mac OS X includes a highly optimized
implementation of the OpenGL libraries that provides high-quality graphics at a consistently high level of
performance.

OpenGL offers a broad and powerful set of imaging functions, including texture mapping, hidden surface
removal, alpha blending (transparency), anti-aliasing, pixel operations, viewing and modeling transformations,
atmospheric effects (fog, smoke, and haze), and other special effects. Each OpenGL command directs a
drawing action or causes a special effect, and developers can create lists of these commands for repetitive
effects. Although OpenGL is largely independent of the windowing characteristics of each operating system,
the standard defines special glue routines to enable OpenGL to work in an operating system’s windowing
environment. The Mac OS X implementation of OpenGL implements these glue routines to enable operation
with the Quartz Compositor.

In Mac OS X v10.5 and later, OpenGL supports the ability to use multiple threads to process graphics data.
OpenGL also supports pixel buffer objects, color managed texture images in the sRGB color space, support
for 64-bit addressing, and improvements in the shader programming API. You can also attach an AGL context
to WindowRef and HIView objects and thereby avoid using QuickDraw ports.

For information about using OpenGL in Mac OS X, see OpenGL Programming Guide for Mac OS X.

Core Animation

Introduced in Mac OS X v10.5, Core Animation is a set of Objective-C classes for doing sophisticated 2D
rendering and animation. Using Core Animation, you can create everything from basic window content to
Front Row–style user interfaces, and achieve respectable animation performance, without having to tune
your code using OpenGL or other low-level drawing routines. This performance is achieved using server-side
content caching, which restricts the compositing operations performed by the server to only those parts of
a view or window whose contents actually changed.

At the heart of the Core Animation programming model are layer objects, which are similar in many ways
to Cocoa views. Like views, you can arrange layers in hierarchies, change their size and position, and tell them
to draw themselves. Unlike views, layers do not support event-handling, accessibility, or drag and drop. You
can also manipulate the layout of layers in more ways than traditional Cocoa views. In addition to positioning
layers using a layout manager, you can apply 3D transforms to layers to rotate, scale, skew, or translate them
in relation to their parent layer.

Layer content can be animated implicitly or explicitly depending on the actions you take. Modifying specific
properties of a layer, such as its geometry, visual attributes, or children, typically triggers an implicit animation
to transition from the old state to the new state of the property. For example, adding a child layer triggers
an animation that causes the child layer to fade gradually into view. You can also trigger animations explicitly
in a layer by modifying its transformation matrix.

You can manipulate layers independent of, or in conjunction with, the views and windows of your application.
Both Cocoa and Carbon applications can take advantage of the Core Animation’s integration with the NSView
class to add animation effects to windows. Layers can also support the following types of content:

46 Drawing Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

 ■ Quartz Composer compositions

 ■ OpenGL content

 ■ Core Image filter effects

 ■ Quartz and Cocoa drawing content

 ■ QuickTime playback and capture

The Core Animation features are part of the Quartz Core framework (QuartzCore.framework). For
information about Core Animation, see Animation Overview.

Core Image

Introduced in Mac OS X version 10.4, Core Image extends the basic graphics capabilities of the system to
provide a framework for implementing complex visual behaviors in your application. Core Image uses
GPU-based acceleration and 32-bit floating-point support to provide fast image processing and pixel-level
accurate content. The plug-in based architecture lets you expand the capabilities of Core Image through the
creation of image units, which implement the desired visual effects.

Core Image includes built-in image units that allow you to:

 ■ Crop images

 ■ Correct color, including perform white-point adjustments

 ■ Apply color effects, such as sepia tone

 ■ Blur or sharpen images

 ■ Composite images

 ■ Warp the geometry of an image by applying an affine transform or a displacement effect

 ■ Generate color, checkerboard patterns, Gaussian gradients, and other pattern images

 ■ Add transition effects to images or video

 ■ Provide real-time control, such as color adjustment and support for sports, vivid, and other video modes

 ■ Apply linear lighting effects, such as spotlight effects

You define custom image units using the classes of the Core Image framework. You can use both the built-in
and custom image units in your application to implement special effects and perform other types of image
manipulations. Image units take full advantage of hardware vector units, Quartz, OpenGL, and QuickTime to
optimize the processing of video and image data. Rasterization of the data is ultimately handled by OpenGL,
which takes advantage of graphics hardware acceleration whenever it is available.

Core Image is part of the Quartz Core framework (QuartzCore.framework). For information about how to
use Core Image or how to write custom image units, see Core Image Programming Guide and Core Image
Reference Collection. For information about the built-in filters in Core Image, see Core Image Filter Reference.

Drawing Technologies 47
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Image Kit

Introduced in Mac OS X v10.5, the Image Kit framework is an Objective-C framework that makes it easy to
incorporate powerful imaging services into your applications. This framework takes advantage of features
in Quartz, Core Image, OpenGL, and Core Animation to provide an advanced and highly optimized
development path for implementing the following features:

 ■ Displaying images

 ■ Rotating, cropping, and performing other image-editing operations

 ■ Browsing for images

 ■ Taking pictures using the built-in picture taker panel

 ■ Displaying slideshows

 ■ Browsing for Core Image filters

 ■ Displaying custom views for Core Image filters

The Image Kit framework is included as a subframework of the Quartz framework (Quartz.framework). For
more information on how to use Image Kit, see ImageKit ProgrammingGuide and ImageKit ReferenceCollection

QuickDraw

QuickDraw is a legacy technology adapted from earlier versions of the Mac OS that lets you construct,
manipulate, and display two-dimensional shapes, pictures, and text. Because it is a legacy technology,
QuickDraw should not be used for any active development. Instead, you should use Quartz.

If your code currently uses QuickDraw, you should begin converting it to Quartz 2D as soon as possible. The
QuickDraw API includes features to make transitioning your code easier. For example, QuickDraw includes
interfaces for getting a Quartz graphics context from a GrafPort structure. You can use these interfaces to
transition your QuickDraw code in stages without radically impacting the stability of your builds.

Important: QuickDraw is deprecated in Mac OS X v10.5 and later. QuickDraw is not available for 64-bit
applications.

Text and Fonts

Mac OS X provides extensive support for advanced typography for both Carbon and Cocoa programs. These
APIs let you control the fonts, layout, typesetting, text input, and text storage in your programs and are
described in the following sections.

48 Text and Fonts
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Cocoa Text

Cocoa provides advanced text-handling capabilities in the Application Kit framework. Based on Core Text,
the Cocoa text system provides a multilayered approach to implementing a full-featured text system using
Objective-C. This layered approach lets you customize portions of the system that are relevant to your needs
while using the default behavior for the rest of the system. You can use Cocoa Text to display small or large
amounts of text and can customize the default layout manager classes to support custom layout.

Although part of Cocoa, the Cocoa text system can also be used in Carbon-based applications. If your Carbon
application displays moderate amounts of read-only or editable text, you can use HIView wrappers for the
NSString, NSTextField, and NSTextView classes to implement that support. Using wrappers is much
easier than trying to implement the same behavior using lower-level APIs, such as Core Text, ATSUI, or MLTE.
For more information on using wrapper classes, see Carbon-Cocoa Integration Guide.

For an overview of the Cocoa text system, see Text System Overview.

Core Text

Introduced in Mac OS X v10.5, Core Text is a C-based API that provides you with precise control over text
layout and typography. Core Text provides a layered approach to laying out and displaying Unicode text.
You can modify as much or as little of the system as is required to suit your needs. Core Text also provides
optimized configurations for common scenarios, saving setup time in your application. Designed for
performance, Core Text is up to twice as fast as ATSUI (see “Apple Type Services for Unicode Imaging” (page
50)), the text-handling technology that it replaces.

The Core Text font API is complementary to the Core Text layout engine. Core Text font technology is designed
to handle Unicode fonts natively and comprehensively, unifying disparate Mac OS X font facilities so that
developers can do everything they need to do without resorting to other APIs.

Carbon and Cocoa developers who want a high-level text layout API should consider using the Cocoa text
system and the supporting Cocoa text views. Unless you need low-level access to the layout manager routines,
the Cocoa text system should provide most of the features and performance you need. If you need a lower-level
API for drawing any kind of text into a CGContext, then you should consider using the Core Text API.

For more information about Core Text, see Core Text Programming Guide and Core Text Reference Collection.

Apple Type Services

Apple Type Services (ATS) is an engine for the systemwide management, layout, and rendering of fonts. With
ATS, users can have a single set of fonts distributed over different parts of the file system or even over a
network. ATS makes the same set of fonts available to all clients. The centralization of font rendering and
layout contributes to overall system performance by consolidating expensive operations such as synthesizing
font data and rendering glyphs. ATS provides support for a wide variety of font formats, including TrueType,
PostScript Type 1, and PostScript OpenType. For more information about ATS, see Apple Type Services for
Fonts Programming Guide.

Text and Fonts 49
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Note: In Mac OS X v10.5 and later, you should consider using the Core Text font-handling API instead of this
technology. For more information, see “Core Text” (page 49).

Apple Type Services for Unicode Imaging

Apple Type Services for Unicode Imaging (ATSUI) is the technology behind all text drawing in Mac OS X.
ATSUI gives developers precise control over text layout features and supports high-end typography. It is
intended for developers of desktop publishing applications or any application that requires the precise
manipulation of text. For information about ATSUI, see ATSUI Programming Guide.

Note: In Mac OS X v10.5 and later, you should use the Core Text API instead of this technology. For more
information, see “Core Text” (page 49).

Multilingual Text Engine

The Multilingual Text Engine (MLTE) is an API that provides Carbon-compliant Unicode text editing. MLTE
replaces TextEdit and provides an enhanced set of features, including document-wide tabs, text justification,
built-in scroll bar handing, built-in printing support, inline input, multiple levels of undo, support for more
than 32 KB of text, and support for Apple Type Services. This API is designed for developers who want to
incorporate a full set of text editing features into their applications but do not want to worry about managing
the text layout or typesetting. For more information about MLTE, see HandlingUnicode Text EditingWithMLTE.

In Mac OS X v10.5 and later, the QuickDraw-related features of MLTE are deprecated. The features that use
HITextView are still supported, however.

Note: In Mac OS X v10.5 and later, you should use the Core Text API instead of this technology. For more
information, see “Core Text” (page 49).

Audio Technologies

Mac OS X includes support for high-quality audio creation and reproduction.

Core Audio

The Core Audio frameworks of Mac OS X offer a sophisticated set of services for manipulating multichannel
audio. You can use Core Audio to generate, record, mix, edit, process, and play audio. You can also use Core
Audio to generate, record, process, and play MIDI data using both hardware and software MIDI instruments.

For the most part, the interfaces of the Core Audio frameworks are C-based, although some of the
Cocoa-related interfaces are implemented in Objective-C. The use of C-based interfaces results in a low-latency,
flexible programming environment that you can use from both Carbon and Cocoa applications. Some of the
benefits of Core Audio include the following:

50 Audio Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

 ■ Built-in support for reading and writing a wide variety of audio file and data formats

 ■ Plug-in interfaces for handling custom file and data formats

 ■ Plug-in interfaces for performing audio synthesis and audio digital signal processing (DSP)

 ■ A modular approach for constructing audio signal chains

 ■ Scalable multichannel input and output

 ■ Easy synchronization of audio MIDI data during recording or playback

 ■ Support for playing and recording digital audio, including support for scheduled playback and
synchronization and for getting timing and control information

 ■ A standardized interface to all built-in and external hardware devices, regardless of connection type
(USB, Firewire, PCI, and so on)

For an overview of Core Audio and its features, see Core Audio Overview. For reference information, see Core
Audio Framework Reference.

OpenAL

Introduced in Mac OS X v10.4, the Open Audio Library (OpenAL) audio system adds another way to create
audio for your software. The OpenAL interface is a cross-platform standard for delivering 3D audio in
applications. It lets you implement high-performance positional audio in games and other programs that
require high-quality audio output. Because it is a cross-platform standard, the applications you write using
OpenAL on Mac OS X can be ported to run on many other platforms.

In Mac OS X v10.5, several features were incorporated into the existing OpenAL framework. Among these
features are support for audio capture, exponential and linear distance models, location offsets, and spatial
effects such as reverb and occlusion. In addition, more control is provided for some Core Audio features such
as mixer sample rates.

Apple’s implementation of OpenAL is based on Core Audio, so it delivers high-quality sound and performance
on all Mac OS X systems. To use OpenAL in a Mac OS X application, include the OpenAL framework
(OpenAL.framework) in your Xcode project. This framework includes header files whose contents conform
to the OpenAL specification, which is described at http://www.openal.org.

For more information on the Mac OS X implementation of OpenAL, go to http://developer.apple.com/au-
dio/openal.html.

Video Technologies

The video technologies in Mac OS X allow you to work with movies and other time-based content, including
audio.

Video Technologies 51
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

http://www.openal.org
http://developer.apple.com/audio/openal.html
http://developer.apple.com/audio/openal.html

QuickTime Kit

Introduced in Mac OS X version 10.4, the QuickTime Kit (QTKit.framework), is an Objective-C framework
for manipulating QuickTime-based media. This framework lets you incorporate movie playback, movie editing,
export to standard media formats, and other QuickTime behaviors easily into your applications. The classes
in this framework open up a tremendous amount of QuickTime behavior to both Carbon and Cocoa developers.
Instead of learning how to use the more than 2500 functions in QuickTime, you can now use a handful of
classes to implement the features you need.

In Mac OS X v10.5, support was added for capturing professional-quality audio and video content from one
or more external sources, including cameras, microphones, USB and Firewire devices, DV media devices,
QuickTime streams, data files, and the screen. The input and output classes included with the framework
provide all of the components necessary to implement the most common use case for a media capture
system: recording from a camera to a QuickTime file. Video capture includes frame accurate audio/video
synchronization, plus you can preview captured content and save it to a file or stream.

Note: The QuickTime Kit framework supersedes the NSMovie and NSMovieView classes available in Cocoa.
If your code uses these older classes, you should change your code to use the QuickTime Kit instead.

In Mac OS X v10.6, the QT Kit framework takes advantage of the new QuickTime X media services to allow
applications to open movies asynchronously on supported media types. The framework also uses these media
services to manage most of the interactions with media files.

For information on how to use the QuickTime Kit, see QuickTime Kit Programming Guide and QTKit Capture
ProgrammingGuide. For reference information about the QuickTime Kit classes, seeQTKit Framework Reference.

Core Video

Introduced in Mac OS X version 10.4, Core Video provides a modern foundation for delivering video in your
applications. It creates a bridge between QuickTime and the graphics card’s GPU to deliver
hardware-accelerated video processing. By offloading complex processing to the GPU, you can significantly
increase performance and reduce the CPU load of your applications. Core Video also allows developers to
apply all the benefits of Core Image to video, including filters and effects, per-pixel accuracy, and hardware
scalability.

In Mac OS X v10.4, Core Video is part of the Quartz Core framework (QuartzCore.framework). In Mac OS
X v10.5 and later, the interfaces are duplicated in the Core Video framework (CoreVideo.framework).

For information about using the Core Video framework, see Core Video Programming Guide.

DVD Playback

Mac OS X version 10.3 and later includes the DVD Playback framework for embedding DVD viewer capabilities
into an application. In addition to playing DVDs, you can use the framework to control various aspects of
playback, including menu navigation, viewer location, angle selection, and audio track selection. You can
play back DVD data from disc or from a local VIDEO_TS directory.

For more information about using the DVD Playback framework, seeDVD Playback Services Programming
Guide.

52 Video Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

QuickTime

QuickTime is a multimedia technology for manipulating, enhancing, and storing video, sound, animation,
graphics, text, music, and even 360-degree virtual reality content. It allows you to stream digital video, where
the data stream can be either live or stored. QuickTime is a cross-platform technology, supporting Mac OS
X, Mac OS 9, Windows 98, Windows Me, Windows 2000, Windows XP, and Windows Vista. Using QuickTime,
developers can perform actions such as the following:

 ■ Open and play movie files

 ■ Open and play audio files

 ■ Display still images

 ■ Translate still images from one format to another

 ■ Compress audio, video, and still images

 ■ Synchronize multiple media to a common timeline

 ■ Capture audio and video from an external device

 ■ Stream audio and video over a LAN or the Internet

 ■ Create and display virtual reality objects and panoramas

For a long time, QuickTime has included programming interfaces for the C and C++ languages. Beginning
with Mac OS X v10.4, the QuickTime Kit provides an Objective-C based set of classes for managing QuickTime
content. For more information about QuickTime Kit, see “QuickTime Kit” (page 52).

Note: In Mac OS X v10.5 and later, you must use the QuickTime Kit framework to create 64-bit applications.
The QuickTime C-based APIs are not supported in 64-bit applications.

Supported Media Formats

QuickTime supports more than a hundred media types, covering a range of audio, video, image, and streaming
formats. Table 3-2 lists some of the more common file formats it supports. For a complete list of supported
formats, see the QuickTime product specification page at http://www.apple.com/quicktime/pro/specs.html.

Table 3-2 Partial list of formats supported by QuickTime

PICT, BMP, GIF, JPEG, TIFF, PNGImage formats

AAC, AIFF, MP3, WAVE, uLawAudio formats

AVI, AVR, DV, M-JPEG, MPEG-1, MPEG-2, MPEG-4, AAC, OpenDML, 3GPP, 3GPP2,
AMC, H.264

Video formats

HTTP, RTP, RTSPWeb streaming formats

Video Technologies 53
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

http://www.apple.com/quicktime/pro/specs.html

Extending QuickTime

The QuickTime architecture is very modular. QuickTime includes media handler components for different
audio and video formats. Components also exist to support text display, Flash media, and codecs for different
media types. However, most applications do not need to know about specific components. When an application
tries to open and play a specific media file, QuickTime automatically loads and unloads the needed
components. Of course, applications can specify components explicitly for many operations.

You can extend QuickTime by writing your own component. You might write your own QuickTime component
to support a new media type or to implement a new codec. You might also write components to support a
custom video capture card. By implementing your code as a QuickTime component that you enable, other
applications take advantage of your code and use it to support your hardware or media file formats. See
“QuickTime Components” (page 83) for more information.

Color Management

ColorSync is the color management system for Mac OS X. It provides essential services for fast, consistent,
and accurate color calibration, proofing, and reproduction as well as an interface for accessing and managing
systemwide color management settings. It also supports color calibration with hardware devices such as
printers, scanners, and displays.

Beginning with Mac OS X version 10.3, the system provides improved support for ColorSync. In most cases,
you do not need to call ColorSync functions at all. Quartz and Cocoa automatically use ColorSync to manage
pixel data when drawing on the screen. They also respect ICC (International Color Consortium) profiles and
apply the system’s monitor profile as the source color space. However, you might need to use ColorSync
directly if you define a custom color management module (CMM), which is a component that implements
color-matching, color-conversion, and gamut-checking services.

In Mac OS X 10.6 and later, the default system gamma value switched from 1.8 (a useful value for print
professionals) to 2.2, which is used more prevalently in television, video, and the web. Images that are already
tagged with gamma information will look the same as they did in previous versions of Mac OS X. To prevent
the unwanted darkening of untagged user interface elements such as icons, Mac OS X v10.6 automatically
adjusts those images to account for the change in gamma. Thus, applications that use system UI elements
such as Cocoa controls will see little or no change. However, you still need to adjust your application’s custom
artwork to account for the gamma change.

For information about the ColorSync API, see ColorSyncManager Reference. For additional information about
the gamma changes in Mac OS X v10.6, see Mac OS X v10.6 in What's New In Mac OS X.

Printing

Printing support in Mac OS X is implemented through a collection of APIs and system services available to
all application environments. Drawing on the capabilities of Quartz, the printing system delivers a consistent
human interface and makes shorter development cycles possible for printer vendors. It also provides
applications with a high degree of control over the user interface elements in printing dialogs. Table 3-3
describes some other features of the Mac OS X printing system.

54 Color Management
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

Table 3-3 Features of the Mac OS X printing system

DescriptionFeature

The Common Unix Printing System (CUPS) provides the underlying support for printing.
It is an open-source architecture used commonly by the UNIX community to handle
print spooling and other low-level features.

CUPS

In Mac OS X v10.3 and later, the system supports desktop printers, which offer users
a way to manage printing from the Dock or desktop. Users can print natively supported
files (like PostScript and PDF) by dragging them to a desktop printer. Users can also
manage print jobs.

Desktop printers

In Mac OS X v10.3 and later, users can fax documents directly from the Print dialog.Fax support

In Mac OS X v10.3 and later, the system includes drivers for many older printers through
the print facility of the GNU Image Manipulation Program (GIMP).

GIMP-Print drivers

Supports PDF as a native data type. Any application (except for Classic applications)
can easily save textual and graphical data to device-independent PDF where
appropriate. The printing system provides this capability from a standard printing
dialog.

Native PDF

Mac OS X prints to PostScript Level 2–compatible and Level 3–compatible printers. In
Mac OS X v10.3 and later, support is also provided to convert PostScript files directly
to PDF.

PostScript support

Provides a print preview capability in all environments, except in Classic. The printing
system implements this feature by launching a PDF viewer application. This preview
is color-managed by ColorSync.

Print preview

Printers implementing Bluetooth or Bonjour can be detected, configured, and added
to printer lists automatically.

Printer discovery

Supports printing to raster printers in all environments, except in the Classic
environment.

Raster printers

In Mac OS X v10.3 and later, applications that use PDF can submit PDF files directly to
the printing system instead of spooling individual pages. This simplifies printing for
applications that already store data as PDF.

Speedy spooling

For an overview of the printing architecture and how to support it, see Mac OS X Printing System Overview.

Accelerating Your Multimedia Operations

Mac OS X takes advantage of hardware wherever it can to improve performance wherever it can. In the case
of repetitive tasks operating on large data sets, Mac OS X uses the vector-oriented extensions provided by
the processor. (Mac OS X currently supports the PowerPC AltiVec extensions and the Intel x86 SSE extensions.)
Hardware-based vector units boost the performance of any application that exploits data parallelism, such

Accelerating Your Multimedia Operations 55
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

as those that perform 3D graphic imaging, image processing, video processing, audio compression, and
software-based cell telephony. Quartz and QuickTime incorporate vector capabilities, thus any application
using these APIs can tap into this hardware acceleration without making any changes.

In Mac OS X v10.3 and later, you can use the Accelerate framework (Accelerate.framework) to accelerate
complex operations using the available vector unit. This framework supports both the PowerPC AltiVec and
Intel x86 SSE extensions internally but provides a single interface for you to use in your application. The
advantage of using this framework is that you can simply write your code once without having to code
different execution paths for each hardware platform. The functions of this framework are highly tuned for
the specific platforms supported by Mac OS X and in many cases can offer better performance than hand-rolled
code.

The Accelerate framework is an umbrella framework that wraps the vecLib and vImage frameworks into a
single package. The vecLib framework contains vector-optimized routines for doing digital signal processing,
linear algebra, and other computationally expensive mathematical operations. (The vecLib framework is also
a top-level framework for applications running on versions of Mac OS X up to and including version 10.5.)
The vImage framework supports the visual realm, adding routines for morphing, alpha-channel processing,
and other image-buffer manipulations.

For information on how to use the components of the Accelerate framework, see vImage ProgrammingGuide,
vImage Reference Collection, and vecLib Reference. For general performance-related information, see Reference
Library > Performance.

56 Accelerating Your Multimedia Operations
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Graphics and Multimedia Technologies

This chapter summarizes the application-level technologies that are most relevant to developers—that is,
that have programmatic interfaces or have an impact on how you write software. It does not describe user-level
technologies, such as Exposé, unless there is some aspect of the technology that allows developer involvement.

Application Environments

Applications are by far the predominant type of software created for Mac OS X, or for any platform. Mac OS
X provides numerous environments for developing applications, each of which is suited for specific types of
development. The following sections describe each of the primary application environments and offer
guidelines to help you choose an environment that is appropriate for your product requirements.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for their Carbon, Cocoa, and BSD applications. Java and WebObjects may also need to create universal binaries
for bridged code. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Cocoa

Cocoa is an object-oriented environment designed for rapid application development. It features a
sophisticated framework of objects for implementing your application and takes full advantage of graphical
tools such as Interface Builder to enable you to create full-featured applications quickly and without a lot of
code. The Cocoa environment is especially suited for:

 ■ New developers

 ■ Developers who prefer working with object-oriented systems

 ■ Developers who need to prototype an application quickly

 ■ Developers who prefer to leverage the default behavior provided by the Cocoa frameworks so they can
focus on the features unique to their application

 ■ Objective-C or Objective-C++ developers

 ■ Python and Ruby developers who want to take advantage of Cocoa features; see Ruby and Python
Programming Topics for Mac OS X

The objects in the Cocoa framework handle much of the behavior required of a well-behaved Mac OS X
application, including menu management, window management, document management, Open and Save
dialogs, and pasteboard (clipboard) behavior. Cocoa’s support for Interface Builder means that you can create
most of your user interface (including much of its behavior) graphically rather than programatically. With
the addition of Cocoa bindings and Core Data, you can also implement most of the rest of your application
graphically as well.

Application Environments 57
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

The Cocoa application environment consists of two object-oriented frameworks: Foundation
(Foundation.framework) and the Application Kit (AppKit.framework). The classes in the Foundation
framework implement data management, file access, process notification, memory management, network
communication, and other low-level features. The classes in the Application Kit framework implement the
user interface layer of an application, including windows, dialogs, controls, menus, and event handling. If
you are writing an application, link with the Cocoa framework (Cocoa.framework), which imports both the
Foundation and Application Kit frameworks. If you are writing a Cocoa program that does not have a graphical
user interface (a background server, for example), you can link your program solely with the Foundation
framework.

Apple’s developer documentation contains a section devoted to Cocoa where you can find conceptual
material, reference documentation, and tutorials showing how to write Cocoa applications. If you are a new
Cocoa developer, be sure to read Cocoa Fundamentals Guide, which provides an in-depth overview of the
development process for Cocoa applications. For information about the development tools, including Interface
Builder, see “Mac OS X Developer Tools” (page 127).

Carbon

Based on the original Mac OS 9 interfaces, the Carbon application environment is a set of C APIs used to
create full-featured applications for all types of users. The Carbon environment includes support for all of
the standard Aqua user interface elements such as windows, controls, and menus. It also provides an extensive
infrastructure for handling events, managing data, and using system resources.

The Carbon environment is especially suited for:

 ■ Mac OS 9 developers porting their applications to Mac OS X

 ■ Developers who prefer to work solely in C or C++

 ■ Developers who are porting commercial applications from other procedural-based systems and want
to use as much of their original code as possible

Because the Carbon interfaces are written in C, some developers may find them more familiar than the
interfaces in the Cocoa or Java environments. Some C++ developers may also prefer the Carbon environment
for development, although C++ code can be integrated seamlessly into Cocoa applications as well.

The Carbon APIs offer you complete control over the features in your application; however, that control
comes at the cost of added complexity. Whereas Cocoa provides many features for you automatically, with
Carbon you must write the code to support those features yourself. For example, Cocoa applications
automatically implement support for default event handlers, the pasteboard, and Apple events, but Carbon
developers must add support for these features themselves.

In Mac OS X v10.5 and later, Carbon includes support for integrating Cocoa views into your Carbon applications.
After creating the Cocoa view, you can wrap it in an HIView object and embed that object in your window.
Once embedded, you use the standard HIView functions to manipulate the view. Wrapped Cocoa views can
be used in both composited and noncomposited windows to support views and controls that are available
in Cocoa but are not yet available in Carbon. For more information, see Carbon-Cocoa Integration Guide and
HIView Reference.

The Carbon application environment comprises several key umbrella frameworks, including the Carbon
framework (Carbon.framework), the Core Services framework (CoreServices.framework), and the
Application Services framework (ApplicationServices.framework). The Carbon environment also uses
the Core Foundation framework (CoreFoundation.framework) extensively in its implementation.

58 Application Environments
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

Apple’s developer documentation contains a section devoted to Carbon, where you can find conceptual
material, reference documentation, and tutorials showing how to write applications using Carbon. SeeGetting
Started with Carbon in Carbon Documentation for an overview of the available Carbon documentation.

If you are migrating a Mac OS 9 application to Mac OS X, read Carbon Porting Guide. If you are migrating from
Windows, see Porting to Mac OS X fromWindows Win32 API. If you are migrating from UNIX, see Porting
UNIX/Linux Applications to Mac OS X.

Java

The Java application environment is a runtime environment and set of objects for creating applications that
run on multiple platforms. The Java environment is especially suited for:

 ■ Experienced Java Platform, Standard Edition/Java SE developers

 ■ Developers writing applications to run on multiple platforms

 ■ Developers writing Java applets for inclusion in web-based content

 ■ Developers familiar with the Swing or AWT toolkits for creating graphical interfaces

The Java application environment lets you develop and execute 100% pure Java applications and applets.
This environment conforms to the specifications laid out by the J2SE platform, including those for the Java
virtual machine (JVM), making applications created with this environment very portable. You can run them
on computers with a different operating system and hardware as long as that system is running a compatible
version of the JVM. Java applets should run in any Internet browser that supports them.

Note: Any Mach-O binaries that interact with the JVM must be universal binaries. This includes JNI libraries
as well as traditional applications that invoke the JVM. For more information, seeUniversal Binary Programming
Guidelines, Second Edition.

For details on the tools and support provided for Java developers, see “Java Support” (page 41).

WebObjects

The WebObjects application environment is a set of tools and object-oriented frameworks targeted at
developers creating web services and web-based applications. The WebObjects environment provides a set
of flexible tools for creating full-featured web applications. Common uses for this environment include the
following:

 ■ Creating a web-based interface for dynamic content, including programmatically generated content or
content from a database

 ■ Creating web services based on SOAP, XML, and WSDL

WebObjects is a separate product sold by Apple. If you are thinking about creating a web storefront or other
web-based services, see the information available at http://developer.apple.com/tools/webobjects.

Application Environments 59
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

http://developer.apple.com/tools/webobjects/

Note: If your WebObjects application includes bridged code in a Mach-O binary, you need to create a universal
binary for the Mach-O binary code. For more information, seeUniversal Binary ProgrammingGuidelines, Second
Edition.

BSD and X11

The BSD application environment is a set of low-level interfaces for creating shell scripts, command-line tools,
and daemons. The BSD environment is especially suited for:

 ■ UNIX developers familiar with the FreeBSD and POSIX interfaces

 ■ Developers who want to create text-based scripts and tools, rather than tools that have a graphical user
interface

 ■ Developers who want to provide fundamental system services through the use of daemons or other
root processes

The BSD environment is for developers who need to work below the user interface layers provided by Carbon,
Cocoa, and WebObjects. Developers can also use this environment to write command-line tools or scripts
to perform specific user-level tasks.

X11 extends the BSD environment by adding a set of programming interfaces for creating graphical
applications that can run on a variety of UNIX implementations. The X11 environment is especially suited for
developers who want to create graphical applications that are also portable across different varieties of UNIX.

The BSD environment is part of the Darwin layer of Mac OS X. For information about Darwin, see Reference
Library > Darwin. For more information about X11 development, see http://developer.apple.com/dar-
win/projects/X11. See also “Information on BSD” (page 15) for links to additional BSD resources.

Application Technologies

Mac OS X includes several technologies that make developing applications easier. These technologies range
from utilities for managing your internal data structures to high-level frameworks for burning CDs and DVDs.
This section summarizes the application-level technologies that are relevant to developers—that is, that have
programmatic interfaces or have an impact on how you write software. It does not describe user-level
technologies, such as Exposé, unless there is some aspect of the technology that allows developer involvement.

If you are new to developing Mac OS X software, you should read through this chapter at least once to
understand the available technologies and how you might use them in your software. Even experienced
developers should revisit this chapter periodically to remind themselves of the available technologies.

Address Book Framework

Introduced in Mac OS X v10.2, Address Book is technology that encompasses a centralized database for
contact and group information, an application for viewing that information, and a programmatic interface
for accessing that information in your own programs. The database contains information such as user names,
street addresses, email addresses, phone numbers, and distribution lists. Applications that support this type
of information can use this data as is or extend it to include application-specific information.

60 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

http://developer.apple.com/darwin/projects/X11
http://developer.apple.com/darwin/projects/X11

The Address Book framework (AddressBook.framework) provides your application with a way to access
user records and create new ones. Applications that support this framework gain the ability to share user
records with other applications, such as the Address Book application and the Apple Mail program. The
framework also supports the concept of a “Me” record, which contains information about the currently
logged-in user. You can use this record to provide information about the current user automatically; for
example, a web browser might use it to populate a web form with the user’s address and phone number.

For more information about this technology, see Address Book Programming Guide for Mac OS X and either
Address Book Objective-C Framework Reference for Mac OS X or Address Book C Framework Reference for Mac
OS X.

Automator Framework

Introduced in Mac OS X v10.5, the Automator framework (Automator.framework) adds support for running
workflows from your applications. Workflows are products of the Automator application; they string together
the actions defined by various applications to perform complex tasks automatically. Unlike AppleScript, which
uses a scripting language to implement the same behavior, workflows are constructed visually, requiring no
coding or scripting skills to create.

For information about incorporating workflows into your own applications, seeAutomator FrameworkReference.

Bonjour

Introduced in Mac OS X version 10.2, Bonjour is Apple’s implementation of the zero-configuration networking
architecture, a powerful system for publishing and discovering services over an IP network. It is relevant to
both software and hardware developers.

Incorporating Bonjour support into your software offers a significant improvement to the overall user
experience. Rather than prompt the user for the exact name and address of a network device, you can use
Bonjour to obtain a list of available devices and let the user choose from that list. For example, you could
use it to look for available printing services, which would include any printers or software-based print services,
such as a service to create PDF files from print jobs.

Developers of network-based hardware devices are strongly encouraged to support Bonjour. Bonjour alleviates
the need for complicated setup instructions for network-based devices such as printers, scanners, RAID
servers, and wireless routers. When plugged in, these devices automatically publish the services they offer
to clients on the network.

For information on how to incorporate Bonjour services into a Cocoa application, see Bonjour Overview.
Bonjour for non-Cocoa applications is described in DNS Service Discovery Programming Guide.

Calendar Store Framework

Introduced in Mac OS X v10.5, the Calendar Store framework (CalendarStore.framework) lets you access
iCal data from an Objective-C based application. You can use this framework to fetch user calendars, events,
and tasks from the iCal data storage, receive notifications when those objects change, and make changes to
the user’s calendar.

Application Technologies 61
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

For information about using the Calendar Store framework, see [Calendar Store Programming Guide] and
Calendar Store Programming Guide.

Core Data Framework

Introduced in Mac OS X version 10.4, the Core Data framework (CoreData.framework) manages the data
model of a Cocoa-based Model-View-Controller application. Core Data is intended for use in applications
where the data model is already highly structured. Instead of defining data structures programmatically, you
use the graphical tools in Xcode to build a schema representing your data model. At runtime, instances of
your data-model entities are created, managed, and made available through the Core Data framework with
little or no coding on your part.

By managing your application’s data model for you, Core Data significantly reduces the amount of code you
have to write for your application. Core Data also provides the following features:

 ■ Storage of object data in mediums ranging from an XML file to a SQLite database

 ■ Management of undo/redo beyond basic text editing

 ■ Support for validation of property values

 ■ Support for propagating changes and ensuring that the relationships between objects remain consistent

 ■ Grouping, filtering, and organizing data in memory and transferring those changes to the user interface
through Cocoa bindings

If you are starting to develop a new application, or are planning a significant update to an existing application,
you should consider using Core Data. For more information about Core Data, including how to use it in your
applications, see Core Data Programming Guide.

Disc Recording Framework

Introduced in Mac OS X version 10.2, the Disc Recording framework (DiscRecording.framework) gives
applications the ability to burn and erase CDs and DVDs. This framework was built to satisfy the simple needs
of a general application, making it easy to add basic audio and data burning capabilities. At the same time,
the framework is flexible enough to support professional CD and DVD mastering applications.

The Disc Recording framework minimizes the amount of work your application must perform to burn optical
media. Your application is responsible for specifying the content to be burned but the framework takes over
the process of buffering the data, generating the proper file format information, and communicating everything
to the burner. In addition, the Disc Recording UI framework (DiscRecordingUI.framework) provides a
complete, standard set of windows for gathering information from the user and displaying the progress of
the burn operation.

The Disc Recording framework supports applications built using Carbon and Cocoa. The Disc Recording UI
framework currently provides user interface elements for Cocoa applications only.

For more information, see Disc Recording Framework Reference and Disc Recording UI Framework Reference.

62 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

Help Support

Although some applications are extremely simple to use, most require some documentation. Help tags (also
called tooltips) and documentation are the best ways to provide users with immediate answers to questions.
Help tags provide descriptive information about your user interface quickly and unobtrusively. Documentation
provides more detailed solutions to problems, including conceptual material and task-based examples. Both
of these elements help the user understand your user interface better and should be a part of every application.

In Mac OS X v10.5 and later, the Spotlight for Help feature makes it easier for users to locate items in complex
menu bars. For applications with a Help menu, Mac OS X automatically inserts a special search field menu
item at the top of the menu. When the user enters a string in this search field, the system searches the
application menus for commands containing the specified string. Moving the mouse over a search result
reveals the location of that item in the menus. Developers do not need to add any code to their applications
to support this feature.

For information on adding help to a Cocoa application, see Online Help. For information on adding help to
a Carbon application, see Apple Help Programming Guide.

Human Interface Toolbox

Introduced in Mac OS X version 10.2, the Human Interface Toolbox (HIToolbox) provides a modern set of
interfaces for creating and managing windows, controls, and menus in Carbon applications. The HIObject
model builds on Core Foundation data types to bring a modern, object-oriented approach to the HIToolbox.
Although the model is object-oriented, access to the objects is handled by a set of C interfaces. Using the
HIToolbox interfaces is recommended for the development of new Carbon applications. Some benefits of
this technology include the following:

 ■ Drawing is handled natively using Quartz.

 ■ A simplified, modern coordinate system is used that is not bounded by the 16-bit space of QuickDraw.

 ■ Support for arbitrary views is provided.

 ■ Layering of views is handled automatically.

 ■ Views can be attached and detached from windows.

 ■ Views can be hidden temporarily.

 ■ You can use Interface Builder to create your interfaces.

Note: The HIToolbox interfaces are available for creating 32-bit applications only. If you are creating 64-bit
applications, you should use Cocoa for your user interface instead.

For reference material and an overview of HIObject and other HIToolbox objects, see the documents in
Reference Library > Carbon > Human Interface Toolbox.

Application Technologies 63
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

Identity Services

Introduced in Mac OS X v10.5, Identity Services encompasses features located in the Collaboration and Core
Services frameworks. Identity Services provides a way to manage groups of users on a local system. In addition
to standard login accounts, administrative users can now create sharing accounts, which use access control
lists to restrict access to designated system or application resources. Sharing accounts do not have an
associated home directory on the system and have much more limited privileges than traditional login
accounts.

The Collaboration framework (Collaboration.framework) provides a set of Objective-C classes for
displaying sharing account information and other identity-related user interfaces. The classes themselves
are wrappers for the C-based identity management routines found in the Core Services framework. Applications
can use either the Objective-C or C-based APIs to display information about users and groups and display a
panel for selecting users and groups during the editing of access control lists.

For more information about the features of Identity Services and how you use those features in your
applications, see Identity Services Programming Guide and Identity Services Reference Collection.

Instant Message Framework

Introduced in Mac OS X version 10.4, the Instant Message framework (InstantMessage.framework)
supports the detection and display of a user’s online presence in applications other than iChat. You can find
out the current status of a user connected to an instant messaging service, obtain the user’s custom icon
and status message, or obtain a URL to a custom image that indicates the user’s status. You can use this
information to display the user’s status in your own application. For example, Mail identifies users who are
currently online by tagging that user’s email address with a special icon.

In Mac OS X v10.5, you can use the Instant Message framework to support iChat Theater. This feature gives
your application the ability to inject audio or video content into a running iChat conference. The content
you provide is then mixed with the user’s live microphone and encoded automatically into the H.264 video
format for distribution to conference attendees.

For more information about using the Instant Message framework, see Instant Message Programming Guide.

Image Capture Services

The Image Capture Services framework (part of Carbon.framework) is a high-level framework for capturing
image data from scanners and digital cameras. The interfaces of the framework are device-independent, so
you can use it to gather data from any devices connected to the system. You can get a list of devices, retrieve
information about a specific device or image, and retrieve the image data itself.

This framework works in conjunction with the Image Capture Devices framework (ICADevices.framework)
to communicate with imaging hardware. For information on how to use the Image Capture Services framework,
see Image Capture Applications Programming Guide.

64 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

Ink Services

The Ink feature of Mac OS X provides handwriting recognition for applications that support the Carbon and
Cocoa text systems (although the automatic support provided by these text systems is limited to basic
recognition). The Ink framework offers several features that you can incorporate into your applications,
including the following:

 ■ Enable or disable handwriting recognition programmatically.

 ■ Access Ink data directly.

 ■ Support either deferred recognition or recognition on demand.

 ■ Support the direct manipulation of text by means of gestures.

The Ink framework is not limited to developers of end-user applications. Hardware developers can also use
it to implement a handwriting recognition solution for a new input device. You might also use the Ink
framework to implement your own correction model to provide users with a list of alternate interpretations
for handwriting data.

Ink is included as a subframework of Carbon.framework. For more information on using Ink in Carbon and
Cocoa applications, see Using Ink Services in Your Application.

Input Method Kit Framework

Introduced in Mac OS X v10.5, the Input Method Kit (InputMethodKit.framework) is an Objective-C
framework for building input methods for Chinese, Japanese, and other languages. The Input Method Kit
framework lets developers focus exclusively on the development of their input method product's core
behavior: the text conversion engine. The framework handles tasks such as connecting to clients, running
candidate windows, and several other common tasks that developers would normally have to implement
themselves.

For information about its classes, see Input Method Kit Framework Reference.

Keychain Services

Keychain Services provides a secure way to store passwords, keys, certificates, and other sensitive information
associated with a user. Users often have to manage multiple user IDs and passwords to access various login
accounts, servers, secure websites, instant messaging services, and so on. A keychain is an encrypted container
that holds passwords for multiple applications and secure services. Access to the keychain is provided through
a single master password. Once the keychain is unlocked, Keychain Services–aware applications can access
authorized information without bothering the user.

Users with multiple accounts tend to manage those accounts in the following ways:

 ■ They create a simple, easily remembered password.

 ■ They repeatedly use the same password.

 ■ They write the password down where it can easily be found.

Application Technologies 65
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

If your application handles passwords or sensitive information, you should add support for Keychain Services
into your application. For more information on this technology, see Keychain Services Programming Guide.

Latent Semantic Mapping Services

Introduced in Mac OS X v10.5, the Latent Semantic Mapping framework
(LatentSemanticMapping.framework) contains a Unicode-based API that supports the classification of
text and other token-based content into developer-defined categories, based on semantic information latent
in the text. Using this API and text samples with known characteristics, you create and train maps, which you
can use to analyze and classify arbitrary text. You might use such a map to determine, for example, if an
email message is consistent with the user’s interests.

For information about the Latent Semantic Mapping framework, see Latent Semantic Mapping Reference.

Launch Services

Launch Services provides a programmatic way for you to open applications, documents, URLs, or files with
a given MIME type in a way similar to the Finder or the Dock. It makes it easy to open documents in the user’s
preferred application or open URLs in the user’s favorite web browser. The Launch Services framework also
provides interfaces for programmatically registering the document types your application supports.

For information on how to use Launch Services, see Launch Services Programming Guide.

Open Directory

Open Directory is a directory services architecture that provides a centralized way to retrieve information
stored in local or network databases. Directory services typically provide access to collected information
about users, groups, computers, printers, and other information that exists in a networked environment
(although they can also store information about the local system). You use Open Directory in your programs
to retrieve information from these local or network databases. For example, if you’re writing an email program,
you can use Open Directory to connect to a corporate LDAP server and retrieve the list of individual and
group email addresses for the company.

Open Directory uses a plug-in architecture to support a variety of retrieval protocols. Mac OS X provides
plug-ins to support LDAPv2, LDAPv3, NetInfo, AppleTalk, SLP, SMB, DNS, Microsoft Active Directory, and
Bonjour protocols, among others. You can also write your own plug-ins to support additional protocols.

For more information on this technology, see Open Directory Programming Guide. For information on how to
write Open Directory plug-ins, see Open Directory Plug-in Programming Guide.

PDF Kit Framework

Introduced in Mac OS X version 10.4, PDF Kit is a Cocoa framework for managing and displaying PDF content
directly from your application’s windows and dialogs. Using the classes of the PDF Kit, you can embed a
PDFView in your window and give it a PDF file to display. The PDFView class handles the rendering of the
PDF content, handles copy-and-paste operations, and provides controls for navigating and setting the zoom

66 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

level. Other classes let you get the number of pages in a PDF file, find text, manage selections, add annotations,
and specify the behavior of some graphical elements, among other actions. Users can also copy selected text
in a PDFView to the pasteboard.

Note: Although it is written in Objective-C, you can use the classes of the PDF Kit in both Carbon and Cocoa
applications. For information on how to do this, see Carbon-Cocoa Integration Guide.

If you need to display PDF data directly from your application, the PDF Kit is highly recommended. It hides
many of the intricacies of the Adobe PDF specification and provides standard PDF viewing controls
automatically. The PDF Kit is part of the Quartz framework (Quartz.framework). For more information, see
PDF Kit Programming Guide.

Publication Subscription Framework

Introduced in Mac OS X v10.5, the Publication Subscription framework (PubSub.framework) is a new
framework that provides high-level support for subscribing to RSS and Atom feeds. You can use the framework
to subscribe to podcasts, photocasts, and any other feed-based document. The framework handles all the
feed downloads and updates automatically and provides your application with the data from the feed.

For information about the Publication Subscription framework, see Publication Subscription Programming
Guide and Publication Subscription Framework Reference.

Search Kit Framework

Introduced in Mac OS X version 10.3, the Search Kit framework lets you search, summarize, and retrieve
documents written in most human languages. You can incorporate these capabilities into your application
to support fast searching of content managed by your application.

The Search Kit framework is part of the Core Services umbrella framework. The technology is derived from
the Apple Information Access Toolkit, which is often referred to by its code name V-Twin. Many system
applications, including Spotlight, Finder, Address Book, Apple Help, and Mail use this framework to implement
searching.

Search Kit is an evolving technology and as such continues to improve in speed and features. For detailed
information about the available features, see Search Kit Reference.

Security Services

Mac OS X security is built using several open source technologies, including BSD, Common Data Security
Architecture (CDSA), and Kerberos. Mac OS X builds on these basic technologies by implementing a layer of
high-level services to simplify your security solutions. These high-level services provide a convenient abstraction
and make it possible for Apple and third parties to implement new security features without breaking your
code. They also make it possible for Apple to combine security technologies in unique ways; for example,
Keychain Services provides encrypted data storage with authenticated access using several CDSA technologies.

Mac OS X provides high-level interfaces for the following features:

 ■ User authentication

Application Technologies 67
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

 ■ Certificate, key, and trust services

 ■ Authorization services

 ■ Secure transport

 ■ Keychain Services

Mac OS X supports many network-based security standards, including SFTP, S/MIME, and SSH. For a complete
list of network protocols, see “Standard Network Protocols” (page 25).

For more information about the security architecture and security-related technologies of Mac OS X, see
SecurityOverview. For additional information about CDSA, see the following page of the Open Group’s website:
http://www.opengroup.org/security/cdsa.htm.

Speech Technologies

Mac OS X contains speech technologies that recognize and speak U.S. English. These technologies provide
benefits for users and present the possibility of a new paradigm for human-computer interaction.

Speech recognition is the ability for the computer to recognize and respond to a person’s speech. Using
speech recognition, users can accomplish tasks comprising multiple steps with one spoken command. Because
users control the computer by voice, speech-recognition technology is very important for people with special
needs. You can take advantage of the speech engine and API included with Mac OS X to incorporate speech
recognition into your applications.

Speech synthesis, also called text-to-speech (TTS), converts text into audible speech. TTS provides a way to
deliver information to users without forcing them to shift attention from their current task. For example, the
computer could deliver messages such as “Your download is complete” and “You have email from your boss;
would you like to read it now?” in the background while you work. TTS is crucial for users with vision or
attention disabilities. As with speech recognition, Mac OS X TTS provides an API and several user interface
features to help you incorporate speech synthesis into your applications. You can also use speech synthesis
to replace digital audio files of spoken text. Eliminating these files can reduce the overall size of your software
bundle.

For more information, see Reference Library > User Experience > Speech Technologies.

SQLite Library

Introduced in Mac OS X version 10.4, the SQLite library lets you embed a SQL database engine into your
applications. Programs that link with the SQLite library can access SQL databases without running a separate
RDBMS process. You can create local database files and manage the tables and records in those files. The
library is designed for general purpose use but is still optimized to provide fast access to database records.

The SQLite library is located at /usr/lib/libsqlite3.dylib and the sqlite3.h header file is in
/usr/include. A command-line interface (sqlite3) is also available for communicating with SQLite
databases using scripts. For details on how to use this command-line interface, see sqlite3 man page.

For more information about using SQLite, go to http://www.sqlite.org.

68 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

http://www.opengroup.org/security/cdsa.htm
http://www.sqlite.org

Sync Services Framework

Introduced in Mac OS X version 10.4, the Sync Services framework gives you access to the data synchronization
engine built-in to Mac OS X. You can use this framework to synchronize your application data with system
databases, such as those provided by Address Book and iCal. You can also publish your application’s custom
data types and make them available for syncing. You might do this to share your application’s data with
other applications on the same computer or with applications on multiple computers (through the user’s
.Mac account).

With the Sync Services framework, applications can directly initiate the synchronization process. Prior to Mac
OS X v10.4, synchronization occurred only through the iSync application. In Mac OS X v10.4 and later, the
iSync application still exists but is used to initiate the synchronization process for specific hardware devices,
like cell phones.

The Sync Services framework (SyncServices.framework) provides an Objective-C interface but can be
used by both Carbon and Cocoa applications. Applications can use this framework to initiate sync sessions
and to push and pull records from the central “truth” database, which the sync engine uses to maintain the
master copy of the synchronized records. The system provides predefined schemas for contacts, calendars,
bookmarks, and mail notes (see Apple Applications SchemaReference). You can also distribute custom schemas
for your own data types and register them with Sync Services.

For more information about using Sync Services in your application, see Sync Services Programming Guide
and Sync Services Framework Reference.

WebKit Framework

Introduced in Mac OS X version 10.3, the WebKit framework provides an engine for displaying HTML-based
content. The WebKit framework is an umbrella framework containing two subframeworks: Web Core and
JavaScript Core. The Web Core framework is based on the kHTML rendering engine, an open source engine
for parsing and displaying HTML content. The JavaScript Core framework is based on the KJS open source
library for parsing and executing JavaScript code.

Starting with Mac OS X version 10.4, WebKit also lets you create text views containing editable HTML. The
editing support is equivalent to the support available in Cocoa for editing RTF-based content. With this
support, you can replace text and manipulate the document text and attributes, including CSS properties.
Although it offers many features, WebKit editing support is not intended to provide a full-featured editing
facility like you might find in professional HTML editing applications. Instead, it is aimed at developers who
need to display HTML and handle the basic editing of HTML content.

Also introduced in Mac OS X version 10.4, WebKit includes support for creating and editing content at the
DOM level of an HTML document. You can use this support to navigate DOM nodes and manipulate those
nodes and their attributes. You can also use the framework to extract DOM information. For example, you
could extract the list of links on a page, modify them, and replace them prior to displaying the document in
a web view.

For information on how to use WebKit from both Carbon and Cocoa applications, see WebKit Objective-C
Programming Guide. For information on the classes and protocols in the WebKit framework, see WebKit
Objective-C Framework Reference.

Application Technologies 69
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

Time Machine Support

Introduced in Mac OS X v10.5, the Time Machine feature protects user data from accidental loss by
automatically backing up data to a different hard drive. Included with this feature is a set of programmer-level
functions that you can use to exclude unimportant files from the backup set. For example, you might use
these functions to exclude your application’s cache files or any files that can be recreated easily. Excluding
these types of files improves backup performance and reduces the amount of space required to back up the
user’s system.

For information about the new functions, see Backup Core Reference.

Web Service Access

Many businesses provide web services for retrieving data from their websites. The available services cover a
wide range of information and include things such as financial data and movie listings. Mac OS X has included
support for calling web-based services using Apple events since version 10.1. However, starting with version
10.2, the Web Services Core framework (part of the Core Services umbrella framework) provides support for
the invocation of web services using CFNetwork.

For a description of web services and information on how to use the Web Services Core framework, see Web
Services Core Programming Guide.

XML Parsing Libraries

In Mac OS X v10.3, the Darwin layer began including the libXML2 library for parsing XML data. This is an
open source library that you can use to parse or write arbitrary XML data quickly. The headers for this library
are located in the /usr/include/libxml2 directory.

Several other XML parsing technologies are also included in Mac OS X. For arbitrary XML data, Core Foundation
provides a set of functions for parsing the XML content from Carbon or other C-based applications. Cocoa
provides several classes to implement XML parsing. If you need to read or write a property list file, you can
use either the Core Foundation CFPropertyList functions or the Cocoa NSDictionary object to build a set of
collection objects with the XML data.

For information on Core Foundation support for XML parsing, see the documents in Reference Library > Core
Foundation > Data Management. For information on parsing XML from a Cocoa application, see Tree-Based
XML Programming Guide.

70 Application Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Application Technologies

One reason users choose the Macintosh over other platforms is that it provides a compelling user experience.
This user experience is defined partly by the technologies and applications that are built-in to Mac OS X and
partly by the applications you create. Your applications play a key role in delivering the experience users
expect. This means that your applications need to support the features that help them blend into the Mac
OS X ecosystem and create a seamless user experience.

Technologies

The following sections describe technologies that form a key part of the Mac OS X user experience. If you
are developing an application, you should consider adopting these technologies to make sure your application
integrates cleanly into Mac OS X. Most of these technologies require little effort to support but provide big
advantages in your software’s usability and in the likelihood of user adoption.

Aqua

Aqua defines the appearance and overall behavior of Mac OS X applications. Aqua applications incorporate
color, depth, translucence, and complex textures into a visually appealing interface. The behavior of Aqua
applications is consistent, providing users with familiar paradigms and expected responses to user-initiated
actions.

Applications written using modern Mac OS X interfaces (such as those provided by Carbon and Cocoa) get
much of the Aqua appearance automatically. However, there is more to Aqua than that. Interface designers
must still follow the Aqua guidelines to position windows and controls in appropriate places. Designers must
take into account features such as text, keyboard, and mouse usage and make sure their designs work
appropriately for Aqua. The implementers of an interface must then write code to provide the user with
appropriate feedback and to convey what is happening in an informative way.

Apple provides the Interface Builder application to assist developers with the proper layout of interfaces.
However, you should also be sure to read Apple Human Interface Guidelines, which provides invaluable advice
on how to create Aqua-compliant applications and on the best Mac OS X interface technologies to use.

Quick Look

Introduced in Mac OS X v10.5, Quick Look is a technology that enables client applications, such as Spotlight
and the Finder, to display thumbnail images and full-size previews of documents. Mac OS X provides automatic
support for many common content types, including HTML, RTF, plain text, TIFF, PNG, JPEG, PDF, and QuickTime
movies. If your application defines custom document formats, you should provide a Quick Look generator
for those formats. Generators are plug-ins that convert documents of the appropriate type from their native
format to a format that Quick Look can display to users. Mac OS X makes extensive use of generators to give
users quick previews of documents without having to open the corresponding applications.

Technologies 71
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

For information about supporting Quick Look for your custom document types, see Quick Look Programming
Guide and Quick Look Framework Reference.

Resolution-Independent User Interface

Resolution independence decouples the resolution of the user's screen from the units you use in your code’s
drawing operations. While Mac OS X version 10.4 and earlier assumed a screen resolution of 72 dots per inch
(dpi), most modern screens actually have resolutions that are 100 dpi or more. The result of this difference
is that content rendered for a 72 dpi screen appears smaller on such screens—a problem that will only get
worse as screen resolutions increase.

In Mac OS X v10.4, steps were taken to support content scaling for screen-based rendering. In particular, the
notion of a scale factor was introduced to the system, although not heavily publicized. This scale factor was
fixed at 1.0 by default but could be changed by developers using the Quartz Debug application. In addition,
Carbon and Cocoa frameworks were updated to support scale factors and interfaces were introduced to
return the current screen scale factor so that developers could begin testing their applications in a
content-scaled world.

Although the Mac OS X frameworks handle many aspects related to resolution-independent drawing, there
are still things you need to do in your drawing code to support resolution independence:

 ■ Update the images and artwork in your user interface. As the pixel density of displays increases, you
need to make sure your application's custom artwork can scale accordingly—that is, your art needs to
be larger in terms of pixel dimensions to avoid looking pixellated at higher scale factors. This includes
changing:

 ❏ Application icons

 ❏ Images that appear in buttons or other controls

 ❏ Other custom images you use in your interface

 ■ Update code that relies on precise pixel alignment to take the current scale factor into account. Both
Cocoa and Carbon provide ways to access the current scale factor.

 ■ Consider drawing lines, fills, and gradients programmatically instead of using prerendered images. Shapes
drawn using Quartz and Cocoa always scale appropriately to the screen resolution.

When scaling your images, be sure to cache the scaled versions of frequently-used images to increase drawing
efficiency. For more information about resolution-independence and how to support it in your code, see
Resolution Independence Guidelines.

Spotlight

Introduced in Mac OS X version 10.4, Spotlight provides advanced search capabilities for applications. The
Spotlight server gathers metadata from documents and other relevant user files and incorporates that
metadata into a searchable index. The Finder uses this metadata to provide users with more relevant
information about their files. For example, in addition to listing the name of a JPEG file, the Finder can also
list its width and height in pixels.

72 Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

Application developers use Spotlight in two different ways. First, you can search for file attributes and content
using the Spotlight search API. Second, if your application defines its own custom file formats, you should
incorporate any appropriate metadata information in those formats and provide a Spotlight importer plug-in
to return that metadata to Spotlight.

Note: You should not use Spotlight for indexing and searching the general content of a file. Spotlight is
intended for searching only the meta information associated with files. To search the actual contents of a
file, use the Search Kit API. For more information, see “Search Kit Framework” (page 67).

In Mac OS X v10.5 and later, several new features were added to make working with Spotlight easier. The
File manager includes functions for swapping the contents of a file while preserving its original metadata;
see the Files.h header file in the Core Services framework. Spotlight also defines functions for storing
lineage information with a file so that you can track modifications to that file.

For more information on using Spotlight in your applications, see Spotlight Overview.

Bundles and Packages

A feature integral to Mac OS X software distribution is the bundle mechanism. Bundles encapsulate related
resources in a hierarchical file structure but present those resources to the user as a single entity. Programmatic
interfaces make it easy to find resources inside a bundle. These same interfaces form a significant part of the
Mac OS X internationalization strategy.

Applications and frameworks are only two examples of bundles in Mac OS X. Plug-ins, screen savers, and
preference panes are all implemented using the bundle mechanism as well. Developers can also use bundles
for their document types to make it easier to store complex data.

Packages are another technology, similar to bundles, that make distributing software easier. A package—also
referred to as an installation package—is a directory that contains files and directories in well-defined locations.
The Finder displays packages as files. Double-clicking a package launches the Installer application, which
then installs the contents of the package on the user’s system.

For an overview of bundles and how they are constructed, see Bundle Programming Guide. For information
on how to package your software for distribution, see Software Delivery Guide.

Code Signing

In Mac OS X v10.5 and later, it is possible to associate a digital signature with your application using the
codesign command-line tool. If you have a certificate that is authorized for signing, you can use that
certificate to sign your application’s code file. Signing your application makes it possible for Mac OS X to
verify the source of the application and ensure the application has not changed since it was shipped. If the
application has been tampered with, Mac OS X detects the change and can alert the user to the problem.
Signed applications also make it harder to circumvent parental controls and other protection features of the
system.

For information on signing your application, see Code Signing Guide.

Technologies 73
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

Internationalization and Localization

Localizing your application is necessary for success in many foreign markets. Users in other countries are
much more likely to buy your software if the text and graphics reflect their own language and culture. Before
you can localize an application, though, you must design it in a way that supports localization, a process
called internationalization. Properly internationalizing an application makes it possible for your code to load
localized content and display it correctly.

Internationalizing an application involves the following steps:

 ■ Use Unicode strings for storing user-visible text.

 ■ Extract user-visible text into “strings” resource files.

 ■ Use nib files to store window and control layouts whenever possible.

 ■ Use international or culture-neutral icons and graphics whenever possible.

 ■ Use Cocoa or Core Text to handle text layout.

 ■ Support localized file-system names (also known as “display names”).

 ■ Use formatter objects in Core Foundation and Cocoa to format numbers, currencies, dates, and times
based on the current locale.

For details on how to support localized versions of your software, see Internationalization Programming Topics.
For information on Core Foundation formatters, see Data Formatting Guide for Core Foundation.

Software Configuration

Mac OS X programs commonly use property list files (also known as plist files) to store configuration data. A
property list is a text or binary file used to manage a dictionary of key-value pairs. Applications use a special
type of property list file, called an information property list (Info.plist) file, to communicate key attributes
of the application to the system, such as the application’s name, unique identification string, and version
information. Applications also use property list files to store user preferences or other custom configuration
data. If your application stores custom configuration data, you should consider using property lists files as
well.

The advantage of property list files is that they are easy to edit and modify from outside the runtime
environment of your application. Mac OS X provides several tools for creating and modifying property list
files. The Property List Editor application that comes with Xcode is the main application for editing the
contents of property lists. Xcode also provides a custom interface for editing your application’s Info.plist
file. (For information about information property lists files and the keys you put in them, see Runtime
Configuration Guidelines.)

Inside your program, you can read and write property list files programmatically using facilities found in both
Core Foundation and Cocoa. For more information on creating and using property lists programmatically,
see Property List Programming Guide or Property List Programming Topics for Core Foundation.

74 Technologies
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

Fast User Switching

Introduced in Mac OS X version 10.3, fast user switching lets multiple users share physical access to a single
computer without logging out. Only one user at a time can access the computer using the keyboard, mouse,
and display; however, one user’s session can continue to run while another user accesses the computer. The
users can then trade access to the computer and toggle sessions back and forth without disturbing each
other’s work.

When fast user switching is enabled, an application must be careful not to do anything that might affect
another version of that application running in a different user’s session. In particular, your application should
avoid using or creating any shared resources unless those resources are associated with a particular user
session. As you design your application, make sure that any shared resources you use are protected
appropriately. For more information on how to do this, see Multiple User Environments.

Spaces

Introduced in Mac OS X version 10.5, Spaces lets the user organize windows into groups and switch back
and forth between groups to avoid cluttering up the desktop. Most application windows appear in only one
space at a time, but there may be times when you need to share a window among multiple spaces. For
example, if your application has a set of shared floating palettes, you might need those palettes to show up
in every space containing your application’s document windows.

Cocoa provides support for sharing windows across spaces through the use of collection behavior attributes
on the window. For information about setting these attributes, see NSWindow Class Reference.

Accessibility

Millions of people have some type of disability or special need. Federal regulations in the United States
stipulate that computers used in government or educational settings must provide reasonable access for
people with disabilities. Mac OS X includes built-in functionality to accommodate users with special needs.
It also provides software developers with the functions they need to support accessibility in their own
applications.

Applications that use Cocoa or modern Carbon interfaces receive significant support for accessibility
automatically. For example, applications get the following support for free:

 ■ Zoom features let users increase the size of onscreen elements.

 ■ Sticky keys let users press keys sequentially instead of simultaneously for keyboard shortcuts.

 ■ Mouse keys let users control the mouse with the numeric keypad.

 ■ Full keyboard access mode lets users complete any action using the keyboard instead of the mouse.

 ■ Speech recognition lets users speak commands rather than type them.

 ■ Text-to-speech reads text to users with visual disabilities.

 ■ VoiceOver provides spoken user interface features to assist visually impaired users.

Technologies 75
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

If your application is designed to work with assistive devices (such as screen readers), you may need to
provide additional support. Both Cocoa and Carbon integrate support for accessibility protocols in their
frameworks; however, there may still be times when you need to provide additional descriptions or want to
change descriptions associated with your windows and controls. In those situations, you can use the
appropriate accessibility interfaces to change the settings.

For more information about accessibility, see Accessibility Overview.

AppleScript

Mac OS X employs AppleScript as the primary language for making applications scriptable. AppleScript is
supported in all application environments as well as in the Classic compatibility environment. Thus, users
can write scripts that link together the services of multiple scriptable applications across different environments.

When designing new applications, you should consider AppleScript support early in the process. The key to
good AppleScript design is choosing an appropriate data model for your application. The design must not
only serve the purposes of your application but should also make it easy for AppleScript implementers to
manipulate your content. Once you settle on a model, you can implement the Apple event code needed to
support scripting.

For information about AppleScript in Mac OS X, go to http://www.macosxautomation.com/applescript/. For
developer documentation explaining how to support AppleScript in your programs, see Applescript Overview.

System Applications

Mac OS X provides many applications to help both developers and users implement their projects. A default
Mac OS X installation includes an Applications directory containing many user and administrative tools
that you can use in your development. In addition, there are two special applications that are relevant to
running programs: the Finder and the Dock. Understanding the purpose of these applications can help when
it comes to designing your own applications.

The Finder

The Finder has many functions in the operating system:

 ■ It is the primary file browser. As such, it is the first tool users see, and one they use frequently to find
applications and other files.

 ■ It provides an interface for Spotlight—a powerful search tool for finding files not easily found by browsing.

 ■ It provides a way to access servers and other remote volumes, including a user’s iDisk.

 ■ It determines the application in which to open a document when a user double-clicks a document icon.

 ■ It allows users to create file archives.

 ■ It provides previews of images, movies, and sounds in its preview pane.

 ■ It lets users burn content onto CDs and DVDs.

 ■ It provides an AppleScript interface for manipulating files and the Finder user interface.

76 System Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

http://www.macosxautomation.com/applescript/
http://developer.apple.com/mac/library/documentation/AppleScript/Conceptual/AppleScriptX/AppleScriptX.html

Keep the Finder in mind as you design your application’s interface. Understand that any new behaviors you
introduce should follow patterns users have grown accustomed to in their use of the Finder. Although some
of the functionality of the Finder, like file browsing, is replicated through the Carbon and Cocoa frameworks,
the Finder may be where users feel most comfortable performing certain functions. Your application should
interact with the Finder gracefully and should communicate changes to the Finder where appropriate. For
example, you might want to embed content by allowing users to drag files from the Finder into a document
window of your application.

Another way your application interacts with the Finder is through configuration data. The information property
list of your bundled application communicates significant information about the application to the Finder.
Information about your application’s identity and the types of documents it supports are all part of the
information property list file.

For information about the Finder and its relationship to the file system, see File System Overview.

The Dock

Designed to help prevent onscreen clutter and aid in organizing work, the always available Dock displays an
icon for each open application and minimized document. It also contains icons for commonly used applications
and for the Trash. Applications can use the Dock to convey information about the application and its current
state.

For guidelines on how to work with the Dock within your program, see Apple Human Interface Guidelines. For
information on how to manipulate Dock tiles in a Carbon application, see Dock Tile Programming Guide and
Application Manager Reference. To manipulate Dock tiles from a Cocoa application, use the methods of the
NSApplication and NSWindow classes.

Dashboard

Introduced in Mac OS X v10.4, Dashboard provides a lightweight desktop environment for running widgets.
Widgets are lightweight web applications that display information a user might use occasionally. You can
write widgets to track stock quotes, view the current time, or access key features of a frequently used
application. Widgets reside in the Dashboard layer, which is activated by the user and comes into the
foreground in a manner similar to Exposé. Mac OS X comes with several standard widgets, including a
calculator, clock, and iTunes controller.

For information about developing Dashboard widgets, see “Dashboard Widgets” (page 83).

Automator

Introduced in Mac OS X version 10.4, Automator lets you automate common workflows on your computer
without writing any code. The workflows you create can take advantage of many features of Mac OS X and
any standard applications for which predefined actions are available. Actions are building blocks that represent
tangible tasks, such as opening a file, saving a file, applying a filter, and so on. The output from one action
becomes the input to another and you assemble the actions graphically with the Automator application.
Figure 5-1 shows the Automator main window and a workflow containing some actions.

System Applications 77
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

Figure 5-1 Automator main window

In cases where actions are not available for the tasks you want, you can often create them yourself. Automator
supports the creation of actions using Objective-C code or AppleScript. You can also create actions that are
based on shell scripts, Perl, and Python.

In Mac OS X v10.5 and later, Automator supports the “Watch Me Do” feature, which lets you build an action
by recording your interactions with Mac OS X and any open applications. You can use workflow variables as
placeholders for dynamically changing values or pieces of text in your script. You can also integrate workflows
into your applications using the classes of the Automator framework.

For more information about using Automator, see the Automator Help. For information on how to create
new Automator actions, see Automator ProgrammingGuide. For information about how to integrate workflows
into your applications, see the classes in Automator Framework Reference.

Time Machine

Introduced in Mac OS X v10.5, Time Machine is an application that automatically and transparently backs up
the user’s files to a designated storage system. Time Machine integrates with the Finder to provide an intuitive
interface for locating lost or old versions of files quickly and easily. Time Machine also provides an interface
that applications can use to exclude files that should not be backed up. For more information on using this
interface, see “Time Machine Support” (page 70).

78 System Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

User Experience

There are many ways to create an application in Mac OS X. There are also many types of software that you
can create besides applications. The following sections introduce the types of software you can create in
Mac OS X and when you might consider doing so.

Applications

Applications are by far the predominant type of software created for Mac OS X, or for any platform. Mac OS
X provides numerous environments for developing applications, each of which is suited for specific types of
development. For information about these environments and the technologies you can use to build your
applications, see “Application Technologies” (page 57).

Important: You should always create universal binaries for Carbon, Cocoa, and BSD applications. Java and
WebObjects may also need to create universal binaries for bridged code. For information on how to create
universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Frameworks

A framework is a special type of bundle used to distribute shared resources, including library code, resource
files, header files, and reference documentation. Frameworks offer a more flexible way to distribute shared
code that you might otherwise put into a dynamic shared library. Whereas image files and localized strings
for a dynamic shared library would normally be installed in a separate location from the library itself, in a
framework they are integral to the framework bundle. Frameworks also have a version control mechanism
that makes it possible to distribute multiple versions of a framework in the same framework bundle.

Apple uses frameworks to distribute the public interfaces of Mac OS X. You can use frameworks to distribute
public code and interfaces created by your company. You can also use frameworks to develop private shared
libraries that you can then embed in your applications.

Note: Mac OS X also supports the concept of “umbrella” frameworks, which encapsulate multiple
subframeworks in a single package. However, this mechanism is used primarily for the distribution of Apple
software. The creation of umbrella frameworks by third-party developers is not recommended.

You can develop frameworks using any programming language you choose; however, it is best to choose a
language that makes it easy to update the framework later. Apple frameworks generally export programmatic
interfaces in either ANSI C or Objective-C. Both of these languages have a well-defined export structure that
makes it easy to maintain compatibility between different revisions of the framework. Although it is possible
to use other languages when creating frameworks, you may run into binary compatibility problems later
when you update your framework code.

Applications 79
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

For information on the structure and composition of frameworks, see Framework Programming Guide. That
document also contains details on how to create public and private frameworks with Xcode.

Important: You should always create universal binaries for frameworks written with Carbon, Cocoa, or BSD
APIs. For information on how to create universal binaries, seeUniversal Binary ProgrammingGuidelines, Second
Edition.

Plug-ins

Plug-ins are the standard way to extend many applications and system behaviors. Plug-ins are bundles whose
code is loaded dynamically into the runtime of an application. Because they are loaded dynamically, they
can be added and removed by the user.

There are many opportunities for developing plug-ins for Mac OS X. Developers can create plug-ins for
third-party applications or for Mac OS X itself. Some parts of Mac OS X define plug-in interfaces for extending
the basic system behavior. The following sections list many of these opportunities for developers, although
other software types may also use the plug-in model.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for plug-ins written with Carbon, Cocoa, or BSD APIs. For information on how to create universal binaries,
see Universal Binary Programming Guidelines, Second Edition.

Address Book Action Plug-Ins

An Address Book action plug-in lets you populate the pop-up menus of the Address Book application with
custom menu items that use Address Book data to trigger a specific event. For example, you could add an
action to a phone number field to trigger the dialing of the number using a Bluetooth-enabled phone.

Address Book action plug-ins are best suited for developers who want to extend the behavior of the Address
Book application to support third-party hardware or software. For more information on creating an Address
Book action plug-in, see the documentation for the ABActionDelegate class.

Application Plug-Ins

Several applications, including iTunes, Final Cut Pro, and Final Cut Express, use plug-ins to extend the features
available from the application. You can create plug-ins to implement new effects for these applications or
for other applications that support a plug-in model. For information about developing plug-ins for Apple
applications, visit the ADC website at http://developer.apple.com/.

80 Plug-ins
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

http://developer.apple.com/

Automator Plug-Ins

Introduced in Mac OS X version 10.4, Automator is a workflow-based application that lets users assemble
complex scripts graphically using a palette of available actions. You can extend the default set of actions by
creating Automator plug-ins to support new actions. Because they can be written in AppleScript or Objective-C,
you can write plug-ins for your own application’s features or for the features of other scriptable applications.

If you are developing an application, you should think about providing Automator plug-ins for your
application’s most common tasks. AppleScript is one of the easiest ways for you to create Automator plug-ins
because it can take advantage of existing code in your application. If you are an Objective-C developer, you
can also use that language to create plug-ins.

For information on how to write an Automator plug-in, see Automator Programming Guide.

Contextual Menu Plug-Ins

The Finder associates contextual menus with file-system items to give users a way to access frequently used
commands quickly. Third-party developers can extend the list of commands found on these menus by defining
their own contextual menu plug-ins. You might use this technique to make frequently used features available
to users without requiring them to launch your application. For example, an archiving program might provide
commands to compress a file or directory.

The process for creating a contextual menu plug-in is similar to that for creating a regular plug-in. You start
by defining the code for registering and loading your plug-in, which might involve creating a factory object
or explicitly specifying entry points. To implement the contextual menu behavior, you must then implement
several callback functions defined by the Carbon Menu Manager for that purpose. Once complete, you install
your plug-in in the Library/Contextual Menu Items directory at the appropriate level of the system,
usually the local or user level.

For information on how to create a plug-in, see Plug-ins. For information on the Carbon Menu Manager
functions you need to implement, see Menu Manager Reference.

Core Audio Plug-Ins

The Core Audio system supports plug-ins for manipulating audio streams during most processing stages.
You can use plug-ins to generate, process, receive, or otherwise manipulate an audio stream. You can also
create plug-ins to interact with new types of audio-related hardware devices.

For an introduction to the Core Audio environment, download the Core Audio SDK from http://developer.ap-
ple.com/sdk/ and read the documentation that comes with it. Information is also available in Reference
Library > Audio > Core Audio.

Image Units

In Mac OS X version 10.4 and later, you can create image units for the Core Image and Core Video technologies.
An image unit is a collection of filters packaged together in a single bundle. Each filter implements a specific
manipulation for image data. For example, you could write a set of filters that perform different kinds of edge
detection and package them as one image unit.

Plug-ins 81
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

http://developer.apple.com/sdk/
http://developer.apple.com/sdk/

For more information about Core Image, see Core Image Programming Guide.

Input Method Components

An input method component is a code module that processes incoming data and returns an adjusted version
of that data. A common example of an input method is an interface for typing Japanese or Chinese characters
using multiple keystrokes. The input method processes the user keystrokes and returns the complex character
that was intended. Other examples of input methods include spelling checkers and pen-based gesture
recognition systems.

Input method components are implemented using the Carbon Component Manager. An input method
component provides the connection between Mac OS X and any other programs your input method uses
to process the input data. For example, you might use a background application to record the input keystrokes
and compute the list of potential complex characters that those keystrokes can create.

In Mac OS X v10.5 and later, you can create input methods using the Input Method Kit
(InputMethodKit.framework). For information on how to use this framework, see Input Method Kit
Framework Reference. For information on how to create an input method in earlier versions of Mac OS X, see
the BasicInputMethod sample code and the Component Manager Reference.

Interface Builder Plug-Ins

If you create any custom controls for your application, you can create an Interface Builder plug-in to make
those controls available in the Interface Builder design environment. Creating plug-ins for your controls lets
you go back and redesign your application’s user interface using your actual controls, as opposed to generic
custom views. For controls that are used frequently in your application, being able to see and manipulate
your controls directly can eliminate the need to build your application to see how your design looks.

In Mac OS X v10.5, you should include plug-ins for any of your custom controls inside the framework bundle
that implements those controls. Bundling your plug-in with your framework is not required but does make
it easier for users. When the user adds your framework to their Xcode project, Interface Builder automatically
scans the framework and loads the corresponding plug-in if it is present. If you did not use a framework for
the implementation of your controls, you must distribute the plug-in yourself and instruct users to load it
using the Interface Builder preferences window.

For information on how to create plug-ins that support Interface Builder 3.0 and later, see Interface Builder
Plug-In Programming Guide and Interface Builder Kit Framework Reference. For information on how to create
plug-ins for earlier versions of Interface Builder, see the header files for Interface Builder framework
(InterfaceBuilder.framework) or the examples in <Xcode>/Examples/Interface Builder.

Metadata Importers

In Mac OS X version 10.4 and later, you can create a metadata importer for your application’s file formats.
Metadata importers are used by Spotlight to gather information about the user’s files and build a systemwide
index. This index is then used for advanced searching based on more user-friendly information.

If your application defines a custom file format, you should always provide a metadata importer for that file
format. If your application relies on commonly used file formats, such as JPEG, RTF, or PDF, the system provides
a metadata importer for you.

82 Plug-ins
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

For information on creating metadata importers, see Spotlight Importer Programming Guide.

QuickTime Components

A QuickTime component is a plug-in that provides services to QuickTime-savvy applications. The component
architecture of QuickTime makes it possible to extend the support for new media formats, codecs, and
hardware. Using this architecture, you can implement components for the following types of operations:

 ■ Compressing/decompressing media data

 ■ Importing/exporting media data

 ■ Capturing media data

 ■ Generating timing signals

 ■ Controlling movie playback

 ■ Implementing custom video effects, filters, and transitions

 ■ Streaming custom media formats

For an overview of QuickTime components, see QuickTime Overview. For information on creating specific
component types, see the subcategories in Reference Library > QuickTime.

Safari Plug-ins

Beginning with Mac OS X version 10.4, Safari supports a new plug-in model for tying in additional types of
content to the web browser. This new model is based on an Objective-C interface and offers significant
flexibility to plug-in developers. In particular, the new model lets plug-in developers take advantage of the
Tiger API for modifying DOM objects in an HTML page. It also offers hooks so that JavaScript code can interact
with the plug-in at runtime.

Safari plug-in support is implemented through the new WebPlugIn object and related objects defined in
WebKit. For information about how to use these objects, see WebKit Plug-In Programming Topics and WebKit
Objective-C Framework Reference.

Dashboard Widgets

Introduced in Mac OS X version 10.4 and later, Dashboard provides a lightweight desktop layer for running
widgets. Widgets are lightweight web applications that display information a user might use occasionally.
You could write widgets to track stock quotes, view the current time, or access key features of a frequently
used application. Widgets reside in the Dashboard layer, which is activated by the user and comes into the
foreground in a manner similar to Exposé. Mac OS X comes with several standard widgets, including a
calculator, clock, and iTunes controller.

Creating widgets is simpler than creating most applications because widgets are effectively HTML-based
applications with optional JavaScript code to provide dynamic behavior. Dashboard uses WebKit to provide
the environment for displaying the HTML and running the JavaScript code. Your widgets can take advantage

Dashboard Widgets 83
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

of several extensions provided by that environment, including a way to render content using Quartz-like
JavaScript functions. In Mac OS X v10.5 and later, you can create widgets using the Dashcode application,
which is described in “Dashcode” (page 134).

For information on how to create widgets, see Dashboard Programming Topics.

Agent Applications

An agent is a special type of application designed to help the user in an unobtrusive manner. Agents typically
run in the background, providing information as needed to the user or to another application. Agents can
display panels occasionally or come to the foreground to interact with the user if necessary. User interactions
should always be brief and have a specific goal, such as setting preferences or requesting a piece of needed
information.

An agent may be launched by the user but is more likely to be launched by the system or another application.
As a result, agents do not show up in the Dock or the Force Quit window. Agents also do not have a menu
bar for choosing commands. User manipulation of an agent typically occurs through dialogs or contextual
menus in the agent user interface. For example, the iChat application uses an agent to communicate with
the chat server and notify the user of incoming chat requests. The Dock is another agent program that is
launched by the system for the benefit of the user.

The way to create an agent application is to create a bundled application and include the LSUIElement key
in its Info.plist file. The LSUIElement key notifies the Dock that it should treat the application as an
agent when double-clicked by the user. For more information on using this key, see Runtime Configuration
Guidelines.

Screen Savers

Screen savers are small programs that take over the screen after a certain period of idle activity. Screen savers
provide entertainment and also prevent the screen image from being burned into the surface of a screen
permanently. Mac OS X supports both slideshows and programmatically generated screen-saver content.

Slideshows

A slideshow is a simple type of screen saver that does not require any code to implement. To create a
slideshow, you create a bundle with an extension of .slideSaver. Inside this bundle, you place a Resources
directory containing the images you want to display in your slideshow. Your bundle should also include an
information property list that specifies basic information about the bundle, such as its name, identifier string,
and version.

Mac OS X includes several slideshow screen savers you can use as templates for creating your own. These
screen savers are located in /System/Library/Screen Savers. You should put your own slideshows in
either /Library/Screen Savers or in the ~/Library/Screen Savers directory of a user.

84 Agent Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

Programmatic Screen Savers

A programmatic screen saver is one that continuously generates content to appear on the screen. You can
use this type of screen saver to create animations or to create a screen saver with user-configurable options.
The bundle for a programmatic screen saver ends with the .saver extension.

You create programmatic screen savers using Cocoa and the Objective-C language. Specifically, you create
a custom subclass of ScreenSaverView that provides the interface for displaying the screen saver content
and options. The information property list of your bundle provides the system with the name of your custom
subclass.

For information on creating programmatic screen savers, see Screen Saver Framework Reference.

Important: You should always create universal binaries for program-based screensavers written with Carbon,
Cocoa, or BSD APIs. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Services

Services are not separate programs that you write; instead, they are features exported by your application
for the benefit of other applications. Services let you share the resources and capabilities of your application
with other applications in the system.

Services typically act on the currently selected data. Upon initiation of a service, the application that holds
the selected data places it on the pasteboard. The application whose service was selected then takes the
data, processes it, and puts the results (if any) back on the pasteboard for the original application to retrieve.
For example, a user might select a folder in the Finder and choose a service that compresses the folder
contents and replaces them with the compressed version. Services can represent one-way actions as well.
For example, a service could take the currently selected text in a window and use it to create the content of
a new email message.

For information on how to implement services in your Cocoa application, see Services Implementation Guide.
For information on how to implement services in a Carbon application, see SettingUpYour CarbonApplication
to Use the Services Menu.

Preference Panes

Preference panes are used primarily to modify system preferences for the current user. Preference panes are
implemented as plug-ins and installed in /Library/PreferencePanes on the user’s system. Application
developers can also take advantage of these plug-ins to manage per-user application preferences; however,
most applications manage preferences using the code provided by the application environment.

You might need to create preference panes if you create:

 ■ Hardware devices that are user-configurable

 ■ Systemwide utilities, such as virus protection programs, that require user configuration

Services 85
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

If you are an application developer, you might want to reuse preference panes intended for the System
Preferences application or use the same model to implement your application preferences.

Because the interfaces are based on Objective-C, you write preference panes primarily using Cocoa. For more
information, see Preference Pane Programming Guide.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for preference panes. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Web Content

Mac OS X supports a variety of techniques and technologies for creating web content. Dynamic websites
and web services offer web developers a way to deliver their content quickly and easily.

In addition to “WebObjects” (page 59) and “Dashboard Widgets” (page 83), the following sections list ways
to deliver web content in Mac OS X. For more information about developing web content, see Getting Started
with Internet and Web.

Dynamic Websites

Mac OS X provides support for creating and testing dynamic content in web pages. If you are developing
CGI-based web applications, you can create websites using a variety of scripting technologies, including Perl
and PHP. A complete list of scripting technologies is provided in “Scripts” (page 88). You can also create and
deploy more complex web applications using JBoss, Tomcat, and WebObjects. To deploy your webpages,
use the built-in Apache web server.

Safari, Apple’s web browser, provides standards-compliant support for viewing pages that incorporate
numerous technologies, including HTML, XML, XHTML, DOM, CSS, Java, and JavaScript. You can also use
Safari to test pages that contain multimedia content created for QuickTime, Flash, and Shockwave.

SOAP and XML-RPC

The Simple Object Access Protocol (SOAP) is an object-oriented protocol that defines a way for programs to
communicate over a network. XML-RPC is a protocol for performing remote procedure calls between programs.
In Mac OS X, you can create clients that use these protocols to gather information from web services across
the Internet. To create these clients, you use technologies such as PHP, JavaScript, AppleScript, and Cocoa.

If you want to provide your own web services in Mac OS X, you can use WebObjects or implement the service
using the scripting language of your choice. You then post your script code to a web server, give clients a
URL, and publish the message format your script supports.

For information on how to create client programs using AppleScript, see XML-RPC and SOAP Programming
Guide. For information on how to create web services, see WebObjects Web Services Programming Guide.

86 Web Content
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

Sherlock Channels

In Mac OS X v10.4 and earlier, the Sherlock application was a host for Sherlock channels. A Sherlock channel
is a developer-created module that combines web services with an Aqua interface to provide a unique way
for users to find information. Sherlock channels combined related, but different, types of information in one
window.

Sherlock channels are not supported in Mac OS X v10.5 and later.

Mail Stationery

The Mail application in Mac OS X v10.5 and later supports the creation of email messages using templates.
Templates provide the user with prebuilt email messages that can be customized quickly before being sent.
Because templates are HTML-based, they can incorporate images and advanced formatting to give the user’s
email a much more stylish and sophisticated appearance.

Developers and web designers can create custom template packages for external or internal users. Each
template consists of an HTML page, property list file, and images packaged together in a bundle, which is
then stored in the Mail application’s stationery directory. The HTML page and images define the content of
the email message and can include drop zones for custom user content. The property list file provides Mail
with information about the template, such as its name, ID, and the name of its thumbnail image.

For information about how to create new stationery templates, see Mail Programming Topics.

Command-Line Tools

Command-line tools are simple programs that manipulate data using a text-based interface. These tools do
not use windows, menus, or other user interface elements traditionally associated with applications. Instead,
they run from the command-line environment of the Terminal application. Command-line tools require less
explicit knowledge of the system to develop and because of that are often simpler to write than many other
types of applications. However, command-line tools usually serve a more technically savvy crowd who are
familiar with the conventions and syntax of the command-line interface.

Xcode supports the creation of command-line tools from several initial code bases. For example, you can
create a simple and portable tool using standard C or C++ library calls, or a more Mac OS X–specific tool
using frameworks such as Core Foundation, Core Services, or Cocoa Foundation.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for command-line tools written with Carbon, Cocoa, or BSD APIs. For information on how to create universal
binaries, see Universal Binary Programming Guidelines, Second Edition.

Command-line tools are ideal for implementing simple programs quickly. You can use them to implement
low-level system or administrative tools that do not need (or cannot have) a graphical user interface. For
example, a system administrator might use command-line tools to gather status information from an Xserve
system. You might also use them to test your program’s underlying code modules in a controlled environment.

Mail Stationery 87
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

Note: Daemons are a special type of command-line program that run in the background and provide services
to system and user-level programs. Developing daemons is not recommended, or necessary, for most
developers.

Launch Items, Startup Items, and Daemons

Launch items and startup items are special programs that launch other programs or perform one-time
operations during startup and login periods. Daemons are programs that run continuously and act as servers
for processing client requests. You typically use launch items and startup items to launch daemons or perform
periodic maintenance tasks, such as checking the hard drive for corrupted information. Launch items run
under the launchd system process and are supported only in Mac OS X v10.4 and later. Startup items are
also used to launch system and user-level processes but are deprecated in current versions of Mac OS X. They
may be used to launch daemons and run scripts in Mac OS X v10.3.9 and earlier.

Launch items and startup items should not be confused with the login items found in the Accounts system
preferences. Login items are typically agent applications that run within a given user’s session and can be
configured by that user. Launch items and startup items are not user-configurable.

Few developers should ever need to create launch items or daemons. They are reserved for the special case
where you need to guarantee the availability of a particular service. For example, Mac OS X provides a launch
item to run the DNS daemon. Similarly, a virus-detection program might install a launch item to launch a
daemon that monitors the system for virus-like activity. In both cases, the launch item would run its daemon
in the root session, which provides services to all users of the system.

For more information about launch items, startup items, and daemons, see System Startup Programming
Topics.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for launch items written with Carbon, Cocoa, or BSD APIs. For information on how to create universal binaries,
see Universal Binary Programming Guidelines, Second Edition.

Scripts

A script is a set of text commands that are interpreted at runtime and turned into a sequence of actions.
Most scripting languages provide high-level features that make it easy to implement complex workflows
very quickly. Scripting languages are often very flexible, letting you call other programs and manipulate the
data they return. Some scripting languages are also portable across platforms, so that you can use your scripts
anywhere.

Table 6-1 lists many of the scripting languages supported by Mac OS X along with a description of the
strengths of each language.

88 Launch Items, Startup Items, and Daemons
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

Table 6-1 Scripting language summary

DescriptionScript language

An English-based language for controlling scriptable applications in Mac OS X. Use it to
tie together applications involved in a custom workflow or repetitive job. See AppleScript
Overview for more information.

AppleScript

A Bourne-compatible shell script language used to build programs on UNIX-based systems.bash

The C shell script language used to build programs on UNIX-based systems.csh

A general-purpose scripting language supported on many platforms. It comes with an
extensive set of features suited for text parsing and pattern matching and also has some
object-oriented features. See http://www.perl.org/ for more information.

Perl

A cross-platform, general-purpose scripting language that is especially suited for web
development. See http://www.php.net/ for more information.

PHP

A general-purpose, object-oriented scripting language implemented for many platforms.
See http://www.python.org/ for more information. In Mac OS X v10.4 and later, you can
also use Python with the Cocoa scripting bridge; see RubyandPythonProgramming Topics
for Mac OS X.

Python

A general-purpose, object-oriented scripting language implemented for many platforms.
See http://www.ruby-lang.org/ for more information. In Mac OS X v10.5 and later, you
can also use Ruby with the Cocoa scripting bridge; see Ruby and Python Programming
Topics for Mac OS X.

Ruby

The Bourne shell script language used to build programs on UNIX-based systems.sh

Tool Command Language. A general-purpose language implemented for many platforms.
It is often used to create graphical interfaces for scripts. See http://www.tcl.tk/ for more
information.

Tcl

A variant of the C shell script language used to build programs on UNIX-based systems.tcsh

The Z shell script language used to build programs on UNIX-based systems.zsh

For introductory material on using the command line, see “Command Line Primer” (page 109).

Scripting Additions for AppleScript

A scripting addition is a way to deliver additional functionality for AppleScript scripts. It extends the basic
AppleScript command set by adding systemwide support for new commands or data types. Developers who
need features not available in the current command set can use scripting additions to implement those
features and make them available to all programs. For example, one of the built-in scripting additions extends
the basic file-handling commands to support the reading and writing of file contents from an AppleScript
script.

For information on how to create a scripting addition, see Technical Note TN1164, “Native Scripting Additions.”

Scripting Additions for AppleScript 89
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

http://www.perl.org/
http://www.php.net/
http://www.python.org/
http://www.ruby-lang.org/
http://www.tcl.tk/
http://developer.apple.com/technotes/tn/tn1164.html

Important: With the transition to Intel-based processors, developers should always create universal binaries
for scripting additions written with Carbon, Cocoa, or BSD APIs. For information on how to create universal
binaries, see Universal Binary Programming Guidelines, Second Edition.

Kernel Extensions

Most developers have little need to create kernel extensions. Kernel extensions are code modules that load
directly into the kernel process space and therefore bypass the protections offered by the Mac OS X core
environment. The situations in which you might need a kernel extension are the following:

 ■ Your code needs to handle a primary hardware interrupt.

 ■ The client of your code is inside the kernel.

 ■ A large number of applications require a resource your code provides. For example, you might implement
a file-system stack using a kernel extension.

 ■ Your code has special requirements or needs to access kernel interfaces that are not available in the user
space.

Kernel extensions are typically used to implement new network stacks or file systems. You would not use
kernel extensions to communicate with external devices such as digital cameras or printers. (For information
on communicating with external devices, see “Device Drivers” (page 90).)

Note: Beginning with Mac OS X version 10.4, the design of the kernel data structures is changing to a more
opaque access model. This change makes it possible for kernel developers to write nonfragile kernel
extensions—that is, kernel extensions that do not break when the kernel data structures change. Developers
are highly encouraged to use the new API for accessing kernel data structures.

For information about writing kernel extensions, see Kernel Programming Guide.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for kernel extensions. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Device Drivers

Device drivers are a special type of kernel extension that enable Mac OS X to communicate with all manner
of hardware devices, including mice, keyboards, and FireWire drives. Device drivers communicate hardware
status to the system and facilitate the transfer of device-specific data to and from the hardware. Mac OS X
provides default drivers for many types of devices, but these may not meet the needs of all developers.

Although developers of mice and keyboards may be able to use the standard drivers, many other developers
require custom drivers. Developers of hardware such as scanners, printers, AGP cards, and PCI cards typically
have to create custom drivers for their devices. These devices require more sophisticated data handling than

90 Kernel Extensions
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

is usually needed for mice and keyboards. Hardware developers also tend to differentiate their hardware by
adding custom features and behavior, which makes it difficult for Apple to provide generic drivers to handle
all devices.

Apple provides code you can use as the basis for your custom drivers. The I/O Kit provides an object-oriented
framework for developing device drivers using C++. For information on developing device drivers, see I/O
Kit Fundamentals.

Important: With the transition to Intel-based processors, developers should always create universal binaries
for device drivers. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Device Drivers 91
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

92 Device Drivers
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Software Development Overview

Mac OS X has many layers of technology. Before choosing a specific technology to implement a solution,
think about the intended role for that technology. Is that technology appropriate for your needs? Is there a
better technology available? In some cases, Mac OS X offers several technologies that implement the same
behavior but with varying levels of complexity and flexibility. Understanding your operational needs can
help you make appropriate choices during design.

As you consider the design of your software, think about your overall goals. The following sections list some
of the high-level goals you should strive for in your Mac OS X software. Along with each goal are a list of
some technologies that can help you achieve that goal. These lists are not exhaustive but provide you with
ideas you might not have considered otherwise. For specific design tips related to these goals, see Apple
Human Interface Guidelines.

High Performance

Performance is the perceived measure of how fast or efficient your software is, and it is critical to the success
of all software. If your software seems slow, users may be less inclined to buy it. Even software that uses the
most optimal algorithms may seem slow if it spends more time processing data than responding to the user.

Developers who have experience programming on other platforms (including Mac OS 9) should take the
time to learn about the factors that influence performance on Mac OS X. Understanding these factors can
help you make better choices in your design and implementation. For information about performance factors
and links to performance-related documentation, see Performance Overview.

Table 7-1 lists several Mac OS X technologies that you can use to improve the performance of your software.

Table 7-1 Technologies for improving performance

DescriptionTechnology

Mac OS X v10.5 includes two new Cocoa classes that simplify the process of
supporting multiple threads in your application. The NSOperation object acts as
a wrapper for encapsulated tasks while the NSOperationQueue object manages
the execution of those tasks. Operations support dependency and priority ordering
and can be customized to configure the threading environment as needed. For
more information about these classes, see Concurrency Programming Guide.

NSOperation and
NSOperationQueue

Introduced in Mac OS X v10.6, Grand Central Dispatch provides a new model for
increasing the amount of concurrent work performed by your application. In this
model, you factor your application’s tasks into discrete chunks and submit them to
a dispatch queue. The dispatch queue then works with the system to execute as
many tasks as possible in the most efficient way possible. For more information
about using dispatch queues, see Concurrency Programming Guide.

Grand Central
Dispatch

High Performance 93
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design
Goals

DescriptionTechnology

Introduced in Mac OS X v10.6, OpenCL provides a way for you to distribute tasks
among the available GPUs and CPUs on the target system. Given the amount of
processing power available in modern GPUs, this feature can improve the
performance of data-parallel tasks significantly. For information on how to use
OpenCL, see OpenCL Programming Guide for Mac OS X.

OpenCL

Although not appropriate in all cases, providing a 64-bit version of your application
can improve performance, especially on Intel-based Macintosh computers. The
64-bit capable Intel processors typically have more hardware registers available for
performing calculations and passing function parameters. More registers often leads
to better performance. As always, test your code in both 32-bit and 64-bit modes
to see if providing a 64-bit version is worthwhile. For more information, see 64-Bit
Transition Guide.

64-bit

The Accelerate framework provides an API for performing multiple scalar or
floating-point operations in parallel by taking advantage of the underlying
processor’s vector unit. Because it is tuned for both PowerPC and Intel processor
architectures, using the Accelerate framework eliminates the need for you to write
custom code for both the AltiVec and SSE vector units. For more information about
using this framework, see Accelerate Release Notes.

Accelerate
Framework

Apple provides a suite of performance tools for measuring many aspects of your
software. Instruments and Shark in particular provide new ways of looking at your
application while it runs and analyzing its performance. Use these tools to identify
hot spots and gather performance metrics that can help identify potential problems.
For more information Instruments, see “Instruments” (page 135). For information
about Shark and the other performance tools that come with Mac OS X, see
“Performance Tools” (page 148).

Instruments and
Shark

Mac OS X provides many layers of APIs. As you consider the design of your
application, examine the available APIs to find the appropriate tradeoff between
performance, simplicity, and flexibility that you need. Usually, lower-level system
APIs offer the best performance but are more complicated to use. Conversely,
higher-level APIs may be simpler to use but be less flexible. Whenever possible,
choose the lowest-level API that you feel comfortable using.

Lower-level APIs

If operations or Grand Central Dispatch do not provide the support you need, you
can still use threads to increase the amount of concurrent work performed by your
application. Mac OS X implements user-level threads using the POSIX threading
package but also supports several higher-level APIs for managing threads. For
information about these APIs and threading support in general, see “Threading
Support” (page 29) and Threading Programming Guide.

Threads

Mac OS X supports many modern and legacy APIs. Most of the legacy APIs derive from the assorted managers
that were part of the original Macintosh Toolbox and are now a part of Carbon. While many of these APIs
still work in Mac OS X, they are not as efficient as APIs created specifically for Mac OS X. In fact, many APIs
that provided the best performance in Mac OS 9 now provide the worst performance in Mac OS X because
of fundamental differences in the two architectures.

94 High Performance
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

Note: For specific information about legacy Carbon managers and the recommended replacements for
them, see “Carbon Considerations” (page 105).

As Mac OS X evolves, the list of APIs and technologies it encompasses may change to meet the needs of
developers. As part of this evolution, less efficient interfaces may be deprecated in favor of newer ones. Apple
makes these changes only when deemed absolutely necessary and uses the availability macros (defined in
/usr/include/AvailabilityMacros.h) to identify deprecated interfaces. When you compile your code,
deprecated interfaces also trigger the generation of compiler warnings. Use these warnings to find deprecated
interfaces, and then check the corresponding reference documentation or header files to see if there are
recommended replacements.

Easy to Use

An easy-to-use program offers a compelling, intuitive experience for the user. It offers elegant solutions to
complex problems and has a well thought out interface that uses familiar paradigms. It is easy to install and
configure because it makes intelligent choices for the user, but it also gives the user the option to override
those choices when needed. It presents the user with tools that are relevant in the current context, eliminating
or disabling irrelevant tools. It also warns the user against performing dangerous actions and provides ways
to undo those actions if taken.

Table 7-2 lists several Mac OS X technologies that you can use to make your software easier to use.

Table 7-2 Technologies for achieving ease of use

DescriptionTechnology

If your program has a visual interface, it should adhere to the human interface
guidelines for Aqua, which include tips for how to lay out your interface and manage
its complexity. For more information, see “Aqua” (page 71).

Aqua

Introduced in Mac OS X v10.5, Quick Look generates previews of user documents
that can be displayed in the Finder and Dock. These previews make it easier for the
user to find relevant information quickly without launching any applications. For
more information, see “Quick Look” (page 71).

Quick Look

Bonjour simplifies the process of configuring and detecting network services. Your
program can vend network services or use Bonjour to be a client of an existing
network service. For more information, see “Bonjour” (page 61).

Bonjour

The Accessibility interfaces for Carbon and Cocoa make it easier for people with
disabilities to use your software. For more information, see “Accessibility” (page 75).

Accessibility
technologies

AppleScript makes it possible for users to automate complex workflows quickly. It
also gives users a powerful tool for controlling your application. For more information,
see “AppleScript” (page 76).

AppleScript

Mac OS X provides significant infrastructure for internationalizing software bundles.
For more information, see “Internationalization and Localization” (page 74).

Internationalization

Easy to Use 95
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

DescriptionTechnology

Keychains provide users with secure access to passwords, certificates, and other
secret information. Adding support for Keychain Services in your program can reduce
the number of times you need to prompt the user for passwords and other secure
information. For more information, see “Keychain Services” (page 65).

Keychain Services

For information on designing an easy-to-use interface, see Apple Human Interface Guidelines.

Attractive Appearance

One feature that draws users to the Macintosh platform, and to Mac OS X in particular, is the stylish design
and attractive appearance of the hardware and software. Although creating attractive hardware and system
software is Apple’s job, you should take advantage of the strengths of Mac OS X to give your own programs
an attractive appearance.

The Finder and other programs that come with Mac OS X use high-resolution, high-quality graphics and
icons that include 32-bit color and transparency. You should make sure that your programs also use
high-quality graphics both for the sake of appearance and to better convey relevant information to users.
For example, the system uses pulsing buttons to identify the most likely choice and transparency effects to
add a dimensional quality to windows.

Table 7-3 lists several Mac OS X technologies you can use to ensure that your software has an attractive
appearance.

Table 7-3 Technologies for achieving an attractive appearance

DescriptionTechnology

Aqua defines the guidelines all developers should follow when crafting their application’s
user interface. Following these guidelines ensures that your application looks and feels
like a Mac OS X application. For more information, see “Aqua” (page 71).

Aqua

Screen resolutions continue to increase with most screens now supporting over 100
pixels per inch. In order to prevent content from shrinking too much, Mac OS X will soon
apply a scaling factor to drawing operations to keep them at an appropriate size. Your
software needs to be ready for this scaling factor by being able to draw more detailed
content in the same “logical” drawing area. For more information, see
“Resolution-Independent User Interface” (page 72).

Resolution
independence

In Mac OS X v10.5 and later, you can use Core Animation to add advanced graphics
behaviors to your software. Core Animation a lightweight mechanism for performing
advanced animations in your Cocoa views. For more information, see “Core
Animation” (page 46).

Core Animation

Quartz is the native (and preferred) 2D rendering API for Mac OS X. It provides primitives
for rendering text, images, and vector shapes and includes integrated color management
and transparency support. For more information, see “Quartz” (page 43).

Quartz

96 Attractive Appearance
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

DescriptionTechnology

In Mac OS X v10.5 and later, Core Text replaces the ATSUI and MLTE technologies as the
way to high quality rendering and layout of Unicode text for Carbon and Cocoa
applications. The Cocoa text system uses Core Text for its implementation. For more
information, see “Core Text” (page 49).

Core Text

In Mac OS X v10.4 and later, Core Image provides advanced image processing effects for
your application. Core Image makes it possible to manipulate image data in real time
using the available hardware rendering and to perform complex manipulations that
make your application look stunning. For more information, see “Core Image” (page 47).

Core Image

OpenGL is the preferred 3D rendering API for Mac OS X. The Mac OS X implementation
of OpenGL is hardware accelerated on many systems and has all of the standard OpenGL
support for shading and textures. See OpenGL Programming Guide for Mac OS X for an
overview of OpenGL and guidelines on how to use it. For an example of how to use
OpenGL with Cocoa, see the sample code project Cocoa OpenGL.

OpenGL

Reliability

A reliable program is one that earns the user’s trust. Such a program presents information to the user in an
expected and desired way. A reliable program maintains the integrity of the user’s data and does everything
possible to prevent data loss or corruption. It also has a certain amount of maturity to it and can handle
complex situations without crashing.

Reliability is important in all areas of software design, but especially in areas where a program may be running
for an extended period of time. For example, scientific programs often perform calculations on large data
sets and can take a long time to complete. If such a program were to crash during a long calculation, the
scientist could lose days or weeks worth of work.

As you start planning a new project, put some thought into what existing technologies you can leverage
from both Mac OS X and the open-source community. For example, if your application displays HTML
documents, it doesn’t make sense to write your own HTML parsing engine when you can use the WebKit
framework instead.

By using existing technologies, you reduce your development time by reducing the amount of new code
you have to write and test. You also improve the reliability of your software by using code that has already
been designed and tested to do what you need.

Using existing technologies has other benefits as well. For many technologies, you may also be able to
incorporate future updates and bug fixes for free. Apple provides periodic updates for many of its shipping
frameworks and libraries, either through software updates or through new versions of Mac OS X. If your
application links to those frameworks, it receives the benefit of those updates automatically.

All of the technologies of Mac OS X offer a high degree of reliability. However, Table 7-4 lists some specific
technologies that improve reliability by reducing the amount of complex code you have to write from scratch.

Reliability 97
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

Table 7-4 Technologies for achieving reliability

DescriptionTechnology

Code signing associates a digital signature with your application and helps the system
determine when your application has changed, possibly because of tampering. When
changes occur, the system can warn the user and provide an option for disabling
the application. For more information, see “Code Signing” (page 73).

Code signing

Authorization Services provides a way to ensure that only authorized operations
take place. Preventing unauthorized access helps protect your program as well as
the rest of the system. See Authorization Services Programming Guide for more
information.

Authorization
Services

Core Foundation supports basic data types and eliminates the need for you to
implement string and collection data types, among others. Both Carbon and Cocoa
support the Core Foundation data types, which makes it easier for you to integrate
them into your own data structures. See Getting Started with Core Foundation for
more information.

Core Foundation

WebKit provides a reliable, standards-based mechanism for rendering HTML content
(including JavaScript code) in your application.

WebKit

Adaptability

An adaptable program is one that adjusts appropriately to its surroundings; that is, it does not stop working
when the current conditions change. If a network connection goes down, an adaptable program lets the
user continue to work offline. Similarly, if certain resources are locked or become unavailable, an adaptable
program finds other ways to meet the user’s request.

One of the strengths of Mac OS X is its ability to adapt to configuration changes quickly and easily. For
example, if the user changes a computer’s network configuration from the system preferences, the changes
are automatically picked up by applications such as Safari and Mail, which use CFNetwork to handle network
configuration changes automatically.

Table 7-5 lists some Mac OS X technologies that you can use to improve the overall adaptability of your
software.

Table 7-5 Technologies for achieving adaptability

DescriptionTechnology

The FSEvents API lets you detect changes to the file system easily and efficiently.
You might use this technology to update your application’s internal data structures
whenever changes occur to specific directories or directory hierarchies. For more
information, see “FSEvents API” (page 33).

FSEvents API

Core Foundation provides services for managing date, time, and number formats
based on any locale. See Reference Library > Core Foundation for specific reference
documents.

Core Foundation

98 Adaptability
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

DescriptionTechnology

Quartz Services provides access to screen information and provides notifications
when screen information changes. See Quartz Display Services Reference for more
information.

Quartz Services

Bonjour simplifies the process of configuring and detecting network services. Your
program can vend network services or use Bonjour to be a client of an existing
network service. For more information, see “Bonjour” (page 61).

Bonjour

The System Configuration framework provides information about availability of
network entities. See System Configuration Framework Reference and System
Configuration Programming Guidelines for more information.

System Configuration

Interoperability

Interoperability refers to a program’s ability to communicate across environments. This communication can
occur at either the user or the program level and can involve processes on the current computer or on remote
computers. At the program level, an interoperable program supports ways to move data back and forth
between itself and other programs. It might therefore support the pasteboard and be able to read file formats
from other programs on either the same or a different platform. It also makes sure that the data it creates
can be read by other programs on the system.

Users see interoperability in features such as the pasteboard (the Clipboard in the user interface), drag and
drop, AppleScript, Bonjour, and services in the Services menu. All of these features provide ways for the user
to get data into or out of an application.

Table 7-6 lists some Mac OS X technologies that you can use to improve the interoperability of your software.

Table 7-6 Technologies for achieving interoperability

DescriptionTechnology

AppleScript is a scripting system that gives users direct control over your application as
well as parts of Mac OS X. See AppleScript Overview for information on supporting
AppleScript.

AppleScript

Although primarily implemented in applications, you can add drag and drop support to
any program with a user interface. See Drag Manager Reference or Drag and Drop
Programming Topics for Cocoa for information on how to integrate drag and drop support
into your program.

Drag and drop

Both Carbon and Cocoa support cut, copy, and paste operations through the pasteboard.
See the Pasteboard.h header file in the HIServices framework or PasteboardProgramming
Topics for Cocoa for information on how to support the pasteboard in your program.

Pasteboard

Your program can vend network services or use Bonjour to be a client of an existing
network service. For more information, see “Bonjour” (page 61).

Bonjour

Interoperability 99
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

DescriptionTechnology

Services let the user perform a specific operation in your application using data on the
pasteboard. Services use the pasteboard to exchange data but act on that data in a more
focused manner than a standard copy-and-paste operation. For example, a service might
create a new mail message and paste the data into the message body. See Setting Up Your
CarbonApplication toUse the ServicesMenu or Services ImplementationGuide for information
on setting up an application to use services.

Services

XML is a structured format that can be used for data interchange. Mac OS X provides
extensive support for reading, writing, and parsing XML data. For more information, see
“XML Parsing Libraries” (page 70).

XML

Mobility

Designing for mobility has become increasingly important as laptop usage soars. A program that supports
mobility doesn’t waste battery power by polling the system or accessing peripherals unnecessarily, nor does
it break when the user moves from place to place, changes monitor configurations, puts the computer to
sleep, or wakes the computer up.

To support mobility, programs need to be able to adjust to different system configurations, including network
configuration changes. Many hardware devices can be plugged in and unplugged while the computer is still
running. Mobility-aware programs should respond to these changes gracefully. They should also be sensitive
to issues such as power usage. Constantly accessing a hard drive or optical drive can drain the battery of a
laptop quickly. Be considerate of mobile users by helping them use their computer longer on a single battery
charge.

Table 7-7 lists some Mac OS X technologies that you can use to improve the mobility of your software.

Table 7-7 Technologies for achieving mobility

DescriptionTechnology

An efficient application uses fewer instructions to compute its data. On portable
computers, this improved efficiency translates to power savings and a longer battery
life. You should strive to make your applications as efficient as possible using the
available system technologies and tools. For more information, see “High
Performance” (page 93).

Performance

CFNetwork provides a modern interface for accessing network services and handling
changes in the network configuration. See CFNetwork Programming Guide for an
introduction to the CFNetwork API.

CFNetwork

Quartz Services provides access to screen information and provides notifications
when screen information changes. See Quartz Display Services Reference for
information about the API.

Quartz Services

Bonjour lets mobile users find services easily or vend their own services for others
to use. For more information, see “Bonjour” (page 61).

Bonjour

100 Mobility
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

DescriptionTechnology

The System Configuration framework is the foundation for Apple’s mobility
architecture. You can use its interfaces to get configuration and status information
for network entities. It also sends out notifications when the configuration or status
changes. See System Configuration Programming Guidelines for more information.

System
Configuration

Mobility 101
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

102 Mobility
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Choosing Technologies to Match Your Design Goals

Although many applications have been created from scratch for Mac OS X, many more have been ported
from existing Windows, UNIX, or Mac OS 9 applications. With the introduction of the G5 processor, some
application developers are even taking the step of porting their 32-bit applications to the 64-bit memory
space offered by the new architecture.

The Reference Library > Porting section of the Apple Developer Connection Reference Library contains
documents to help you in your porting efforts. The following sections also provide general design guidelines
to consider when porting software to Mac OS X.

64-Bit Considerations

With Macintosh computers using 64-bit PowerPC and Intel processors, developers can begin writing software
to take advantage of the 64-bit architecture provided by these chips. For many developers, however, compiling
their code into 64-bit programs may not offer any inherent advantages. Unless your program needs more
than 4 GB of addressable memory, supporting 64-bit pointers may only reduce the performance of your
application.

When you compile a program for a 64-bit architecture, the compiler doubles the size of all pointer variables.
This increased pointer size makes it possible to address more than 4 GB of memory, but it also increases the
memory footprint of your application. If your application does not take advantage of the expanded memory
limits, it may be better left as a 32-bit program.

Regardless of whether your program is currently 32-bit or 64-bit, there are some guidelines you should follow
to make your code more interoperable with other programs. Even if you don’t plan to implement 64-bit
support soon, you may need to communicate with 64-bit applications. Unless you are explicit about the data
you exchange, you may run into problems. The following guidelines are good to observe regardless of your
64-bit plans.

 ■ Avoid casting pointers to anything but a pointer. Casting a pointer to a scalar value has different results
for 32-bit and 64-bit programs. These differences could be enough to break your code later or cause
problems when your program exchanges data with other programs.

 ■ Be careful not to make assumptions about the size of pointers or other scalar data types. If you want to
know the size of a type, always use the sizeof (or equivalent) operator.

 ■ If you write integer values to a file, make sure your file format specifies the exact size of the value. For
example, rather than assume the generic type int is 32 bits, use the more explicit types SInt32 or
int32_t, which are guaranteed to be the correct size.

 ■ If you exchange integer data with other applications across a network, make sure you specify the exact
size of the integer.

There are several documents to help you create 64-bit applications. For general information about making
the transition, see 64-Bit TransitionGuide. For Cocoa-specific information, see 64-Bit TransitionGuide for Cocoa.
For Carbon-specific information, see 64-Bit Guide for Carbon Developers.

64-Bit Considerations 103
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

.

Windows Considerations

If you are a Windows developer porting your application to Mac OS X, be prepared to make some changes
to your application as part of your port. Applications in Mac OS X have an appearance and behavior that are
different from Windows applications in many respects. Unless you keep these differences in mind during the
development cycle, your application may look out of place in Mac OS X.

The following list provides some guidelines related to the more noticeable differences between Mac OS X
and Windows applications. This list is not exhaustive but is a good starting point for developers new to Mac
OS X. For detailed information on how your application should look and behave in Mac OS X, see Apple
Human Interface Guidelines. For general porting information, see Porting to Mac OS X fromWindows Win32
API.

 ■ Avoid custom controls. Avoid creating custom controls if Mac OS X already provides equivalent controls
for your needs. Custom controls are appropriate only in situations where the control is unique to your
needs and not provided by the system. Replacing standard controls can make your interface look out
of place and might confuse users.

 ■ Use a single menu bar. The Mac OS X menu bar is always at the top of the screen and always contains
the commands for the currently active application. You should also pay attention to the layout and
placement of menu bar commands, especially commonly used commands such as New, Open, Quit,
Copy, Minimize, and Help.

 ■ Pay attention to keyboard shortcuts. Mac OS X users are accustomed to specific keyboard shortcuts
and use them frequently. Do not simply migrate the shortcuts from your Windows application to your
Mac OS X application. Also remember that Mac OS X uses the Command key not the Control key as the
main keyboard modifier.

 ■ Do not use MDI. The Multiple Document Interface (MDI) convention used in Microsoft Windows directly
contradicts Mac OS X design guidelines. Windows in Mac OS X are document-centric and not
application-centric. Furthermore, the size of a document window is constrained only by the user’s desktop
size.

 ■ Use Aqua. Aqua gives Mac OS X applications the distinctive appearance and behavior that users expect
from the platform. Using nonstandard layouts, conventions, or user interface elements can make your
application seem unpolished and unprofessional.

 ■ Design high-quality icons and images. Mac OS X icons are often displayed in sizes varying from 16x16
to 512x512 pixels. These icons are usually created professionally, with millions of colors and photo-realistic
qualities. Your application icons should be vibrant and inviting and should immediately convey your
application’s purpose.

 ■ Design clear and consistent dialogs. Use the standard Open, Save, printing, Colors, and Font dialogs
in your applications. Make sure alert dialogs follow a consistent format, indicating what happened, why
it happened, and what to do about it.

 ■ Consider toolbars carefully. Having a large number of buttons, especially in an unmovable toolbar,
contributes to visual clutter and should be avoided. When designing toolbars, include icons only for
menu commands that are not easily discoverable or that may require multiple clicks to be reached.

 ■ Use an appropriate layout for your windows. The Windows user interface relies on a left-biased, more
crowded layout, whereas Aqua relies on a center-biased, spacious layout. Follow the Aqua guidelines to
create an appealing and uncluttered interface that focuses on the task at hand.

104 Windows Considerations
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

 ■ Avoid application setup steps. Whenever possible, Mac OS X applications should be delivered as
drag-and-drop packages. If you need to install files in multiple locations, use an installation package to
provide a consistent installation experience for the user. If your application requires complex setup
procedures in order to run, use a standard Mac OS X assistant. For more information, see “Bundles and
Packages” (page 73).

 ■ Use filename extensions. Mac OS X fully supports and uses filename extensions. For more information
about filename extensions, see File System Overview.

Carbon Considerations

If you develop your software using Carbon, there are several things you can do to make your programs work
better in Mac OS X. The following sections list migration tips and recommendations for technologies you
should be using.

Migrating From Mac OS 9

If you were a Mac OS 9 developer, the Carbon interfaces should seem very familiar. However, improvements
in Carbon have rendered many older technologies obsolete. The sections that follow list both the required
and the recommended replacement technologies you should use instead.

Required Replacement Technologies

The technologies listed in Table 8-1 cannot be used in Carbon. You must use the technology in the “Now
use” column instead.

Table 8-1 Required replacements for Carbon

Now useInstead of

I/O KitAny device manager

Apple HelpApple Guide

BSD sockets or CFNetworkAppleTalk Manager

Carbon Help ManagerHelp Manager

Apple eventsPPC Toolbox

Core Printing ManagerPrinting Manager

OpenGLQuickDraw 3D

Quartz and Apple Type Services for Unicode Imaging (ATSUI)QuickDraw GX

Navigation ServicesStandard File Package

Time ManagerVertical Retrace Manager

Carbon Considerations 105
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

Recommended Replacement Technologies

The technologies listed in Table 8-2 can still be used in Carbon, but the indicated replacements provide more
robust support and are preferred.

Table 8-2 Recommended replacements for Carbon

Now useInstead of

Quartz ServicesDisplay Manager

Carbon Event ManagerEvent Manager

Apple Type Services for FontsFont Manager

Launch Services and System ConfigurationInternet Config

BSD sockets or CFNetworkOpen Transport

Quartz 2DQuickDraw

Core TextQuickDraw Text

Interface Builder ServicesResource Manager

Unicode UtilitiesScript Manager

Multilingual Text EngineTextEdit

CFNetworkURL Access Manager

Use the Carbon Event Manager

Use of the Carbon Event Manager is strongly recommended for new and existing Carbon applications. The
Carbon Event Manager provides a more robust way to handle events than the older Event Manager interfaces.
For example, the Carbon Event Manager uses callback routines to notify your application when an event
arrives. This mechanism improves performance and offers better mobility support by eliminating the need
to poll for events.

For an overview of how to use the Carbon Event Manager, see Carbon Event Manager Programming Guide.

Use the HIToolbox

The Human Interface Toolbox is the technology of choice for implementing user interfaces with Carbon. The
HIToolbox extends the Macintosh Toolbox and offers an object-oriented approach to organizing the content
of your application windows. This new approach to user interface programming is the future direction for
Carbon and is where new development and improvements are being made. If you are currently using the
Control Manager and Window Manager, you should consider adopting the HIToolbox.

106 Carbon Considerations
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

Note: The HIToolbox interfaces are available for creating 32-bit applications only. If you are creating 64-bit
applications, you should use Cocoa for your user interface instead.

For an overview of HIView and other HIToolbox objects, see the documents in Reference Library > Carbon
> Human Interface Toolbox.

Use Nib Files

Nib files, which you create with Interface Builder, are the best way to design your application interface. The
design and layout features of Interface Builder will help you create Aqua-compliant windows and menus.
Even if you do not plan to load the nib file itself, you can still use the metrics from this file in your application
code.

For information about using Interface Builder, see Interface Builder User Guide.

Carbon Considerations 107
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

108 Carbon Considerations
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Porting Tips

A command-line interface is a way for you to manipulate your computer in situations where a graphical
approach is not available. The Terminal application is the Mac OS X gateway to the BSD command-line
interface. Each window in Terminal contains a complete execution context, called a shell, that is separate
from all other execution contexts. The shell itself is an interactive programming language interpreter, with
a specialized syntax for executing commands and writing structured programs, called shell scripts. A shell
remains active as long as its Terminal window remains open.

Different shells feature slightly different capabilities and programming syntax. Although you can use any
shell of your choice, the examples in this book assume that you are using the standard Mac OS X shell. The
standard shell is bash if you are running Mac OS X v10.3 or later and tcsh if you are running an earlier version
of the operating system.

The following sections provide some basic information and tips about using the command-line interface
more effectively; they are not intended as an exhaustive reference for using the shell environments.

Basic Shell Concepts

Before you start working in any shell environment, there are some basic features of shell programming that
you should understand. Some of these features are specific to Mac OS X, but many are common to all platforms
that support shell programming.

Getting Information

At the command-line level, most documentation comes in the form of man pages. These are formatted pages
that provide reference information for many shell commands, programs, and high-level concepts. To access
one of these pages, you type the man command followed by the name of the thing you want to look up. For
example, to look up information about the bash shell, you would type man bash. The man pages are also
included in the ADC Reference Library. For more information, see Mac OS X Man Pages.

Note: Not all commands and programs have man pages. For a list of available man pages, look in the
/usr/share/man directory.

Most shells have a command or man page that displays the list of built-in commands. Table A-1 lists the
available shells in Mac OS X along with the ways you can access the list of built-in commands for the shell.

Table A-1 Getting a list of built-in commands

CommandShell

help or bashbash

Basic Shell Concepts 109
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

CommandShell

help or shsh

builtins or cshcsh

builtins or tcshtcsh

zshbuiltinszsh

Specifying Files and Directories

Most commands in the shell operate on files and directories, the locations of which are identified by paths.
The directory names that comprise a path are separated by forward-slash characters. For example, the path
to the Terminal program is /Applications/Utilities/Terminal.app.

Table A-2 lists some of the standard shortcuts used to represent specific directories in the system. Because
they are based on context, these shortcuts eliminate the need to type full paths in many situations.

Table A-2 Special path characters and their meaning

DescriptionPath string

A single period represents the current directory. This value is often used as a shortcut to
eliminate the need to type in a full path. For example, the string “./Test.c” represents the
Test.c file in the current directory.

.

Two periods represents the parent directory of the current directory. This string is used for
navigating up one level from the current through the directory hierarchy. For example, the
string “../Test” represents a sibling directory (named Test) of the current directory.

..

The tilde character represents the home directory of the currently logged-in user. In Mac OS
X, this directory either resides in the local /Users directory or on a network server. For
example, to specify the Documents directory of the current user, you would specify
~/Documents.

~

File and directory names traditionally include only letters, numbers, a period (.), or the underscore character
(_). Most other characters, including space characters, should be avoided. Although some Mac OS X file
systems permit the use of these other characters, including spaces, you may have to add single or double
quotation marks around any pathnames that contain them. For individual characters, you can also “escape”
the character, that is, put a backslash character (\) immediately before the character in your string. For
example, the path name My Disk would become either "My Disk" or My\ Disk.

Accessing Files on Volumes

On a typical UNIX system, the storage provided by local disk drives is coalesced into a single monolithic file
system with a single root directory. This differs from the way the Finder presents local disk drives, which is
as one or more volumes, with each volume acting as the root of its own directory hierarchy. To satisfy both
worlds, Mac OS X includes a hidden directory Volumes at the root of the local file system. This directory
contains all of the volumes attached to the local computer. To access the contents of other local volumes,

110 Basic Shell Concepts
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

you should always add the volume path at the beginning of the remaining directory information. For example,
to access the Applications directory on a volume named MacOSX, you would use the path
/Volumes/MacOSX/Applications

Note: To access files on the boot volume, you are not required to add volume information, since the root
directory of the boot volume is /. Including the information still works, though, and is consistent with how
you access other volumes. You must include the volume path information for all other volumes.

Flow Control

Many programs are capable of receiving text input from the user and printing text out to the console. They
do so using the standard pipes (listed in Table A-3), which are created by the shell and passed to the program
automatically.

Table A-3 Input and output sources for programs

DescriptionPipe

The standard input pipe is the means through which data enters a program. By default, this is
data typed in by the user from the command-line interface. You can also redirect the output
from files or other commands to stdin.

stdin

The standard output pipe is where the program output is sent. By default, program output is
sent back to the command line. You can also redirect the output from the program to other
commands and programs.

stdout

The standard error pipe is where error messages are sent. By default, errors are displayed on the
command line like standard output.

stderr

Redirecting Input and Output

From the command line you may redirect input and output from a program to a file or another program.
You use the greater-than (>) character to redirect command output to a file and the less-than (<) character
to use a file as input to the program. Redirecting file output lets you capture the results of running the
command in the file system and store it for later use. Similarly, providing an input file lets you provide a
program with preset input data, instead of requiring the user to type in that data.

In addition to file redirection, you can also redirect the output of one program to the input of another using
the vertical bar (|) character. You can combine programs in this manner to implement more sophisticated
versions of the same programs. For example, the command man bash | grep "builtin commands"
redirects the formatted contents of the specified man page to the grep program, which searches those
contents for any lines containing the word “commands”. The result is a text listing of only those lines with
the specified text, instead of the entire man page.

For more information about flow control, see the man page for the shell you are using.

Basic Shell Concepts 111
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

Terminating Programs

To terminate the current running program from the command line, type Control-C. This keyboard shortcut
sends an abort signal to the current command. In most cases this causes the command to terminate, although
commands may install signal handlers to trap this command and respond differently.

Frequently Used Commands

Shell programming involves a mixture of built-in shell commands and standard programs that run in all
shells. While most shells offer the same basic set of commands, there are often variations in the syntax and
behavior of those commands. In addition to the shell commands, Mac OS X also provides a set of standard
programs that run in all shells.

Table A-4 lists some of the more commonly used commands and programs. Because most of the items in
this table are not built-in shell commands, you can use them from any shell. For syntax and usage information
for each command, see the corresponding man page. For a more in-depth list of commands and their
accompanying documentation, see Mac OS X Man Pages.

Table A-4 Frequently used commands and programs

DescriptionMeaningCommand

Catenates the specified list of files to stdout.Catenatecat

A common shell command used to navigate the directory hierarchy.Change Directorycd

Copies files and directories (using the -r option) from one location to
another.

Copycp

Displays the current date and time using the standard format. You
can display this information in other formats by invoking the command
with specific arguments.

Datedate

Writes its arguments to stdout. This command is most often used in
shell scripts to print status information to the user.

Echo to Outputecho

Used to scroll through the contents of a file or the results of another
shell command. This command allows forward and backward
navigation through the text.

Scroll Through Textless

Displays the contents of the current directory. Specify the -a argument
to list all directory contents (including hidden files and directories).
Use the -l argument to display detailed information for each entry.

Listls

Creates a new directory.Make Directorymkdir

Similar to the less command but more restrictive. Allows forward
scrolling through the contents of a file or the results of another shell
command.

Scroll Through Textmore

Moves files and directories from one place to another. You also use
this command to rename files and directories.

Movemv

112 Frequently Used Commands
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

DescriptionMeaningCommand

You can use this command to launch applications from Terminal and
optionally open files in that application.

Open an application
or file.

open

Displays the full path of the current directory.Print Working
Directory

pwd

Deletes the specified file or files. You can use pattern matching
characters (such as the asterisk) to match more than one file. You can
also remove directories with this command, although use of rmdir
is preferred.

Removerm

Deletes a directory. The directory must be empty before you delete
it.

Remove Directoryrmdir

Sends an abort signal to the current command. In most cases this
causes the command to terminate, although commands may install
signal handlers to trap this command and respond differently.

AbortCtrl-C

Environment Variables

Some programs require the use of environment variables for their execution. Environment variables are
variables inherited by all programs executed in the shell’s context. The shell itself uses environment variables
to store information such as the name of the current user, the name of the host computer, and the paths to
any executable programs. You can also create environment variables and use them to control the behavior
of your program without modifying the program itself. For example, you might use an environment variable
to tell your program to print debug information to the console.

To set the value of an environment variable, you use the appropriate shell command to associate a variable
name with a value. For example, in the bash shell, to set the variable MYFUNCTION to the value MyGetData
in the global shell environment you would type the following command in a Terminal window:

% export MYFUNCTION=MyGetData

When you launch an application from a shell, the application inherits much of its parent shell’s environment,
including any exported environment variables. This form of inheritance can be a useful way to configure the
application dynamically. For example, your application can check for the presence (or value) of an environment
variable and change its behavior accordingly. Different shells support different semantics for exporting
environment variables, so see the man page for your preferred shell for further information.

Although child processes of a shell inherit the environment of that shell, shells are separate execution contexts
and do not share environment information with one another. Thus, variables you set in one Terminal window
are not set in other Terminal windows. Once you close a Terminal window, any variables you set in that
window are gone. If you want the value of a variable to persist between sessions and in all Terminal windows,
you must set it in a shell startup script.

Another way to set environment variables in Mac OS X is with a special property list in your home directory.
At login, the system looks for the following file:

~/.MacOSX/environment.plist

Environment Variables 113
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

If the file is present, the system registers the environment variables in the property-list file. For more
information on configuring environment variables, see Runtime Configuration Guidelines.

Running Programs

To run a program in the shell, you must type the complete pathname of the program’s executable file,
followed by any arguments, and then press the Return key. If a program is located in one of the shell’s known
directories, you can omit any path information and just type the program name. The list of known directories
is stored in the shell’s PATH environment variable and includes the directories containing most of the
command-line tools.

For example, to run the ls command in the current user’s home directory, you could simply type it at the
command line and press the Return key.

host:~ steve$ ls

If you wanted to run a tool in the current user’s home directory, however, you would need to precede it with
the directory specifier. For example, to run the MyCommandLineProgram tool, you would use something
like the following:

host:~ steve$./MyCommandLineProgram

To launch an application package, you can either use the open command (open MyApp.app) or launch the
application by typing the pathname of the executable file inside the package, usually something like
./MyApp.app/Contents/MacOS/MyApp.

114 Running Programs
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Command Line Primer

This appendix contains information about the frameworks of Mac OS X. These frameworks provide the
interfaces you need to write software for the platform. Some of these frameworks contain simple sets of
interfaces while others contain multiple subframeworks. Where applicable, the tables in this appendix list
any key prefixes used by the classes, methods, functions, types, or constants of the framework. You should
avoid using any of the specified prefixes in your own symbol names.

System Frameworks

Table B-1 describes the frameworks located in the /System/Library/Frameworks directory and lists the
first version of Mac OS X in which each became available.

Table B-1 System frameworks

DescriptionPrefixesFirst
available

Name

Umbrella framework for vector-optimized
operations. See “Accelerate Framework” (page
121).

cblas,
vDSP, vv

10.3Accelerate.framework

Contains functions for creating and accessing a
systemwide database of contact information.

AB, ABV10.2AddressBook.framework

Contains Carbon interfaces for OpenGL.AGL, GL,
glm, GLM,
glu, GLU

10.0AGL.framework

Contains classes and methods for the Cocoa
user-interface layer. In general, link to
Cocoa.framework instead of this framework.

NS10.0AppKit.framework

Deprecated. Use AppKit.framework instead.N/A10.0AppKit-
Scripting.framework

Contains interfaces for creating AppleScript
plug-ins.

ASK10.0AppleScriptKit.framework

Contains Objective-C extensions for creating
AppleScript plug-ins.

NS10.6AppleScriptObj-
C.framework

Deprecated. Use NetFS.framework instead.AFP10.0AppleShare-
Client.framework

System Frameworks 115
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Contains utilities for handling URLs in
AppleShare clients.

AFP10.0AppleShareClient-
Core.framework

Deprecated. Do not use.N/A10.0AppleTalk.framework

Umbrella framework for several application-level
services. See “Application Services
Framework” (page 121).

AE, AX,
ATSU, CG,
CT, LS, PM,
QD, UT

10.0Application-
Services.framework

Contains interfaces for getting audio stream
data, routing audio signals through audio units,
converting between audio formats, and playing
back music.

AU, AUMIDI10.0AudioToolbox.framework

Contains interfaces for defining Core Audio
plug-ins.

AU10.0AudioUnit.framework

Umbrella framework for creating Automator
plug-ins. See “Automator Framework” (page 122).

AM10.4Automator.framework

Contains interfaces for managing iCal calendar
data.

Cal10.5CalendarStore.framework

Umbrella framework for Carbon-level services.
See “Carbon Framework” (page 122).

HI, HR, ICA,
ICD, Ink,
Nav, OSA,
PM, SFS,SR

10.0Carbon.framework

Wrapper for including the Cocoa frameworks
AppKit.framework,Foundation.framework,
and CoreData.framework.

NS10.0Cocoa.framework

Contains interfaces for managing identity
information.

CB10.5Collaboration.framework

Contains the hardware abstraction layer interface
for manipulating audio.

Audio10.0CoreAudio.framework

Contains Objective-C interfaces for audio unit
custom views.

AU10.4CoreAudioKit.framework

Contains interfaces for managing your
application’s data model.

NS10.4CoreData.framework

Provides fundamental software services,
including abstractions for common data types,
string utilities, collection utilities, plug-in
support, resource management, preferences,
and XML parsing.

CF10.0CoreFoundation.framework

116 System Frameworks
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Provides interfaces for determining the
geographical location of a computer.

CL10.6CoreLocation.framework

Contains utilities for implementing MIDI client
programs.

MIDI10.0CoreMIDI.framework

Contains interfaces for creating MIDI drivers to
be used by the system.

MIDI10.0CoreMIDIServer.framework

Umbrella framework for system-level services.
See “Core Services Framework” (page 123).

CF, DCS, MD,
SK, WS

10.0CoreServices.framework

Contains interfaces for managing video-based
content.

CV10.5CoreVideo.framework

Contains interfaces for managing wireless
networks.

CW10.6CoreWLAN.framework

Contains interfaces for supporting
network-based lookup and directory services in
your application. You can also use this
framework to develop directory service plug-ins.

ds10.0Directory-
Service.framework

Contains interfaces for burning data to CDs and
DVDs.

DR10.2DiscRecording.framework

Contains the user interface layer for interacting
with users during the burning of CDs and DVDs.

DR10.2DiscRecording-
UI.framework

Contains interfaces for monitoring and
responding to hard disk events.

DA10.4Disk-
Arbitration.framework

Contains the game sprocket component for
drawing content to the screen.

DSp10.0DrawSprocket.framework

Contains interfaces for communicating with
digital video devices, such as video cameras.

IDH10.0DVComponent-
Glue.framework

Contains interfaces for embedding DVD playback
features into your application.

DVD10.3DVDPlayback.framework

Contains exception-handling classes for Cocoa
applications.

NS10.0Exception-
Handling.framework

Contains interfaces for communicating with
force feedback–enabled devices.

FF10.2ForceFeedback.framework

Contains the classes and methods for the Cocoa
Foundation layer. If you are creating a Cocoa
application, linking to the Cocoa framework is
preferable.

NS10.0Foundation.framework

System Frameworks 117
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Contains interfaces for communicating with
FireWire-based audio devices.

FWA10.2FWAUserLib.framework

Contains interfaces for the OpenGL Utility
Toolkit, which provides a platform-independent
interface for managing windows.

glut, GLUT10.0GLUT.framework

Contains low-level interfaces for communicating
with digital devices such as scanners and
cameras. See also, “Carbon Framework” (page
122).

ICD10.3ICADevices.framework

Contains Objective-C interfaces for
communicating with digital devices such as
scanners and cameras.

IC10.6ImageCapture-
Core.framework

Do not use.IM10.6IMCore.framework

Contains interfaces for developing new input
methods, which are modules that handle text
entry for complex languages.

IMK10.5InputMethodKit.framework

Contains interfaces for creating plug-ins that run
during software installation sessions.

IFX10.4Installer-
Plugins.framework

Contains interfaces for obtaining the online
status of an instant messaging user.

FZ, IM10.4InstantMessage.framework

Contains interfaces for communicating with
Bluetooth devices.

IO10.2IOBluetooth.framework

Contains the user interface layer for interacting
with users manipulating Bluetooth devices.

IO10.2IOBluetoothUI.framework

Contains the main interfaces for creating
user-space device drivers and for interacting
with kernel-resident drivers from user space.

IO, IOBSD,
IOCF

10.0IOKit.framework

Contains low-level interfaces for sharing graphics
surfaces between applications.

IO10.6IOSurface.framework

Do not use.N/A10.0JavaEmbedding.framework

Contains interfaces for embedding Java frames
in Objective-C code.

N/A10.5JavaFrame-
Embedding.framework

Contains the library and resources for executing
JavaScript code within an HTML page. (Prior to
Mac OS X v10.5, this framework was part of
WebKit.framework.

JS10.5JavaScriptCore.framework

118 System Frameworks
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Contains the system’s Java Development Kit
resources.

JAWT, JDWP,
JMM, JNI,
JVMDI,
JVMPI,
JVMTI

10.0JavaVM.framework

Contains interfaces for using the Kerberos
network authentication protocol.

GSS, KL,
KRB, KRB5

10.0Kerberos.framework

Contains the interfaces for kext development,
including Mach, BSD, libkern, I/O Kit, and the
various families built on top of I/O Kit.

numerous10.0Kernel.framework

Contains interfaces for classifying text based on
latent semantic information.

LSM10.5LatentSemantic-
Mapping.framework

Do not use.N/A10.0LDAP.framework

Contains Cocoa extensions for mail delivery.AS, MF, PO,
POP, RSS,
TOC, UR, URL

10.0Message.framework

Contains interfaces for working with network
file systems.

NetFS10.6NetFS.framework

Contains the interfaces for OpenAL, a
cross-platform 3D audio delivery library.

AL10.4OpenAL.framework

Contains the interfaces for distributing
general-purpose computational tasks across the
available GPUs and CPUs of a computer.

CL, cl10.6OpenCL.framework

Contains Objective-C interfaces for managing
Open Directory information.

OD10.6OpenDirectory.framework

Contains the interfaces for OpenGL, which is a
cross-platform 2D and 3D graphics rendering
library.

CGL, GL,
glu, GLU

10.0OpenGL.framework

Contains Objective-C interfaces for managing
and executing OSA-compliant scripts from your
Cocoa applications.

OSA10.4OSAKit.framework

Contains interfaces for interacting with smart
card devices.

MSC, Scard,
SCARD

10.0PCSC.framework

Contains interfaces for implementing custom
modules for the System Preferences application.

NS10.0Preference-
Panes.framework

Contains interfaces for subscribing to RSS and
Atom feeds.

PS10.5PubSub.framework

System Frameworks 119
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Contains the open source Python scripting
language interfaces.

Py10.3Python.framework

Contains Objective-C interfaces for manipulating
QuickTime content.

QT10.4QTKit.framework

Umbrella framework for Quartz services. See
“Quartz Framework” (page 124)

GF, PDF, QC,
QCP

10.4Quartz.framework

Contains the interfaces for Core Image, Core
Animation, and Core Video.

CA,CI, CV10.4QuartzCore.framework

Contains interfaces for generating thumbnail
previews of documents.

QL10.5QuickLook.framework

Contains interfaces for embedding QuickTime
multimedia into your application.

N/A10.0QuickTime.framework

Contains interfaces for the Ruby scripting
language.

N/A10.5Ruby.framework

Contains interfaces for running Ruby scripts from
Objective-C code.

RB10.5RubyCocoa.framework

Contains interfaces for writing screen savers.N/A10.0ScreenSaver.framework

Deprecated. Use Foundation.framework
instead.

NS10.0Scripting.framework

Contains interfaces for running scripts from
Objective-C code.

SB10.5Scripting-
Bridge.framework

Contains interfaces for system-level user
authentication and authorization.

CSSM, Sec10.0Security.framework

Contains Cocoa interfaces for authorizing users.Sec10.3Security-
Foundation.framework

Contains the user interface layer for authorizing
users in Cocoa applications.

PSA, SF10.3Security-
Interface.framework

Contains Objective-C interfaces for sending and
receiving server-based notifications.

NS10.6Server-
Notification.framework

Contains interfaces for managing the work
performed by services.

SM10.6Service-
Management.framework

Contains the interfaces for synchronizing
application data with a central database.

ISync10.4SyncServices.framework

Do not use.N/A10.0System.framework

120 System Frameworks
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Name

Contains interfaces for accessing system-level
configuration information.

SC10.0System-
Configuration.framework

Contains interfaces for accessing the system’s
Tcl interpreter from an application.

Tcl10.3Tcl.framework

Contains interfaces for accessing the system’s
Tk toolbox from an application.

Tk10.4Tk.framework

Contains interfaces for accessing
TWAIN-compliant image-scanning hardware.

TW10.2TWAIN.framework

Deprecated. Use Accelerate.framework
instead. See “Accelerate Framework” (page 121).

N/A10.0vecLib.framework

Umbrella framework for rendering HTML
content. See “WebKit Framework” (page 125).

DOM, Web10.2WebKit.framework

Contains interfaces for connecting to and
managing computing cluster software.

XG10.4Xgrid-
Foundation.framework

Mac OS X contains several umbrella frameworks for major areas of functionality. Umbrella frameworks group
several related frameworks into a larger framework that can be included in your project. When writing
software, link your project against the umbrella framework; do not try to link directly to any of its
subframeworks.The following sections describe the contents of the umbrella frameworks in Mac OS X.

Accelerate Framework

Table B-2 lists the subframeworks of the Accelerate framework (Accelerate.framework). This framework
was introduced in Mac OS X version 10.3. If you are developing applications for earlier versions of Mac OS X,
vecLib.framework is available as a standalone framework.

Table B-2 Subframeworks of the Accelerate framework

DescriptionSubframework

Contains vector-optimized interfaces for performing math, big-number, and DSP
calculations, among others.

vecLib.framework

Contains vector-optimized interfaces for manipulating image data.vImage.framework

Application Services Framework

Table B-3 lists the subframeworks of the Application Services framework
(ApplicationServices.framework). These frameworks provide C-based interfaces and are intended
primarily for Carbon applications, although other programs can use them. The listed frameworks are available
in all versions of Mac OS X unless otherwise noted.

System Frameworks 121
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

Table B-3 Subframeworks of the Application Services framework

DescriptionSubframework

Contains interfaces for font layout and management using Apple Type
Services.

ATS.framework

Contains interfaces for color matching using ColorSync.ColorSync.framework

Contains the Quartz interfaces for creating graphic content and
rendering that content to the screen.

CoreGraphics.framework

Contains the interfaces for performing text layout and display. Available
in Mac OS X v10.5 and later.

CoreText.framework

Contains interfaces for accessibility, Internet Config, the pasteboard,
the Process Manager, and the Translation Manager. Available in Mac
OS X 10.2 and later.

HIServices.framework

Contains interfaces for importing and exporting image data. Prior to
Mac OS X v10.5, these interfaces were part of the CoreGraphics
subframework.

ImageIO.framework

Contains the Language Analysis Manager interfaces.LangAnalysis.framework

Contains the Core Printing Manager interfaces.PrintCore.framework

Contains the QuickDraw interfaces.QD.framework

Contains the Speech Manager interfaces.SpeechSynthesis.framework

Automator Framework

Table B-4 lists the subframeworks of the Automator framework (Automator.framework). This framework
was introduced in Mac OS X version 10.4.

Table B-4 Subframeworks of the Automator framework

DescriptionSubframework

Contains private interfaces for managing Automator plug-ins.MediaBrowser.framework

Carbon Framework

Table B-5 lists the subframeworks of the Carbon framework (Carbon.framework). The listed frameworks
are available in all versions of Mac OS X unless otherwise noted.

122 System Frameworks
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

Table B-5 Subframeworks of the Carbon framework

DescriptionSubframework

Contains the Sound Manager interfaces. Whenever possible, use Core
Audio instead.

CarbonSound.framework

Contains interfaces for displaying the Font window, Color window, and
some network-related dialogs.

CommonPanels.framework

Contains interfaces for launching and searching Apple Help.Help.framework

Contains interfaces for the Carbon Event Manager, HIToolbox object,
and other user interface–related managers.

HIToolbox.framework

Contains interfaces for rendering HTML content. For Mac OS X version
10.2 and later, the WebKit framework is the preferred framework for
HTML rendering. See “WebKit Framework” (page 125).

HTMLRendering.framework

Contains interfaces for capturing images from digital cameras. This
framework works in conjunction with the Image Capture Devices
framework (ICADevices.framework).

ImageCapture.framework

Contains interfaces for managing pen-based input. (Ink events are
defined with the Carbon Event Manager.) Available in Mac OS X version
10.3 and later.

Ink.framework

Contains interfaces for displaying file navigation dialogs.Navigation-
Services.framework

Contains interfaces for writing scripting components and interacting
with those components to manipulate and execute scripts.

OpenScripting.framework

Contains the Carbon Printing Manager interfaces for displaying printing
dialogs and extensions.

Print.framework

Contains interfaces for displaying security-related dialogs.SecurityHI.framework

Contains the Speech Recognition Manager interfaces.Speech-
Recognition.framework

Core Services Framework

Table B-6 lists the subframeworks of the Core Services framework (CoreServices.framework). These
frameworks provide C-based interfaces and are intended primarily for Carbon applications, although other
programs can use them. The listed frameworks are available in all versions of Mac OS X unless otherwise
noted.

System Frameworks 123
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

Table B-6 Subframeworks of the Core Services framework

DescriptionSubframework

Contains interfaces for creating and manipulating Apple events and
making applications scriptable.

AE.framework

Contains interfaces for many legacy Carbon Managers. In Mac OS X
v10.5 and later, this subframework contains the FSEvents API, which
notifies clients about file system changes.

CarbonCore.framework

Contains interfaces for network communication using HTTP, sockets,
and Bonjour.

CFNetwork.framework

Provides dictionary lookup capabilities.DictionaryServices.framework

Contains interfaces for launching applications.LaunchServices.framework

Contains interfaces for managing Spotlight metadata. Available in
Mac OS X v10.4 and later.

Metadata.framework

Contains interfaces for Open Transport and many hardware-related
legacy Carbon managers.

OSServices.framework

Contains interfaces for the Search Kit. Available in Mac OS X version
10.3 and later.

SearchKit.framework

IMCore Framework

Table B-8 lists the subframeworks of the IMCore framework (IMCore.framework). This framework was
introduced in Mac OS X version 10.6.

Table B-7 Subframeworks of the IMCore framework

DescriptionSubframework

Contains private interfaces.IMDaemonCore.framework

Contains private interfaces.IMFoundation.framework

Contains private interfaces.IMSecurityUtils.framework

Contains private interfaces.IMUtils.framework

Contains private interfaces.XMPPCore.framework

Quartz Framework

Table B-8 lists the subframeworks of the Quartz framework (Quartz.framework). This framework was
introduced in Mac OS X version 10.4.

124 System Frameworks
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

Table B-8 Subframeworks of the Quartz framework

DescriptionSubframework

Contains Objective-C interfaces for finding, browsing, and displaying
images. Available in Mac OS X version 10.5 and later.

ImageKit.framework

Contains Objective-C interfaces for displaying and managing PDF content
in windows.

PDFKit.framework

Contains Objective-C interfaces for playing Quartz Composer compositions
in an application.

QuartzComposer.framework

Contains Objective-C interfaces for managing and applying filter effects
to a graphics context. Available in Mac OS X version 10.5 and later.

QuartzFilters.framework

WebKit Framework

Table B-9 lists the subframeworks of the WebKit framework (WebKit.framework). This framework was
introduced in Mac OS X version 10.2.

Table B-9 Subframeworks of the WebKit framework

DescriptionSubframework

Contains the library and resources for rendering HTML content in an HTMLView
control.

WebCore.framework

Xcode Frameworks

In Mac OS X v10.5 and later, Xcode and all of its supporting tools and libraries reside in a portable directory
structure. This directory structure makes it possible to have multiple versions of Xcode installed on a single
system or to have Xcode installed on a portable hard drive that you plug in to your computer when you need
to do development. This portability means that the frameworks required by the developer tools are installed
in the <Xcode>/Library/Frameworks directory, where <Xcode> is the path to the Xcode installation
directory. (The default Xcode installation directory is /Developer.) Table B-10 lists the frameworks that are
located in this directory.

Table B-10 Xcode frameworks

DescriptionPrefixesFirst
available

Framework

Unit-testing framework for C++ code. In Mac OS X
v10.4, this framework was in
/System/Library/Frameworks.

None10.4CPlusTest.framework

Contains interfaces for writing plug-ins that work in
Interface Builder v3.0 and later.

ib, IB10.5InterfaceBuilder-
Kit.framework

Xcode Frameworks 125
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

DescriptionPrefixesFirst
available

Framework

Contains the interfaces for implementing unit tests
in Objective-C. In Mac OS X v10.4, this framework
was in /System/Library/Frameworks.

Sen10.4SenTesting-
Kit.framework

System Libraries

Note that some specialty libraries at the BSD level are not packaged as frameworks. Instead, Mac OS X includes
many dynamic libraries in the /usr/lib directory and its subdirectories. Dynamic shared libraries are
identified by their .dylib extension. Header files for the libraries are located in /usr/include.

Mac OS X uses symbolic links to point to the most current version of most libraries. When linking to a dynamic
shared library, use the symbolic link instead of a link to a specific version of the library. Library versions may
change in future versions of Mac OS X. If your software is linked to a specific version, that version might not
always be available on the user’s system.

126 System Libraries
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX B

Mac OS X Frameworks

Apple provides a number of applications and command-line tools to help you develop your software. These
tools include compilers, debuggers, performance analysis tools, visual design tools, scripting tools, version
control tools, and many others. Many of these tools are installed with Mac OS X by default but the rest require
you to install Xcode first. Xcode is available for free from the Apple Developer Connection website. For more
information on how to get these tools, see “Getting the Xcode Tools” (page 14).

Note: Documentation for most of the command-line tools is available in the form of man pages. You can
access these pages from the command line or from Mac OS X Man Pages. For more information about using
the command-line tools, see “Command Line Primer” (page 109).

Applications

Xcode includes numerous applications for writing code, creating resources, tuning your application, and
delivering it to customers. At the heart of this group is the Xcode application, which most developers use
on a daily basis. It provides the basic project and code management facilities used to create most types of
software on Mac OS X. All of the tools are free and can be downloaded from the Apple developer website
(see “Getting the Xcode Tools” (page 14)).

In Mac OS X v10.5 and later, it is possible to install multiple versions of Xcode on a single computer and run
the applications and tools from different versions side-by-side. The applications listed in the following sections
are installed in <Xcode>/Applications, where <Xcode> is the root directory of your Xcode installation.
The default installation directory for Xcode is the /Developer directory.

In addition to the applications listed here, Xcode also comes with numerous command-line tools. These tools
include the GCC compiler GDB debugger, tuning tools, code management tools, performance tools, and so
on. For more information about the available command-line tools, see “Command-Line Tools” (page 143).

Xcode

The centerpiece of the Xcode Tools is the Xcode application, which is an integrated developer environment
(IDE) with the following features:

 ■ A project management system for defining software products

 ■ A code editing environment that includes features such as syntax coloring, code completion, and symbol
indexing; see“Xcode Editor” (page 129)

 ■ Visual design tools for creating your application’s data model (see “Core Data Framework” (page 62))

 ■ An advanced documentation viewer for viewing and searching Apple documentation; see “Documentation
Window” (page 130)

Applications 127
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

 ■ A context-sensitive inspector for viewing information about selected code symbols; see “Research
Assistant” (page 130)

 ■ An advanced build system with dependency checking and build rule evaluation.

 ■ GCC compilers supporting C, C++, Objective-C, Objective-C++, Objective-C 2.0, and other compilers
supporting Java and other languages

 ■ Integrated source-level debugging using GDB; see “Debugging Environment” (page 130)

 ■ Distributed computing, enabling you to distribute large projects over several networked machines

 ■ Predictive compilation that speeds single-file compile turnaround times

 ■ Advanced debugging features such as fix and continue and custom data formatters

 ■ Advanced refactoring tools that let you make global modifications to your code without changing its
overall behavior; see “Refactoring Tools” (page 132)

 ■ Support for project snapshots, which provide a lightweight form of local source code management; see
“Project Snapshots” (page 132)

 ■ Support for launching performance tools to analyze your software

 ■ Support for integrated source-code management; see “SCM Repository Management” (page 131)

 ■ AppleScript support for automating the build process

 ■ Support for the ANT build system, which can be used to build Java and WebObjects projects.

 ■ Support for DWARF and Stabs debugging information (DWARF debugging information is generated by
default for all new projects)

Figure C-1 shows the Xcode project workspace and some key inspector windows. In the Xcode preferences,
you can configure numerous aspects of the workspace to suit your preferred work style.

128 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Figure C-1 Xcode application

For an introduction to Xcode and its features, see A Tour of Xcode.

Xcode Editor

The Xcode editing environment is a high-performance code editor that includes many features that go
beyond basic text editing. These features aim to help developers create better code faster and include the
following:

 ■ High-performance for typing, scrolling, and opening files. The Xcode editor now opens and scrolls large
source documents up to 10 times faster than before.

 ■ Code annotations display notes, errors, and warnings inline with the code itself, and not just as icons in
the gutter. This provides a much more direct conveyance of where the problems in your code lie. You
can control the visibility of annotations using the segmented control in the navigation bar.

 ■ Code folding helps you organize your source files by letting you temporarily hide the content of a method
or function in the editor window. You can initiate code folding by holding down the Command and
Option keys and pressing either the left or right arrow key. A ribbon to the left of the text shows the
current nesting depth and contains widgets to fold and unfold code blocks.

 ■ Syntax coloring lets you assign colors to various code elements, including keywords, comments, variables,
strings, class names, and more.

 ■ Code Sense code completion, a feature that shows you type a few characters and retrieve a list of valid
symbol names that match those characters. Code Sense is fast and intuitive and is tuned to provide
accurate completions, along with a “most likely” inline completion as you type. This feature is similar to
the auto-completion features found in Mail, Terminal, and other applications.

Applications 129
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Debugging Environment

In Xcode 3.0, there is no distinction between “Running” your executable and “Debugging” it. Instead, you
simply build your executable and run it. Hitting a breakpoint interrupts the program and displays the
breakpoint either in the current editor window or in the debugger window. Other features of the debugging
environment include the following:

 ■ Debugging controls in editor windows.

 ■ A debugger HUD (heads-up-display), which is a floating window with debugger controls that simplifies
the debugging of full-screen applications.

 ■ Variable tooltips. (Moving your mouse over any variable displays that variable’s value.)

 ■ Reorganization (and in some cases consolidation) of toolbar and menu items to improve space usage,
while still keeping all the needed tools available.

 ■ Consolidation of the Standard I/O Log, Run Log, and Console log into the Console log window.

 ■ Support for a separate debugging window if you prefer to debug your code that way.

Research Assistant

The Research Assistant is an inspector that displays documentation for the currently selected text (see Figure
C-1 (page 129)). As the selection changes, the Research Assistant updates the information in its floating
window to reflect the classes, methods, and functions you are currently using. This window shows the
declaration, abstract, and availability information for the selection along with the framework containing the
selected identifier, relevant documentation resources, and related methods and functions you might be
interested in using.

Documentation Window

The documentation window (Figure C-2) in Xcode provides an environment for searching and browsing the
documentation. This window provides you with fast access to Apple’s developer documentation and gives
you tools for searching its content. You can search by title, by language, and by content and can focus your
search on the documents in a particular documentation set.

130 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Figure C-2 Xcode documentation window

Documentation sets are collections of documents that can be installed, browsed, and searched independently.
Documentation sets make it easier to install only the documentation you need for your development, reducing
the amount of disk space needed for your developer tools installation. In addition to the Apple-provided
documentation sets, third parties can implement their own documentation sets and have them appear in
the Xcode documentation window. For information on how to create custom documentation sets, see
Documentation Set Guide.

SCM Repository Management

Xcode supports the management of multiple SCM repositories to allow you to perform tasks such as the
following:

 ■ Initial checkout of projects

 ■ Tagging source files

 ■ Branching

 ■ Importing and exporting files

Xcode supports CVS, Subversion, and Perforce repositories.

Applications 131
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Project Snapshots

Project snapshots provide a lightweight form of local source control for Xcode projects. Using this feature,
you can take a “snapshot” of your project’s state at any point during development, such as after a successful
build or immediately prior to refactoring your code. If after making subsequent changes you decide those
changes were not useful, you can revert your project files back to the previous snapshot state. Because
snapshots are local, your intermediate changes need never be committed to source control.

Refactoring Tools

Xcode’s refactoring tools let you make large-scale changes to your Objective-C source code quickly and easily.
Xcode propagates your change requests throughout your code base, making sure that the changes do not
break your builds. You can make the following types of changes using the refactoring tools:

 ■ Rename instance methods

 ■ Create new superclasses

 ■ Move methods into a superclass

 ■ Convert accessor methods to support Objective-C 2.0 properties

 ■ Modernize appropriate for loops to use the new fast enumeration syntax introduced in Objective-C 2.0

Before making any changes to your code, Xcode’s refactoring tools automatically take a local snapshot of
your project. This automatic snapshot means you can experiment with refactoring changes without worrying
about irrevocably changing your project files. For more information on snapshots, see “Project
Snapshots” (page 132).

Build Settings

The Build pane in the inspector organizes the build settings for the selected target, providing search tools
to help you find particular settings. In Mac OS X v10.5, some particularly noteworthy additions to this pane
include the following:

 ■ Per-architecture build settings. You can now set different build settings for each architecture (Intel,
PowerPC) your product supports.

 ■ 32-bit and 64-bit architecture checkboxes.

Project Versioning

Xcode projects include a Compatibility pane in the project inspector that lets you determine whether you
want an Xcode 3.0–only project or one that can be used by previous versions of Xcode. Marking a project as
Xcode 3.0–only generates an alert whenever you try to use an Xcode feature that is not present in previous
versions of the application.

132 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Interface Builder

The Interface Builder application provides a graphical environment for building the user interface of your
Carbon and Cocoa applications. Using Interface Builder, you assemble the windows and menus of your
application, along with the any other supporting objects, and save them in one or more resource files, called
nib files. When you want to load a user interface element at runtime, you load the nib file. The Cocoa and
Carbon infrastructure uses the data in the nib file to recreate the objects exactly as they were in Interface
Builder, with all their attributes and inter-object relationships restored.

Although present in all versions of Mac OS X, the Interface Builder application received a significant overhaul
in Mac OS X v10.5. Beyond the numerous cosmetic changes, the current version of Interface Builder includes
numerous workflow and infrastructure changes too. The connections panel replaces the old technique for
connecting objects in Cocoa nib files, making it possible to create multiple connections quickly without going
back and forth between the inspector and the objects in your nib file. An improved library window helps
you organize and find the components you use most frequently. Interface Builder includes a new plug-in
model that makes it possible to create fully functional plug-ins in a matter of minutes. And most importantly,
Interface Builder is more tightly integrated with Xcode, providing automatic synchronization of project’s
class information with the corresponding source files.

Figure C-3 shows the Interface Builder environment in Mac OS X v10.5, including a nib document, connections
panel, inspector window, and library window. The library window contains the standard components you
use to build your user interfaces and includes all of the standard controls found in Carbon and Cocoa
applications by default. Using plug-ins, you can expand the library to include your own custom objects or
to include custom configurations of standard controls.

Figure C-3 Interface Builder 3.0

Applications 133
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

For information about Interface Builder features and how to use them, see Interface Builder User Guide. For
information about how to integrate your own custom controls into Interface Builder, see Interface Builder
Plug-In Programming Guide and Interface Builder Kit Framework Reference.

Dashcode

Introduced in Mac OS X v10.5, Dashcode is an integrated environment for laying out, coding, and testing
Dashboard widgets. Although users see and use widgets as applications, they’re actually packaged webpages
powered by standard technologies such as HTML, CSS, and JavaScript. Although it is easy for anyone with
web design experience to build a widget using existing webpage editors, as a widget’s code and layout get
more complex, managing and testing of that widget becomes increasingly difficult. Dashcode provides the
following features to help simplify the widget design process:

 ■ A project manager to marshall your widget’s resources

 ■ Visual tools to design your widget interface

 ■ Tools to set metadata values, specify required images, and package your widget

 ■ A source code editor to implement your widget’s behavior

 ■ A debugger to help you resolve issues in your widget’s implementation

Figure C-4 shows the Dashcode canvas, inspector, and library windows. The canvas is a drag-and-drop layout
environment where you lay out widgets visually. Using the inspector window, you can apply style information
to the controls, text, and shape elements that you drag in from the library.

Figure C-4 Dashcode canvas

134 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

For more information about Dashcode, see Dashcode User Guide.

Instruments

Introduced in Mac OS X v10.5, Instruments is an advanced debugging and performance analysis application.
Instruments provides unprecedented information about the runtime behavior of your application and
complements existing tools such as Shark. Rather than show one aspect of your program at a time, you
configure each analysis session with one or more “instruments”, each of which gathers information about
things such as object allocation patterns, memory usage, disk I/O, CPU usage, and many more. The data from
all instruments is shown side-by-side, making it easier to see patterns between different types of information.

An important aspect of Instruments is the repeatability of data gathering operations. Instruments lets you
record a sequence of events in your application and store them in the master track. You can then replay that
sequence to reproduce the exact same conditions in your application. This repeatability means that each
new set of data you gather can be compared directly to any old sets, resulting in a more meaningful
comparison of performance data. It also means that you can automate much of the data gathering operation.
Because events are shown alongside data results, it is easier to correlate performance problems with the
events that caused them.

Figure C-5 shows the Instruments user interface for an existing session. Data for each instrument is displayed
along the horizontal axis. Clicking in those data sets shows you information about the state of the application
at that point in time.

Figure C-5 The Instruments application interface

Applications 135
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

For information about how to use Instruments, see Instruments User Guide.

Quartz Composer

Introduced in Mac OS X version 10.4, Quartz Composer is a development tool for processing and rendering
graphical data. Quartz Composer provides a visual development environment (Figure C-6) built on technologies
such as Quartz 2D, Core Image, OpenGL, and QuickTime. You can use Quartz Composer as an exploratory
tool to learn the tasks common to each visual technology without having to learn its application programming
interface (API). You can also save your compositions as resource files that can be loaded into a Cocoa window
at runtime. In addition to supporting visual technologies, Quartz Composer also supports nongraphical
technologies such as MIDI System Services and Rich Site Summary (RSS) file content.

Figure C-6 Quartz Composer editor window

For information on how to use Quartz composer, see Quartz Composer User Guide.

Audio Applications

The <Xcode>/Applications/Audio directory contains applications for Core Audio developers.

136 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

AU Lab

Introduced in Mac OS X version 10.4, AU Lab (Audio Unit Lab) lets you graphically host audio units and
examine the results. You can use AU Lab to test the audio units you develop, do live mixing, and playback
audio content. Parameters for the audio units are controlled graphically using the audio unit’s custom interface
or using a generic interface derived from the audio unit definition. Figure C-7 shows the AU Lab interface
and some of the palettes for adjusting the audio parameters.

Figure C-7 AU Lab mixer and palettes

HALLab

Introduced in Mac OS X version 10.5, the HALLab (Hardware Abstraction Layer Lab) application helps developers
test and debug audio hardware and drivers. You can use this application to understand what the audio
hardware is doing and to correlate the behavior of your application with the behavior of the underlying
audio driver. The application provides information about the properties of objects in the HAL and provides
an I/O cycle telemetry viewer for diagnosing and debugging glitches your application’s audio content.

Graphics Applications

Table C-1 lists the applications found in the <Xcode>/Applications/Graphics Tools directory.

Applications 137
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Table C-1 Graphics applications

DescriptionApplication

Introduced in Mac OS X v10.5, this application provides an environment for testing
the effects of Core Image filters. Using this application, you can build up a set of
filters and apply them to an image or set of images. You can apply both static and
time-based effects and change the parameters of each filter dynamically to see the
results.

Core Image Fun House

An application that displays extensive information about the OpenGL environment.OpenGL Driver
Monitor

An application that creates a runtime profile of an OpenGL-based application. The
profile contains OpenGL function-call timing information, a listing of all the OpenGL
function calls your application made, and all the OpenGL-related data needed to
replay your profiling session.

OpenGL Profiler

An application that provides real-time entry, syntax checking, debugging, and
analysis of vertex/fragment programs. It allows you to export your creation to a
sample GLUT application, which performs all the necessary OpenGL setup, giving
you a foundation to continue your application development. OpenGL is an open,
cross-platform, three-dimensional (3D) graphics standard that supports the
abstraction of current and future hardware accelerators. For more information
about OpenGL, seeOpenGLProgrammingGuide forMacOSX in the Reference Library
> Graphics & Imaging area.

OpenGL Shader
Builder

A magnifying glass utility for Mac OS X. Pixie is useful for doing pixel-perfect layout,
checking the correctness of graphics and user interface elements, and getting
magnified screen shots.

Pixie

A utility for previewing Quartz Composer compositions.Quartz Composer
Visualizer

This is an alias to the Quartz Debug application in the
<Xcode>/Applications/Performance Tools directory. For more information,
see the entry for Quartz Debug in “Performance Applications” (page 139).

Quartz Debug

Java

Table C-2 lists the applications found in the <Xcode>/Applications/Java Tools directory.

Table C-2 Java applications

DescriptionApplication

An application that acts as a wrapper for running Java applets.Applet Launcher

An application that allows you to package your Java program’s files and resources into
a single double-clickable application bundle. Jar Bundler lets you modify certain
properties so your Java application behaves as a better Mac OS X citizen and lets you
specify arguments sent to the Java virtual machine (VM) when the application starts up.

Jar Bundler

138 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Performance Applications

Table C-3 lists the applications found in the <Xcode>/Applications/Performance Tools directory.

Table C-3 Performance applications

DescriptionApplication

An application that presents statistics about the current system activity and lets you track
those statistics over time. This application is a more visually oriented version of the top
command-line tool. It provides information about CPU usage, disk and network throughput,
memory usage, and others. For information on how to use this program, see the application
help.

BigTop

An application for measuring the dynamic memory usage of applications and for finding
memory leaks. For information on how to use this program, see the application help or
Memory Usage Performance Guidelines.

MallocDebug

A debugging utility for the Quartz graphics system. For information on how to use this
program, see the application help or Drawing Performance Guidelines.

Quartz Debug

An application that profiles the system to see how time is being spent. It can work at the
system, task, or thread level and can correlate performance counter events with source
code. Shark’s histogram view can be used to observe scheduling and other time-dependent
behavior. It can produce profiles of hardware and software performance events such as
cache misses, virtual memory activity, instruction dependency stalls, and so forth. For
information on how to use this program, see the application help.

Shark

An application that samples applications automatically whenever they become unresponsive
and display the spinning cursor. To use this application, you launch it and leave it running.
Spin Control provides basic backtrace information while an application is unresponsive,
showing you what the application was doing at the time.

Spin Control

An application for graphically displaying activity across a range of threads. It provides
timeline color-coded views of activity on each thread. By clicking a point on a timeline,
you can see a sample backtrace of activity at that time.

Thread Viewer

An application for analyzing memory usage.ZoneMonitor

Table C-4 lists the applications in the <Xcode>/Applications/Performance Tools/CHUD directory and
its subdirectories.

Table C-4 CHUD applications

DescriptionApplication

An application that examines and modifies CPU and PCI configuration registers in PowerPC
processors.

Reggie SE

An application for finding performance counter events and their configuration.PMC Index

Applications 139
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionApplication

An application that is an exact, function-level profiler for your application. Unlike sampling
programs, which gather call stacks at periodic intervals, you can use this application to
generate and view a complete function call trace of your application code.

Saturn

An application that monitors the power state of hard drives connected to the computer.SpindownHD

Utility Applications

Table C-5 lists the applications found in the <Xcode>/Applications/Graphics Tools directory and its
subdirectories.

Table C-5 Utility applications

DescriptionApplication

An agent application that lets you roll the mouse cursor over items in your
application’s user interface and view their associated accessibility attributes and
actions.

Accessibility Inspector

An application that looks for mistakes in the accessibility information provided by
your application.

Accessibility Verifier

An application for discovering and getting information about Bluetooth devices.Bluetooth Explorer

An application for creating applets from Python scripts.Build Applet

An application that displays the contents of the various system pasteboards.Clipboard Viewer

An application for configuring the user notifications generated when an application
crashes.

CrashReporterPrefs

An application that compares two ASCII files or two directories. For a more accurate
comparison, you can compare two files or directories to a common ancestor. After
comparing, you can merge the files or directories.

FileMerge

An application to create a search index for a help file. Instructions for creating
Apple Help and for using the indexing tool are in Apple Help Programming Guide.

Help Indexer

An application for creating and examining icon resource files.Icon Composer

An application that you can use to examine the configuration of devices on your
computer. IORegistryExplorer provides a graphical representation of the I/O Registry
tree. For information on how to use this application, see I/O Kit Fundamentals.

IORegistryExplorer

This application creates device drivers that allow the synchronization of custom
hardware devices. For more information, see “iSync Plug-in Maker” (page 141).

iSync Plug-in Maker

An application for creating installable application packages from the set of files
you provide.

PackageMaker

An application for logging Bluetooth packets.PacketLogger

140 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionApplication

An application that lets you read and edit the contents of a property list. A property
list, or plist, is a data representation used by Cocoa and Core Foundation as a
convenient way to store, organize, and access standard object types. Property lists
are useful when you need to store small amounts of persistent data. If you do use
property lists, the .plist files must be bundled with other application files when
you create your installation package.

Property List Editor

An application designed to improve the pronunciation of text generated by the
Text-To-Speech system.

Repeat After Me

An application for building language models for use with the Speech Recognition
manager.

SRLanguageModeler

A debugging application you use to inspect the truth database, the call history of
sync sessions, and clients of the synchronization engine. For information on how
to use this application, see Sync Services Tutorial.

Syncrospector

An application that displays detailed information about all the USB ports and
devices on the system.

USB Prober

iSync Plug-in Maker

The iSync Plug-in Maker application is a tool that allows you to build, test, and release plug-ins that handle
the specific features supported by your hardware device. You use this application to configure your device
settings and write scripts for connecting it to the Internet. The application also provides a suite of standard
automated tests that you can use to detect and fix problems in your plug-in before you ship it.

Figure C-8 shows the iSync Plug-in Maker edit window.

Applications 141
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Figure C-8 iSync Plug-in Maker application

For information about using iSync Plug-in Maker, see iSync Plug-in Maker User Guide.

PackageMaker

You use PackageMaker to create installation packages for your software. An installation package is a convenient
way to deliver software in all but the simplest cases. An installation package contains the files to install, their
locations, and any licensing information or supporting materials that go with your software. When the user
double-clicks an installation package, Mac OS X automatically launches the Installer application, which
proceeds to install the files contained in the package.

You can use PackageMaker to package files or to assemble individual packages into a single package. Figure
C-9 shows the PackageMaker user interface, which provides a graphical environment for building your
packages.

142 Applications
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Figure C-9 PackageMaker application

For information on how to use PackageMaker, see PackageMaker User Guide.

Command-Line Tools

Xcode includes numerous command-line tools, including the GCC compiler, GDB debugger, performance
tools, version control system tools, localization tools, scripting tools, and so on. Some of these tools are found
on most other BSD-based installations while others were created specifically for Mac OS X. They come free
with the rest of Xcode, which you can download from the Apple developer website (see “Getting the Xcode
Tools” (page 14)).

In Mac OS X v10.5 and later, it is possible to install multiple versions of Xcode on a single computer and run
the applications and tools from different versions side-by-side. Most of the tools listed in the following sections
are installed in either in the system’s /usr/bin directory or in <Xcode>/usr/bin or <Xcode>/usr/sbin,
where <Xcode> is the root directory of your Xcode installation, although tools installed elsewhere are called
out as such. The default installation directory for Xcode is the /Developer directory.

Command-Line Tools 143
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

In addition to the command-line tools listed here, Xcode also comes with many higher-level applications.
These tools include the Xcode integrated development environment, Interface Builder, Instruments, and
many others. For more information about the available applications, see “Applications” (page 127).

Note: The following sections describe some of the more important tools provided with Xcode but should
by no means be considered a complete list. If the tool you are looking for is not described here, check the
system and Xcode tools directories or see Mac OS X Man Pages.

Compiler, Linker, and Source Code Tools

Apple provides several applications and command-line tools for creating source code files.

Compilers, Linkers, Build Tools

Table C-6 lists the command-line compilers, linkers, and build tools. These tools are located in
<Xcode>/usr/bin and <Xcode>/Private.

Table C-6 Compilers, linkers, and build tools

DescriptionTool

The Mac OS X Mach-O assembler. See as man page.as

The BSD make program. See bsdmake man page.bsdmake

The command-line interface to the GNU C compiler (GCC). Normally you invoke GCC
through the Xcode application; however, you can execute it from a command line if
you prefer. See gcc man page.

gcc

The GNU make program. See gnumake man page.gnumake

An open-source build system initially released by Perforce, which provides the back-end
for the Xcode application’s build system. It is rarely used directly from the command
line. Documented on the Perforce website at http://www.perforce.com/jam/jam.html.

jam

Combines several Mach-O (Mach object) files into one by combining like sections in like
segments from all the object files, resolving external references, and searching libraries.
Mach-O is the native executable format in Mac OS X. See ld man page.

ld

A symbolic link to gnumake, the GNU make program. Note that the Xcode application
automatically creates and executes make files for you; however the command-line make
tools are available if you wish to use them. See make man page.

make

Constructs a set of include file dependencies. You can use this command in a make file
if you are constructing make files instead of using Xcode to build and compile your
program. See mkdep man page.

mkdep

Takes an Xcode project (.pbproj) file and outputs a more nested version of the project
structure. Note that, due to how conflicts are reflected in the project file, pbprojectdump
cannot work with project files that have CVS conflicts.

pbprojectdump

144 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

http://www.perforce.com/jam/jam.html

DescriptionTool

Builds a target contained in an Xcode project. This command is useful if you need to
build a project on another computer that you can connect to with Telnet. The
xcodebuild tool reads your project file and builds it just as if you had used the Build
command from within the Xcode application. See xcodebuild man page.

xcodebuild

Library Utilities

Table C-7 lists the command-line tools available for creating libraries. These tools are located in
<Xcode>/usr/bin.

Table C-7 Tools for creating and updating libraries

DescriptionTool

Takes object files and creates dynamically linked libraries or archive (statically
linked) libraries, according to the options selected. The libtool command calls
the ld command. See libtool man page.

libtool

Determines interdependencies in a list of object files. The output is normally used
to determine the optimum ordering of the object modules when a library is created
so that all references can be resolved in a single pass of the loader. See lorder
man page.

lorder

Adds to or updates the table of contents of an archive library. See ranlib man
page.

ranlib

Updates the prebinding of an executable or dynamic library when one of the
dependent dynamic libraries changes. (Prebinding for user applications is
unnecessary in Mac OS X v10.3.4 and later.) See redo_prebinding man page.

redo_prebinding

Updates prebinding information for libraries and executables when new files are
added to the system. (Prebinding for user applications is unnecessary in Mac OS
X v10.3.4 and later.) See update_prebinding man page.

update_prebinding

Code Utilities

Table C-8 lists applications and command-line tools for manipulating source code and application resources.
These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-8 Code utilities

DescriptionTool

Scans C source files and writes out a sorted list of all the identifiers that appear in #if, #elif,
#ifdef, and #ifndef directives. See ifnames man page.

ifnames

Formats C source code. See indent man page.indent

Command-Line Tools 145
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Changes global symbols in object code to static symbols. You can provide an input file that
specifies which global symbols should remain global. The resulting object can still be used
with the debugger. See nmedit man page.

nmedit

Can check the syntax of a property list or convert it from one format to another (XML or
binary). See plutil man page.

plutil

Formats and prints character strings and C constants. See printf man page.printf

Merges resources into resource files. When the Xcode application compiles Resource Manager
resources, it sends them to a collector. After all Resource Manager resources have been
compiled, the Xcode application calls ResMerger to put the resources in their final location.
See ResMerger man page.

ResMerger

Takes a compiled resource (.qtr) file and inserts it together with the data fork (.qtx or .exe
file) into a Windows application (.exe) file. The resulting file is a Windows application that
has the sort of resource fork that QuickTime understands. You can use the Rez tool to compile
a resource source (.r) file. The RezWack tool is part of the QuickTime 3 Software Development
Kit for Windows. See RezWack man page.

RezWack

Performs universal search and replace operations on text strings in source files. See tops
man page.

tops

Removes #ifdef, #ifndef, #else, and #endif lines from code as specified in the input
options. See unifdef man page.

unifdef

Reverses the effects of RezWack; that is, converts a single Windows executable file into
separate data and resource files. See UnRezWack man page.

UnRezWack

Debugging and Tuning Tools

Apple provides several tools for analyzing and monitoring the performance of your software. Performance
should always be a key design goal of your programs. Using the provided tools, you can gather performance
metrics and identify actual performance problems. You can then use this information to fix the problems
and keep your software running efficiently.

General Tools

Table C-9 lists the command-line tools available for debugging. These tools are located in <Xcode>/usr/bin
and /usr/bin.

Table C-9 General debugging tools

DescriptionTool

Lets you read, write, and delete Mac OS X user defaults. A Mac OS X application uses the
defaults system to record user preferences and other information that must be maintained
when the application is not running. Not all these defaults are necessarily accessible through
the application’s preferences. See defaults man page.

defaults

146 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

The GNU debugger. You can use it through the Xcode application or can invoke it directly
from the command line. See gdb man page.

gdb

Memory Analysis Tools

Table C-10 lists the applications and command-line tools for debugging and tuning memory problems. These
tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-10 Memory debugging and tuning tools

DescriptionTool

Lists all the objects currently allocated on the heap of the current process. It also
describes any Objective-C objects, listed by class. See heap man page.

heap

Examines a specified process for malloc-allocated buffers that are not referenced by
the program. See leaks man page.

leaks

Inspects a given process and lists the malloc allocations performed by it. This tool
relies on information provided by the standard malloc library when debugging options
have been turned on. If you specify an address, malloc_history lists the allocations
and deallocations that have manipulated a buffer at that address. For each allocation,
a stack trace describing who called malloc or free is listed. See malloc_history
man page.

malloc_history

Displays the virtual memory regions allocated in a specified process, helping you
understand how memory is being used and the purpose of memory (text segment,
data segment, and so on) at a given address. See vmmap man page.

vmmap

Displays Mach virtual memory statistics. See vm_stat man page.vm_stat

Examining Code

Table C-11 lists the applications and command-line tools for examining generated code files. These tools are
located in <Xcode>/usr/bin and /usr/bin.

Table C-11 Tools for examining code

DescriptionTool

Parses C code and outputs debugger information in the Stabs format, showing offsets of all
the members of structures. For information on Stabs, see STABSDebug Format. See c2phman
page.

c2ph

An interactive command-line tool that allows the user to browse through C source files for
specified elements of code, such as functions, function calls, macros, variables, and
preprocessor symbols. See cscope man page.

cscope

Command-Line Tools 147
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Makes a tags file for the ex line editor from specified C, Pascal, Fortran, YACC, Lex, or Lisp
source files. A tags file lists the locations of symbols such as subroutines, typedefs, structs,
enums, unions, and #defines. See ctags man page.

ctags

Analyzes error messages and can open a text editor to display the source of the error. The
error tool is run with its input connected via a pipe to the output of the compiler or language
processor generating the error messages. Note that the service provided by the error
command is built into the Xcode application. See error man page.

error

Lets you print, update, and verify the contents of a nib file. You can use this tool to inject
localized strings into a nib file or scan the contents of a nibfile using a script. (This tool replaces
the nibtool program.) See ibtool man page.

ibtool

Displays the symbol tables of one or more object files, including the symbol type and value
for each symbol. See nm man page.

nm

Displays specified parts of object files or libraries. See otool man page.otool

Displays information about the specified logical pages of a file conforming to the Mach-O
executable format. For each specified page of code, pagestuff displays symbols (function
and static data structure names). See pagestuff man page.

pagestuff

An alias to c2ph. See pstruct man page.pstruct

Looks for ASCII strings in an object file or other binary file. See strings man page.strings

Performance Tools

Table C-12 lists the applications and command-line tools for analyzing and monitoring performance. For
information about performance and the available performance tools, see Performance Overview. These tools
are located in <Xcode>/usr/bin and /usr/bin.

Table C-12 Performance tools

DescriptionTool

Produces an execution profile of a C, Pascal, or Fortran77 program. The tool lists the total execution
times and call counts for each of the functions in the application, and sorts the functions according
to the time they represent including the time of their call graph descendants. See gprof man
page.

gprof

Gathers data about the running behavior of a process. The sample tool stops the process at
user-defined intervals, records the current function being executed by the process, and checks
the stack to find how the current function was called. It then lets the application continue. At
the end of a sampling session, sample produces a report showing which functions were executing
during the session. See sample man page.

sample

Displays an ongoing sample of system-use statistics. It can operate in various modes, but by
default shows CPU and memory use for each process in the system. See top man page.

top

148 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Instruction Trace Tools

Table C-13 lists the applications and command-line tools for working with hardware-level programs. These
tools are located in /usr/bin.

Table C-13 Instruction trace tools

DescriptionTool

Analyzes TT6E (but not TT6) instruction traces and presents detailed analyses and histogram
reports. See acid man page.

acid

Captures the instruction and data address stream generated by a process running in Mac OS X
and saves it to disk in TT6, TT6E, or FULL format. Custom trace filters can be built using the
amber_extfilt.a module in <Xcode>/Examples/CHUD/Amber/ExternalTraceFilter/.
Differences between TT6 and TT6E format as well as the specifics of the FULL trace format are
detailed in Amber Trace Format Specification v1.1 (<Xcode>/ADC Reference
Library/CHUD/AmberTraceFormats.pdf). See amber man page.

amber

A cycle-accurate simulator of the Motorola 7400 processor that takes TT6 (not TT6E) traces as input.
See simg4 man page.

simg4

A cycle-accurate simulator of the IBM 970 processor that takes TT6 (not TT6E) traces as input. See
simg5 man page.

simg5

Documentation and Help Tools

Table C-14 lists applications and command-line tools for creating or working with documentation and online
help. These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-14 Documentation and help tools

DescriptionTool

Merges contextual help RTF snippets into one file. This tool is included to support
legacy applications. New contextual help projects do not use this tool. See
compileHelp man page.

compileHelp

Gathers HeaderDoc output, creating a single index page and cross-links between
documents. See gatherheaderdoc man page.

gatherheaderdoc

Generates HTML documentation from structured commentary in C, C++, and
Objective-C header files. The HeaderDoc tags and scripts are described at http://de-
veloper.apple.com/darwin/projects/headerdoc/. See headerdoc2html man page.

headerdoc2HTML

Inserts menu entries from an Info file into the top-level dir file in the GNU Texinfo
documentation system. It’s most often run as part of software installation or when
constructing a dir file for all manuals on a system. See http://www.gnu.org/soft-
ware/texinfo/manual/texinfo/ for more information on the GNU Texinfo system. See
install-info man page.

install-info

Command-Line Tools 149
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

http://developer.apple.com/darwin/projects/headerdoc/
http://developer.apple.com/darwin/projects/headerdoc/
http://www.gnu.org/software/texinfo/manual/texinfo/
http://www.gnu.org/software/texinfo/manual/texinfo/

Localization Tools

Table C-15 lists the applications and command-line tools for localizing your own applications. These tools
are located in <Xcode>/usr/bin and /usr/bin.

Table C-15 Localization tools

DescriptionTool

Decompiles the resource fork of a resource file according to the type declarations in the
type declaration files you specify. You can use this utility to find strings for localization
purposes, for example. DeRez works with Resource Manager resource files, not with nib
files.

DeRez

Takes the strings from C source code (NSLocalizedString..., CFCopyLocalized-
String... functions) and generates string table files (.strings files). This tool can also
work with Bundle.localizedString... methods in Java. See genstrings man page.

genstrings

Compiles the resource fork of a file according to the textual description contained in the
resource description files. You can use Rez to recompile the resource files you decompiled
with DeRez after you have localized the strings.

Rez

Version Control Tools

Apple provides command-line tools to support several version-control systems. Unless otherwise noted,
these tools are located in <Xcode>/usr/bin or /usr/bin.

Subversion

Table C-16 lists the command-line tools to use with the Subversion system.

Table C-16 Subversion tools

DescriptionTool

The Subversion command-line client tool. You use this tool for manipulating files in a
Subversion archive. See svn man page.

svn

Creates and manages Subversion repositories. See svnadmin man page.svnadmin

Filters data dumped from the repository by a svnadmin dump command. See
svndumpfilter man page.

svndumpfilter

Examines repository revisions and transactions. See svnlook man page.svnlook

Accesses a repository using the svn network protocol. See svnserve man page.svnserve

Summarizes the revision mixture of a working copy. See svnversion man page.svnversion

150 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

RCS

Table C-17 lists the command-line tools to use with the RCS system.

Table C-17 RCS tools

DescriptionTool

Stores revisions in RCS files. If the RCS file doesn’t exist, ci creates one. See ci man page.ci

Retrieves a revision from an RCS file and stores it in the corresponding working file. See
co man page.

co

Creates new RCS files or changes attributes of existing ones. See rcs man page.rcs

Checks a file into a new RCS file and uses the file’s first line for the description.rcs-checkin

Generates a change log from RCS files—which can possibly be located in a CVS
repository—and sends the change log to standard output. See rcs2log man page.

rcs2log

Compares the working file to the latest revision (or a specified revision) in the corresponding
RCS file and removes the working file if there is no difference. See rcsclean man page.

rcsclean

Compares two revisions of an RCS file or the working file and one revision. See rcsdiff
man page.

rcsdiff

Merges the changes in two revisions of an RCS file into the corresponding working file.
See rcsmerge man page.

rcsmerge

CVS

Table C-18 lists the command-line tools to use with the Concurrent Versions System (CVS) source control
system.

Table C-18 CVS tools

DescriptionTool

Speeds up common versioning operations for Xcode projects that use the Apple-generic
versioning system. It automatically embeds version information in the products produced
by the Xcode application and performs certain CVS operations such as submitting the project
with a new version number. For more information see the agvtool man page.

agvtool

The latest tool for managing information in the CVS repository. (Note, this tool does not
support CVS wrappers.) See the cvs man page for details. See also, ocvs below.

cvs

Wraps a directory into a GZIP format tar file. This single file can be handled more easily by
CVS than the original directory.

cvs-wrap

Extracts directories from a GZIP format tar file created by cvs-wrap.cvs-unwrap

Command-Line Tools 151
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

Comparing Files

Table C-19 lists the command-line tools for comparing files.

Table C-19 Comparison tools

DescriptionTool

Compares two files or the files in two directories. See diff man page.diff

Compares three files. See diff3 man page.diff3

Annotates the output of diff so that it can be printed with GNU enscript. This enables
enscript to highlight the modified portions of the file. See diffpp man page.

diffpp

Reads one or more files output by diff and displays a histogram of the insertions, deletions,
and modifications per file. See diffstat man page.

diffstat

Compares two files modified from the same original file and then combines all the changes
into a single file. The merge tool warns you if both modified files have changes in the same
lines. See merge man page.

merge

Opens FileMerge from the command line and begins comparing the specified files. See
opendiff man page.

opendiff

Takes the output of diff and applies it to one or more copies of the original, unchanged file
to create patched versions of the file. See patch man page.

patch

Compares two files and displays the differences so you can decide how to resolve them
interactively. It then writes the results out to a file. A command-line version of FileMerge. See
sdiff man page.

sdiff

Packaging Tools

Table C-20 lists the applications and command-line tools used for packaging applications. These tools are
located in <Xcode>/usr/bin and /usr/bin.

Table C-20 Packaging tools

DescriptionTool

Creates a digital code signature for an application or software package. See
codesign man page.

codesign

Copies a file or a directory, including subdirectories, preserving metadata and
forks. See CpMac man page.

CpMac

Gets the file attributes of files in an HFS+ directory. See GetFileInfo man page.GetFileInfo

Copies files to a target file or directory. Unlike the cp or mv commands, the install
command lets you specify the new copy’s owner, group ID, file flags, and mode.
See install man page.

install

152 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Changes the dynamic shared library install names recorded in a Mach-O binary.
See install_name_tool man page.

install_name_tool

Can create a multiple-architecture (“fat”) executable file from one or more input
files, list the architectures in a fat file, create a single-architecture file from a fat
file, or make a new fat file with a subset of the architectures in the original fat file.
See lipo man page.

lipo

Merges two or more PEF files into a single file. PEF format is used for Mac OS 9
code. See MergePef man page.

MergePef

Creates a bill of materials for a directory.mkbom

Moves files, preserving metadata and forks.MvMac

Sets the attributes of files in an HFS+ directory. See SetFile man page.SetFile

Removes the resource fork in a file or all the resource forks in the files in a specified
directory and saves them alongside the original files as hidden files (a hidden file
has the same name as the original file, except that it has a “dot-underscore” prefix;
for example ._MyPhoto.jpg.). See SplitForks man page.

SplitForks

Scripting Tools

The tools listed in the following sections are located in <Xcode>/usr/bin and /usr/bin.

Interpreters and Compilers

Table C-21 lists the command-line script interpreters and compilers.

Table C-21 Script interpreters and compilers

DescriptionTool

A pattern-directed scripting language for scanning and processing files. The scripting
language is described on the awk man page.

awk

Compiles the specified files, or standard input, into a single script. Input files may be plain
text or other compiled scripts. The osacompile command works with AppleScript and with
any other OSA scripting language. See osacompile man page.

osacompile

Executes a script file, which may be plain text or a compiled script. The osascript command
works with AppleScript and with any other scripting language that conforms to the Open
Scripting Architecture (OSA). See osascript man page.

osascript

Executes scripts written in the Practical Extraction and Report Language (Perl). The man
page for this command introduces the language and gives a list of other man pages that
fully document it. See perl man page.

perl

Command-Line Tools 153
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Compiles Perl scripts. See perlcc man page.perlcc

The interpreter for the Python language, an interactive, object-oriented language. Use the
pydoc command to read documentation on Python modules. See python man page.

python

The interpreter for the Ruby language, an interpreted object-oriented scripting language.
See ruby man page.

ruby

Reads a set of files and processes them according to a list of commands. See sedman page.sed

A shell-like application that interprets Tcl commands. It runs interactively if called without
arguments. Tcl is a scripting language, like Perl, Python, or Ruby. However, Tcl is usually
embedded and thus called from the Tcl library rather than by an interpreter such as tclsh.
See tclsh man page.

tclsh

Script Language Converters

Table C-22 lists the available command-line script language converters.

Table C-22 Script language converters

DescriptionTool

Converts an awk script to a Perl script. See a2p man page.a2p

Converts a sed script to a Perl script. See s2p man page.s2p

Perl Tools

Table C-23 lists the available command-line Perl tools.

Table C-23 Perl tools

DescriptionTool

Displays profile data generated for a Perl script by a Perl profiler. See dprofpp man page.dprofpp

Converts find command lines to equivalent Perl code. See find2perl man page.find2perl

Converts C header files to Perl header file format. See h2ph man page.h2ph

Builds a Perl extension from C header files. The extension includes functions that can be used
to retrieve the value of any #define statement that was in the C header files. See h2xs man
page.

h2xs

An interactive tool that helps you report bugs for the Perl language. See perlbugman page.perlbug

Looks up and displays documentation for Perl library modules and other Perl scripts that
include internal documentation. If a man page exists for the module, you can use man instead.
See perldoc man page.

perldoc

154 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Aids in the conversion of Perl 4 .pl library files to Perl 5 library modules. This tool is useful
if you plan to update your library to use some of the features new in Perl 5. See pl2pm man
page.

pl2pm

Forces verbose warning diagnostics by the Perl compiler and interpreter. See splain man
page.

splain

Parsers and Lexical Analyzers

Table C-24 lists the available command-line parsers and lexical analyzers.

Table C-24 Parsers and lexical analyzers

DescriptionTool

Generates parsers from grammar specification files. A somewhat more flexible replacement for
yacc. See bison man page.

bison

Generates programs that scan text files and perform pattern matching. When one of these programs
matches the pattern, it executes the C routine you provide for that pattern. See flex man page.

flex

An alias for flex. See lex man page.lex

Generates parsers from grammar specification files. Used in conjunction with flex to created lexical
analyzer programs. See yacc man page.

yacc

Documentation Tools

Table C-25 lists the available command-line scripting documentation tools.

Table C-25 Scripting documentation tools

DescriptionTool

Converts files from pod format to HTML format. The pod (Plain Old Documentation) format
is defined in the perlpod man page. See pod2html man page.

pod2html

Converts files from pod format to LaTeX format. LaTeX is a document preparation system
built on the TeX text formatter. See pod2latex man page.

pod2latex

Converts files from pod format to *roff code, which can be displayed using nroff via
man, or printed using troff. See pod2man man page.

pod2man

Converts pod data to formatted ASCII text. See pod2text man page.pod2text

Similar to pod2text, but can output just the synopsis information or the synopsis plus any
options/arguments sections instead of the entire man page. See pod2usage man page.

pod2usage

Checks the syntax of documentation files that are in pod format and outputs errors to
standard error. See podchecker man page.

podchecker

Command-Line Tools 155
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

DescriptionTool

Prints selected sections of pod documentation to standard output. See podselect man
page.

podselect

Java Tools

The tools listed in the following sections are located in /usr/bin.

General

Table C-26 lists the command-line tools used for building, debugging, and running Java programs.

Table C-26 Java tools

DescriptionTool

Starts the Java runtime environment and launches a Java application. See java man page.java

The standard Java compiler from Sun Microsystems. See javac man page.javac

The Java debugger. It provides inspection and debugging of a local or remote Java virtual machine.
See jdb man page.

jdb

Java Utilities

Table C-27 lists some of the applications and command-line tools for working with Java.

Table C-27 Java utilities

DescriptionTool

Reads an Object Management Group (OMG) Interface Definition Language (IDL) file and
translates it, or maps it, to a Java interface. The idlj compiler also creates stub, skeleton,
helper, holder, and other files as necessary. These Java files are generated from the IDL
file according to the mapping specified in the OMG documentOMG IDL to Java Language
Mapping Specification, formal, 99-07-53. The idlj compiler is documented at http://ja-
va.sun.com/j2se/1.3/docs/guide/rmi-iiop/toJavaPortableUG.html. IDL files are used to
allow objects from different languages to interact with a common Object Request Broker
(ORB), allowing remote invocation between languages. See idlj man page.

idlj

Parses the declarations and documentation comments in a set of Java source files and
produces HTML pages describing the public and protected classes, inner classes, interfaces,
constructors, methods, and fields. See javadoc man page.

javadoc

Generates C header and source files from Java classes. The generated header and source
files are used by C programs to reference instance variables of a Java object so that you
can call Java code from inside your Mac OS X native application. See javah man page.

javah

156 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/toJavaPortableUG.html
http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/toJavaPortableUG.html

DescriptionTool

Converts characters that are not in Latin-1 or Unicode encoding to ASCII for use with
javac and other Java tools. It also can do the reverse conversion of Latin-1 or Unicode
to native-encoded characters. See native2ascii man page.

native2ascii

A compiler that generates stub and skeleton class files for remote objects from the names
of compiled Java classes that contain remote object implementations. A remote object
is one that implements the interface java.rmi.Remote. See rmic man page.

rmic

Creates and starts a remote object registry. A remote object registry is a naming service
that makes it possible for clients on the host to look up remote objects and invoke remote
methods. See rmiregistry man page.

rmiregistry

Java Archive (JAR) Files

Table C-28 lists the available JAR file applications and command-line tools.

Table C-28 JAR file tools

DescriptionTool

Checks a specified JAR file for title and version conflicts with any extensions installed in the
Java Developer Kit software. See extcheck man page.

extcheck

Combines and compresses multiple files into a single Java archive (JAR) file so they can be
downloaded by a Java agent (such as a browser) in a single HTTP transaction. See jar man
page.

jar

Lets you sign JAR files and verify the signatures and integrity of signed JAR files. See
jarsigner man page.

jarsigner

Kernel Extension Tools

Table C-29 lists the command-line tools that are useful for kernel extension development. These tools are
located in /usr/sbin and /sbin.

Table C-29 Kernel extension tools

DescriptionTool

Loads kernel extensions, validates them to make sure they can be loaded by other
mechanisms, and generates symbol files for debugging them.

kextload

Displays the status of any kernel extensions currently loaded in the kernel.kextstat

Terminates and unregisters I/O Kit objects associated with a KEXT and unloads the code for
the KEXT.

kextunload

Command-Line Tools 157
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

I/O Kit Driver Tools

Table C-30 lists the applications and command-line tools for developing device drivers. These tools are located
in <Xcode>/usr/sbin.

Table C-30 Driver tools

DescriptionTool

A command-line version of I/O Registry Explorer. The ioreg tool displays the tree in a
Terminal window, allowing you to cut and paste sections of the tree.

ioreg

Displays a summary of memory allocated by I/O Kit allocators listed by type (instance,
container, and IOMalloc). This tool is useful for tracking memory leaks.

ioalloccount

Shows the number of instances allocated for each specified class. This tool is also useful
for tracking memory leaks.

ioclasscount

158 Command-Line Tools
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

APPENDIX C

Mac OS X Developer Tools

abstract type Defines, in information property lists,
general characteristics of a family of documents. Each
abstract type has corresponding concrete types. See
also concrete type.

Accessibility The technology for ensuring that
disabled users can use Mac OS X. Accessibility
provides support for disabled users in the form of
screen readers, speech recognition, text-to-speech
converters, and mouse and keyboard alternatives.

ACLs Access Control Lists. A technology used to give
more fine-grained access to file-system objects.
Compare with permissions.

actions Building blocks used to build workflows in
Automator.

active window The frontmost modal or document
window. Only the contents of the active window are
affected by user actions. The active window has
distinctive details that aren’t visible for inactive
windows.

Address Book A technology for managing names,
addresses, phone numbers, and other contact-related
information. Mac OS X provides the Address Book
application for managing contact data. It also provides
the Address Book framework so that applications can
programmatically manage the data.

address space Describes the range of memory (both
physical and virtual) that a process uses while running.
In Mac OS X, processes do not share address space.

alias A lightweight reference to files and folders in
Mac OS Standard (HFS) and Mac OS Extended (HFS+)
file systems. An alias allows multiple references to
files and folders without requiring multiple copies of
these items. Aliases are not as fragile as symbolic links
because they identify the volume and location on disk

of a referenced file or folder; the file or folder can be
moved around without breaking the alias. See also
symbolic link.

anti-aliasing A technique that smoothes the
roughness in images or sound caused by aliasing.
During frequency sampling, aliasing generates a false
(alias) frequency along with the correct one. With
images this produces a stair-step effect. Anti-aliasing
corrects this by adjusting pixel positions or setting
pixel intensities so that there is a more gradual
transition between pixels.

Apple event A high-level operating-system event
that conforms to the Apple Event Interprocess
Messaging Protocol (AEIMP). An Apple event typically
consists of a message from an application to itself or
to another application.

AppleScript An Apple-defined scripting language.
AppleScript uses a natural language syntax to send
Apple events to applications, commanding them to
perform specific actions.

AppleTalk A suite of network protocols that is
standard on Macintosh computers and can be
integrated with other network systems, such as the
Internet.

Application Kit A Cocoa framework that implements
an application’s user interface. The Application Kit
provides a basic program structure for applications
that draw on the screen and respond to events.

application packaging Putting code and resources
in the prescribed directory locations inside application
bundles. “Application package” is sometimes used
synonymously with “application bundle.”

Aqua A set of guidelines that define the appearance
and behavior of Mac OS X applications. The Aqua
guidelines bring a unique look to applications,

159
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

Glossary

integrating color, depth, clarity, translucence, and
motion to present a vibrant appearance. If you use
Carbon, Cocoa, or X11 to create your application’s
interface, you get the Aqua appearance automatically

ASCII American Standard Code for Information
Interchange. A 7-bit character set (commonly
represented using 8 bits) that defines 128 unique
character codes. See also Unicode.

bit depth The number of bits used to describe
something, such as the color of a pixel. Each additional
bit in a binary number doubles the number of
possibilities.

bitmap A data structure that represents the positions
and states of a corresponding set of pixels.

Bonjour Apple’s technology for zero-configuration
networking. Bonjour enables dynamic discovery of
services over a network.

BSD Berkeley Software Distribution. Formerly known
as the Berkeley version of UNIX, BSD is now simply
called the BSD operating system. BSD provides
low-level features such as networking, thread
management, and process communication. It also
includes a command-shell environment for managing
system resources. The BSD portion of Mac OS X is
based on version 5 of the FreeBSD distribution.

buffered window A window with a memory buffer
into which all drawing is rendered. All graphics are
first drawn in the buffer, and then the buffer is flushed
to the screen.

bundle A directory in the file system that stores
executable code and the software resources related
to that code. Applications, plug-ins, and frameworks
are types of bundles. Except for frameworks, bundles
are file packages, presented by the Finder as a single
file.

bytecode Computer object code that is processed
by a virtual machine. The virtual machine converts
generalized machine instructions into specific
machine instructions (instructions that a computer’s
processor can understand). Bytecode is the result of
compiling source language statements written in any
language that supports this approach. The
best-known language today that uses the bytecode
and virtual machine approach is Java. In Java,
bytecode is contained in a binary file with a .class

suffix. (Strictly speaking, “bytecode” means that the
individual instructions are one byte long, as opposed
to PowerPC code, for example, which is four bytes
long.) See also virtual machine (VM).

Carbon An application environment in Mac OS X that
features a set of procedural programming interfaces
derived from earlier versions of the Mac OS. The
Carbon API has been modified to work properly with
Mac OS X, especially with the foundation of the
operating system, the kernel environment. Carbon
applications can run in Mac OS X and Mac OS 9.

CFM Code Fragment Manager, the library manager
and code loader for processes based on PEF (Preferred
Executable Format) object files (in Carbon).

class In object-oriented languages such as Java and
Objective-C, a prototype for a particular kind of object.
A class definition declares instance variables and
defines methods for all members of the class. Objects
that belong to the same class have the same types of
instance variables and have access to the same
methods (included the instance variables and
methods inherited from superclasses).

Classic An application environment in Mac OS X that
lets you run non-Carbon legacy Mac OS software. It
supports programs built for both PowerPC and
68000-family chip architectures and is fully integrated
with the Finder and the other application
environments.

Clipboard A per-user server (also known as the
pasteboard) that enables the transfer of data between
applications, including the Finder. This server is shared
by all running applications and contains data that the
user has cut or copied, as well as other data that one
application wants to transfer to another, such as in
dragging operations. Data in the Clipboard is
associated with a name that indicates how it is to be
used. You implement data-transfer operations with
the Clipboard using Core Foundation Pasteboard
Services or the Cocoa NSPasteboard class. See also
pasteboard.

Cocoa An advanced object-oriented development
platform in Mac OS X. Cocoa is a set of frameworks
used for the rapid development of full-featured
applications in the Objective-C language. It is based
on the integration of OpenStep, Apple technologies,
and Java.

160
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

code fragment In the CFM-based architecture, a code
fragment is the basic unit for executable code and its
static data. All fragments share fundamental
properties such as the basic structure and the method
of addressing code and data. A fragment can easily
access code or data contained in another fragment.
In addition, fragments that export items can be shared
among multiple clients. A code fragment is structured
according to the Preferred Executable Format (PEF).

ColorSync An industry-standard architecture for
reliably reproducing color images on various devices
(such as scanners, video displays, and printers) and
operating systems.

compositing A method of overlaying separately
rendered images into a final image. It encompasses
simple copying as well as more sophisticated
operations that take advantage of transparency.

concrete type Defines, in information property lists,
specific characteristics of a type of document, such
as extensions and HFS+ type and creator codes. Each
concrete type has corresponding abstract types. See
also abstract type.

cooperative multitasking A multitasking
environment in which a running program can receive
processing time only if other programs allow it; each
application must give up control of the processor
“cooperatively” in order to allow others to run. Mac
OS 9 is a cooperative multitasking environment. See
also preemptive multitasking.

CUPS The Common UNIX Printing System; an open
source architecture commonly used by the UNIX
community to implement printing.

daemon A process that handles periodic service
requests or forwards a request to another process for
handling. Daemons run continuously, usually in the
background, waking only to handle their designated
requests. For example, the httpd daemon responds
to HTTP requests for web information.

Darwin Another name for the Mac OS X core
operating system. The Darwin kernel is equivalent to
the Mac OS X kernel plus the BSD libraries and
commands essential to the BSD Commands
environment. Darwin is an open source technology.

Dashboard A user technology for managing
HTML-based programs called widgets (see
permissions). Activating the Dashboard via the F12
key displays a layer above the Mac OS X desktop that
contains the user’s current set of widgets.

Dashcode A graphical application used to build and
debug Dashboard widgets.

demand paging An operating system facility that
causes pages of data to be read from disk into physical
memory only as they are needed.

device driver A component of an operating system
that deals with getting data to and from a device, as
well as the control of that device.

dispatch queue A Grand Central Dispatch (GCD)
structure that you use to execute your application’s
tasks. GCD defines dispatch queues for executing
tasks either serially or concurrently.

domain An area of the file system reserved for
software, documents, and resources and limiting the
accessibility of those items. A domain is segregated
from other domains. There are four domains: user,
local, network, and system.

DVD An optical storage medium that provides
greater capacity and bandwidth than CD-ROM; DVDs
are frequently used for multimedia as well as data
storage.

dyld See dynamic link editor.

dynamic link editor The library manager for code in
the Mach-O executable format. The dynamic link
editor is a dynamic library that “lives” in all Mach-O
programs on the system. See also CFM; Mach-O.

dynamic linking The binding of modules, as a
program executes, by the dynamic link editor. Usually
the dynamic link editor binds modules into a program
lazily (that is, as they are used). Thus modules not
actually used during execution are never bound into
the program.

dynamic shared library A library whose code can
be shared by multiple, concurrently running programs.
Programs share exactly one physical copy of the
library code and do not require their own copies of
that code. With dynamic shared libraries, a program

161
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

not only attempts to resolve all undefined symbols
at runtime, but attempts to do so only when those
symbols are referenced during program execution.

encryption The conversion of data into a form, called
ciphertext, that cannot be easily understood by
unauthorized people. The complementary process,
decryption, converts encrypted data back into its
original form.

Ethernet A high-speed local area network
technology.

exception An interruption to the normal flow of
program control that occurs when an error or other
special condition is detected during execution. An
exception transfers control from the code generating
the exception to another piece of code, generally a
routine called an exception handler.

fault In the virtual-memory system, faults are the
mechanism for initiating page-in activity. They are
interrupts that occur when code tries to access data
at a virtual address that is not mapped to physical
memory. Soft faults happen when the referenced
page is resident in physical memory but is unmapped.
Hard (or page) faults occur when the page has been
swapped out to backing store. See also page; virtual
memory.

file package A directory that the Finder presents to
users as if it were a file. In other words, the Finder
hides the contents of the directory from users. This
opacity discourages users from inadvertently (or
intentionally) altering the contents of the directory.

file system A part of the kernel environment that
manages the reading and writing of data on mounted
storage devices of a certain volume format. A file
system can also refer to the logical organization of
files used for storing and retrieving them. File systems
specify conventions for naming files, storing data in
files, and specifying locations of files. See also volume
format.

filters The simplest unit used to modify image data
from Core Image. One or more filters may be
packaged into an image units and loaded into a
program using the Core image framework. Filters can
contain executable or nonexecutable code.

firewall Software (or a computer running such
software) that prevents unauthorized access to a
network by users outside the network. (A physical
firewall prevents the spread of fire between two
physical locations; the software analog prevents the
unauthorized spread of data.)

fork (1) A stream of data that can be opened and
accessed individually under a common filename. The
Mac OS Standard and Extended file systems store a
separate data fork and resource fork as part of every
file; data in each fork can be accessed and
manipulated independently of the other. (2) In BSD,
fork is a system call that creates a new process.

framebuffer A highly accessible part of video RAM
(random-access memory) that continuously updates
and refreshes the data sent to the devices that display
images onscreen.

framework A type of bundle that packages a
dynamic shared library with the resources that the
library requires, including header files and reference
documentation.

Grand Central Dispatch (GCD) A technology for
executing asynchronous tasks concurrently. GCD is
available in Mac OS X v10.6 and later and is not
available in iPhone OS.

HFS Hierarchical File System. The Mac OS Standard
file-system format, used to represent a collection of
files as a hierarchy of directories (folders), each of
which may contain either files or other folders. HFS
is a two-fork volume format.

HFS+ Hierarchical File System Plus. The Mac OS
Extended file-system format. This format was
introduced as part of Mac OS 8.1, adding support for
filenames longer than 31 characters, Unicode
representation of file and directory names, and
efficient operation on very large disks. HFS+ is a
multiple-fork volume format.

HIToolbox Human Interface Toolbox. A collection
of procedural APIs that apply an object-oriented
model to windows, controls, and menus for Carbon
applications. The HI Toolbox supplements older
Macintosh Toolbox managers such as the Control
Manager, Dialog Manager, Menu Manager, and
Window Manager from Mac OS 9.

162
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

host The computer that is running (is host to) a
particular program; used to refer to a computer on a
network.

IDE An acronym meaning “integrated development
environment”. An IDE is a program that typically
combines text editing, compiling, and debugging
features in one package in order to assist developers
with the creation of software.

image units A plug-in bundle for use with the Core
Image framework. Image units contain one or more
filters for manipulating image data.

information property list A property list that
contains essential configuration information for
bundles. A file named Info.plist (or a
platform-specific variant of that filename) contains
the information property list and is packaged inside
the bundle.

inheritance In object-oriented programming, the
ability of a superclass to pass its characteristics
(methods and instance variables) on to its subclasses.

instance In object-oriented languages such as Java
and Objective-C, an object that belongs to (is a
member of) a particular class. Instances are created
at runtime according to the specification in the class
definition.

Interface Builder A tool for creating user interfaces.
You use this tool to build and configure your user
interface using a set of standard components and
save that data to a resource file that can be loaded
into your program at runtime. For more information,
see “Interface Builder” (page 133).

internationalization The design or modification of
a software product, including its online help and
documentation, to facilitate localization.
Internationalization of software typically involves
writing or modifying code to make use of locale-aware
operating-system services for appropriate localized
text input, display, formatting, and manipulation. See
also localization.

interprocess communication (IPC) A set of
programming interfaces that enables a process to
communicate data or information to another process.
Mechanisms for IPC exist in the different layers of the
system, from Mach messaging in the kernel to
distributed notifications and Apple events in the

application environments. Each IPC mechanism has
its own advantages and limitations, so it is not unusual
for a program to use multiple IPC mechanisms. Other
IPC mechanisms include pipes, named pipes, signals,
message queueing, semaphores, shared memory,
sockets, the Clipboard, and application services.

I/O Kit A collection of frameworks, libraries, tools,
and other resources for creating device drivers in Mac
OS X. The I/O Kit framework uses a restricted form of
C++ to provide default behavior and an
object-oriented programming model for creating
custom drivers.

iSync A tool for synchronizing address book
information.

Java A development environment for creating
applications. Java was created by Sun Microsystems.

Java Native Interface (JNI) A technology for bridging
C-based code with Java.

Java Virtual Machine (JVM) The runtime
environment for executing Java code. This
environment includes a just-in-time bytecode
compiler and utility code.

kernel The complete Mac OS X core operating-system
environment, which includes Mach, BSD, the I/O Kit,
file systems, and networking components. Also called
the kernel environment.

key An arbitrary value (usually a string) used to locate
a piece of data in a data structure such as a dictionary.

localization The adaptation of a software product,
including its online help and documentation, for use
in one or more regions of the world, in addition to
the region for which the original product was created.
Localization of software can include translation of
user interface text, resizing of text-related graphical
elements, and replacement or modification of user
interface images and sound. See also
internationalization.

lock A data structure used to synchronize access to
a shared resource. The most common use for a lock
is in multithreaded programs where multiple threads
need access to global data. Only one thread can hold
the lock at a time; this thread is the only one that can
modify the data during this period.

163
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

manager In Carbon, a library or set of related libraries
that define a programming interface.

Mach The lowest level of the Mac OS X kernel
environment. Mach provides such basic services and
abstractions as threads, tasks, ports, interprocess
communication (IPC), scheduling, physical and virtual
address space management, virtual memory, and
timers.

Mach-O Executable format of Mach object files. See
also PEF.

main thread By default, a process has one thread,
the main thread. If a process has multiple threads, the
main thread is the first thread in the process. A user
process can use the POSIX threading API (pthread) to
create other user threads.

major version A framework version specifier
designating a framework that is incompatible with
programs linked with a previous version of the
framework’s dynamic shared library.

makefile A specification file used by a build tool to
create an executable version of an application. A
makefile details the files, dependencies, and rules by
which the application is built.

memory-mapped file A file whose contents are
mapped into memory. The virtual-memory system
transfers portions of these contents from the file to
physical memory in response to page faults. Thus, the
disk file serves as backing store for the code or data
not immediately needed in physical memory.

memory protection A system of memory
management in which programs are prevented from
being able to modify or corrupt the memory partition
of another program. Mac OS 9 does not have memory
protection; Mac OS X does.

method In object-oriented programming, a
procedure that can be executed by an object.

minor version A framework version specifier
designating a framework that is compatible with
programs linked with later builds of the framework
within the same major version.

multicast A process in which a single network packet
may be addressed to multiple recipients. Multicast is
used, for example, in streaming video, in which many
megabytes of data are sent over the network.

multihoming The ability to have multiple network
addresses in one computer. For example, multihoming
might be used to create a system in which one
address is used to talk to hosts outside a firewall and
the other to talk to hosts inside; the operating system
provides facilities for passing information between
the two.

multitasking The concurrent execution of multiple
programs. Mac OS X uses preemptive multitasking,
whereas Mac OS 9 uses cooperative multitasking.

network A group of hosts that can directly
communicate with each other.

nib file A file containing resource data generated by
the Interface Builder application.

nonretained window A window without an offscreen
buffer for screen pixel values.

notification Generally, a programmatic mechanism
for alerting interested recipients (or “observers”) that
some event has occurred during program execution.
The observers can be users, other processes, or even
the same process that originates the notification. In
Mac OS X, the term “notification” is used to identify
specific mechanisms that are variations of the basic
meaning. In the kernel environment, “notification” is
sometimes used to identify a message sent via IPC
from kernel space to user space; an example of this
is an IPC notification sent from a device driver to the
window server’s event queue. Distributed notifications
provide a way for a process to broadcast an alert
(along with additional data) to any other process that
makes itself an observer of that notification. Finally,
the Notification Manager (a Carbon manager) lets
background programs notify users—through blinking
icons in the menu bar, by sounds, or by dialogs—that
their intercession is required.

NFS Network File System. An NFS file server allows
users on the network to share files on other hosts as
if they were on their own local disks.

164
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

object A programming unit that groups together a
data structure (instance variables) and the operations
(methods) that can use or affect that data. Objects
are the principal building blocks of object-oriented
programs.

object file A file containing executable code and
data. Object files in the Mach-O executable format
take the suffix .o and are the product of compilation
using the GNU compiler (gcc). Multiple object files
are typically linked together along with required
frameworks to create a program. See also code
fragment; dynamic linking.

object wrapper Code that defines an object-based
interface for a set of procedural interfaces. Some
Cocoa objects wrap Carbon interfaces to provide
parallel functionality between Cocoa and Carbon
applications.

Objective-C An object-oriented programming
language based on standard C and a runtime system
that implements the dynamic functions of the
language. Objective-C’s few extensions to the C
language are mostly based on Smalltalk, one of the
first object-oriented programming languages.
Objective-C is available in the Cocoa application
environment.

opaque type In Core Foundation and Carbon, an
aggregate data type plus a suite of functions that
operate on instances of that type. The individual fields
of an initialized opaque type are hidden from clients,
but the type’s functions offer access to most values
of these fields. An opaque type is roughly equivalent
to a class in object-oriented programming.

Open Computing Language (OpenCL) A
standards-based technology for performing
general-purpose computations on a computer’s
graphics processor. For more information, see OpenCL
Programming Guide for Mac OS X.

OpenGL The Open Graphics Language; an
industry-wide standard for developing portable 2D
and 3D graphics applications. OpenGL consists of an
API and libraries that developers use to render content
in their applications.

open source A definition of software that includes
freely available access to source code, redistribution,
modification, and derived works. The full definition
is available at www.opensource.org.

Open Transport Open Transport is a legacy
communications architecture for implementing
network protocols and other communication features
on computers running the Mac OS. Open Transport
provides a set of programming interfaces that
supports, among other things, both the AppleTalk
and TCP/IP protocols.

package In Java, a way of storing, organizing, and
categorizing related Java class files; typical package
names are java.util and
com.apple.cocoa.foundation. See also
application packaging.

PackageMaker A tool that builds an installable
software package from the files you provide. For more
information, see “PackageMaker” (page 142).

page The smallest unit, measured in bytes, of
information that the virtual memory system can
transfer between physical memory and backing store.
As a verb, page refers to transferring pages between
physical memory and backing store.

pasteboard Another name for the Clipboard.

PEF Preferred Executable Format. An executable
format understood by the Code Fragment Manager.
See also Mach-O.

permissions In BSD, a set of attributes governing
who can read, write, and execute resources in the file
system. The output of the ls -l command represents
permissions as a nine-position code segmented into
three binary three-character subcodes; the first
subcode gives the permissions for the owner of the
file, the second for the group that the file belongs to,
and the last for everyone else. For example,
-rwxr-xr-- means that the owner of the file has
read, write, execute permissions (rwx); the group has
read and execute permissions (r-x); everyone else has
only read permissions. (The leftmost position indicates
whether this is a regular file (-), a directory (d), a
symbolic link (l), or a special pseudo-file device.) The
execute bit has a different semantic for directories,
meaning they can be searched.

physical address An address to which a hardware
device, such as a memory chip, can directly respond.
Programs, including the Mach kernel, use virtual
addresses that are translated to physical addresses
by mapping hardware controlled by the Mach kernel.

165
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

physical memory Electronic circuitry contained in
random-access memory (RAM) chips, used to
temporarily hold information at execution time.
Addresses in a process’s virtual memory are mapped
to addresses in physical memory. See also virtual
memory.

pixel The basic logical unit of programmable color
on a computer display or in a computer image. The
physical size of a pixel depends on the resolution of
the display screen.

plug-in An external module of code and data
separate from a host (such as an application,
operating system, or other plug-in) that, by
conforming to an interface defined by the host, can
add features to the host without needing access to
the source code of the host. Plug-ins are types of
loadable bundles. They are implemented with Core
Foundation Plug-in Services.

port (1) In Mach, a secure unidirectional channel for
communication between tasks running on a single
system. (2) In IP transport protocols, an integer
identifier used to select a receiver for an incoming
packet or to specify the sender of an outgoing packet.

POSIX The Portable Operating System Interface. An
operating-system interface standardization effort
supported by ISO/IEC, IEEE, and The Open Group.

PostScript A language that describes the appearance
(text and graphics) of a printed page. PostScript is an
industry standard for printing and imaging. Many
printers contain or can be loaded with PostScript
software. PostScript handles industry-standard,
scalable typefaces in the Type 1 and TrueType formats.
PostScript is an output format of Quartz.

preemption The act of interrupting a currently
running task in order to give time to another task.

preemptive multitasking A type of multitasking in
which the operating system can interrupt a currently
running task in order to run another task, as needed.
See also cooperative multitasking.

process A BSD abstraction for a running program. A
process’s resources include a virtual address space,
threads, and file descriptors. In Mac OS X, a process
is based on one Mach task and one or more Mach
threads.

property list A structured, textual representation of
data that uses the Extensible Markup Language (XML)
as the structuring medium. Elements of a property
list represent data of certain types, such as arrays,
dictionaries, and strings.

pthreads The POSIX Threads package (BSD).

Quartz The native 2D rendering API for Mac OS X.
Quartz contains programmatic interfaces that provide
high-quality graphics, compositing, translucency, and
other effects for rendered content. Quartz is included
as part of the Application Services umbrella
framework.

Quartz Extreme A technology integrated into the
lower layers of Quartz that enables many graphics
operations to be offloaded to hardware. This
offloading of work to the graphics processor unit
(GPU) provides tremendous acceleration for
graphics-intensive applications. This technology is
enabled automatically by Quartz and OpenGL on
supported hardware.

QuickTime Apple’s multimedia authoring and
rendering technology. QuickTime lets you import and
export media files, create new audio and video
content, modify existing content, and play back
content.

RAM Random-access memory. Memory that a
microprocessor can either read or write to.

raster graphics Digital images created or captured
(for example, by scanning in a photo) as a set of
samples of a given space. A raster is a grid of x-axis
(horizontal) and y-axis (vertical) coordinates on a
display space. (Three-dimensional images also have
a z coordinate.) A raster image identifies the
monochrome or color value with which to illuminate
each of these coordinates. The raster image is
sometimes referred to as a bitmap because it contains
information that is directly mapped to the display
grid. A raster image is usually difficult to modify
without loss of information. Examples of raster-image
file types are BMP, TIFF, GIF, and JPEG files. See also
vector graphics.

real time In reference to operating systems, a
guarantee of a certain capability within a specified
time constraint, thus permitting predictable,
time-critical behavior. If the user defines or initiates
an event and the event occurs instantaneously, the

166
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

computer is said to be operating in real time.
Real-time support is especially important for
multimedia applications.

reentrant The ability of code to process multiple
interleaved requests for service nearly simultaneously.
For example, a reentrant function can begin
responding to one call, be interrupted by other calls,
and complete them all with the same results as if the
function had received and executed each call serially.

resolution The number of pixels (individual points
of color) contained on a display monitor, expressed
in terms of the number of pixels on the horizontal
axis and the number on the vertical axis. The
sharpness of the image on a display depends on the
resolution and the size of the monitor. The same
resolution will be sharper on a smaller monitor and
gradually lose sharpness on larger monitors because
the same number of pixels are being spread out over
a larger area.

resource Anything used by executable code,
especially by applications. Resources include images,
sounds, icons, localized strings, archived user interface
objects, and various other things. Mac OS X supports
both Resource Manager–style resources and “per-file”
resources. Localized and nonlocalized resources are
put in specific places within bundles.

retained window A window with an offscreen buffer
for screen pixel values. Images are rendered into the
buffer for any portions of the window that aren’t
visible onscreen.

role An identifier of an application’s relation to a
document type. There are five roles: Editor (reads and
modifies), Viewer (can only read), Print (can only print),
Shell (provides runtime services), and None (declares
information about type). You specify document roles
in an application’s information property list.

ROM Read-only memory, that is, memory that cannot
be written to.

run loop The fundamental mechanism for event
monitoring in Mac OS X. A run loop registers input
sources such as sockets, Mach ports, and pipes for a
thread; it also enables the delivery of events through
these sources. In addition to sources, run loops can
also register timers and observers. There is exactly
one run loop per thread.

runtime The period of time during which a program
is being executed, as opposed to compile time or load
time. Can also refer to the runtime environment,
which designates the set of conventions that arbitrate
how software is generated into executable code, how
code is mapped into memory, and how functions call
one another.

Safari Apple’s web browser. Safari is the default web
browser that ships with Mac OS X.

scheduling The determination of when each process
or task runs, including assignment of start times.

SCM Repository Source Code Management
Repositories. A code database used to enable the
collaborative development of large projects by
multiple engineers. SCM repositories are managed by
specific tools (such as CVS and Subversion), which
manage the repository and handle check-ins and
check-outs of code resources by engineers.

SCSI Small Computer Systems Interface. A standard
connector and communications protocol used for
connecting devices such as disk drives to computers.

script A series of statements, written in a scripting
language such as AppleScript or Perl, that instruct an
application or the operating system to perform
various operations. Interpreter programs translate
scripts.

semaphore A programming technique for
coordinating activities in which multiple processes
compete for the same kernel resources. Semaphores
are commonly used to share a common memory
space and to share access to files. Semaphores are
one of the techniques for interprocess communication
in BSD.

server A process that provides services to other
processes (clients) in the same or other computers.

Shark A tool for analyzing a running (or static)
application that returns metrics to help you identify
potential performance bottlenecks. For more
information, see “Performance Tools” (page 148).

sheet A dialog associated with a specific window.
Sheets appear to slide out from underneath the
window title and float above the window.

167
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

shell An interactive programming language
interpreter that runs in a Terminal window. Mac OS
X includes several different shells, each with a
specialized syntax for executing commands and
writing structured programs, called shell scripts.

SMP Symmetric multiprocessing. A feature of an
operating system in which two or more processors
are managed by one kernel, sharing the same memory
and having equal access to I/O devices, and in which
any task, including kernel tasks, can run on any
processor.

socket (1) In BSD-derived systems, a socket refers to
different entities in user and kernel operations. For a
user process, a socket is a file descriptor that has been
allocated using socket(2). For the kernel, a socket
is the data structure that is allocated when the kernel’s
implementation of the socket(2) call is made. (2)
In AppleTalk protocols, a socket serves the same
purpose as a “port” in IP transport protocols.

spool To send files to a device or program (called a
spooler or daemon) that puts them in a queue for
later processing. The print spooler controls output of
jobs to a printer. Other devices, such as plotters and
input devices, can also have spoolers.

subframework A public framework that packages a
specific Apple technology and is part of an umbrella
framework. Through various mechanisms, Apple
prevents or discourages developers from including
or directly linking with subframeworks. See also
umbrella framework.

symbolic link A lightweight reference to files and
folders in UFS file systems. A symbolic link allows
multiple references to files and folders without
requiring multiple copies of these items. Symbolic
links are fragile because if what they refer to moves
somewhere else in the file system, the link breaks.
However, they are useful in cases where the location
of the referenced file or folder will not change. See
also alias.

system framework A framework developed by Apple
and installed in the file-system location for system
software.

task A Mach abstraction, consisting of a virtual
address space and a port name space. A task itself
performs no computation; rather, it is the context in
which threads run. See also thread.

TCP/IP Transmission Control Protocol/Internet
Protocol. An industry-standard protocol used to
deliver messages between computers over the
network. TCP/IP support is included in Mac OS X.

thread In Mach, the unit of CPU utilization. A thread
consists of a program counter, a set of registers, and
a stack pointer. See also task.

thread-safe code Code that can be used safely by
several threads simultaneously.

timer A kernel resource that triggers an event at a
specified interval. The event can occur only once or
can be recurring. Timers are one of the input sources
for run loops. Timers are also implemented at higher
levels of the system, such as CFTimer in Core
Foundation and NSTimer in Cocoa.

transformation An alteration to a coordinate system
that defines a new coordinate system. Standard
transformations include rotation, scaling, and
translation. A transformation is represented by a
matrix.

UDF Universal Disk Format. The file-system format
used in DVD disks.

UFS UNIX file system. An industry-standard
file-system format used in UNIX-like operating systems
such as BSD. UFS in Mac OS X is a derivative of 4.4BSD
UFS. Its disk layout is not compatible with other BSD
UFS implementations.

umbrella framework A system framework that
includes and links with constituent subframeworks
and other public frameworks. An umbrella framework
“contains” the system software defining an application
environment or a layer of system software. See also
subframework.

Unicode A 16-bit character set that assigns unique
character codes to characters in a wide range of
languages. In contrast to ASCII, which defines 128
distinct characters typically represented in 8 bits,
Unicode comprises 65536 distinct characters that
represent the unique characters used in many
languages.

vector graphics The creation of digital images
through a sequence of commands or mathematical
statements that place lines and shapes in a
two-dimensional or three-dimensional space. One

168
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

advantage of vector graphics over bitmap graphics
(or raster graphics) is that any element of the picture
can be changed at any time because each element is
stored as an independent object. Another advantage
of vector graphics is that the resulting image file is
typically smaller than a bitmap file containing the
same image. Examples of vector-image file types are
PDF, encapsulated PostScript (EPS), and SVG. See also
raster graphics.

versioning With frameworks, schemes to implement
backward and forward compatibility of frameworks.
Versioning information is written into a framework’s
dynamic shared library and is also reflected in the
internal structure of a framework. See also major
version; minor version.

VFS Virtual File System. A set of standard internal
file-system interfaces and utilities that facilitate
support for additional file systems. VFS provides an
infrastructure for file systems built into the kernel.

virtual address A memory address that is usable by
software. Each task has its own range of virtual
addresses, which begins at address zero. The Mach
operating system makes the CPU hardware map these
addresses onto physical memory only when necessary,
using disk memory at other times. See also physical
address.

virtual machine (VM) A simulated computer in that
it runs on a host computer but behaves as if it were
a separate computer. The Java virtual machine works
as a self-contained operating environment to run Java
applications and applets.

virtual memory The use of a disk partition or a file
on disk to provide the facilities usually provided by
RAM. The virtual-memory manager in Mac OS X
provides either a 32-bit or 64-bit protected address
space for each task (depending on the options used
to build the task) and facilitates efficient sharing of
that address space.

VoiceOver A spoken user interface technology for
visually impaired users.

volume A storage device or a portion of a storage
device that is formatted to contain folders and files
of a particular file system. A hard disk, for example,
may be divided into several volumes (also known as
partitions).

volume format The structure of file and folder
(directory) information on a hard disk, a partition of
a hard disk, a CD-ROM, or some other volume
mounted on a computer system. Volume formats can
specify such things as multiple forks (HFS and HFS+),
symbolic and hard links (UFS), case sensitivity of
filenames, and maximum length of filenames. See
also file system.

widget An HTML-based program that runs in the
Dashboard layer of the system.

window server A systemwide process that is
responsible for rudimentary screen displays, window
compositing and management, event routing, and
cursor management. It coordinates low-level
windowing behavior and enforces a fundamental
uniformity in what appears on the screen.

Xcode An integrated development environment (IDE)
for creating Mac OS X software. Xcode incorporates
compiler, debugger, linker, and text editing tools into
a single package to streamline the development
process. For more information, see “Xcode” (page 127).

Instruments An integrated performance analysis and
debugging tool. Instruments lets you gather a
configurable set of metrics while your application is
running, providing you with visualization tools to
analyze the data and see performance problems and
potential coding errors within your software. For more
information, see “Instruments” (page 135).

169
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

170
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Mac OS X Technology Overview.

NotesDate

Updated for Mac OS X v10.6.2009-08-14

Removed outdated reference to jikes compiler. Marked the AppleShareClient
framework as deprecated, which it was in Mac OS X v10.5.

2008-10-15

Updated for Mac OS X v10.5. The document was also reorganized.2007-10-31

Associated in-use prefix information with the system frameworks. Clarified
directories containing developer tools.

2006-06-28

Added references to "Universal Binary Programming Guidelines."2005-10-04

Fixed minor typos. Updated environment variable inheritance information.2005-08-11

Incorporated developer feedback.2005-07-07

Added AppleScript to the list of application environments.

Corrected the man page name for SQLite.2005-06-04

Fixed broken links and incorporated user feedback.2005-04-29

Incorporated porting and technology guidelines from "Apple Software Design
Guidelines." Added information about new system technologies. Changed
"Rendezvous" to "Bonjour."

Added new software types to list of development opportunities.

Added a command-line primer.

Added a summary of the available development tools.

Updated the list of system frameworks.

First version of Mac OS X Technology Overview. Some of the information in this
document previously appeared in System Overview.

2004-05-27

171
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

172
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

> operator 111
< operator 111
| operator 111

Numerals

3D graphics 119
64-bit support 37
802.1x protocol 25

A

a2p tool 154
Abstract Windowing Toolkit package 41
Accelerate framework 94
Accelerate.framework 56, 121
access control lists 23
Accessibility Inspector 140
Accessibility Verifier 140
accessibility

support for 75–76
technologies 95

acid tool 149
ACLs. See access control lists
adaptability

explained 98
technologies for implementing 98

ADC. See Apple Developer Connection
Address Book 60–61
Address Book action plug-ins 80
AddressBook.framework 115
AE.framework 124
agent applications 84
AGL.framework 115
AGP 23, 90
agvtool tool 151

AirPort 27
AirPort Extreme 27
amber tool 149
anti-aliasing 44
Apache HTTP server 27, 86
AppKit.framework 115
AppKitScripting.framework 115
Apple Developer Connection (ADC) 14
Apple events 35, 124
Apple Guide 105
Apple Information Access Toolkit 67
Apple Type Services 49, 122
Apple Type Services for Unicode Imaging. See ATSUI
AppleScript

overview 76
script language 89
scripting additions 89
web services 86
when to use 95, 99

AppleScriptKit.framework 115
AppleShareClient.framework 115
AppleShareClientCore.framework 116
Applet Launcher 138
AppleTalk 26
AppleTalk Filing Protocol (AFP) 24
AppleTalk Manager 105
AppleTalk.framework 116
Application Kit 58
application plug-ins 80
application services 85
applications

and interapplication communication 35
bundling 73
opening 66

ApplicationServices.framework 58, 121
Aqua 71, 95, 96
architecture

hardware 37
as tool 144
assistive devices 76
ATS. See Apple Type Services
ATS.framework 122

173
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

Index

ATSUI 50
attractive appearance

explained 96
technologies for implementing 96

AU Lab 137
audio units 137
audio

delivery 51
file formats 53

AudioToolbox.framework 116
AudioUnit.framework 116
authentication 67, 119
Authorization Services 68, 98
Automator 61, 77, 81, 116
Automator.framework 122
availability of APIs 95
awk tool 153

B

bash shell 89
Berkeley Software Distribution. See BSD
BigTop 139
bison tool 155
Bluetooth 118
Bluetooth Explorer 140
Bonjour 27, 61, 95
Bootstrap Protocol (BOOTP) 25
BSD

application environment 60
command line interface 109
information about 15
notifications 33
operating system 28
pipes 34
ports 32, 34
sockets 32, 34

bsdmake tool 144
bugs, reporting 14
Build Applet 140
built-in commands 109
bundles 32, 73

C

C development 58
C++ development 58
c2ph tool 147
CalendarStore.framework 61, 116
Carbon application environment 58–59

Carbon Event Manager 106
Carbon.framework 58, 122
CarbonCore.framework 124
CarbonSound.framework 123
cascading style sheets 69, 86
cat command 112
cd command 112
CD recording 62
CDSA 67
certificates

and security 68
storing in keychains 96

CFNetwork 100
CFNetwork.framework 124
CFRunLoop 34
CFSocket 34
CGI 86
ci tool 151
Classic environment

overview 40
Clipboard Viewer 140
co tool 151
Cocoa.framework 58, 116
Cocoa

and web services 86
application environment 57–58
Application Kit framework 115
bindings 57
Exception Handling framework 117
Foundation framework 117
text 49

code completion 127
Code Fragment Manager 40
code signing 30, 73, 98
Collaboration.framework 64, 116
collection objects 32
color management module 54
Color Picker 123
ColorSync 54
ColorSync.framework 122
command-line tools 87
Common Unix Printing System (CUPS) 55
CommonPanels.framework 123
compileHelp tool 149
contextual menu plug-ins 81
Core Animation 96
Core Audio 50–51, 81
Core Data 62
Core Foundation

date support 32
features 32
networking interfaces 124
when to use 98

174
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

Core Graphics 43
Core Image 47, 97
Core Image Fun House 138
Core Text 74, 97
Core Video 52
CoreAudio.framework 116
CoreAudioKit.framework 116
CoreData.framework 62, 116
CoreFoundation.framework 58, 116
CoreGraphics.framework 122
CoreLocation.framework 117
CoreMIDI.framework 117
CoreMIDIServer.framework 117
CoreServices.framework 58, 123
CoreText.framework 122
CoreVideo.framework 117
CoreWLAN.framework 117
cp command 112
CPlusTest.framework 125
CpMac tool 152
CrashReporterPrefs 140
cscope tool 147
csh shell 89
CSS. See cascading style sheets
ctags tool 148
CUPS 55
current directory 110
cvs tool 151
cvs-unwrap tool 151
cvs-wrap tool 151

D

daemons 88
Darwin 17, 21–24
Dashboard 77
Dashboard widgets 83
Dashcode 134
data corruption, and shared memory 35
data formatters 128
data model management 62
data synchronization 69
databases 68, 69
date command 112
debug file formats 39
debugging 130
defaults tool 146
deprecated APIs, finding 95
DeRez tool 150
design principles

adaptability 98
attractive appearance 96

ease of use 95
interoperability 99
mobility 100
performance 93
reliability 97
technologies 97
use of modern APIs 94

developer tools, downloading 14
developer tools, overview 19
device drivers 22, 90–91
DHCP. See Dynamic Host Configuration Protocol
DictionaryServices.framework 124
diff tool 152
diff3 tool 152
diffpp tool 152
diffstat tool 152
digital paper 44
directory services 66
DirectoryService.framework 117
disc recording 62
DiscRecording.framework 117
DiscRecordingUI.framework 117
DiskArbitration.framework 117
Display Manager 106
distributed notifications 35–36
distributed objects 36
DNS daemon 88
DNS protocol 25, 66
Dock 77
Document Object Model (DOM) 69, 86
documentation

installed location 15
viewing 127

documents, opening 66
DOM. See Document Object Model
Domain Name Services. See DNS protocol
dprofpp tool 154
drag and drop 99
DrawSprocket.framework 117
DVComponentGlue.framework 117
DVDPlayback.framework 117
DVDs

playing 52
recording 62

DWARF debugging symbols 39
dyld 39
Dynamic Host Configuration Protocol (DHCP) 25

E

ease of use
and internationalization 95

175
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

explained 95
technologies for implementing 95

echo command 112
elegance, designing for 95
endian issues 37
enhancements, requesting 14
environment variables 113
environment.plist file 113
error tool 148
Ethernet 26
Event Manager 106
ExceptionHandling.framework 117
extcheck tool 157
Extensible Markup Language. See XML

F

fast user switching 75
FAT file system 24
Fax support 55
FIFO (first-in, first-out) special file 34
file system events 33, 98
file system journaling 23
file systems

support 23–24
File Transfer Protocol (FTP) 25
FileMerge 140
filename extensions 23, 105
files

browsing 76
long filenames 23
nib 107
opening 66
property list 74
quarantining 30

filters 81
find2perl tool 154
Finder application 76–77
FireWire

audio interfaces 118
device drivers 90

fix and continue 128
flex tool 155
flow control 111
Font Manager 106
Font window 123
ForceFeedback.framework 117
formatter objects 74
Foundation.framework 58, 117
frameworks 79–80, 115–125
FreeBSD 15, 17, 60
FSEvents API 33, 98

FTP. See File Transfer Protocol
FWAUserLib.framework 118

G

gamma 54
gatherheaderdoc tool 149
gcc tool 144
gdb tool 147
genstrings tool 150
gestures 65
GetFileInfo tool 152
GIMP. See GNU Image Manipulation Program
GLUT.framework 118
GNU Image Manipulation Program (GIMP) 55
gnumake tool 144
gprof tool 148
graphics, overview 18

H

h2ph tool 154
h2xs tool 154
HALLab 137
handwriting recognition 65, 123
hardware architectures 37
headerdoc2HTML tool 149
heap tool 147
Help documentation 63
Help Indexer 140
Help Manager 105
Help.framework 123
HFS (Mac OS Standard format) 23
HFS+ (Mac OS Extended format) 23
HI Toolbox 63, 106, 123
HI Toolbox. See Human Interface Toolbox
HIObject 63
HIServices.framework 122
HIToolbox.framework 123
home directory 110
HotSpot Java virtual machine 41
HTML, editing 69
HTML

development 86
display 69

HTMLRendering.framework 123
HTMLView control 125
HTTP 25
HTTPS 25
Human Interface Toolbox. See HI Toolbox

176
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

Hypertext Transport Protocol (HTTP) 25

I

I/O Kit 22
I/O Registry Explorer 140
ibtool tool 148
ICADevices.framework 118
ICC profiles 54
iChat presence 64
Icon Composer 140
icons 74
IDE. See integrated development environment
Identity Services 64
iDisk 76
idlj tool 156
ifnames tool 145
image effects 47
image units 81
ImageCapture.framework 123
ImageCaptureCore.framework 118
ImageIO.framework 122
ImageKit.framework 125
images

capturing 64
supported formats 53

IMCore.framework 124
IMDaemonCore.framework 124
IMFoundation.framework 124
IMSecurityUtils.framework 124
IMUtils.framework 124
indent tool 145
Info.plist file 74
information property list files 74, 77
Ink services 65
Ink.framework 123
input method components 82
InputMethodKit.framework 65, 118
install tool 152
install-info tool 149
installation packages 73
InstallerPlugins.framework 118
install_name_tool tool 153
InstantMessage.framework 64, 118
Instruments 135
Instruments application 94
integrated development environment (IDE) 127
Interface Builder 107, 133
Interface Builder plug-ins 82
InterfaceBuilderKit.framework 125
internationalization 74
Internet Config 106

Internet support 24
interoperability

explained 99
technologies for implementing 99

interprocess communication (IPC) 33–36
ioalloccount tool 158
IOBluetooth.framework 118
IOBluetoothUI.framework 118
ioclasscount tool 158
IOKit.framework 118
ioreg tool 158
IOSurface.framework 118
IP aliasing 27
IPSec protocol 26
IPv6 protocol 26
ISO 9660 format 23
iSync Plug-in Maker 141

J

jam tool 144
Jar Bundler 41, 138
jar tool 157
jarsigner tool 157
Java Native Interface (JNI) 42
Java Platform, Standard Edition/Java SE 59
java tool 156
Java Virtual Machine (JVM) 59
java.awt package 41
Java

and web sites 86
application environment 42, 59

javac tool 156
javadoc tool 156
JavaEmbedding.framework 118
JavaFrameEmbedding.framework 118
javah tool 156
JavaScript 86
JavaVM.framework 119
javax.swing package 41
JBoss 86
jdb tool 156
JIT (just-in-time) bytecode compiler 41
jumbo frame support 26

K

Kerberos 67
Kerberos.framework 119
kernel events 33

177
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

kernel extensions 90
kernel queues 33
Kernel.framework 119
kevents 33
kextload tool 157
kextstat tool 157
kextunload tool 157
Keychain Services 65–66, 68, 96
kHTML rendering engine 69
KJS library 69
kqueues 33

L

LangAnalysis.framework 122
language analysis 122
LatentSemanticMapping.framework 66, 119
launch items 88
Launch Services 66
LaunchServices.framework 124
ld tool 144
LDAP. See Lightweight Directory Access Protocol
LDAP.framework 119
leaks tool 147
LEAP authentication protocol 25
less command 112
lex tool 155
libtool tool 145
Lightweight Directory Access Protocol (LDAP) 25, 66
lipo tool 153
locale support 32
localization 74
lorder tool 145
ls command 112

M

Mac OS 9 migration 105–106
Mac OS Extended format (HFS+) 23
Mac OS Standard format (HFS) 23
Mach 21–22
Mach messages 36
Mach-O file format 38
Macromedia Flash 86
make tool 144
MallocDebug 139
malloc_history tool 147
man pages 109
Mandatory Access Control (MAC) 30
MDS authentication protocol 25

MediaBrowser.framework 122
memory

protected 21
shared 35
virtual 22

merge tool 152
MergePef tool 153
Message.framework 119
metadata importers 82
metadata technology 72
Microsoft Active Directory 66
MIDI

frameworks 117
mkbom tool 153
mkdep tool 144
mkdir command 112
MLTE. See Multilingual Text Engine (MLTE)
mobility

explained 100
technologies for implementing 100

modern APIs, finding 94
more command 112
Mouse keys. See accessibility
MS-DOS 24
multihoming 27
Multilingual Text Engine (MLTE)

overview 50
Multiple Document Interface 104
multitasking 21
mv command 112
MvMac tool 153

N

Name Binding Protocol (NBP) 25
named pipes 34
native2ascii tool 157
NavigationServices.framework 123
NBP. See Name Binding Protocol
NetBoot 27
NetBSD project 15
NetFS.framework 119
NetInfo 66
network diagnostics 28
network file protocols 24
Network File System (NFS) 24
Network Kernel Extensions (NKEs) 28
Network Lookup Panel 123
Network Time Protocol (NTP) 25
networking

features 24–28
file protocols 24

178
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

routing 27
supported protocols 25

NFS. See Network File System
nib files 107
nm tool 148
nmedit tool 146
notifications 35–36
NSOperation object 93
NSOperationQueue object 93
NT File System (NTFS) 24
NTFS 24
NTP. See Network Time Protocol

O

Objective-C 41, 57
Objective-C 2.0 41
Objective-C++ 57
open command 113
Open Directory 66
Open Panel 123
open tool 114
Open Transport 26, 106, 124
open-source development 16
OpenAL 51
OpenAL.framework 51, 119
OpenBSD project 15
OpenCL.framework 119
OpenDarwin project 15
opendiff tool 152
OpenDirectory.framework 119
OpenGL 46, 97, 115
OpenGL Driver Monitor 138
OpenGL Profiler 138
OpenGL Shader Builder 138
OpenGL Utility Toolkit 118
OpenGL.framework 119
OpenScripting.framework 123
osacompile tool 153
OSAKit.framework 119
osascript tool 153
OSServices.framework 124
otool tool 148

P

PackageMaker 142
packages 73
PacketLogger 140
pagestuff tool 148

PAP. See Printer Access Protocol
parent directory 110
password management 65
passwords, protecting 96
Pasteboard 99
patch tool 152
path characters 110
PATH environment variable 114
pathnames 110
pbprojectdump tool 144
PCI 23, 90
PCIe 23
PCSC.framework 119
PDF (Portable Document Format) 44, 55
PDF Kit 66
PDFKit.framework 125
PDFView 66
PEAP authentication protocol 25
pen-based input 82, 123
performance

benefits of modern APIs 94
choosing efficient technologies 93
explained 93
influencing factors 93
technologies for implementing 93
tools for measuring 146

Perl 86, 89
perl tool 153
perlbug tool 154
perlcc tool 154
perldoc tool 154
Personal Web Sharing 27
PHP 86, 89
pipes, BSD 34
Pixie 138
pl2pm tool 155
plug-ins 32, 80–83
plutil tool 146
PMC Index 139
pod2html tool 155
pod2latex tool 155
pod2man tool 155
pod2text tool 155
pod2usage tool 155
podchecker tool 155
podselect tool 156
Point-to-Point Protocol (PPP) 25
Point-to-Point Protocol over Ethernet (PPPoE) 25
pointers 103
porting

from 32-bit architectures 103
from Mac OS 9 105
from Windows 104–105

179
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

ports, BSD 32, 34
POSIX 28, 29, 60
PostScript OpenType fonts 49
PostScript printing 55
PostScript Type 1 fonts 49
PowerPC G5 103
PPC Toolbox 105
PPP. See Point-to-Point Protocol
PPPoE. See Point-to-Point Protocol over Ethernet
predictive compilation 128
preemptive multitasking 21
preference panes 85–86
PreferencePanes.framework 119
preferences 32
Preferred Executable Format (PEF) 38, 40
print preview 55
Print.framework 123
PrintCore.framework 122
Printer Access Protocol (PAP) 25
printf tool 146
Printing Manager 105
printing

dialogs 123
overview 54
spooling 55

project management 127
Property List Editor 74, 141
property list files 74
protected memory 21
pstruct tool 148
PubSub.framework 67, 119
pwd command 113
Python 89
python tool 154
Python.framework 120

Q

QD.framework 122
QTKit.framework 52, 120
Quartz 43–45, 96
Quartz Composer 136
Quartz Composer Visualizer 138
Quartz Compositor 45
Quartz Debug 138, 139
Quartz Extreme 44, 45
Quartz Services 43, 99, 100
Quartz.framework 124
QuartzComposer.framework 125
QuartzCore.framework 47, 52, 120
Quick Look 71, 95
QuickDraw 48, 106, 122

QuickDraw 3D 105
QuickDraw GX 105
QuickDraw Text 106
QuickLook.framework 120
QuickTime 53–54
QuickTime Components 54, 83
QuickTime formats 53
QuickTime Kit 52, 53
QuickTime.framework 120

R

ranlib tool 145
raster printers 55
rcs tool 151
rcs-checkin tool 151
rcs2log tool 151
rcsclean tool 151
rcsdiff tool 151
rcsmerge tool 151
redo_prebinding tool 145
refactoring 132
reference library 15
Reggie SE 139
reliability

explained 97
technologies for implementing 97
using existing technologies 97

Repeat After Me 141
Research Assistant 130
ResMerger tool 146
resolution independence 72
resolution independent UI 44
Resource Manager 106
Rez tool 150
RezWack tool 146
rm command 113
rmdir command 113
rmic tool 157
rmiregistry tool 157
Routing Information Protocol 27
RTP (Real-Time Transport Protocol) 53
RTSP (Real-Time Streaming Protocol) 53
Ruby 89
ruby tool 154
Ruby.framework 120
RubyCocoa.framework 120
run loop support 32
runtime environments 39

180
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

S

S/MIME. See Secure MIME
s2p tool 154
Safari plug-ins 83
sample code 15
sample tool 148
Saturn 140
Save Panel 123
scalar values, and 64-bit systems 103
schema 62
screen readers 76
screen savers 84–85
ScreenSaver.framework 120
script languages 88–89
Script Manager 106
scripting additions 89
scripting support 29
Scripting.framework 120
ScriptingBridge.framework 120
sdiff tool 152
Search Kit 67
SearchKit.framework 124
Secure MIME (S/MIME) 25, 68
secure shell (SSH) protocol 26
secure transport 68
security 30

dialogs 123
Kerberos 119
Keychain Services 96
overview 67–68

Security.framework 120
SecurityFoundation.framework 120
SecurityHI.framework 123
SecurityInterface.framework 120
sed tool 154
semaphores 35
ServerNotification.framework 120
Service Location Protocol 25
ServiceManagement.framework 120
services 85, 100
SetFile tool 153
SFTP protocol 25, 68
sh shell 89
shared memory 34–35
sharing accounts 64
Shark 139
Shark application 94
shells

aborting programs 113
and environment variables 113
built-in commands 109
commands 112

current directory 110
default 109
defined 109
frequently used commands 112
home directory 110
parent directory 110
redirecting I/O 111
running programs 114
specifying paths 110
startup scripts 113
terminating programs 112
valid path characters 110

Sherlock channels 87
Shockwave 86
simg4 tool 149
simg5 tool 149
Simple Object Access Protocol (SOAP) 25, 59, 86
SLP. See Service Location Protocol
smart cards 119
SMB/CIFS 24
snapshots 132
SOAP. See Simple Object Access Protocol
sockets 32, 34
Sound Manager interfaces 123
source code management 131
source-code management 128
Spaces 75
speech recognition 68, 75
speech synthesis 68
SpeechRecognition.framework 123
SpeechSynthesis.framework 122
spelling checkers 82
Spin Control 139
SpindownHD 140
splain tool 155
SplitForks tool 153
spoken user interface 75
Spotlight importers 73, 82
Spotlight technology 72
SQLite 68
SRLanguageModeler 141
SSH protocol 26, 68
stabs debugging symbols 39
Standard File Package 105
startup items 88
stderr pipe 111
stdin pipe 111
stdout pipe 111
Sticky keys. See accessibility
streams 32, 34
strings 32
strings tool 148
svn tool 150

181
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

svnadmin tool 150
svndumpfilter tool 150
svnlook tool 150
svnserve tool 150
svnversion tool 150
Swing package 41
Sync Services 69
Syncrospector 141
SyncServices.framework 69, 120, 126
syntax coloring 127
System Configuration framework 99, 101
System.framework 120
SystemConfiguration.framework 121

T

Tcl 89
Tcl.framework 121
tclsh tool 154
TCP. See Transmission Control Protocol
tcsh shell 89
technologies, choosing 93
Terminal application 109
TextEdit 106
Thread Viewer 139
threads 29, 94
Time Machine 70, 78
time support 32
Tk.framework 121
TLS authentication protocol 25
Tomcat 86
tools, downloading 14
top tool 148
tops tool 146
Transmission Control Protocol (TCP) 26
transparency 44
Trash icon 77
TrueType fonts 49
trust services 68
TTLS authentication protocol 25
TWAIN.framework 121

U

UDF (Universal Disk Format) 23
UDP. See User Datagram Protocol
UFS (UNIX File System) 24
Unicode 74
unifdef tool 146
UnRezWack tool 146

update_prebinding tool 145
URL Access Manager 106
URLs

opening 66
support for 32

USB Prober 141
User Datagram Protocol (UDP) 26
user experience 71–74
user experience, overview 18

V

V-Twin engine 67
vecLib.framework 121
Velocity Engine 44
Vertical Retrace Manager 105
video effects 52
video formats 53
vImage.framework 121
Virtual File System (VFS) 23
virtual memory 22
visual development environments 136
visual effects 47
vmmap tool 147
vm_stat tool 147
VoiceOver 75
volumes 110

W

weak linking 39, 40
Web Kit 69, 98
web services 70, 86
web streaming formats 53
WebCore.framework 125
WebDAV 24
WebKit.framework 125
WebObjects 59, 86
websites 86
window layouts 74
window management 45
workflow, managing 81
WSDL 59

X

X11 environment 30, 60
Xcode 127
Xcode Tools, downloading 14

182
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

xcodebuild tool 145
XgridFoundation.framework 121
XHTML 86
XML-RPC 26, 86
XML

and websites 86
parsing 32, 70
when to use 100

XMPPCore.framework 124
Xserve 87

Y

yacc tool 155

Z

zero-configuration networking 27, 61
ZoneMonitor 139
zooming. See accessibility
zsh shell 89

183
2009-08-14 | © 2004, 2009 Apple Inc. All Rights Reserved.

INDEX

	Mac OS X Technology Overview
	Contents
	Figures and Tables
	Introduction
	Mac OS X System Overview
	A Layered Approach
	The Advantage of Layers
	Developer Tools

	Darwin and Core Technologies
	Kernel and Drivers
	Mach
	64-Bit Kernel
	Device-Driver Support
	File-System Support
	Network Support
	Standard Network Protocols
	Legacy Network Services and Protocols
	Network Technologies
	Routing and Multihoming
	Zero-Configuration Networking
	NetBoot
	Personal Web Sharing
	Networking Extensions
	Network Diagnostics

	BSD
	Caching API
	Scripting Support
	Threading Support
	X11
	Security

	Core Technologies
	Blocks
	Grand Central Dispatch
	OpenCL
	Core Foundation
	IPC and Notification Mechanisms
	FSEvents API
	Kernel Queues and Kernel Events
	BSD Notifications
	Sockets, Ports, and Streams
	BSD Pipes
	Shared Memory
	Apple Events
	Distributed Notifications
	Distributed Objects for Cocoa
	Mach Messaging

	Software Development Support
	Binary File Architecture
	Hardware Architectures
	64-Bit Support
	Object File Formats
	Debug File Formats
	Runtime Environments
	Dyld Runtime Environment
	Java Runtime Environment
	CFM Runtime Environment
	The Classic Environment

	Language Support
	Objective-C
	Java Support
	The Java Environment
	Java and Other Application Environments

	Graphics and Multimedia Technologies
	Drawing Technologies
	Quartz
	Digital Paper Metaphor
	Quartz 2D Features
	Quartz Compositor

	Cocoa Drawing
	OpenGL
	Core Animation
	Core Image
	Image Kit
	QuickDraw

	Text and Fonts
	Cocoa Text
	Core Text
	Apple Type Services
	Apple Type Services for Unicode Imaging
	Multilingual Text Engine

	Audio Technologies
	Core Audio
	OpenAL

	Video Technologies
	QuickTime Kit
	Core Video
	DVD Playback
	QuickTime
	Supported Media Formats
	Extending QuickTime

	Color Management
	Printing
	Accelerating Your Multimedia Operations

	Application Technologies
	Application Environments
	Cocoa
	Carbon
	Java
	WebObjects
	BSD and X11

	Application Technologies
	Address Book Framework
	Automator Framework
	Bonjour
	Calendar Store Framework
	Core Data Framework
	Disc Recording Framework
	Help Support
	Human Interface Toolbox
	Identity Services
	Instant Message Framework
	Image Capture Services
	Ink Services
	Input Method Kit Framework
	Keychain Services
	Latent Semantic Mapping Services
	Launch Services
	Open Directory
	PDF Kit Framework
	Publication Subscription Framework
	Search Kit Framework
	Security Services
	Speech Technologies
	SQLite Library
	Sync Services Framework
	WebKit Framework
	Time Machine Support
	Web Service Access
	XML Parsing Libraries

	User Experience
	Technologies
	Aqua
	Quick Look
	Resolution-Independent User Interface
	Spotlight
	Bundles and Packages
	Code Signing
	Internationalization and Localization
	Software Configuration
	Fast User Switching
	Spaces
	Accessibility
	AppleScript

	System Applications
	The Finder
	The Dock
	Dashboard
	Automator
	Time Machine

	Software Development Overview
	Applications
	Frameworks
	Plug-ins
	Address Book Action Plug-Ins
	Application Plug-Ins
	Automator Plug-Ins
	Contextual Menu Plug-Ins
	Core Audio Plug-Ins
	Image Units
	Input Method Components
	Interface Builder Plug-Ins
	Metadata Importers
	QuickTime Components
	Safari Plug-ins

	Dashboard Widgets
	Agent Applications
	Screen Savers
	Slideshows
	Programmatic Screen Savers

	Services
	Preference Panes
	Web Content
	Dynamic Websites
	SOAP and XML-RPC
	Sherlock Channels

	Mail Stationery
	Command-Line Tools
	Launch Items, Startup Items, and Daemons
	Scripts
	Scripting Additions for AppleScript
	Kernel Extensions
	Device Drivers

	Choosing Technologies to Match Your Design Goals
	High Performance
	Easy to Use
	Attractive Appearance
	Reliability
	Adaptability
	Interoperability
	Mobility

	Porting Tips
	64-Bit Considerations
	Windows Considerations
	Carbon Considerations
	Migrating From Mac OS 9
	Required Replacement Technologies
	Recommended Replacement Technologies

	Use the Carbon Event Manager
	Use the HIToolbox
	Use Nib Files

	Appendix A: Command Line Primer
	Basic Shell Concepts
	Getting Information
	Specifying Files and Directories
	Accessing Files on Volumes
	Flow Control
	Redirecting Input and Output
	Terminating Programs

	Frequently Used Commands
	Environment Variables
	Running Programs

	Appendix B: Mac OS X Frameworks
	System Frameworks
	Accelerate Framework
	Application Services Framework
	Automator Framework
	Carbon Framework
	Core Services Framework
	IMCore Framework
	Quartz Framework
	WebKit Framework

	Xcode Frameworks
	System Libraries

	Appendix C: Mac OS X Developer Tools
	Applications
	Xcode
	Xcode Editor
	Debugging Environment
	Research Assistant
	Documentation Window
	SCM Repository Management
	Project Snapshots
	Refactoring Tools
	Build Settings
	Project Versioning

	Interface Builder
	Dashcode
	Instruments
	Quartz Composer
	Audio Applications
	AU Lab
	HALLab

	Graphics Applications
	Java
	Performance Applications
	Utility Applications
	iSync Plug-in Maker
	PackageMaker

	Command-Line Tools
	Compiler, Linker, and Source Code Tools
	Compilers, Linkers, Build Tools
	Library Utilities
	Code Utilities

	Debugging and Tuning Tools
	General Tools
	Memory Analysis Tools
	Examining Code
	Performance Tools
	Instruction Trace Tools

	Documentation and Help Tools
	Localization Tools
	Version Control Tools
	Subversion
	RCS
	CVS
	Comparing Files

	Packaging Tools
	Scripting Tools
	Interpreters and Compilers
	Script Language Converters
	Perl Tools
	Parsers and Lexical Analyzers
	Documentation Tools

	Java Tools
	General
	Java Utilities
	Java Archive (JAR) Files

	Kernel Extension Tools
	I/O Kit Driver Tools

	Glossary
	Revision History
	Index
	Symbols
	Numerals
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

