
WebKit Plug-In Programming Topics
Networking, Internet, & Web: Web Client

2009-03-13

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Leopard,
Mac, Mac OS, Objective-C, Quartz, QuickDraw,
QuickTime, Safari, Snow Leopard, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

WebScript is a trademark of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to WebKit Plug-in Programming Topics 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

About Web Browser Plug-ins 9

Netscape-Style Plug-ins 9
WebKit–Based Plug-ins 10
What Kind Of Plug-in Should I Develop? 10
Registering Your Plug-in 10
Installing Your Plug-in 11
Deploying Your Plug-in 12

Creating Plug-ins with Cocoa and WebKit 13

Introduction To WebKit Plug-ins 13
Becoming A Plug-in 13
Using Plug-in Scripting 14
Implementing a Plug-in 15
Transitioning a WebKit Plug-In to 64-bit 17

Creating Plug-ins with the Netscape API 19

Using Plug-in Scripting 19
Core Graphics and Core Animation Drawing Models 19
Out-of-Process Plug-Ins 21
Transitioning a Netscape-Style Plug-in to 64-bit 22

Document Revision History 25

3
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

4
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Listings

About Web Browser Plug-ins 9

Listing 1 Plug-in description in the Info.plist file 11
Listing 2 Registering MIME types in the Info.plist file 11
Listing 3 Name That Plug-in 11
Listing 4 Embedding a movie into an HTML page 12

Creating Plug-ins with Cocoa and WebKit 13

Listing 1 PlugInMovieView header (PlugInMovieView.h) 15
Listing 2 Returning your plug-in’s view 15
Listing 3 Initializing the movie plug-in 16
Listing 4 Loading and playing a movie from a URL 16
Listing 5 Stopping the movie 16
Listing 6 Opening the plug-in to JavaScript 16

5
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

6
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Web browser plug-ins are compiled bundles that help extend the content types supported by common web
browsers. Installed locally on a computer, they can run code native to the user’s operating system and provide
a powerful way to expand on standard web content.

Who Should Read This Document?

This document is designed for a number of different audiences:

 ■ If you are a Cocoa and WebKit developer, you should read about the WebKit plug-in architecture and
learn how compiled plug-ins operate within WebKit-based applications, including Safari.

 ■ If you are a developer who is concerned with cross-platform compatibility for your software, but who
also wants to deploy special content via a web browser, you should read about the Netscape-based
plug-in architecture and learn how it is supported in a variety of browsers.

 ■ If you are a web content developer, you should read about both plug-in architectures and learn how to
integrate their features into custom plug-ins to support your content.

Note: Safari supports the latest web standards, which may serve your needs more easily than a plug-in. If
you are developing a plug-in to embed audio or video, you can instead take advantage of Safari’s support
for the <audio> and <video> tags in HTML 5. Client-side storage is available in Safari through the Storage
and SQL APIs, also defined in HTML 5. If you are developing a rich user interface, Safari supports CSS transforms,
transitions, and animations. More information on Safari and CSS can be found in Safari CSS Reference.

Organization of This Document

The topic contains the following articles:

 ■ “About Web Browser Plug-ins” (page 9) describes the benefits of web browser plug-ins and how they
are integrated into common browsers. It also discusses the advantages and disadvantages of both plug-in
models, and how to deploy plug-ins on computers and web sites.

 ■ “Creating Plug-ins with Cocoa and WebKit ” (page 13) describes how to use the WebKit-based plug-in
architecture to develop and deploy web browser plug-ins for Safari and WebKit-based applications.

 ■ “Creating Plug-ins with the Netscape API” (page 19) describes how to use the Netscape plug-in
architecture to develop and deploy web browser plug-ins across multiple browsers and platforms.

Who Should Read This Document? 7
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Introduction to WebKit Plug-in Programming
Topics

See Also

There are lots of helpful resources available to guide you through plug-in development.

 ■ Read the WebKit Objective-C Framework Reference for the full WebKit plug-in reference and the reference
detailing the WebKit-scripting environment bridge.

 ■ Read the WebKit Objective-C Programming Guide for tips on good WebKit application design and how
the web scripting environment can access WebKit methods and properties (and vice versa).

 ■ On your hard drive in Mac OS X v10.5 or earlier, /Developer/Examples/WebKit/ contains sample
code for both the Netscape and the WebKit version of the movie player plug-in.

 ■ Mozilla’s Plug-ins Project discusses the cross-browser Netscape API and also includes lots of sample code.

 ■ Plug-in Detections discusses how to tune your web content to detect plug-ins (if registration did not
solve the problem).

8 See Also
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Introduction to WebKit Plug-in Programming Topics

http://www.mozilla.org/projects/plugins/
http://developer.apple.com/internet/webcontent/detectplugins.html

Web browser plug-ins are considered extensions to existing web browsers. By installing them locally on your
machine, you can “teach” your web browsers to support alternative content types—perhaps even custom
types you design yourself—or to perform additional tasks that a ready-made browser cannot do. For example,
Adobe Flash animations are not supported natively by any browsers. By installing their plug-in, though, you
expand the capabilities of your browser to accept, interpret, and display the animation directly within the
main content view.

The WebKit framework natively supports two different types of browser plug-ins. One is the Netscape-style
plug-in, based off a common cross-platform API. The second is the WebKit–based plug-in, developed in
Objective-C and supported by all WebKit-based applications.

Netscape-Style Plug-ins

Netscape-style plug-ins are written using a cross-platform C API. These plug-ins are compatible with a wide
range of web browsers.

The original Netscape plug-in architecture was integrated into Netscape 2.0 in 1996. Since then, the API has
been adopted by most common web browsers, including Safari. It has built-in support for onscreen drawing,
various types of event handling, and networking functions.

In addition to the core plug-in functionality, Apple has extended the capabilities of the Netscape-style plug-ins.
Starting with the WebKit framework bundled with Safari 1.3 (on Mac OS X version 10.3) or Safari 2.0 (on Mac
OS X version 10.4), the Netscape-style plug-ins can also perform scripting functions.

The Netscape-style plug-in scripting environment allows plug-ins to access scripting languages such as
JavaScript (including accessing script elements such as a web page’s Document Object Model). It also allows
scripting languages to access and control elements of the plug-in.

In Mac OS X v10.5 and earlier, Netscape-style plug-ins can be compiled in Mac OS X into either the Mach-O
or PEF (CFM) binary format (although CFM is PowerPC-only). Beginning in Mac OS X v10.6, Netscape-style
plug-ins should be updated to use a 64-bit binary to work with 64-bit instances of Safari or other WebKit
clients. To do this, they must be built as 32/64-bit multi-architecture binaries using the Mach-O file format.

Though the API supports both formats, Mac OS X natively supports the Mach-O style, and you will find that
your plug-in will run much faster if compiled as a Mach-O binary. In the future, WebKit will continue to support
Netscape plug-ins built with the Mach-O format; no such assurance can be given for plug-ins compiled in
the PEF (CFM) format. You can also develop and debug Mach-O plug-ins in Xcode, but not PEF plug-ins. Once
compiled, the plug-ins can be installed and used in most web browsers.

Netscape-Style Plug-ins 9
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

About Web Browser Plug-ins

WebKit–Based Plug-ins

WebKit-based plug-ins are written using Objective-C API that is unique to WebKit. Although the API is not
cross-platform, any plug-in created in this fashion can be used in Safari and all other WebKit-based applications.
This style of plug-in is easy to develop and significantly cuts down on the amount of code you have to write,
because it harnesses all the premade API and interface technology available to Cocoa applications.

Because WebKit-based plug-ins are based on subclasses of Cocoa’s NSView, this style also offers support for
onscreen drawing and event handling.

Apple has also provided these types of plug-ins with access to the enclosing scripting environment; a script
can call methods and read properties from the plug-in, and vice versa.

When you create a WebKit-based plug-in you need to compile it as a universal binary. For more information,
see Universal Binary Programming Guidelines, Second Edition.

What Kind Of Plug-in Should I Develop?

Because the WebKit framework provides for two different and distinct plug-in technologies, you may be
asking yourself, what technology should I use?

You should use the Netscape-style plug-in architecture if:

 ■ Your plug-in needs to be supported on multiple Mac browsers, not all of which use the WebKit framework.

 ■ Your plug-in will be deployed on multiple platforms. Because the API is cross-platform, you would just
have to compile the same code for Windows or Linux.

With the WebKit–based plug-in architecture, you will save on development and debugging time, and your
total lines of code will be much lower than for a Netscape plug-in. However, you can deploy these plug-ins
only in applications that use the WebKit framework (including Safari) on Mac OS X. They are not compatible
with other browsers, nor with Safari on Windows.

Registering Your Plug-in

Your plug-in will need to register itself with the application that uses it, so that the application knows what
content types you support. Your plug-in bundle needs to contain this important registration information. In
addition to setting the correct registration information for your plug-in, you must set the correct
CFBundlePackageType. The default CFBundlePackageType when you create a new WebKit plug-in in
Xcode is BNDL, this must be changed to WBPL to be recognized by WebKit.

There are two different ways of storing this registration information. One is with an Info.plist file stored
within the plug-in bundle. This is an easy-to-edit and easy-to-maintain way to register your content types,
but is supported only by applications based on the WebKit (no matter in what style you wrote the plug-in).
The other way to register the information—and this method is required if you want other browsers on the
Mac platform to support your plug-in—you also have to include a Carbon resources file.

10 WebKit–Based Plug-ins
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

About Web Browser Plug-ins

The Info.plist file contains important information. Let’s use an example from the WebKit movie plug-in,
which you will create in “Creating Plug-ins with Cocoa and WebKit ” (page 13). First, you need to register a
description of the plug-in (see Listing 1).

Listing 1 Plug-in description in the Info.plist file

<key>WebPluginDescription</key>
 <string>Simple WebKit plug-in that displays movies</string>

Next, you’ll need to register the MIME types that your plug-in supports (see Listing 2).

Listing 2 Registering MIME types in the Info.plist file

<key>WebPluginMIMETypes</key>
 <dict>
 <key>video/x-webkitmovie</key>
 <dict>
 <key>WebPluginExtensions</key>
 <array>
 <string>mov</string>
 </array>
 <key>WebPluginTypeDescription</key>
 <string>QuickTime Movie</string>
 </dict>
 </dict>

Finally, your plug-in needs a useful name for the application to call it by (see Listing 3 (page 11)).

Listing 3 Name That Plug-in

<key>WebPluginName</key>
 <string>WebKit Movie Plug-in</string>

Installing Your Plug-in

Plug-ins can be stored in one of two places on a Mac OS X system:

 ■ Plug-ins stored in /Library/Internet Plug-ins can be shared by all users on the computer.

 ■ Plug-ins stored in ~/Library/Internet Plug-ins will be available only to the user whose home
directory contains them.

In addition, the WebKit-based plug-ins can be stored inside the bundle of any application that uses the
WebKit, by storing it in:

 AppName/Contents/Plug-ins

where AppName is the actual application’s executable bundle.

Plug-ins are generally reloaded on each application start.

Installing Your Plug-in 11
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

About Web Browser Plug-ins

Deploying Your Plug-in

Content that your plug-ins will view needs to be embedded within HTML. Most browsers do this with an
EMBED tag, but others require the OBJECT tag. For maximum compatibility, you can tune your page to support
both. The example in Listing 4 is specific to the QuickTime plug-in provided by Apple, and you can tune these
parameters to your own mode of business.

Listing 4 Embedding a movie into an HTML page

<OBJECT CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 WIDTH="160"
 HEIGHT="144"
 CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab">
 <PARAM name="SRC" VALUE="sample.mov">
 <PARAM name="AUTOPLAY" VALUE="true">
 <PARAM name="CONTROLLER" VALUE="false">
<EMBED SRC="sample.mov"
WIDTH="160"
HEIGHT="144"
AUTOPLAY="true"
CONTROLLER="false"
PLUGINSPAGE="http://www.apple.com/quicktime/download/">
 </EMBED>
</OBJECT>

The variables for the Active X controls will change based on your plug-in’s behavior. Read Apple’s HTML
Scripting Guide for QuickTime tutorial for more information.

12 Deploying Your Plug-in
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

About Web Browser Plug-ins

You can write browser plug-ins with the native WebKit plug-in API. Written in Objective-C, WebKit-based
plug-ins are supported only by WebKit-based applications and cannot be ported to other platforms. The API
is extremely simple, so many fewer lines of code are required to deploy a WebKit plug-in versus a Netscape
plug-in, and you can use Xcode and Interface Builder to design and implement a plug-in’s functionality.

Introduction To WebKit Plug-ins

WebKit plug-ins are based on core Cocoa API. The plug-in itself is simply an instance of the NSView class,
which is a common class in many other Objective-C applications. It provides a wide range of features, including
management of events such as mouse and keyboard input. Your plug-in inherits these “for free.”

You can easily load URLs using an NSURLConnection object. You can also access WebKit classes through
the plug-in’s WebFrame object and the browser scripting environment through the WebKit
WebScriptMethods protocol.

Becoming A Plug-in

For a plug-in to act like a standard web browser plug-in, it needs to conform to the WebPlugIn informal
protocol. This protocol has just one required constructor method, plugInViewWithArguments:, which
your NSView subclass should implement.

Optional methods you can implement include:

 ■ webPlugInInitialize, which is called just after the plug-in is created and allows you to perform any
prestartup actions in the plug-in.

 ■ webPlugInStart, which is called when the plug-in should begin doing whatever it has been designed
to do.

 ■ webPlugInStop, which is called to tell the plug-in to cease its usual actions.

 ■ webPlugInDestroy, which is called to give the plug-in a chance to deallocate any objects or resources
it may have created or retained.

 ■ webPlugInSetIsSelected:, which is called when the selection state of the plug-in has changed,
allowing you to do any custom drawing or actions based off that event.

These methods are implemented by the container of the plug-in; that is, they affect the web view that
surrounds the plug-in:

 ■ webPlugInContainerLoadRequest:inFrame: allows you to tell the browser to load a URL request
into a given frame (or the container’s frame itself).

Introduction To WebKit Plug-ins 13
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

 ■ webPlugInContainerShowStatus: allows you to tell the container to print a status message to the
browser’s status bar.

 ■ webPlugInContainerSelectionColor returns the color that the container should use to draw plug-in’s
selection state when it is selected.

 ■ webFrame allows you to access the other WebKit elements of the container, such as its WebView.

Using Plug-in Scripting

The WebKit API allows your plug-ins to easily access a scripting environment (such as JavaScript) from the
plug-in, and vice versa. Your plug-in can call JavaScript methods and read JavaScript properties, while your
containing page can call methods from your plug-in from its JavaScript environment.

When the browser encounters your plug-in, it will use JavaScript to request the object representing your
plug-in using objectForWebScript. The object that you return from that method represents the interface
to your plug-in. This can be, but is not required to be, the same object as your plug-in. In that case, your
implementation of objectForWebScript would simply look like:

- (id)objectForWebScript
{
 return self;
}

The object you return needs to have control over which of its methods should be visible to the scripting
environment. By default, Objective-C methods are not exposed as JavaScript methods. To expose some of
your instance methods in JavaScript, override the following methods:

 ■ webScriptNameForSelector: returns the name that a given selector should inherit so that it can be
called from the JavaScript environment. The default renaming scheme (to prevent against namespace
conflicts) can lead to confusing method names in the scripting environment, so you should make a habit
of rewriting the names of all your exposed methods. For example, if you had an Objective-C method
called startMovieAtBeginning, you might want it to reflect its own name in the scripting environment
instead of going through a rewrite. An implementation example would look like:

(NSString *)webScriptNameForSelector:(SEL)selector {
 if(selector == @selector(startMovieAtBeginning)) {
 return @"startMovieAtBeginning";
 }
 return nil;
}

 ■ isSelectorExcludedFromWebScript: lets the scripting environment know whether or not a given
Objective-C method in your plug-in can be called from the scripting environment. A common mistake
first-time plug-in developers make is forgetting to implement this method, causing the plug-in to expose
no methods and making the plug-in unscriptable.

As a security precaution this method returns YES by default exposing no methods. You should expose
only methods that you know are secure; to export a method, this function should return NO for that
method’s selector. You may only want to export one or two Objective-C methods to JavaScript. In the
following example, the plug-in’s play method can be called from JavaScript, but other methods cannot:

+ (BOOL)isSelectorExcludedFromWebScript:(SEL)selector {
 if(selector == @selector(play)) {

14 Using Plug-in Scripting
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

 return NO;
 }
 return YES;
}

Similarly, you may want to give the scripting environment access to certain properties in your plug-in object.
The syntax is very similar for restricting those:

 ■ webScriptNameForKey: should be implemented to return a more human-readable name for a method
to the scripting environment.

 ■ isKeyExcludedFromWebScript: allows you to selectively expose properties to the scripting
environment.

Implementing a Plug-in

In this example, you create a QuickTime movie plug-in. This is a powerful example, because it requires very
few lines of code and yet provides a useful extension to a web browser or WebKit application.

First, you need to create the view class. In this case, you use Cocoa’s built-in NSMovieView class and subclass
it to create your PlugInMovieView (see Listing 1).

Listing 1 PlugInMovieView header (PlugInMovieView.h)

#import <AppKit/AppKit.h>

@interface PlugInMovieView : NSMovieView
{
 NSDictionary *_arguments;
 BOOL _loadedMovie;
 BOOL muted;
}

- (void)setArguments:(NSDictionary *)arguments;

@end

Now you can write the implementation. You first need to conform to the WebPlugIn protocol, by
implementing plugInViewWithArguments: (see Listing 2). Create an instance of your movie view, assign
it the arguments passed into your method, and return it. Notice that an accessor method is being used to
set the arguments—this is good Cocoa coding style.

Listing 2 Returning your plug-in’s view

+ (NSView *)plugInViewWithArguments:(NSDictionary *)arguments
{
 PlugInMovieView *movieView = [[[self alloc] initWithFrame:NSZeroRect]
autorelease];
 [movieView setArguments:arguments];
 return movieView;
}

Implementing a Plug-in 15
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

Now that you’ve returned the view, you need to make a decision. Do you have any operations to perform
on initialization? In the case of the NSMovieView class , you can set a movie’s controller to be visible (or not)
and also specify whether or not you’d like the user to be able to adjust its size. In this case, you should show
the controller but prevent the user from resizing the movie in the frame—the most common layout for
embedded movies (see Listing 3).

Listing 3 Initializing the movie plug-in

- (void)webPlugInInitialize
{
 [self showController:YES adjustingSize:NO];
}

From the enclosing container, nestled in an embed tag, you’ll receive a URL pointing to a movie. This will
arrive in one of the keys specified by the arguments dictionary that you set in Listing 2. Use that URL to load
and play the movie (see Listing 4).

Listing 4 Loading and playing a movie from a URL

- (void)webPlugInStart
{
 if (!_loadedMovie) {
 _loadedMovie = YES;
 NSString *URLString = [[_arguments objectForKey:WebPlugInAttributesKey]
 objectForKey:@"src"];
 if ([URLString length] != 0) {
 NSURL *baseURL = [_arguments objectForKey:WebPlugInBaseURLKey];
 NSURL *URL = [NSURL URLWithString:URLString relativeToURL:baseURL];
 NSMovie *movie = [[NSMovie alloc] initWithURL:URL byReference:NO];
 [self setMovie:movie];
 [movie release];
 }
 }

 [self start:self];
}

Eventually, all good things must come to an end, and so shall your plug-in. This will be announced by a call
to webPlugInStop. You should take the opportunity to stop the movie from playing (see Listing 5).

Listing 5 Stopping the movie

- (void)webPlugInStop
{
 [self stop:self];
}

You’ve just implemented a fully functional WebKit movie-playing plug-in. You could build this code, install
the plug-in, and have your own working QuickTime player embedded in Safari or a WebKit-based application.
However, you might want to add a little more flair and use a form—with HTML buttons—to play and pause
the movie. It just takes a few more lines of code (see Listing 6).

Listing 6 Opening the plug-in to JavaScript

+ (BOOL)isSelectorExcludedFromWebScript:(SEL)selector
{

16 Implementing a Plug-in
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

 if (selector == @selector(play) || selector == @selector(pause)) {
 return NO;
 }
 return YES;
}

+ (BOOL)isKeyExcludedFromWebScript:(const char *)property
{
 if (strcmp(property,"muted") == 0) {
 return NO;
 }
 return YES;
}

- (id)objectForWebScript
{
 return self;
}

- (void)play
{
 [self start:self];
}

- (void)pause
{
 [self stop:self];
}

You only had to add two extra methods, play and pause, so that the buttons in the interface could be tied
to public methods. Then you exposed those methods to the JavaScript scripting environment.

If you want to explore further, this example is available at:

 /Developer/Examples/WebKit/WebKitMoviePlugIn

on a computer running Mac OS X v10.5 or earlier.

Transitioning a WebKit Plug-In to 64-bit

Beginning in Mac OS X v10.6, Safari is a 64-bit WebKit-based application. Thus, all WebKit plug-ins must be
updated to include 64-bit slices in their universal binaries in order to work with Safari.

Because WebKit plug-ins are inherently Cocoa-based code, relatively few changes should be needed to make
your code work in a 64-bit version of Safari (beyond recompiling it with different architecture settings). You
do not need to make any changes specific to WebKit plug-ins.

Before you begin, read the documents 64-Bit Transition Guide and 64-Bit Transition Guide for Cocoa. The main
transition guide describes compiler settings and changes you must make to port any code to a 64-bit
environment. The Cocoa transition guide describes additional changes you must make that are specific to a
Cocoa environment.

Once you have read these documents, the porting a WebKit plug-in is essentially the same as porting a Cocoa
application. This is a four step process:

Transitioning a WebKit Plug-In to 64-bit 17
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

 ■ Change your compile settings to build a 3-way or 4-way universal binary (with 32-bit PowerPC, 32-bit
Intel, 64-bit Intel, and optionally 64-bit PowerPC slices) and recompile. Fix any problems that prevent
compilation.

Note: Safari does not use the 64-bit PowerPC slice of plug-in binaries regardless of what operating
system or Safari version you use. However, some third-party WebKit-based applications may use it in
64-bit mode in Mac OS X v10.5.

 ■ Make the data type changes described in 64-Bit Transition Guide and 64-Bit Transition Guide for Cocoa.

 ■ Enable additional compiler warnings to help you find and fix truncation bugs, then fix as many of the
warnings as possible.

 ■ Track down and fix any remaining bugs that prevent correct operation.

18 Transitioning a WebKit Plug-In to 64-bit
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with Cocoa and WebKit

Netscape-style plug-ins are programmed in C, and, provided that you are building in Mach-O form, can be
developed and debugged with Xcode.

Using Plug-in Scripting

The scripting capabilities of Netscape-style plug-ins are provided by extensions onto the original plug-in
specification. They allow a browser (through JavaScript) to access and control elements of the plug-in and
its content, and allow the plug-in to access the enclosing web page and its content through the plug-in script
interface.

When a plug-in is loaded, the browser calls the NPP_GetValue callback in your plug-in, which returns a
retained NPObject structure that represent your plug-in. This NPObject structure contains an pointer to an
NPClass structure. The NPClass structure contains a series of callbacks that define the interface between
the plug-in and the scripting environment. The NPObject instance represents an instance of that plug-in
that can then be used by the scripting environment.

If you want your plug-in to be scriptable, you need to return the appropriate retained NPObject by reference
in your NPP_GetValue callback function.

Note: In current versions of WebKit and all non-WebKit-based browsers, you must retain the NPObject
instance upon return by doing the following:

browser->retainobject((NPObject*)obj);

In versions of WebKit prior to version 420 (Safari 3 and later), the objects returned are retained by the browser.
To avoid memory leaks in older browsers, you should check the WebKit version and avoid retaining returned
objects when your plug-in is loaded by prior versions of WebKit.

A good demonstration of accessing plug-ins from JavaScript, as well as all the other concepts in creating a
Netscape plug-in, can be found at:

 /Developer/Examples/WebKit/NetscapeMoviePlugIn

on a computer running Mac OS X v10.5 or earlier.

Core Graphics and Core Animation Drawing Models

Safari 4.0 provides two new drawing models: Core Graphics (Quartz 2D) and Core Animation (only in Mac OS
X v10.5 and later). These drawing modes are strongly recommended going forwards, and if you move your
plug-in to contain a 64-bit slice, that slice must use these drawing models. (See “Transitioning a Netscape-Style
Plug-in to 64-bit” (page 22) for more information.)

Using Plug-in Scripting 19
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

Most of the effort in using these drawing models comes from learning Core Graphics and Core Animation
themselves. To learn about Core Graphics, readQuartz 2DProgrammingGuide. To learn about Core Animation,
read Core Animation Programming Guide.

Once you understand how to draw things using Core Graphics or Core Animation, you can enable these
drawing models in your NPP_New function as follows:

 ■ Add support in your code for the Cocoa event model. Core Graphics and Core Animation are not supported
when using the Carbon event model.

 ■ Check to see if the host browser supports the drawing model with the following code:

NPBool supportsCG = false;
NPError error = browser->getvalue(instance,
 NPNVsupportsCoreGraphicsBool,
 &supportsCG);

Note: If you cannot find a drawing model that both the application and your plug-in supports, your
plug-in should return NPERR_INCOMPATIBLE_VERSION_ERROR.

 ■ Set the browser drawing model with the following code:

if (err == NPERR_NO_ERROR && supportsCG) {
 error = browser->setvalue(instance,
 NPNVpluginDrawingModel,
 (void *)NPDrawingModelCoreGraphics);
 if (err == NPERR_NO_ERROR && supportsCG) {
 /* Set state flags as needed to
 tell your own code to use Core Graphics
 drawing in the future. */
 }
}

After you have done these two things, the browser fills the window field of the NPWindow structure with an
NP_CGContext structure. This structure contains two fields, context and window, which are defined as
follows:

typedef struct NP_CGContext
{
 CGContextRef context;
 WindowRef window;
} NP_CGContext;

The context value is a Core Graphics drawing context suitable for Quartz 2D drawing. For more information
on how to use this context, read Quartz 2D Programming Guide. The window is a reference to an NSWindow
object.

To obtain the bounds for your plug-in’s drawing region, do the following in your NPP_SetWindow callback:

NPError setwindow_cb(NPP instance, NPWindow* npw) {
 ...

 NP_CGContext *npcontext = npw.window;
 CGContextRef context = npcontext.context;

20 Core Graphics and Core Animation Drawing Models
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

 CGRect boundingBox = CGContextGetClipBoundingBox(context);

 ...

The Core Animation model is similar, but reversed. If you set you set NPNVpluginDrawingModel to
NPDrawingModelCoreAnimation, your NPN_GetValue callback must provide a retained Core Animation
layer to the browser when it queries the NPPVpluginCoreAnimationLayer variable.

As with the Core graphics model, you can find out if the browser supports the Core Animation drawing model
by checking the value of the NPNVsupportsCoreAnimationBool variable. For example:

NPBool supportsCA = false;
NPError error = browser->getvalue(instance,
 NPNVsupportsCoreAnimationBool,
 &supportsCA);

Out-of-Process Plug-Ins

Beginning in Mac OS X v10.6, on 64-bit-capable computers, Netscape-style plug-ins execute in an out-of-process
fashion. This means that each Netscape-style plug-in gets its own process separate from the application
process. This design applies to all Netscape-style plug-ins. It does not apply to WebKit plug-ins, nor at present
to WebKit-based applications when running in 32-bit mode.

Out-of-process execution is used for several reasons:

 ■ Stability—crashes in plug-ins no longer crash the entire browser.

 ■ Security—vulnerabilities in a plug-in can't read or alter data or code in other plug-ins or in the application
itself.

For your plug-in to work correctly in this new environment, you may need to make some changes to your
code, depending on how it interacts with the rest of the system beyond the browser.

 ■ Avoid direct data structure access. If you directly access application data structures (menus, other
windows, etc.), your plug-in will fail. All access to browser data structures should be performed through
approved APIs. If no API exists, file a bug and request that one be added.

 ■ Draw when asked. Your plug-in must respond to drawRect event.

 ■ Draw only when asked. Any drawing your plug-in performs within the graphics context that Safari
provides should take place in response to an update event (Carbon event model) or a drawRect event
(Cocoa event model). The behavior of drawing performed at other times is undefined.

To provide support for animation, video, and other drawing outside the context of update or drawRect
events, you should move your code to use the Core Animation drawing model, described in “Core
Graphics and Core Animation Drawing Models” (page 19).

 ■ Get all events through the plug-in API. Because keyboard and mouse events are happening in a different
process, if you use Carbon or Cocoa calls to obtain data from the event stream, you will not receive any
events.

It is safe to use Carbon or Cocoa calls to obtain global system state information that is outside the scope
of the event stream, such as mouse position, modifier keys, and other similar information.

Out-of-Process Plug-Ins 21
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

 ■ Use platform APIs sparingly. Wherever possible, you should use new plug-in APIs to do what you need.
If no such APIs exist, file bugs requesting them.

The plug-in API provides additional APIs for scheduling timers, opening contextual pop-up menus, and
so on.

Note: Calls to browser scripting functions work normally. WebKit transparently handles the interprocess
communication for you.

 ■ Avoid creating windows. The intent is for plug-ins to operate within the browser window. Although
some plug-ins have historically done so, creating windows in your plug-in is not recommended. If you
need to maintain separate windows, you should consider starting a separate application.

Transitioning a Netscape-Style Plug-in to 64-bit

Beginning in Snow Leopard, Safari is moving to a 64-bit process. This section describes how to adapt a
Netscape-style plug-in so that it works when compiled as a 64-bit plug-in. It describes only the changes
specific to Netscape-style plug-ins, providing links to other documents for general 64-bit porting information.

Before you begin, do the following:

 ■ If your plug-in is built using PEF (CFM) compilers (CodeWarrior, for example), you must move to a modern
toolchain that generates Mach-O binaries. There are no 64-bit compilers available that support PEF. The
easiest way to do this is to transition your project to Xcode. For more information, read PortingCodeWarrior
Projects to Xcode.

 ■ You must convert your GUI code from Carbon to Cocoa (or other graphical APIs that are supported in a
64-bit environment). For more information on supported and unsupported Carbon APIs, read 64-Bit
Guide for Carbon Developers. Then, read Cocoa Fundamentals Guide to get started learning Cocoa. The
preferred APIs for drawing are described further in “Core Graphics and Core Animation Drawing
Models” (page 19).

 ■ If your plug-in uses any Cocoa APIs, read 64-Bit TransitionGuide for Cocoa to learn what other Cocoa-specific
changes you need to make to this code.

 ■ Read 64-Bit Transition Guide to learn about 64-bit changes that apply to all software written in C-based
languages.

Once you have read these documents, you need to make a few additional changes specific to Netscape-style
plug-ins (at least when compiling 64-bit versions of your plug-in). These changes are as follows:

 ■ Use Cocoa Events. In a 64-bit environment, you must convert your code to use the Cocoa event model
because the Carbon event model is not supported. This requires several changes:

 ❏ Use the NPCocoaEvent data type with the Cocoa event model instead of the NPEvent data type.
The NPCocoaEvent data type provides neatly broken out fields containing various pieces of
information about the event, and is fairly self-explanatory.

 ❏ Disable the Carbon model test code (including the test to see if the Carbon model is supported)
when compiling for 64-bit by wrapping the relevant code with the #ifndef __LP64__ and #endif
C preprocessor directives.

22 Transitioning a Netscape-Style Plug-in to 64-bit
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

The NPEventModelCarbon constant (for use with the NPNVpluginEventModel variable) and the
NPNVsupportsCarbonBool constant (for use with NPN_GetValue) are not defined at all in a 64-bit
environment. By using the C preprocessor directives above, you prevent the compiler itself from
ever seeing the intervening lines of code, thus avoiding a compile failure.

Bring up your Cocoa event model code in 32-bit first. This makes it possible to test the Cocoa event code
in isolation without having to worry about bugs specific to the 64-bit environment.

Do not remove your Carbon event model code, however. Although the Cocoa event model is supported
in 32-bit WebKit beginning in Mac OS X v10.6, it may not be supported in other browsers that use
Netscape-style plug-ins, nor in earlier versions of WebKit.

For maximum backwards compatibility and cross-browser compatibility, you should check the
NPNVsupportsCarbonBool andNPNVsupportsCocoaBool variable usingNPN_GetValue to determine
which event models the browser supports. If the browser supports both event models, you should use
the Cocoa event model. Otherwise, use the Carbon event model.

For testing purposes, simply hard-wire your test to always use the Cocoa event model.

 ■ Replace QuickDraw. The QuickDraw drawing model is not supported. You must rewrite any QuickDraw
code using another drawing model such as the Core Graphics or Core Animation drawing modes.

As a result, the NPDrawingModelQuickDraw constant (for use with the NPNVpluginDrawingModel
variable) and the NPNVsupportsQuickDrawBool constant (for use with the NPN_GetValue function)
are not defined. Thus, any code that tests for the availability of the QuickDraw drawing model must be
wrapped with #ifdef __LP64__ and #endif C preprocessor directives.

Note: You can take the same approach to replacing QuickDraw code that you too with the Carbon event
model—deploy first on 32-bit using a test to see which models are supported, temporarily tweak that
test to report that QuickDraw isn’t available (for testing purposes), then test and deploy your new drawing
code on 32-bit. Use C preprocessor directives to skip the test entirely when compiling 64-bit so that only
the Core Graphics or Core Animation drawing model code is seen by the compiler.

Similarly, the NPQDRegion and NP_Port data types are not defined.

In the NP_CGContext data type, the window field may be either a WindowRef instance or an NSWindow
instance in 32-bit WebKit depending on the drawing model chosen. Because Carbon drawing APIs are
not supported, these fields always contain an NSWindow instance in 64-bit WebKit.

For more information about the Core Graphics and Core Animation drawing models, see “Core Graphics
and Core Animation Drawing Models” (page 19).

Once you have accounted for these differences, you should be ready to compile your plug-in with a 64-bit
slice. For more information on compiling code for 64-bit, fixing truncation bugs, and various other relevant
topics, read 64-Bit Transition Guide for Cocoa and 64-Bit Transition Guide.

Transitioning a Netscape-Style Plug-in to 64-bit 23
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

24 Transitioning a Netscape-Style Plug-in to 64-bit
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Creating Plug-ins with the Netscape API

This table describes the changes to WebKit Plug-In Programming Topics.

NotesDate

Added information about 64-bit WebKit plug-ins in Mac OS X v10.6.2009-03-13

Added information regarding alternatives to plug-in development.2008-10-15

Updated code sample for webScriptNameForSelector.2006-12-05

Made minor editorial corrections throughout.2006-04-04

Added information to the isSelectorExcludedFromWebScript function.2006-02-07

Added information about universal binaries.2006-01-10

Corrected typos in sample code and updated link to the QuickTime Active X
Plugin tutorial.

2005-08-11

New document that explains how to develop and deploy browser plug-ins based
on the Web Kit architecture.

2005-04-29

25
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Document Revision History

26
2009-03-13 | © 2005, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	WebKit Plug-In Programming Topics
	Contents
	Listings
	Introduction
	About Web Browser Plug-ins
	Netscape-Style Plug-ins
	WebKit–Based Plug-ins
	What Kind Of Plug-in Should I Develop?
	Registering Your Plug-in
	Installing Your Plug-in
	Deploying Your Plug-in

	Creating Plug-ins with Cocoa and WebKit
	Introduction To WebKit Plug-ins
	Becoming A Plug-in
	Using Plug-in Scripting
	Implementing a Plug-in
	Transitioning a WebKit Plug-In to 64-bit

	Creating Plug-ins with the Netscape API
	Using Plug-in Scripting
	Core Graphics and Core Animation Drawing Models
	Out-of-Process Plug-Ins
	Transitioning a Netscape-Style Plug-in to 64-bit

	Revision History

