
Quartz 2D Reference Collection
Graphics & Animation: 2D Drawing

2006-12-18

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa,
ColorSync, Mac, Mac OS, Pages, Quartz,
QuickDraw, QuickTime, and TrueType are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture is a trademark of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Part I Opaque Types 13

Chapter 1 CGBitmapContext Reference 15

Overview 15
Functions by Task 15
Functions 16
Data Types 24

Chapter 2 CGColor Reference 25

Overview 25
Functions by Task 25
Functions 26
Data Types 35
Constants 36

Chapter 3 CGColorSpace Reference 37

Overview 37
Functions by Task 38
Functions 39
Data Types 52
Constants 52

Chapter 4 CGContext Reference 57

Overview 57
Functions by Task 57
Functions 64
Data Types 141
Constants 142

Chapter 5 CGDataConsumer Reference 153

Overview 153
Functions by Task 153
Functions 154
Callbacks 156

3
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

Data Types 158

Chapter 6 CGDataProvider Reference 161

Overview 161
Functions 161
Callbacks by Task 168
Callbacks 169
Data Types 176

Chapter 7 CGFont Reference 181

Overview 181
Functions by Task 181
Functions 183
Data Types 197
Constants 198

Chapter 8 CGFunction Reference 203

Overview 203
Functions by Task 203
Functions 204
Callbacks 206
Data Types 207

Chapter 9 CGGLContext Reference 209

Overview 209
Functions 209

Chapter 10 CGGradient Reference 211

Overview 211
Functions by Task 211
Functions 212
Data Types 215
Constants 215

Chapter 11 CGImage Reference 217

Overview 217
Functions by Task 217
Functions 219
Data Types 234
Constants 235

4
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 12 CGImageDestination Reference 239

Overview 239
Functions by Task 239
Functions 240
Data Types 245
Constants 246

Chapter 13 CGImageSource Reference 247

Overview 247
Functions by Task 247
Functions 248
Data Types 257
Constants 257

Chapter 14 CGLayer Reference 261

Overview 261
Functions by Task 261
Functions 262
Data Types 267

Chapter 15 CGPath Reference 269

Overview 269
Functions by Task 269
Functions 271
Callbacks 287
Data Types 288
Constants 289

Chapter 16 CGPattern Reference 293

Overview 293
Functions by Task 293
Functions 294
Callbacks 296
Data Types 298
Constants 299

Chapter 17 CGPDFArray Reference 301

Overview 301
Functions 301
Data Types 307

5
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 18 CGPDFContentStream Reference 309

Overview 309
Functions by Task 309
Functions 310
Data Types 313

Chapter 19 CGPDFContext Reference 315

Overview 315
Functions by Task 315
Functions 316
Constants 321

Chapter 20 CGPDFDictionary Reference 327

Overview 327
Functions by Task 327
Functions 328
Callbacks 334
Data Types 335

Chapter 21 CGPDFDocument Reference 337

Overview 337
Functions by Task 337
Functions 339
Data Types 350

Chapter 22 CGPDFObject Reference 353

Overview 353
Functions 353
Data Types 354
Constants 355

Chapter 23 CGPDFOperatorTable Reference 359

Overview 359
Functions by Task 359
Functions 360
Callbacks 361
Data Types 362

6
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 24 CGPDFPage Reference 363

Overview 363
Functions by Task 363
Functions 364
Data Types 368
Constants 369

Chapter 25 CGPDFScanner Reference 371

Overview 371
Functions by Task 371
Functions 372
Data Types 379

Chapter 26 CGPDFStream Reference 381

Overview 381
Functions 381
Data Types 382
Constants 382

Chapter 27 CGPDFString Reference 385

Overview 385
Functions by Task 385
Functions 386
Data Types 387

Chapter 28 CGPSConverter Reference 389

Overview 389
Functions 389
Callbacks by Task 392
Callbacks 392
Data Types 396

Chapter 29 CGShading Reference 399

Overview 399
Functions by Task 399
Functions 400
Data Types 403

7
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Part II Other References 405

Chapter 30 CGAffineTransform Reference 407

Overview 407
Functions by Task 407
Functions 408
Data Types 418
Constants 420

Chapter 31 CGGeometry Reference 421

Overview 421
Functions by Task 421
Functions 424
Data Types 442
Constants 443

Chapter 32 CGImageProperties Reference 447

Overview 447
Constants 447

Document Revision History 487

8
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 32 CGImageProperties Reference 447

Table 32-1 451

9
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

10
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

TABLES

Framework /System/Library/Frameworks/ApplicationServices.framework

Header file directories /System/Library/Frameworks/ApplicationServices.framework/Headers

Declared in CGAffineTransform.h
CGBase.h
CGBitmapContext.h
CGColor.h
CGColorSpace.h
CGContext.h
CGDataConsumer.h
CGDataProvider.h
CGFont.h
CGFunction.h
CGGLContext.h
CGGeometry.h
CGGradient.h
CGImage.h
CGImageDestination.h
CGImageProperties.h
CGImageSource.h
CGLayer.h
CGPDFArray.h
CGPDFContentStream.h
CGPDFContext.h
CGPDFDictionary.h
CGPDFDocument.h
CGPDFObject.h
CGPDFOperatorTable.h
CGPDFPage.h
CGPDFScanner.h
CGPDFStream.h
CGPDFString.h
CGPSConverter.h
CGPath.h
CGPattern.h
CGShading.h

Quartz 2D is an API that makes the Quartz advanced drawing engine accessible from all Mac OS X application
environments outside of the kernel. It provides low-level, lightweight 2D rendering with unmatched output
fidelity regardless of the display or printing device. The Quartz 2D API supports transparency layers, path-based
drawing, transformations, offscreen rendering, advanced color management, anti-aliased rendering, patterns,
shadings, image data management, image creation, masking, and PDF document creation, display, and
parsing.

11
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

12
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction

13
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Opaque Types

14
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CGContextRef (page 141)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGBitmapContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGBitmapContext.h header file defines functions that create and operate on a Quartz bitmap graphics
context. A bitmap graphics context is a type of CGContextRef (page 141) that you can use for drawing bits
to memory. The functions in this reference operate only on Quartz bitmap graphics contexts created using
the function CGBitmapContextCreate (page 16).

The number of components for each pixel in a bitmap graphics context is specified by a color space (defined
by a CGColorSpaceRef (page 52), which includes RGB, grayscale, and CMYK, and which also may specify
a destination color profile). The bitmap graphics context specifies whether the bitmap should contain an
alpha channel, and how the bitmap is generated.

Functions by Task

Creating Bitmap Contexts

CGBitmapContextCreate (page 16)
Creates a bitmap graphics context.

CGBitmapContextCreateWithData (page 18)
Creates a bitmap graphics context with the specified callback function.

CGBitmapContextCreateImage (page 17)
Creates and returns a Quartz image from the pixel data in a bitmap graphics context.

Getting Information About Bitmap Contexts
These functions return the values of attributes specified when a bitmap context is created.

CGBitmapContextGetBitmapInfo (page 20)
Obtains the bitmap information associated with a bitmap graphics context.

Overview 15
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGBitmapContextGetAlphaInfo (page 20)
Returns the alpha information associated with the context, which indicates how a bitmap context
handles the alpha component.

CGBitmapContextGetBitsPerComponent (page 21)
Returns the bits per component of a bitmap context.

CGBitmapContextGetBitsPerPixel (page 21)
Returns the bits per pixel of a bitmap context.

CGBitmapContextGetBytesPerRow (page 22)
Returns the bytes per row of a bitmap context.

CGBitmapContextGetColorSpace (page 22)
Returns the color space of a bitmap context.

CGBitmapContextGetData (page 23)
Returns a pointer to the image data associated with a bitmap context.

CGBitmapContextGetHeight (page 23)
Returns the height in pixels of a bitmap context.

CGBitmapContextGetWidth (page 23)
Returns the width in pixels of a bitmap context.

Functions

CGBitmapContextCreate
Creates a bitmap graphics context.

CGContextRef CGBitmapContextCreate (
 void *data,
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bytesPerRow,
 CGColorSpaceRef colorspace,
 CGBitmapInfo bitmapInfo
);

Parameters
data

A pointer to the destination in memory where the drawing is to be rendered. The size of this memory
block should be at least (bytesPerRow*height) bytes.

In iOS 4.0 and later, and Mac OS X v10.6 and later, you can pass NULL if you want Quartz to allocate
memory for the bitmap. This frees you from managing your own memory, which reduces memory
leak issues.

width
The width, in pixels, of the required bitmap.

height
The height, in pixels, of the required bitmap.

16 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

bitsPerComponent
The number of bits to use for each component of a pixel in memory. For example, for a 32-bit pixel
format and an RGB color space, you would specify a value of 8 bits per component. For the list of
supported pixel formats, see “Supported Pixel Formats” in the “Graphics Contexts” chapter of Quartz
2D Programming Guide.

bytesPerRow
The number of bytes of memory to use per row of the bitmap.

colorspace
The color space to use for the bitmap context. Note that indexed color spaces are not supported for
bitmap graphics contexts.

bitmapInfo
Constants that specify whether the bitmap should contain an alpha channel, the alpha channel’s
relative location in a pixel, and information about whether the pixel components are floating-point
or integer values. The constants for specifying the alpha channel information are declared with the
CGImageAlphaInfo type but can be passed to this parameter safely. You can also pass the other
constants associated with the CGBitmapInfo type. (See CGImage Reference for a description of the
CGBitmapInfo and CGImageAlphaInfo constants.)

For an example of how to specify the color space, bits per pixel, bits per pixel component, and bitmap
information using the CGBitmapContextCreate function, see “Creating a Bitmap Graphics Context”
in the “Graphics Contexts” chapter of Quartz 2D Programming Guide.

Return Value
A new bitmap context, or NULL if a context could not be created. You are responsible for releasing this object
using CGContextRelease (page 101).

Discussion
When you call this function, Quartz creates a bitmap drawing environment—that is, a bitmap context—to
your specifications. When you draw into this context, Quartz renders your drawing as bitmapped data in the
specified block of memory.

The pixel format for a new bitmap context is determined by three parameters—the number of bits per
component, the color space, and an alpha option (expressed as a Image Bitmap Information (page 236)
constant). The alpha value determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLSL Showpiece Lite
MovieVideoChart
OpenCL NBody Simulation Example
Quartz 2D Transformer
QuartzCache

Declared In
CGBitmapContext.h

CGBitmapContextCreateImage
Creates and returns a Quartz image from the pixel data in a bitmap graphics context.

Functions 17
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGImageRef CGBitmapContextCreateImage (
 CGContextRef c
);

Parameters
c

A bitmap graphics context.

Return Value
A CGImage object that contains a snapshot of the bitmap graphics context or NULL if the image is not created.

Discussion
The CGImage object returned by this function is created by a copy operation. Subsequent changes to the
bitmap graphics context do not affect the contents of the returned image. In some cases the copy operation
actually follows copy-on-write semantics, so that the actual physical copy of the bits occur only if the underlying
data in the bitmap graphics context is modified. As a consequence, you may want to use the resulting image
and release it before you perform additional drawing into the bitmap graphics context. In this way, you can
avoid the actual physical copy of the data.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
From A View to A Movie
MovieVideoChart
Quartz 2D Transformer
QuartzCache

Declared In
CGBitmapContext.h

CGBitmapContextCreateWithData
Creates a bitmap graphics context with the specified callback function.

18 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGContextRef CGBitmapContextCreateWithData(
 void *data,
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bytesPerRow,
 CGColorSpaceRef space,
 CGBitmapInfo bitmapInfo,
 CGBitmapContextReleaseDataCallback releaseCallback,
 void *releaseInfo
);

Parameters
data

A pointer to the destination in memory where the drawing is to be rendered. The size of this memory
block should be at least (bytesPerRow*height) bytes.

In iOS 4.0 and later, and Mac OS X v10.6 and later, you can pass NULL if you do not care where the
data is stored. This frees you from managing your own memory, which reduces memory leak issues.
Quartz has more flexibility when it manages data storage for you. For example, it’s possible for Quartz
to use OpenGL for rendering if it takes care of the memory. Do not pass NULL if you are running on
earlier operating systems.

width
The width, in pixels, of the required bitmap.

height
The height, in pixels, of the required bitmap.

bitsPerComponent
The number of bits to use for each component of a pixel in memory. For example, for a 32-bit pixel
format and an RGB color space, you would specify a value of 8 bits per component. For the list of
supported pixel formats, see “Supported Pixel Formats” in the “Graphics Contexts” chapter of Quartz
2D Programming Guide.

bytesPerRow
The number of bytes of memory to use per row of the bitmap.

colorspace
The color space to use for the bitmap context. Note that indexed color spaces are not supported for
bitmap graphics contexts.

bitmapInfo
Constants that specify whether the bitmap should contain an alpha channel, the alpha channel’s
relative location in a pixel, and information about whether the pixel components are floating-point
or integer values. The constants for specifying the alpha channel information are declared with the
CGImageAlphaInfo type but can be passed to this parameter safely. You can also pass the other
constants associated with the CGBitmapInfo type. (See CGImage Reference for a description of the
CGBitmapInfo and CGImageAlphaInfo constants.)

For an example of how to specify the color space, bits per pixel, bits per pixel component, and bitmap
information using the CGBitmapContextCreate function, see “Creating a Bitmap Graphics Context”
in the Graphics Contexts chapter of Quartz 2D Programming Guide.

releaseCallback
The custom release function to call when it is time to release the bitmap data. For the syntax of this
function, see the description of the CGBitmapContextReleaseDataCallback (page 24) data type.
You may specify NULL for this parameter.

Functions 19
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

releaseInfo
A pointer to any data you want passed to the your custom release callback.

Return Value
A new bitmap context, or NULL if a context could not be created. You are responsible for releasing this object
using CGContextRelease (page 101).

Discussion
When you call this function, Quartz creates a bitmap drawing environment—that is, a bitmap context—to
your specifications. When you draw into this context, Quartz renders your drawing as bitmapped data in the
specified block of memory.

The pixel format for a new bitmap context is determined by three parameters—the number of bits per
component, the color space, and an alpha option (expressed as a Image Bitmap Information (page 236)
constant). The alpha value determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetAlphaInfo
Returns the alpha information associated with the context, which indicates how a bitmap context handles
the alpha component.

CGImageAlphaInfo CGBitmapContextGetAlphaInfo (
 CGContextRef c
);

Parameters
context

A bitmap context.

Return Value
A bitmap information constant. If the specified context is not a bitmap context, kCGImageAlphaNone (page
235) is returned. See CGImageAlphaInfo (renamed to CGBitmapInfo in Mac OS X v10.4) for more information
about values.

Discussion
Every bitmap context contains an attribute that specifies whether the bitmap contains an alpha component,
and how it is generated. The alpha component determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitmapInfo
Obtains the bitmap information associated with a bitmap graphics context.

20 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGBitmapInfo CGBitmapContextGetBitmapInfo (
 CGContextRef c
);

Parameters
c

A bitmap graphics context.

Return Value
The bitmap info of the bitmap graphics context or 0 if c is not a bitmap graphics context. See CGImage
Reference for a description of the Image Bitmap Information (page 236) constants that can be returned.

Discussion
The CGBitmapInfo data returned by the function specifies whether the bitmap contains an alpha channel
and how the alpha channel is generated, along with whether the components are floating-point or integer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitsPerComponent
Returns the bits per component of a bitmap context.

size_t CGBitmapContextGetBitsPerComponent (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The number of bits per component in the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitsPerPixel
Returns the bits per pixel of a bitmap context.

size_t CGBitmapContextGetBitsPerPixel (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Functions 21
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

Return Value
The number of bits per pixel in the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBytesPerRow
Returns the bytes per row of a bitmap context.

size_t CGBitmapContextGetBytesPerRow (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The number of bytes per row of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetColorSpace
Returns the color space of a bitmap context.

CGColorSpaceRef CGBitmapContextGetColorSpace (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The color space of the specified context, or NULL if the context is not a bitmap context. You are responsible
for retaining and releasing this object as necessary.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

22 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGBitmapContextGetData
Returns a pointer to the image data associated with a bitmap context.

void * CGBitmapContextGetData (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
A pointer to the specified bitmap context’s image data, or NULL if the context is not a bitmap context.

Discussion
If you provided the memory for the bitmap data, you can use this method to get that data pointer. If you
passed NULL for the data pointer when creating your bitmap context, it is safe to get the data pointer in iOS
4.0 and later and Mac OS X v10.6 and later only. In earlier versions of the operating system, passing NULL for
the data parameter is not supported and may lead to crashes when attempting to access this data using this
function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetHeight
Returns the height in pixels of a bitmap context.

size_t CGBitmapContextGetHeight (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The height in pixels of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetWidth
Returns the width in pixels of a bitmap context.

Functions 23
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

size_t CGBitmapContextGetWidth (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The width in pixels of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGBitmapContext.h

Data Types

CGBitmapContextReleaseDataCallback
A callback function used to release data associate with the bitmap context.

typedef void (*CGBitmapContextReleaseDataCallback)(void *releaseInfo, void *data);

Discussion
The releaseInfo parameter contains the contextual data that you passed to the
CGBitmapContextCreateWithData (page 18) function. The data parameter contains a pointer to the
bitmap data for you to release.

24 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGColor.h

Companion guide Quartz 2D Programming Guide

Overview

The CGColorRef opaque type contains a set of components (such as red, green, and blue) that uniquely
define a color, and a color space that specifies how those components should be interpreted. Quartz color
objects provide a fast and convenient way to manage and set colors, especially colors that are used repeatedly.
Quartz drawing operations use color objects for setting fill and stroke colors, managing alpha, and setting
color with a pattern.

See also these related references: CGContext Reference, CGColorSpace Reference, and CGPattern Reference.

Functions by Task

Getting a Constant Color

CGColorGetConstantColor (page 32)
Returns a color object that represents a constant color.

Retaining and Releasing Color Objects

CGColorRelease (page 34)
Decrements the retain count of a Quartz color.

CGColorRetain (page 35)
Increments the retain count of a Quartz color.

Creating Quartz Colors

CGColorCreate (page 26)
Creates a Quartz color using a list of intensity values (including alpha) and an associated color space.

Overview 25
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorCreateCopy (page 27)
Creates a copy of an existing Quartz color.

CGColorCreateGenericGray (page 29)
Creates a color in the Generic gray color space.

CGColorCreateGenericRGB (page 29)
Creates a color in the Generic RGB color space.

CGColorCreateGenericCMYK (page 28)
Creates a color in the Generic CMYK color space.

CGColorCreateCopyWithAlpha (page 28)
Creates a copy of an existing Quartz color, substituting a new alpha value.

CGColorCreateWithPattern (page 30)
Creates a Quartz color using a list of intensity values (including alpha), a pattern color space, and a
pattern.

Getting Information about Quartz Colors

CGColorEqualToColor (page 31)
Indicates whether two colors are equal.

CGColorGetAlpha (page 31)
Returns the value of the alpha component associated with a Quartz color.

CGColorGetColorSpace (page 31)
Returns the color space associated with a Quartz color.

CGColorGetComponents (page 32)
Returns the values of the color components (including alpha) associated with a Quartz color.

CGColorGetNumberOfComponents (page 33)
Returns the number of color components (including alpha) associated with a Quartz color.

CGColorGetPattern (page 33)
Returns the pattern associated with a Quartz color in a pattern color space.

CGColorGetTypeID (page 34)
Returns the Core Foundation type identifier for a Quartz color data type.

Functions

CGColorCreate
Creates a Quartz color using a list of intensity values (including alpha) and an associated color space.

26 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorRef CGColorCreate (
 CGColorSpaceRef colorspace,
 const CGFloat components[]
);

Parameters
colorspace

A color space for the new color. Quartz retains this object; upon return, you may safely release it.

components
An array of intensity values describing the color. The array should contain n+1 values that correspond
to the n color components in the specified color space, followed by the alpha component. Each
component value should be in the range appropriate for the color space. Values outside this range
will be clamped to the nearest correct value.

Return Value
A new Quartz color. You are responsible for releasing this object using CGColorRelease (page 34).

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
AnimatedTableView
CoreTextTest
ImageBrowserViewAppearance
ImageKitDemo
Quartz2DBasics

Declared In
CGColor.h

CGColorCreateCopy
Creates a copy of an existing Quartz color.

CGColorRef CGColorCreateCopy (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
A copy of the specified color. You are responsible for releasing this object using CGColorRelease (page
34).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

Functions 27
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorCreateCopyWithAlpha
Creates a copy of an existing Quartz color, substituting a new alpha value.

CGColorRef CGColorCreateCopyWithAlpha (
 CGColorRef color,
 CGFloat alpha
);

Parameters
color

The Quartz color to copy.

alpha
A value that specifies the desired opacity of the copy. Values outside the range [0,1] are clamped
to 0 or 1.

Return Value
A copy of the specified color, using the specified alpha value. You are responsible for releasing this object
using CGColorRelease (page 34).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorCreateGenericCMYK
Creates a color in the Generic CMYK color space.

CGColorRef CGColorCreateGenericCMYK(
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
cyan

A cyan value (0.0 - 1.0).

magenta
A magenta value (0.0 - 1.0).

yellow
A yellow value (0.0 - 1.0).

black
A black value (0.0 - 1.0).

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

28 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColor.h

CGColorCreateGenericGray
Creates a color in the Generic gray color space.

CGColorRef CGColorCreateGenericGray(
 CGFloat gray,
 CGFloat alpha
);

Parameters
gray

A grayscale value (0.0 - 1.0).

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
GeekGameBoard

Declared In
CGColor.h

CGColorCreateGenericRGB
Creates a color in the Generic RGB color space.

CGColorRef CGColorCreateGenericRGB(
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
red

A red component value (0.0 - 1.0).

green
A green component value (0.0 - 1.0).

blue
A blue component value (0.0 - 1.0).

Functions 29
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CALayerEssentials
CoreAnimationKioskStyleMenu
Fireworks
LightTable
OpenCL NBody Simulation Example

Declared In
CGColor.h

CGColorCreateWithPattern
Creates a Quartz color using a list of intensity values (including alpha), a pattern color space, and a pattern.

CGColorRef CGColorCreateWithPattern (
 CGColorSpaceRef colorspace,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
colorspace

A pattern color space for the new color. Quartz retains the color space you pass in. On return, you
may safely release it.

pattern
A pattern for the new color object. Quartz retains the pattern you pass in. On return, you may safely
release it.

components
An array of intensity values describing the color. The array should contain n + 1 values that correspond
to the n color components in the specified color space, followed by the alpha component. Each
component value should be in the range appropriate for the color space. Values outside this range
will be clamped to the nearest correct value.

Return Value
A new Quartz color. You are responsible for releasing this object using CGColorRelease (page 34).

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
GeekGameBoard

Declared In
CGColor.h

30 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorEqualToColor
Indicates whether two colors are equal.

bool CGColorEqualToColor (
 CGColorRef color1,
 CGColorRef color2
);

Parameters
color1

The first Quartz color to compare.

color2
The second Quartz color to compare.

Return Value
A Boolean value that, if true, indicates that the specified colors are equal. If the colors are not equal, the
value is false.

Discussion
Two colors are equal if they have equal color spaces and numerically equal color components.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetAlpha
Returns the value of the alpha component associated with a Quartz color.

CGFloat CGColorGetAlpha (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
An alpha intensity value in the range [0,1]. The value represents the opacity of the color.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
GeekGameBoard

Declared In
CGColor.h

CGColorGetColorSpace
Returns the color space associated with a Quartz color.

Functions 31
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorSpaceRef CGColorGetColorSpace (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The Quartz color space for the specified color. You are responsible for retaining and releasing it as needed.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetComponents
Returns the values of the color components (including alpha) associated with a Quartz color.

const CGFloat * CGColorGetComponents (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
An array of intensity values for the color components (including alpha) associated with the specified color.
The size of the array is one more than the number of components of the color space for the color.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
AnimatedTableView
Quartz 2D Shadings

Declared In
CGColor.h

CGColorGetConstantColor
Returns a color object that represents a constant color.

CGColorRef CGColorGetConstantColor(
 CFStringRef colorName
);

Parameters
colorName

A color name. You can pass any of the “Constant Colors” (page 36) constant.

32 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Return Value
A color object.

Discussion
As CGColorGetConstantColor is not a “Copy” or “Create” function, it does not necessarily return a new
reference each time it's called. As a consequence, you should not release the returned value. However, colors
returned from CGColorGetConstantColor can be retained and released in a properly nested fashion, just
as any other Core Foundation type can.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CoreAnimationText
Fire
NineSlice

Declared In
CGColor.h

CGColorGetNumberOfComponents
Returns the number of color components (including alpha) associated with a Quartz color.

size_t CGColorGetNumberOfComponents (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The number of color components (including alpha) associated with the specified color. This number is one
more than the number of components of the color space for the color.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
AnimatedTableView

Declared In
CGColor.h

CGColorGetPattern
Returns the pattern associated with a Quartz color in a pattern color space.

Functions 33
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGPatternRef CGColorGetPattern (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The pattern for the specified color. You are responsible for retaining and releasing the pattern as needed.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetTypeID
Returns the Core Foundation type identifier for a Quartz color data type.

CFTypeID CGColorGetTypeID (
 void
);

Return Value
The Core Foundation type identifier for CGColorRef.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorRelease
Decrements the retain count of a Quartz color.

void CGColorRelease (
 CGColorRef color
);

Parameters
color

The Quartz color to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the color parameter is
NULL.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CALayerEssentials

34 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CoreAnimationKioskStyleMenu
Fire
Fireworks
Quartz 2D Shadings

Declared In
CGColor.h

CGColorRetain
Increments the retain count of a Quartz color.

CGColorRef CGColorRetain (
 CGColorRef color
);

Parameters
color

The Quartz color to retain.

Return Value
The same color you passed in as the color parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the color parameter is
NULL.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CoreAnimationText
GeekGameBoard

Declared In
CGColor.h

Data Types

CGColorRef
An opaque type that represents a color used in Quartz 2D drawing.

typedef struct CGColor *CGColorRef;

Discussion
CGColorRef is the fundamental data type used internally by Quartz to represent colors. CGColor objects,
and the functions that operate on them, provide a fast and convenient way of managing and setting colors
directly, especially colors that are reused (such as black for text).

Data Types 35
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

In Mac OS X version 10.3 and later, CGColorRef is derived from CFTypeRef and inherits the properties that
all Core Foundation types have in common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGColor.h

Constants

Constant Colors
Commonly used colors.

const CFStringRef kCGColorWhite;
const CFStringRef kCGColorBlack;
const CFStringRef kCGColorClear;

Constants
kCGColorWhite

The white color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

kCGColorBlack
The black color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

kCGColorClear
The clear color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

Declared In
CGColor.h

36 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGColorSpace.h

Companion guides Quartz 2D Programming Guide
CGColor Reference
CGContext Reference

Overview

The CGColorSpaceRef opaque type encapsulates color space information that is used to specify how Quartz
interprets color information. A color space specifies how color values are interpreted. A color space is
multi-dimensional, and each dimension represents a specific color component. For example, the colors in
an RGB color space have three dimensions or components—red, green, and blue. The intensity of each
component is represented by floating point values—their range and meaning depends on the color space
in question.

Different types of devices (scanners, monitors, printers) operate within different color spaces (RGB, CMYK,
grayscale). Additionally, two devices of the same type (for example, color displays from different manufacturers)
may operate within the same kind of color space, yet still produce a different range of colors, or gamut. Color
spaces that are correctly specified ensure that an image has a consistent appearance regardless of the output
device.

Quartz supports several kinds of color spaces:

 ■ Calibrated color spaces ensure that colors appear the same when displayed on different devices. The
visual appearance of the color is preserved, as far as the capabilities of the device allow.

 ■ Device-dependent color spaces are tied to the system of color representation of a particular device.
Device color spaces are not recommended when high-fidelity color preservation is important.

 ■ Special color spaces—indexed and pattern. An indexed color space contains a color table with up to
256 entries and a base color space to which the color table entries are mapped. Each entry in the color
table specifies one color in the base color space. A pattern color space is used when stroking or filling
with a pattern. Pattern color spaces are supported in Mac OS X version 10.1 and later.

Overview 37
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Functions by Task

Creating Device-Independent Color Spaces

CGColorSpaceCreateCalibratedGray (page 40)
Creates a calibrated grayscale color space.

CGColorSpaceCreateCalibratedRGB (page 41)
Creates a calibrated RGB color space.

CGColorSpaceCreateICCBased (page 43)
Creates a device-independent color space that is defined according to the ICC color profile specification.

CGColorSpaceCreateWithICCProfile (page 47)
Creates an ICC-based color space using the ICC profile contained in the specified data.

CGColorSpaceCreateLab (page 45)
Creates a device-independent color space that is relative to human color perception, according to
the CIE L*a*b* standard.

Creating Generic or Device-Dependent Color Spaces
In Mac OS X v10.4 and later, the color space returned by each of these functions is no longer device-dependent
and is replaced by a generic counterpart.

CGColorSpaceCreateDeviceCMYK (page 42)
Creates a device-dependent CMYK color space.

CGColorSpaceCreateDeviceGray (page 42)
Creates a device-dependent grayscale color space.

CGColorSpaceCreateDeviceRGB (page 43)
Creates a device-dependent RGB color space.

CGColorSpaceCreateWithPlatformColorSpace (page 48)
Creates a platform-specific color space.

Creating Special Color Spaces

CGColorSpaceCreateIndexed (page 44)
Creates an indexed color space, consisting of colors specified by a color lookup table.

CGColorSpaceCreatePattern (page 46)
Creates a pattern color space.

CGColorSpaceCreateWithName (page 47)
Creates a specified type of Quartz color space.

Getting Information About Color Spaces

CGColorSpaceCopyICCProfile (page 39)
Returns a copy of the ICC profile of the provided color space.

38 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceGetNumberOfComponents (page 50)
Returns the number of color components in a color space.

CGColorSpaceGetTypeID (page 51)
Returns the Core Foundation type identifier for Quartz color spaces.

CGColorSpaceGetModel (page 50)
Returns the color space model of the provided color space.

CGColorSpaceGetBaseColorSpace (page 48)
Returns the base color space of a pattern or indexed color space.

CGColorSpaceGetColorTableCount (page 49)
Returns the number of entries in the color table of an indexed color space.

CGColorSpaceGetColorTable (page 49)
Copies the entries in the color table of an indexed color space.

CGColorSpaceCopyName (page 40)
Returns the name used to create the specified color space.

Retaining and Releasing Color Spaces

CGColorSpaceRelease (page 51)
Decrements the retain count of a color space.

CGColorSpaceRetain (page 52)
Increments the retain count of a color space.

Functions

CGColorSpaceCopyICCProfile
Returns a copy of the ICC profile of the provided color space.

CFDataRef CGColorSpaceCopyICCProfile(
 CGColorSpaceRef space
);

Parameters
space

The color space whose ICC profile you want to obtain.

Return Value
The ICC profile or NULL if the color space does not have an ICC profile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColorSpace.h

Functions 39
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCopyName
Returns the name used to create the specified color space.

CFStringRef CGColorSpaceCopyName(
 CGColorSpaceRef space
);

Parameters
space

The color space whose name is to be returned.

Return Value
The name used to create the specified color space, or NULL if the color space was not created using the
CGColorSpaceCreateWithName (page 47) function.

Availability
Available in Mac OS X v10.6 and later.

See Also
CGColorSpaceCreateWithName (page 47)

Declared In
CGColorSpace.h

CGColorSpaceCreateCalibratedGray
Creates a calibrated grayscale color space.

CGColorSpaceRef CGColorSpaceCreateCalibratedGray(
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 CGFloat gamma
);

Parameters
whitePoint

An array of 3 numbers specifying the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse white
point.

blackPoint
An array of 3 numbers specifying the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

gamma
The gamma value appropriate for the imaging device.

Return Value
A new calibrated gray color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
Creates a device-independent grayscale color space that represents colors relative to a reference white point.
This white point is based on the whitest light that can be generated by the output device. Colors in a
device-independent color space should appear the same when displayed on different devices, to the extent
that the capabilities of the device allow.

40 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateCalibratedRGB
Creates a calibrated RGB color space.

CGColorSpaceRef CGColorSpaceCreateCalibratedRGB(
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 const CGFloat gamma[3],
 const CGFloat matrix[9]
);

Parameters
whitePoint

An array of 3 numbers specifying the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse white
point.

blackPoint
An array of 3 numbers specifying the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

gamma
An array of 3 numbers specifying the gamma for the red, green, and blue components of the color
space.

matrix
An array of 9 numbers specifying the linear interpretation of the gamma-modified RGB values of the
color space with respect to the final XYZ representation.

Return Value
A new calibrated RGB color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
Creates a device-independent RGB color space that represents colors relative to a reference white point. This
white point is based on the whitest light that can be generated by the output device. Colors in a
device-independent color space should appear the same when displayed on different devices, to the extent
that the capabilities of the device allow.

For color spaces that require a detailed gamma, such as the piecewise transfer function used in sRGB or ITU-R
BT.709, you may want to use the function CGColorSpaceCreateICCBased (page 43) instead, because it
can accurately represent these gamma curves.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

Functions 41
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCreateDeviceCMYK
Creates a device-dependent CMYK color space.

CGColorSpaceRef CGColorSpaceCreateDeviceCMYK(
 void
);

Return Value
A device-dependent CMYK color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericCMYK—described in “Color Space Names” (page 52). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageApp

Declared In
CGColorSpace.h

CGColorSpaceCreateDeviceGray
Creates a device-dependent grayscale color space.

CGColorSpaceRef CGColorSpaceCreateDeviceGray(
 void
);

Return Value
A device-dependent gray color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericGray—described in “Color Space Names” (page 52). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

42 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageApp
MovieVideoChart

Declared In
CGColorSpace.h

CGColorSpaceCreateDeviceRGB
Creates a device-dependent RGB color space.

CGColorSpaceRef CGColorSpaceCreateDeviceRGB(
 void
);

Return Value
A device-dependent RGB color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericRGB—described in “Color Space Names” (page 52). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CaptureAndCompressIPBMovie
CoreTextTest
ImageBrowserViewAppearance
ImageKitDemo
MovieVideoChart

Declared In
CGColorSpace.h

CGColorSpaceCreateICCBased
Creates a device-independent color space that is defined according to the ICC color profile specification.

Functions 43
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceRef CGColorSpaceCreateICCBased(
 size_t nComponents,
 const CGFloat *range,
 CGDataProviderRef profile,
 CGColorSpaceRef alternate
);

Parameters
nComponents

The number of color components in the color space defined by the ICC profile data. This must match
the number of components actually in the ICC profile and must equal 1, 3, or 4.

range
An array of numbers that specify the minimum and maximum valid values of the corresponding color
components. The size of the array is two times the number of components. If c[k] is the kth color
component, the valid range is range[2*k] ≤ c[k] ≤ range[2*k+1].

profile
A data provider that supplies the ICC profile.

alternateSpace
An alternate color space to use in case the ICC profile is not supported. The alternate color space must
have nComponents color components. You must supply an alternate color space. If this parameter
is NULL, then the function returns NULL.

Return Value
A new ICC-based color space object. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
This function creates an ICC-based color space from an ICC color profile, as defined by the International Color
Consortium. ICC profiles define the reproducible color gamut (the range of colors supported by a device)
and other characteristics of a particular output device, providing a way to accurately transform the color
space of one device to the color space of another. The ICC profile is usually provided by the manufacturer
of the device. Additionally, some color monitors and printers contain electronically embedded ICC profile
information, as do some bitmap formats such as TIFF. Colors in a device-independent color space should
appear the same when displayed on different devices, to the extent that the capabilities of the device allow.

You may want to use this function for a color space that requires a detailed gamma, such as the piecewise
transfer function used in sRGB or ITU-R BT.709, because this function can accurately represent these gamma
curves.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGColorSpaceCreateWithICCProfile (page 47)

Declared In
CGColorSpace.h

CGColorSpaceCreateIndexed
Creates an indexed color space, consisting of colors specified by a color lookup table.

44 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceRef CGColorSpaceCreateIndexed(
 CGColorSpaceRef baseSpace,
 size_t lastIndex,
 const unsigned char *colorTable
);

Parameters
baseSpace

The color space on which the color table is based.

lastIndex
The maximum valid index value for the color table. The value must be less than or equal to 255.

colorTable
An array of m*(lastIndex+1) bytes, where m is the number of color components in the base color
space. Each byte is an unsigned integer in the range 0 to 255 that is scaled to the range of the
corresponding color component in the base color space.

Return Value
A new indexed color space object. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
An indexed color space contains a color table with up to 255 entries, and a base color space to which the
color table entries are mapped. Each entry in the color table specifies one color in the base color space. A
value in an indexed color space is treated as an index into the color table of the color space. The data in the
table is in meshed format. (For example, for an RGB color space the values are R, G, B, R, G, B, and so on.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateLab
Creates a device-independent color space that is relative to human color perception, according to the CIE
L*a*b* standard.

CGColorSpaceRef CGColorSpaceCreateLab(
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 const CGFloat range[4]
);

Parameters
whitePoint

An array of 3 numbers that specify the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse
white point.

blackPoint
An array of 3 numbers that specify the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

Functions 45
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

range
An array of 4 numbers that specify the range of valid values for the a* and b* components of the color
space. The a* component represents values running from green to red, and the b* component
represents values running from blue to yellow.

Return Value
A new L*a*b* color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
The CIE L*a*b* space is a nonlinear transformation of the Munsell color notation system (a system which
specifies colors by hue, value, and saturation—or “chroma”—values), designed to match perceived color
difference with quantitative distance in color space. The L* component represents the lightness value, the
a* component represents values running from green to red, and the b* component represents values running
from blue to yellow. This roughly corresponds to the way the human brain is thought to decode colors. Colors
in a device-independent color space should appear the same when displayed on different devices, to the
extent that the capabilities of the device allow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreatePattern
Creates a pattern color space.

CGColorSpaceRef CGColorSpaceCreatePattern(
 CGColorSpaceRef baseSpace
);

Parameters
baseSpace

For masking patterns, the underlying color space that specifies the colors to be painted through the
mask. For colored patterns, you should pass NULL.

Return Value
A new pattern color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
For information on creating and using patterns, see Quartz 2D Programming Guide and CGPattern Reference.
Quartz retains the color space you pass in. Upon return, you may safely release it by calling
CGColorSpaceRelease (page 51).

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
GeekGameBoard

Declared In
CGColorSpace.h

46 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCreateWithICCProfile
Creates an ICC-based color space using the ICC profile contained in the specified data.

CGColorSpaceRef CGColorSpaceCreateWithICCProfile(
 CFDataRef data
);

Parameters
data

The data containing the ICC profile to set for the new color space.

Return Value
A new color space based on the specified profile.

Availability
Available in Mac OS X v10.6 and later.

See Also
CGColorSpaceCreateICCBased (page 43)

Declared In
CGColorSpace.h

CGColorSpaceCreateWithName
Creates a specified type of Quartz color space.

CGColorSpaceRef CGColorSpaceCreateWithName(
 CFStringRef name
);

Parameters
name

A color space name. See “Color Space Names” (page 52) for a list of the valid Quartz-defined
names.

Return Value
A new generic color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 51). If unsuccessful, returns NULL.

Discussion
You can use this function to create a generic color space. For more information, see “Color Space
Names” (page 52).

Availability
Available in Mac OS X v10.2 and later.

See Also
CGColorSpaceCopyName (page 40)

Related Sample Code
GLSL Showpiece Lite
MassiveImage
OpenCL NBody Simulation Example

Functions 47
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Quartz2DBasics
QuartzCache

Declared In
CGColorSpace.h

CGColorSpaceCreateWithPlatformColorSpace
Creates a platform-specific color space.

CGColorSpaceRef CGColorSpaceCreateWithPlatformColorSpace(
 void *platformColorSpaceReference
);

Parameters
platformColorSpace

A generic pointer to a platform-specific color space. In Mac OS X, pass a CMProfileRef—a ColorSync
profile. Quartz uses this pointer (and the underlying information) only during the function call.

Return Value
A new color space. You are responsible for releasing this object by calling CGColorSpaceRelease (page
51). If unsuccessful, returns NULL.

Discussion
Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
CIFilterGeneratorTest
CIVideoDemoGL
FunHouse
ImageApp
VideoViewer

Declared In
CGColorSpace.h

CGColorSpaceGetBaseColorSpace
Returns the base color space of a pattern or indexed color space.

CGColorSpace CGColorSpaceGetBaseColorSpace(
 CGColorSpaceRef space
);

Parameters
space

A color space object for a pattern or indexed color space.

48 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Return Value
The base color space if the space parameter is a pattern or indexed color space; otherwise, NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColorSpace.h

CGColorSpaceGetColorTable
Copies the entries in the color table of an indexed color space.

void CGColorSpaceGetColorTable(
 CGColorSpaceRef space,
 uint8_t *table);
);

Parameters
space

A color space object for an indexed color space.

table
The array pointed to by table should be at least as large as the number of entries in the color table.
On output, the array contains the table data in the same format as that passed to
CGColorSpaceCreateIndexed (page 44).

Discussion
This function does nothing if the color space is not an indexed color space. To determine whether a color
space is an indexed color space, call the function CGColorSpaceGetModel (page 50).

Availability
Available in Mac OS X v10.5 and later.

See Also
CGColorSpaceGetColorTableCount (page 49)

Declared In
CGColorSpace.h

CGColorSpaceGetColorTableCount
Returns the number of entries in the color table of an indexed color space.

size_t CGColorSpaceGetColorTableCount(
 CGColorSpaceRef space
);

Parameters
space

A color space object for an indexed color space.

Return Value
The number of entries in the color table of the space parameter if the color space is an indexed color space;
otherwise, returns 0.

Functions 49
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
CGColorSpaceGetColorTable (page 49)

Declared In
CGColorSpace.h

CGColorSpaceGetModel
Returns the color space model of the provided color space.

CGColorSpaceModel CGColorSpaceGetModel(
 CGColorSpaceRef space
);

Parameters
space

A color space object.

Return Value
One of the constants described in “Color Space Models” (page 54).

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Quartz Composer ImageExporter

Declared In
CGColorSpace.h

CGColorSpaceGetNumberOfComponents
Returns the number of color components in a color space.

size_t CGColorSpaceGetNumberOfComponents(
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to examine.

Return Value
The number of color components in the specified color space, not including the alpha value. For example,
for an RGB color space, CGColorSpaceGetNumberOfComponents returns a value of 3.

Discussion
A color space defines an n-dimensional space whose dimensions (or components) represent intensity values.
For example, you specify colors in RGB space as three intensity values: red, green, and blue. You can use the
CGColorSpaceGetNumberOfComponents function to obtain the number of components in a given color
space.

50 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceGetTypeID
Returns the Core Foundation type identifier for Quartz color spaces.

CFTypeID CGColorSpaceGetTypeID(
 void
);

Return Value
The identifier for the opaque type CGColorSpaceRef (page 52).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGColorSpace.h

CGColorSpaceRelease
Decrements the retain count of a color space.

void CGColorSpaceRelease(
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the cs parameter is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL
GLSL Showpiece Lite
MovieVideoChart
OpenCL NBody Simulation Example

Declared In
CGColorSpace.h

Functions 51
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceRetain
Increments the retain count of a color space.

CGColorSpaceRef CGColorSpaceRetain(
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to retain.

Return Value
The same color space you passed in as the cs parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the cs parameter is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL

Declared In
CGColorSpace.h

Data Types

CGColorSpaceRef
An opaque type that encapsulates color space information.

typedef struct CGColorSpace *CGColorSpaceRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

Constants

Color Space Names
Convenience constants for commonly used color spaces.

52 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CFStringRef kCGColorSpaceGenericGray
CFStringRef kCGColorSpaceGenericRGB
CFStringRef kCGColorSpaceGenericCMYK
CFStringRef kCGColorSpaceGenericRGBLinear
CFStringRef kCGColorSpaceAdobeRGB1998
CFStringRef kCGColorSpaceSRGB
CFStringRef kCGColorSpaceGenericGrayGamma2_2

Constants
kCGColorSpaceGenericGray

The name of the generic gray color space.

Available in Mac OS X v10.4 and later.

Declared in CGColorSpace.h.

kCGColorSpaceGenericRGB
The name of the generic RGB color space.

Available in Mac OS X v10.4 and later.

Declared in CGColorSpace.h.

kCGColorSpaceGenericCMYK
The name of the generic CMYK color space.

Available in Mac OS X v10.4 and later.

Declared in CGColorSpace.h.

kCGColorSpaceGenericRGBLinear
The name of the generic linear RGB color space. This is the same as kCGColorSpaceGenericRGB,
but with a gamma equal to 1.0.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceAdobeRGB1998
The name of the Adobe RGB (1998) color space. For more information, see "Adobe RGB (1998) Color
Image Encoding", Version 2005-05, Adobe Systems Inc. (http://www.adobe.com).

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceSRGB
The name of the SRGB color space.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceGenericGrayGamma2_2
The name of the generic gray color space with a gamma value of 2.2.

Available in Mac OS X v10.6 and later.

Declared in CGColorSpace.h.

Discussion
A color space name constant can be passed as a parameter to the function
CGColorSpaceCreateWithName (page 47).

Declared In
CGColorSpace.h

Constants 53
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

http://www.adobe.com

Color Space Models
Models for color spaces.

enum CGColorSpaceModel {
 kCGColorSpaceModelUnknown = -1,
 kCGColorSpaceModelMonochrome,
 kCGColorSpaceModelRGB,
 kCGColorSpaceModelCMYK,
 kCGColorSpaceModelLab,
 kCGColorSpaceModelDeviceN,
 kCGColorSpaceModelIndexed,
 kCGColorSpaceModelPattern
};
typedef int32_t CGColorSpaceModel;

Constants
kCGColorSpaceModelUnknown

An unknown color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelMonochrome
A monochrome color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelRGB
An RGB color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelCMYK
A CMYK color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelLab
A Lab color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelDeviceN
A DeviceN color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelIndexed
An indexed color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

54 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

kCGColorSpaceModelPattern
A pattern color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

Color Rendering Intents
Handling options for colors that are not located within the destination color space of a graphics context.

enum CGColorRenderingIntent {
 kCGRenderingIntentDefault,
 kCGRenderingIntentAbsoluteColorimetric,
 kCGRenderingIntentRelativeColorimetric,
 kCGRenderingIntentPerceptual,
 kCGRenderingIntentSaturation
};
typedef enum CGColorRenderingIntent CGColorRenderingIntent;

Constants
kCGRenderingIntentDefault

The default rendering intent for the graphics context.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentAbsoluteColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device. This can produce a clipping effect, where two different color values in the gamut
of the graphics context are mapped to the same color value in the output device’s gamut. Unlike the
relative colorimetric, absolute colorimetric does not modify colors inside the gamut of the output
device.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentRelativeColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device. This can produce a clipping effect, where two different color values in the gamut
of the graphics context are mapped to the same color value in the output device’s gamut. The relative
colorimetric shifts all colors (including those within the gamut) to account for the difference between
the white point of the graphics context and the white point of the output device.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentPerceptual
Preserve the visual relationship between colors by compressing the gamut of the graphics context
to fit inside the gamut of the output device. Perceptual intent is good for photographs and other
complex, detailed images.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

Constants 55
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

kCGRenderingIntentSaturation
Preserve the relative saturation value of the colors when converting into the gamut of the output
device. The result is an image with bright, saturated colors. Saturation intent is good for reproducing
images with low detail, such as presentation charts and graphs.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

Discussion
The rendering intent specifies how Quartz should handle colors that are not located within the gamut of the
destination color space of a graphics context. It determines the exact method used to map colors from one
color space to another. If you do not explicitly set the rendering intent by calling the function
CGContextSetRenderingIntent (page 122), the graphics context uses the relative colorimetric rendering
intent, except when drawing sampled images.

56 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGContextRef opaque type represents a Quartz 2D drawing destination. A graphics context contains
drawing parameters and all device-specific information needed to render the paint on a page to the
destination, whether the destination is a window in an application, a bitmap image, a PDF document, or a
printer. You can obtain a graphics context by using Quartz graphics context creation functions or by using
higher-level functions provided in the Carbon, Cocoa, or Printing frameworks. Quartz provides creation
functions for various flavors of Quartz graphics contexts including bitmap images and PDF. The Cocoa
framework provides functions for obtaining window graphics contexts. The Printing framework provides
functions that obtain a graphics context appropriate for the destination printer.

Functions by Task

Managing Graphics Contexts

CGContextFlush (page 95)
Forces all pending drawing operations in a window context to be rendered immediately to the
destination device.

CGContextGetTypeID (page 99)
Returns the type identifier for Quartz graphics contexts.

CGContextRelease (page 101)
Decrements the retain count of a graphics context.

CGContextRetain (page 103)
Increments the retain count of a graphics context.

CGContextSynchronize (page 140)
Marks a window context for update.

Overview 57
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Saving and Restoring the Current Graphics State

CGContextSaveGState (page 104)
Pushes a copy of the current graphics state onto the graphics state stack for the context.

CGContextRestoreGState (page 102)
Sets the current graphics state to the state most recently saved.

Getting and Setting Graphics State Parameters

CGContextGetInterpolationQuality (page 96)
Returns the current level of interpolation quality for a graphics context.

CGContextSetFlatness (page 115)
Sets the accuracy of curved paths in a graphics context.

CGContextSetInterpolationQuality (page 118)
Sets the level of interpolation quality for a graphics context.

CGContextSetLineCap (page 119)
Sets the style for the endpoints of lines drawn in a graphics context.

CGContextSetLineDash (page 119)
Sets the pattern for dashed lines in a graphics context.

CGContextSetLineJoin (page 120)
Sets the style for the joins of connected lines in a graphics context.

CGContextSetLineWidth (page 121)
Sets the line width for a graphics context.

CGContextSetMiterLimit (page 121)
Sets the miter limit for the joins of connected lines in a graphics context.

CGContextSetPatternPhase (page 122)
Sets the pattern phase of a context.

CGContextSetFillPattern (page 114)
Sets the fill pattern in the specified graphics context.

CGContextSetRenderingIntent (page 122)
Sets the rendering intent in the current graphics state.

CGContextSetShouldAntialias (page 126)
Sets anti-aliasing on or off for a graphics context.

CGContextSetStrokePattern (page 130)
Sets the stroke pattern in the specified graphics context.

CGContextSetBlendMode (page 110)
Sets how Quartz composites sample values for a graphics context.

CGContextSetAllowsAntialiasing (page 107)
Sets whether or not to allow anti-aliasing for a graphics context.

CGContextSetAllowsFontSmoothing (page 107)
Sets whether or not to allow font smoothing for a graphics context.

CGContextSetShouldSmoothFonts (page 127)
Enables or disables font smoothing in a graphics context.

58 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetAllowsFontSubpixelPositioning (page 108)
Sets whether or not to allow subpixel positioning for a graphics context

CGContextSetShouldSubpixelPositionFonts (page 127)
Enables or disables subpixel positioning in a graphics context.

CGContextSetAllowsFontSubpixelQuantization (page 109)
Sets whether or not to allow subpixel quantization for a graphics context

CGContextSetShouldSubpixelQuantizeFonts (page 128)
Enables or disables subpixel quantization in a graphics context.

Constructing Paths
These functions are used to define the geometry of the current path. For more information on how paths
are defined, see CGPath Reference.

CGContextAddArc (page 64)
Adds an arc of a circle to the current path, possibly preceded by a straight line segment

CGContextAddArcToPoint (page 66)
Adds an arc of a circle to the current path, using a radius and tangent points.

CGContextAddCurveToPoint (page 67)
Appends a cubic Bézier curve from the current point, using the provided control points and end point
.

CGContextAddLines (page 68)
Adds a sequence of connected straight-line segments to the current path.

CGContextAddLineToPoint (page 69)
Appends a straight line segment from the current point to the provided point .

CGContextAddPath (page 70)
Adds a previously created Quartz path object to the current path in a graphics context.

CGContextCopyPath (page 84)
Returns a Quartz path object built from the current path information in a graphics context.

CGContextAddQuadCurveToPoint (page 71)
Appends a quadratic Bézier curve from the current point, using a control point and an end point you
specify.

CGContextAddRect (page 71)
Adds a rectangular path to the current path.

CGContextAddRects (page 72)
Adds a set rectangular paths to the current path.

CGContextBeginPath (page 74)
Creates a new empty path in a graphics context.

CGContextClosePath (page 80)
Closes and terminates the current path’s subpath.

CGContextMoveToPoint (page 100)
Begins a new subpath at the point you specify.

CGContextAddEllipseInRect (page 68)
Adds an ellipse that fits inside the specified rectangle.

Functions by Task 59
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Painting Paths
These functions are used to stroke along or fill in the current path.

CGContextClearRect (page 76)
Paints a transparent rectangle.

CGContextDrawPath (page 86)
Draws the current path using the provided drawing mode.

CGContextEOFillPath (page 92)
Paints the area within the current path, using the even-odd fill rule.

CGContextFillPath (page 93)
Paints the area within the current path, using the nonzero winding number rule.

CGContextFillRect (page 94)
Paints the area contained within the provided rectangle, using the fill color in the current graphics
state.

CGContextFillRects (page 94)
Paints the areas contained within the provided rectangles, using the fill color in the current graphics
state.

CGContextFillEllipseInRect (page 92)
Paints the area of the ellipse that fits inside the provided rectangle, using the fill color in the current
graphics state.

CGContextStrokePath (page 138)
Paints a line along the current path.

CGContextStrokeRect (page 139)
Paints a rectangular path.

CGContextStrokeRectWithWidth (page 140)
Paints a rectangular path, using the specified line width.

CGContextReplacePathWithStrokedPath (page 102)
Replaces the path in the graphics context with the stroked version of the path.

CGContextStrokeEllipseInRect (page 137)
Strokes an ellipse that fits inside the specified rectangle.

CGContextStrokeLineSegments (page 137)
Strokes a sequence of line segments.

Getting Information About Paths

CGContextIsPathEmpty (page 100)
Indicates whether the current path contains any subpaths.

CGContextGetPathCurrentPoint (page 98)
Returns the current point in a non-empty path.

CGContextGetPathBoundingBox (page 97)
Returns the smallest rectangle that contains the current path.

CGContextPathContainsPoint (page 101)
Checks to see whether the specified point is contained in the current path.

60 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Modifying Clipping Paths

CGContextClip (page 77)
Modifies the current clipping path, using the nonzero winding number rule.

CGContextEOClip (page 91)
Modifies the current clipping path, using the even-odd rule.

CGContextClipToRect (page 78)
Sets the clipping path to the intersection of the current clipping path with the area defined by the
specified rectangle.

CGContextClipToRects (page 79)
Sets the clipping path to the intersection of the current clipping path with the region defined by an
array of rectangles.

CGContextGetClipBoundingBox (page 95)
Returns the bounding box of a clipping path.

CGContextClipToMask (page 77)
Maps a mask into the specified rectangle and intersects it with the current clipping area of the graphics
context.

Setting Color, Color Space, and Shadow Values

CGContextSetAlpha (page 109)
Sets the opacity level for objects drawn in a graphics context.

CGContextSetCMYKFillColor (page 111)
Sets the current fill color to a value in the DeviceCMYK color space.

CGContextSetFillColor (page 113)
Sets the current fill color.

CGContextSetCMYKStrokeColor (page 112)
Sets the current stroke color to a value in the DeviceCMYK color space.

CGContextSetFillColorSpace (page 113)
Sets the fill color space in a graphics context.

CGContextSetFillColorWithColor (page 114)
Sets the current fill color in a graphics context, using a Quartz color.

CGContextSetGrayFillColor (page 117)
Sets the current fill color to a value in the DeviceGray color space.

CGContextSetGrayStrokeColor (page 117)
Sets the current stroke color to a value in the DeviceGray color space.

CGContextSetRGBFillColor (page 123)
Sets the current fill color to a value in the DeviceRGB color space.

CGContextSetRGBStrokeColor (page 124)
Sets the current stroke color to a value in the DeviceRGB color space.

CGContextSetShadow (page 125)
Enables shadowing in a graphics context.

CGContextSetShadowWithColor (page 126)
Enables shadowing with color a graphics context.

Functions by Task 61
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetStrokeColor (page 128)
Sets the current stroke color.

CGContextSetStrokeColorSpace (page 129)
Sets the stroke color space in a graphics context.

CGContextSetStrokeColorWithColor (page 129)
Sets the current stroke color in a context, using a Quartz color.

Transforming User Space
These functions allow you to examine and change the current transformation matrix (CTM) in a graphics
context.

CGContextConcatCTM (page 80)
Transforms the user coordinate system in a context using a specified matrix.

CGContextGetCTM (page 96)
Returns the current transformation matrix.

CGContextRotateCTM (page 104)
Rotates the user coordinate system in a context.

CGContextScaleCTM (page 106)
Changes the scale of the user coordinate system in a context.

CGContextTranslateCTM (page 141)
Changes the origin of the user coordinate system in a context.

Using Transparency Layers

CGContextBeginTransparencyLayer (page 75)
Begins a transparency layer.

CGContextBeginTransparencyLayerWithRect (page 75)
Begins a transparency layer whose contents are bounded by the specified rectangle.

CGContextEndTransparencyLayer (page 91)
Ends a transparency layer.

Drawing an Image to a Graphics Context

CGContextDrawTiledImage (page 90)
Repeatedly draws an image, scaled to the provided rectangle, to fill the current clip region.

CGContextDrawImage (page 85)
Draws an image into a graphics context.

Drawing PDF Content to a Graphics Context

CGContextDrawPDFPage (page 87)
Draws a page in the current user space of a PDF context.

62 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextDrawPDFDocument (page 87) Deprecated in Mac OS X v10.5
Draws a page of a PDF document into a graphics context.

Drawing With a Gradient

CGContextDrawLinearGradient (page 85)
Paints a gradient fill that varies along the line defined by the provided starting and ending points.

CGContextDrawRadialGradient (page 88)
Paints a gradient fill that varies along the area defined by the provided starting and ending circles.

Drawing With a Shading

CGContextDrawShading (page 89)
Fills the clipping path of a context with the specified shading.

Setting Up a Page-Based Graphics Context

CGContextBeginPage (page 73)
Starts a new page in a page-based graphics context.

CGContextEndPage (page 90)
Ends the current page in a page-based graphics context.

Drawing Glyphs

CGContextShowGlyphs (page 132)
Displays an array of glyphs at the current text position.

CGContextShowGlyphsAtPoint (page 133)
Displays an array of glyphs at a position you specify.

CGContextShowGlyphsWithAdvances (page 134)
Draws an array of glyphs with varying offsets.

CGContextShowGlyphsAtPositions (page 134)
Draws glyphs at the provided position.

Drawing Text

CGContextGetTextMatrix (page 98)
Returns the current text matrix.

CGContextGetTextPosition (page 98)
Returns the location at which text is drawn.

CGContextSelectFont (page 106)
Sets the font and font size in a graphics context.

Functions by Task 63
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetCharacterSpacing (page 110)
Sets the current character spacing.

CGContextSetFont (page 116)
Sets the platform font in a graphics context.

CGContextSetFontSize (page 116)
Sets the current font size.

CGContextSetTextDrawingMode (page 130)
Sets the current text drawing mode.

CGContextSetTextMatrix (page 131)
Sets the current text matrix.

CGContextSetTextPosition (page 132)
Sets the location at which text is drawn.

CGContextShowText (page 135)
Displays a character array at the current text position, a point specified by the current text matrix.

CGContextShowTextAtPoint (page 136)
Displays a character string at a position you specify.

Converting Between Device Space and User Space

CGContextGetUserSpaceToDeviceSpaceTransform (page 99)
Returns an affine transform that maps user space coordinates to device space coordinates.

CGContextConvertPointToDeviceSpace (page 81)
Returns a point that is transformed from user space coordinates to device space coordinates.

CGContextConvertPointToUserSpace (page 81)
Returns a point that is transformed from device space coordinates to user space coordinates.

CGContextConvertSizeToDeviceSpace (page 83)
Returns a size that is transformed from user space coordinates to device space coordinates.

CGContextConvertSizeToUserSpace (page 84)
Returns a size that is transformed from device space coordinates to user space coordinates

CGContextConvertRectToDeviceSpace (page 82)
Returns a rectangle that is transformed from user space coordinate to device space coordinates.

CGContextConvertRectToUserSpace (page 83)
Returns a rectangle that is transformed from device space coordinate to user space coordinates.

Functions

CGContextAddArc
Adds an arc of a circle to the current path, possibly preceded by a straight line segment

64 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextAddArc (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 CGFloat radius,
 CGFloat startAngle,
 CGFloat endAngle,
 int clockwise
);

Parameters
c

A graphics context.

x
The x-value, in user space coordinates, for the center of the arc.

y
The y-value, in user space coordinates, for the center of the arc.

radius
The radius of the arc, in user space coordinates.

startAngle
The angle to the starting point of the arc, measured in radians from the positive x-axis.

endAngle
The angle to the end point of the arc, measured in radians from the positive x-axis.

clockwise
Specify 1 to create a clockwise arc or 0 to create a counterclockwise arc.

Discussion
An arc is a segment of a circle with radius r centered at a point (x,y). When you call this function, you
provide the center point, radius, and two angles in radians. Quartz uses this information to determine the
end points of the arc, and then approximates the new arc using a sequence of cubic Bézier curves. The
clockwise parameter determines the direction in which the arc is created; the actual direction of the final
path is dependent on the current transformation matrix of the graphics context. For example, on iOS, a
UIView flips the Y-coordinate by scaling the Y values by -1. In a flipped coordinate system, specifying a
clockwise arc results in a counterclockwise arc after the transformation is applied.

If the current path already contains a subpath, Quartz adds a line connecting the current point to the starting
point of the arc. If the current path is empty, Quartz creates a new new subpath with a starting point set to
the starting point of the arc.

The ending point of the arc becomes the new current point of the path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddArcToPoint (page 66)

Related Sample Code
Cocoa CG arc demo
MovieVideoChart
OpenCL NBody Simulation Example
Quartz EB

Functions 65
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

QuartzShapes

Declared In
CGContext.h

CGContextAddArcToPoint
Adds an arc of a circle to the current path, using a radius and tangent points.

void CGContextAddArcToPoint (
 CGContextRef c,
 CGFloat x1,
 CGFloat y1,
 CGFloat x2,
 CGFloat y2,
 CGFloat radius
);

Parameters
c

A graphics context whose current path is not empty.

x1
The x-value, in user space coordinates, for the end point of the first tangent line. The first tangent
line is drawn from the current point to (x1,y1).

y1
The y-value, in user space coordinates, for the end point of the first tangent line. The first tangent
line is drawn from the current point to (x1,y1).

x2
The x-value, in user space coordinates, for the end point of the second tangent line. The second
tangent line is drawn from (x1,y1) to (x2,y2).

y2
The y-value, in user space coordinates, for the end point of the second tangent line. The second
tangent line is drawn from (x1,y1) to (x2,y2).

radius
The radius of the arc, in user space coordinates.

Discussion
This function uses a sequence of cubic Bézier curves to create an arc that is tangent to the line from the
current point to (x1,y1) and to the line from (x1,y1) to (x2,y2). The start and end points of the arc are located
on the first and second tangent lines, respectively. The start and end points of the arc are also the “tangent
points” of the lines.

If the current point and the first tangent point of the arc (the starting point) are not equal, Quartz appends
a straight line segment from the current point to the first tangent point.

If the current point and the first tangent point of the arc (the starting point) are not equal, Quartz appends
a straight line segment from the current point to the first tangent point.

The ending point of the arc becomes the new current point of the path.

Availability
Available in Mac OS X v10.0 and later.

66 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextAddArc (page 64)
CGContextAddArcToPoint (page 66)

Related Sample Code
Cocoa CG arc demo
OpenCL NBody Simulation Example
QuartzShapes

Declared In
CGContext.h

CGContextAddCurveToPoint
Appends a cubic Bézier curve from the current point, using the provided control points and end point .

void CGContextAddCurveToPoint (
 CGContextRef c,
 CGFloat cp1x,
 CGFloat cp1y,
 CGFloat cp2x,
 CGFloat cp2y,
 CGFloat x,
 CGFloat y
);

Parameters
c

A graphics context whose current path is not empty.

cp1x
The x-value, in user space coordinates, for the first control point of the curve.

cp1y
The y-value, in user space coordinates, for the first control point of the curve.

cp2x
The x-value, in user space coordinates, for the second control point of the curve.

cp2y
The y-value, in user space coordinates, for the second control point of the curve.

x
The x-value, in user space coordinates, at which to end the curve.

y
The y-value, in user space coordinates, at which to end the curve.

Discussion
This function appends a cubic curve to the current path. On return, the current point is set to the end point
of that segment.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddQuadCurveToPoint (page 71)

Functions 67
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextAddArcToPoint (page 66)

Related Sample Code
MovieVideoChart
Quartz EB

Declared In
CGContext.h

CGContextAddEllipseInRect
Adds an ellipse that fits inside the specified rectangle.

void CGContextAddEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle that defines the area for the ellipse to fit in.

Discussion
The ellipse is approximated by a sequence of Bézier curves. Its center is the midpoint of the rectangle defined
by the rect parameter. If the rectangle is square, then the ellipse is circular with a radius equal to one-half
the width (or height) of the rectangle. If the rect parameter specifies a rectangular shape, then the major
and minor axes of the ellipse are defined by the width and height of the rectangle.

The ellipse forms a complete subpath of the path—that is, the ellipse drawing starts with a move-to operation
and ends with a close-subpath operation, with all moves oriented in the clockwise direction.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz2DBasics

Declared In
CGContext.h

CGContextAddLines
Adds a sequence of connected straight-line segments to the current path.

68 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextAddLines (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

Parameters
c

A graphics context .

points
An array of values that specify the start and end points of the line segments to draw. Each point in
the array specifies a position in user space. The first point is the array specifies the initial starting point.

count
The number of elements in the points array.

Discussion
This is a convenience function that adds a sequence of connected line segments to a path, using the following
operation:

CGContextMoveToPoint (c, points[0].x, points[0].y);
for (k = 1; k < count; k++) {
 CGContextAddLineToPoint (c, points[k].x, points[k].y);
}

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddLineToPoint (page 69)

Related Sample Code
CocoaVideoFrameToGWorld
Quartz EB

Declared In
CGContext.h

CGContextAddLineToPoint
Appends a straight line segment from the current point to the provided point .

void CGContextAddLineToPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
c

A graphics context whose current path is not empty.

x
The x-value, in user space coordinates, for the end of the line segment.

Functions 69
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

y
The y-value, in user space coordinates, for the end of the line segment.

Discussion
After adding the line segment, the current point is set to the endpoint of the line segment.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddLines (page 68)

Related Sample Code
Cocoa CG arc demo
FunHouse
HID Calibrator
OpenCL NBody Simulation Example
Quartz 2D Shadings

Declared In
CGContext.h

CGContextAddPath
Adds a previously created Quartz path object to the current path in a graphics context.

void CGContextAddPath (
 CGContextRef context,
 CGPathRef path
);

Parameters
context

A graphics context .

path
A previously created Quartz path object. See CGPath Reference.

Discussion

If the source path is non-empty, then its path elements are appended in order onto the current path. Quartz
applies the current transformation matrix (CTM) to the points before adding them to the path.

After the call completes, the start point and current point of the path are those of the last subpath in path.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
GeekGameBoard
Quartz 2D Shadings
Quartz2DBasics

70 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextAddQuadCurveToPoint
Appends a quadratic Bézier curve from the current point, using a control point and an end point you specify.

void CGContextAddQuadCurveToPoint (
 CGContextRef c,
 CGFloat cpx,
 CGFloat cpy,
 CGFloat x,
 CGFloat y
);

Parameters
c

A graphics context whose current path is not empty.

cpx
The x-coordinate of the user space for the control point of the curve.

cpy
The y-coordinate of the user space for the control point of the curve.

x
The x-coordinate of the user space at which to end the curve.

y
The y-coordinate of the user space at which to end the curve.

Discussion
This function appends a quadratic curve to the current subpath. After adding the segment, the current point
is set to the end point of the curve.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddCurveToPoint (page 67)
CGContextAddArcToPoint (page 66)

Declared In
CGContext.h

CGContextAddRect
Adds a rectangular path to the current path.

Functions 71
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextAddRect (
 CGContextRef c,
 CGRect rect
);

Parameters
c

A graphics context.

rect
A rectangle, specified in user space coordinates.

Discussion
This is a convenience function that adds a rectangle to a path, using the following sequence of operations:

// start at origin
CGContextMoveToPoint (c, CGRectGetMinX(rect), CGRectGetMinY(rect));

// add bottom edge
CGContextAddLineToPoint (c, CGRectGetMaxX(rect), CGRectGetMinY(rect));

// add right edge
CGContextAddLineToPoint (c, CGRectGetMaxX(rect), CGRectGetMaxY(rect);

// add top edge
CGContextAddLineToPoint (c, CGRectGetMinX(rect), CGRectGetMaxY(rect));

// add left edge and close
CGContextClosePath (c);

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddRects (page 72)

Related Sample Code
BrideOfMungGrab
MovieVideoChart
OpenCL NBody Simulation Example
Quartz 2D Transformer
QuartzShapes

Declared In
CGContext.h

CGContextAddRects
Adds a set rectangular paths to the current path.

72 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextAddRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
c

A graphics context.

rects
An array of rectangles, specified in user space coordinates.

count
The number of rectangles in the rects array.

Discussion
This is a convenience function that adds an array of rectangles to a path, using the following operation:

for (k = 0; k < count; k++) {
 CGContextAddRect (c, m, rects[k]);
}

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddRect (page 71)

Related Sample Code
BrideOfMungGrab

Declared In
CGContext.h

CGContextBeginPage
Starts a new page in a page-based graphics context.

void CGContextBeginPage (
 CGContextRef c,
 const CGRect *mediaBox
);

Parameters
c

A page-based graphics context such as a PDF context. If you specify a context that does not support
multiple pages, this function does nothing.

mediaBox
A Quartz rectangle defining the bounds of the new page, expressed in units of the default user space,
or NULL. These bounds supersede any supplied for the media box when you created the context. If
you pass NULL, Quartz uses the rectangle you supplied for the media box when the graphics context
was created.

Functions 73
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
When using a graphics context that supports multiple pages, you should call this function together with
CGContextEndPage (page 90) to delineate the page boundaries in the output. In other words, each page
should be bracketed by calls to CGContextBeginPage and CGContextEndPage. Quartz ignores all drawing
operations performed outside a page boundary in a page-based context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo
CocoaVideoFrameToGWorld
Quartz EB
Quartz2DBasics
SampleRaster

Declared In
CGContext.h

CGContextBeginPath
Creates a new empty path in a graphics context.

void CGContextBeginPath (
 CGContextRef c
);

Parameters
c

A graphics context.

Discussion
A graphics context can have only a single path in use at any time. If the specified context already contains
a current path when you call this function, Quartz discards the old path and any data associated with it.

The current path is not part of the graphics state. Consequently, saving and restoring the graphics state has
no effect on the current path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextClosePath (page 80)

Related Sample Code
HID Explorer
MovieVideoChart
Quartz EB
Quartz2DBasics
QuartzShapes

Declared In
CGContext.h

74 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextBeginTransparencyLayer
Begins a transparency layer.

void CGContextBeginTransparencyLayer (
 CGContextRef context,
 CFDictionaryRef auxiliaryInfo
);

Parameters
context

A graphics context.

auxiliaryInfo
A dictionary that specifies any additional information, or NULL.

Discussion
Until a corresponding call to CGContextEndTransparencyLayer (page 91), all subsequent drawing
operations in the specified context are composited into a fully transparent backdrop (which is treated as a
separate destination buffer from the context).

After a call to CGContextEndTransparencyLayer, the result is composited into the context using the
global alpha and shadow state of the context. This operation respects the clipping region of the context.

After a call to this function, all of the parameters in the graphics state remain unchanged with the exception
of the following:

 ■ The global alpha is set to 1.

 ■ The shadow is turned off.

Ending the transparency layer restores these parameters to their previous values. Quartz maintains a
transparency layer stack for each context, and transparency layers may be nested.

Tip: For best performance, make sure that you set the smallest possible clipping area for the objects in the
transparency layer prior to calling CGContextBeginTransparencyLayer.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGContext.h

CGContextBeginTransparencyLayerWithRect
Begins a transparency layer whose contents are bounded by the specified rectangle.

Functions 75
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextBeginTransparencyLayerWithRect(
 CGContextRef context,
 CGRect rect,
 CFDictionaryRef auxiliaryInfo
);

Parameters
context

A graphics context.

rect
The rectangle, specified in user space, that bounds the transparency layer.

auxiliaryInfo
A dictionary that specifies any additional information, or NULL.

Discussion
This function is identical to CGContextBeginTransparencyLayer (page 75) except that the content of
the transparency layer is within the bounds of the provided rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextClearRect
Paints a transparent rectangle.

void CGContextClearRect (
 CGContextRef c,
 CGRect rect
);

Parameters
c

The graphics context in which to paint the rectangle.

rect
The rectangle, in user space coordinates.

Discussion
If the provided context is a window or bitmap context, Quartz effectively clears the rectangle. For other
context types, Quartz fills the rectangle in a device-dependent manner. However, you should not use this
function in contexts other than window or bitmap contexts.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CIVideoDemoGL
DockBrowser
OpenCL NBody Simulation Example
Quartz2DBasics

76 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextClip
Modifies the current clipping path, using the nonzero winding number rule.

void CGContextClip (
 CGContextRef c
);

Parameters
c

A graphics context that contains a path. If the context does not have a current path, the function
does nothing.

Discussion
The function uses the nonzero winding number rule to calculate the intersection of the current path with
the current clipping path. Quartz then uses the path resulting from the intersection as the new current
clipping path for subsequent painting operations.

If the current path includes any open subpaths, Quartz treats them as if they were closed by calling
CGContextClosePath (page 80).

Unlike the current path, the current clipping path is part of the graphics state. Therefore, to re-enlarge the
paintable area by restoring the clipping path to a prior state, you must save the graphics state before you
clip and restore the graphics state after you’ve completed any clipped drawing.

After determining the new clipping path, the function resets the context’s current path to an empty path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextEOClip (page 91)

Related Sample Code
Quartz 2D Shadings
Quartz EB
Quartz2DBasics

Declared In
CGContext.h

CGContextClipToMask
Maps a mask into the specified rectangle and intersects it with the current clipping area of the graphics
context.

Functions 77
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextClipToMask (
 CGContextRef c,
 CGRect rect,
 CGImageRef mask
);

Parameters
c

A graphics context.

rect
The rectangle to map the mask parameter to.

mask
An image or an image mask. If mask is an image, then it must be in the DeviceGray color space, may
not have an alpha component, and may not be masked by an image mask or masking color.

Discussion
If the mask parameter is an image mask, then Quartz clips in a manner identical to the behavior seen with
the function CGContextDrawImage—the mask indicates an area to be left unchanged when drawing. The
source samples of the image mask determine which points of the clipping area are changed, acting as an
"inverse alpha" value. If the value of a source sample in the image mask is S, then the corresponding point
in the current clipping area is multiplied by an alpha value of (1–S). For example, if S is 1 then the point in
the clipping area becomes transparent. If S is 0, the point in the clipping area is unchanged.

If the mask parameter is an image, then mask acts like an alpha mask and is blended with the current clipping
area. The source samples of mask determine which points of the clipping area are changed. If the value of
the source sample in mask is S, then the corresponding point in the current clipping area is multiplied by an
alpha of S. For example, if S is 0, then the point in the clipping area becomes transparent. If S is 1, the point
in the clipping area is unchanged.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
MovieVideoChart

Declared In
CGContext.h

CGContextClipToRect
Sets the clipping path to the intersection of the current clipping path with the area defined by the specified
rectangle.

void CGContextClipToRect (
 CGContextRef c,
 CGRect rect
);

Parameters
c

The graphics context for which to set the clipping path.

78 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

rect
A CGRect value that specifies, in the user space, the location and dimensions of the rectangle to be
used in determining the new clipping path.

Discussion
This function sets the specified graphics context’s clipping region to the area which intersects both the
current clipping path and the specified rectangle.

After determining the new clipping path, the CGContextClipToRect function resets the context’s current
path to an empty path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextClipToRects (page 79)

Declared In
CGContext.h

CGContextClipToRects
Sets the clipping path to the intersection of the current clipping path with the region defined by an array of
rectangles.

void CGContextClipToRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
c

The graphics context for which to set the clipping path.

rects
An array of rectangles. The locations and dimensions of the rectangles are specified in the user space
coordinate system.

count
The total number of array entries in the rects parameter.

Discussion
This function sets the clipping path to the intersection of the current clipping path and the region within
the specified rectangles.

After determining the new clipping path, the function resets the context’s current path to an empty path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextClipToRect (page 78)

Declared In
CGContext.h

Functions 79
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextClosePath
Closes and terminates the current path’s subpath.

void CGContextClosePath (
 CGContextRef c
);

Parameters
c

A graphics context.

Discussion
Appends a line from the current point to the starting point of the current subpath and ends the subpath.

After closing the subpath, your application can begin a new subpath without first calling
CGContextMoveToPoint (page 100). In this case, a new subpath is implicitly created with a starting and
current point equal to the previous subpath’s starting point.

If the current path is empty or the current subpath is already closed, this function does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextAddPath (page 70)

Related Sample Code
CALayerEssentials
HID Explorer
OpenCL NBody Simulation Example
Quartz EB
QuartzShapes

Declared In
CGContext.h

CGContextConcatCTM
Transforms the user coordinate system in a context using a specified matrix.

void CGContextConcatCTM (
 CGContextRef c,
 CGAffineTransform transform
);

Parameters
c

A graphics context.

transform
The transformation matrix to apply to the specified context’s current transformation matrix.

80 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
When you call the function CGContextConcatCTM, it concatenates (that is, it combines) two matrices, by
multiplying them together. The order in which matrices are concatenated is important, as the operations are
not commutative. When you call CGContextConcatCTM, the resulting CTM in the context is: CTMnew =
transform * CTMcontext.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageApp
JAWTExample
Quartz 2D Transformer
Quartz EB
QuartzShapes

Declared In
CGContext.h

CGContextConvertPointToDeviceSpace
Returns a point that is transformed from user space coordinates to device space coordinates.

CGPoint CGContextConvertPointToDeviceSpace (
 CGContextRef c,
 CGPoint point
);

Parameters
c

A graphics context.

point
The point, in user space coordinates, to transform.

Return Value
The coordinates of the point in device space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertPointToUserSpace (page 81)

Declared In
CGContext.h

CGContextConvertPointToUserSpace
Returns a point that is transformed from device space coordinates to user space coordinates.

Functions 81
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGPoint CGContextConvertPointToUserSpace (
 CGContextRef c,
 CGPoint point
);

Parameters
c

A graphics context.

point
The point, in device space coordinates, to transform.

Return Value
The coordinates of the point in user space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertPointToDeviceSpace (page 81)

Declared In
CGContext.h

CGContextConvertRectToDeviceSpace
Returns a rectangle that is transformed from user space coordinate to device space coordinates.

CGRect CGContextConvertRectToDeviceSpace (
 CGContextRef c,
 CGRect rect
);

Parameters
c

A graphics context.

rect
The rectangle, in user space coordinates, to transform.

Return Value
The rectangle in device space coordinates.

Discussion
In general affine transforms do not preserve rectangles. As a result, this function returns the smallest rectangle
that contains the transformed corner points of the rectangle.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertRectToUserSpace (page 83)

Declared In
CGContext.h

82 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextConvertRectToUserSpace
Returns a rectangle that is transformed from device space coordinate to user space coordinates.

CGRect CGContextConvertRectToUserSpace (
 CGContextRef c,
 CGRect rect
);

Parameters
c

A graphics context.

rect
The rectangle, in device space coordinates, to transform.

Return Value
The rectangle in user space coordinates.

Discussion
In general, affine transforms do not preserve rectangles. As a result, this function returns the smallest rectangle
that contains the transformed corner points of the rectangle.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertRectToDeviceSpace (page 82)

Declared In
CGContext.h

CGContextConvertSizeToDeviceSpace
Returns a size that is transformed from user space coordinates to device space coordinates.

CGSize CGContextConvertSizeToDeviceSpace (
 CGContextRef c,
 CGSize size
);

Parameters
c

A graphics context.

size
The size, in user space coordinates, to transform.

Return Value
The size in device space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertSizeToUserSpace (page 84)

Functions 83
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextConvertSizeToUserSpace
Returns a size that is transformed from device space coordinates to user space coordinates

CGSize CGContextConvertSizeToUserSpace (
 CGContextRef c,
 CGSize size
);

Parameters
c

A graphics context.

size
The size, in device space coordinates, to transform.

Return Value
The size in user space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertSizeToDeviceSpace (page 83)

Declared In
CGContext.h

CGContextCopyPath
Returns a Quartz path object built from the current path information in a graphics context.

CGPathRef CGContextCopyPath(
 CGContextRef context
);

Parameters
context

A graphics context whose current path is not empty.

Return Value
A Quartz path object containing the current path data.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

84 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextDrawImage
Draws an image into a graphics context.

void CGContextDrawImage (
 CGContextRef c,
 CGRect rect,
 CGImageRef image
);

Parameters
c

The graphics context in which to draw the image.

rect
The location and dimensions in user space of the bounding box in which to draw the image.

image
The image to draw.

Discussion
Quartz scales the image—disproportionately, if necessary—to fit the bounds specified by the rect parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser
GLSL Showpiece Lite
ImageApp
ImproveYourImage
QuartzCache

Declared In
CGContext.h

CGContextDrawLinearGradient
Paints a gradient fill that varies along the line defined by the provided starting and ending points.

void CGContextDrawLinearGradient(
 CGContextRef context,
 CGGradientRef gradient,
 CGPoint startPoint,
 CGPoint endPoint,
 CGGradientDrawingOptions options
);

Parameters
context

A Quartz graphics context.

gradient
A CGGradient object.

startPoint
The coordinate that defines the starting point of the gradient.

Functions 85
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

endPoint
The coordinate that defines the ending point of the gradient.

options
Option flags (kCGGradientDrawsBeforeStartLocation (page 216) or
kCGGradientDrawsAfterEndLocation (page 216)) that control whether the fill is extended beyond
the starting or ending point.

Discussion
The color at location 0 in the CGGradient object is mapped to the starting point. The color at location 1 in
the CGGradient object is mapped to the ending point. Colors are linearly interpolated between these two
points based on the location values of the gradient. The option flags control whether the gradient is drawn
before the start point or after the end point.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
OpenCL NBody Simulation Example
Quartz 2D Shadings

Declared In
CGContext.h

CGContextDrawPath
Draws the current path using the provided drawing mode.

void CGContextDrawPath (
 CGContextRef c,
 CGPathDrawingMode mode
);

Parameters
c

A graphics context that contains a path to paint.

mode
A path drawing mode constant—kCGPathFill (page 289), kCGPathEOFill (page 289),
kCGPathStroke (page 289),kCGPathFillStroke (page 290), orkCGPathEOFillStroke (page 290).
For a discussion of these constants, see CGPath Reference.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextFillPath (page 93)
CGContextEOFillPath (page 92)
CGContextStrokePath (page 138)

Related Sample Code
GeekGameBoard
Quartz EB

86 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextDrawPDFDocument
Draws a page of a PDF document into a graphics context. (Deprecated in Mac OS X v10.5.)

void CGContextDrawPDFDocument (
 CGContextRef c,
 CGRect rect,
 CGPDFDocumentRef document,
 int page
);

Parameters
c

The graphics context in which to draw the PDF page.

rect
A CGRect value that specifies the dimensions and location of the area in which to draw the PDF page,
in units of the user space. When drawn, Quartz scales the media box of the page to fit the rectangle
you specify.

document
The PDF document to draw.

page
A value that specifies the PDF page number to draw. If the specified page does not exist, the function
does nothing.

Special Considerations

For applications running in Mac OS X version 10.3 and later, it is recommended that you replace this function
with CGContextDrawPDFPage (page 87). If you do so, and want to specify the drawing rectangle, you should
use CGPDFPageGetDrawingTransform (page 365) to get an appropriate transform, concatenate it with the
current transformation matrix, clip to the rectangle, and then call CGContextDrawPDFPage (page 87).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
Quartz EB

Declared In
CGContext.h

CGContextDrawPDFPage
Draws a page in the current user space of a PDF context.

Functions 87
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextDrawPDFPage (
 CGContextRef c,
 CGPDFPageRef page
);

Parameters
c

The graphics context in which to draw the PDF page.

page
A Quartz PDF page.

Discussion
This function works in conjunction with the opaque type CGPDFPageRef to draw individual pages into a
PDF context.

For applications running in Mac OS X version 10.3 and later, this function is recommended as a replacement
for the older function CGContextDrawPDFDocument.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGContext.h

CGContextDrawRadialGradient
Paints a gradient fill that varies along the area defined by the provided starting and ending circles.

void CGContextDrawRadialGradient(
 CGContextRef context,
 CGGradientRef gradient,
 CGPoint startCenter,
 CGFloat startRadius,
 CGPoint endCenter,
 CGFloat endRadius,
 CGGradientDrawingOptions options
);

Parameters
context

A Quartz graphics context.

gradient
A CGGradient object.

startCenter
The coordinate that defines the center of the starting circle.

startRadius
The radius of the starting circle.

endCenter
The coordinate that defines the center of the ending circle.

endRadius
The radius of the ending circle.

88 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

options
Option flags (kCGGradientDrawsBeforeStartLocation (page 216) or
kCGGradientDrawsAfterEndLocation (page 216)) that control whether the gradient is drawn
before the starting circle or after the ending circle.

Discussion
The color at location 0 in the CGGradient object is mapped to the circle defined by startCenter and
startRadius. The color at location 1 in the CGGradient object is mapped to the circle defined by endCenter
and endRadius. Colors are linearly interpolated between the starting and ending circles based on the location
values of the gradient. The option flags control whether the gradient is drawn before the start point or after
the end point.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
OpenCL NBody Simulation Example
Quartz 2D Shadings

Declared In
CGContext.h

CGContextDrawShading
Fills the clipping path of a context with the specified shading.

void CGContextDrawShading (
 CGContextRef c,
 CGShadingRef shading
);

Parameters
c

The graphics context in which to draw the shading.

shading
A Quartz shading. Quartz retains this object; upon return, you may safely release it.

Discussion
In Mac OS X v10.5 and later, the preferred way to draw gradients is to use a CGGradient object. See CGGradient
Reference.

Availability
Available in Mac OS X v10.2 and later.

See Also
CGContextDrawLinearGradient (page 85)
CGContextDrawRadialGradient (page 88)

Related Sample Code
Quartz 2D Shadings
SampleRaster

Declared In
CGContext.h

Functions 89
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextDrawTiledImage
Repeatedly draws an image, scaled to the provided rectangle, to fill the current clip region.

void CGContextDrawTiledImage(
 CGContextRef context,
 CGRect rect,
 CGImageRef image
);

Parameters
context

The graphics context in which to draw the image.

rect
A rectangle that specifies the origin and size of the destination tile. Quartz scales the
image—disproportionately, if necessary—to fit the bounds specified by the rect parameter.

image
The image to draw.

Discussion
Quartz draws the scaled image starting at the origin of the rectangle in user space, then moves to a new
point (horizontally by the width of the tile and/or vertically by the height of the tile), draws the scaled image,
moves again, draws again, and so on, until the current clip region is tiled with copies of the image. Unlike
patterns, the image is tiled in user space, so transformations applied to the CTM affect the final result.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextEndPage
Ends the current page in a page-based graphics context.

void CGContextEndPage (
 CGContextRef c
);

Parameters
c

A page-based graphics context.

Discussion
When using a graphics context that supports multiple pages, you should call this function to terminate
drawing in the current page.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextBeginPage (page 73)

Related Sample Code
Cocoa CG arc demo

90 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CocoaVideoFrameToGWorld
From A View to A Movie
Quartz EB
Quartz2DBasics

Declared In
CGContext.h

CGContextEndTransparencyLayer
Ends a transparency layer.

void CGContextEndTransparencyLayer (
 CGContextRef context
);

Parameters
context

A graphics context.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGContextBeginTransparencyLayer (page 75)

Declared In
CGContext.h

CGContextEOClip
Modifies the current clipping path, using the even-odd rule.

void CGContextEOClip (
 CGContextRef c
);

Parameters
c

A graphics context containing a path. If the context does not have a current path, the function does
nothing.

Discussion
The function uses the even-odd rule to calculate the intersection of the current path with the current clipping
path. Quartz then uses the path resulting from the intersection as the new current clipping path for subsequent
painting operations.

If the current path includes any open subpaths, Quartz treats them as if they were closed by calling
CGContextClosePath (page 80).

Unlike the current path, the current clipping path is part of the graphics state. Therefore, to re-enlarge the
paintable area by restoring the clipping path to a prior state, you must save the graphics state before you
clip and restore the graphics state after you’ve completed any clipped drawing.

Functions 91
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

After determining the new clipping path, the function resets the context’s current path to an empty path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextClip (page 77)

Related Sample Code
OpenCL NBody Simulation Example
Quartz 2D Shadings
Quartz EB

Declared In
CGContext.h

CGContextEOFillPath
Paints the area within the current path, using the even-odd fill rule.

void CGContextEOFillPath (
 CGContextRef c
);

Parameters
c

A graphics context that contains a path to fill.

Discussion
Quartz treats each subpath as if it were closed by calling CGContextClosePath (page 80). The even-odd
rule is described in “Filling a Path” in Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextFillPath (page 93)
CGContextStrokePath (page 138)
CGContextDrawPath (page 86)

Related Sample Code
CALayerEssentials
CocoaVideoFrameToGWorld

Declared In
CGContext.h

CGContextFillEllipseInRect
Paints the area of the ellipse that fits inside the provided rectangle, using the fill color in the current graphics
state.

92 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextFillEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle that defines the area for the ellipse to fit in.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GeekGameBoard
HID Calibrator
HID Config Save
HID Explorer

Declared In
CGContext.h

CGContextFillPath
Paints the area within the current path, using the nonzero winding number rule.

void CGContextFillPath (
 CGContextRef c
);

Parameters
c

A graphics context that contains a path to fill.

Discussion
Quartz treats each subpath as if it were closed by calling CGContextClosePath (page 80). The nonzero
winding number rule is described in “Filling a Path” in Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextEOFillPath (page 92)
CGContextStrokePath (page 138)
CGContextDrawPath (page 86)

Related Sample Code
MovieVideoChart
OpenCL NBody Simulation Example
Quartz EB
Quartz2DBasics
QuartzShapes

Functions 93
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextFillRect
Paints the area contained within the provided rectangle, using the fill color in the current graphics state.

void CGContextFillRect (
 CGContextRef c,
 CGRect rect
);

Parameters
c

A graphics context.

rect
A rectangle, in user space coordinates.

Discussion
As a side effect when you call this function, Quartz clears the current path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextFillRects (page 94)

Related Sample Code
BlitNoVBL
MovieVideoChart
Quartz2DBasics
QuartzCache
SeeMyFriends

Declared In
CGContext.h

CGContextFillRects
Paints the areas contained within the provided rectangles, using the fill color in the current graphics state.

void CGContextFillRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
c

A graphics context .

rects
An array of rectangles, in user space coordinates.

94 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

count
The number rectangles in the rects array.

Discussion
As a side effect when you call this function, Quartz clears the current path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextFillRect (page 94)

Related Sample Code
LightTable

Declared In
CGContext.h

CGContextFlush
Forces all pending drawing operations in a window context to be rendered immediately to the destination
device.

void CGContextFlush (
 CGContextRef c
);

Parameters
c

The window context to flush. If you pass a PDF context or a bitmap context, this function does nothing.

Discussion
When you call this function, Quartz immediately flushes the current drawing to the destination device (for
example, a screen). Because the system software flushes a context automatically at the appropriate times,
calling this function could have an adverse effect on performance. Under normal conditions, you do not need
to call this function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BlitNoVBL
CIRAWFilterSample
Cocoa CG arc demo
DockBrowser
Quartz EB

Declared In
CGContext.h

CGContextGetClipBoundingBox
Returns the bounding box of a clipping path.

Functions 95
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGRect CGContextGetClipBoundingBox (
 CGContextRef c
);

Parameters
c

The graphics context to modify.

Return Value
The bounding box of the clipping path, specified in user space.

Discussion
The bounding box is the smallest rectangle completely enclosing all points in the clipping path, including
control points for any Bezier curves in the path.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CALayerEssentials

Declared In
CGContext.h

CGContextGetCTM
Returns the current transformation matrix.

CGAffineTransform CGContextGetCTM (
 CGContextRef c
);

Parameters
c

A graphics context.

Return Value
The transformation matrix for the current graphics state of the specified context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
CGContext.h

CGContextGetInterpolationQuality
Returns the current level of interpolation quality for a graphics context.

96 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGInterpolationQuality CGContextGetInterpolationQuality (
 CGContextRef c
);

Parameters
c

The graphics context to examine.

Return Value
The current level of interpolation quality.

Discussion
Interpolation quality is a graphics state parameter that provides a hint for the level of quality to use for image
interpolation (for example, when scaling the image). Not all contexts support all interpolation quality levels.

Availability
Available in Mac OS X v10.1 and later.

See Also
CGContextSetInterpolationQuality (page 118)

Declared In
CGContext.h

CGContextGetPathBoundingBox
Returns the smallest rectangle that contains the current path.

CGRect CGContextGetPathBoundingBox (
 CGContextRef c
);

Parameters
c

The graphics context, containing a path, to examine.

Return Value
A CGRect value that specifies the dimensions and location, in user space, of the bounding box of the path.
If there is no path, the function returns CGRectNull.

Discussion
The bounding box is the smallest rectangle completely enclosing all points in a path, including control points
for Bézier cubic and quadratic curves.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
CGContext.h

Functions 97
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextGetPathCurrentPoint
Returns the current point in a non-empty path.

CGPoint CGContextGetPathCurrentPoint (
 CGContextRef c
);

Parameters
c

The graphics context containing the path to examine.

Return Value
A CGPoint value that specifies the location, in user space, of current point in the context’s path. If there is
no path, the function returns CGPointZero.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo

Declared In
CGContext.h

CGContextGetTextMatrix
Returns the current text matrix.

CGAffineTransform CGContextGetTextMatrix (
 CGContextRef c
);

Parameters
c

The graphics context for which to obtain the text matrix.

Return Value
The current text matrix.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextGetTextPosition
Returns the location at which text is drawn.

98 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGPoint CGContextGetTextPosition (
 CGContextRef c
);

Parameters
c

The graphics context from which to obtain the current text position.

Return Value
Returns a CGPoint value that specifies the x and y values at which text is to be drawn, in user space
coordinates.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CaptureAndCompressIPBMovie
DockBrowser

Declared In
CGContext.h

CGContextGetTypeID
Returns the type identifier for Quartz graphics contexts.

CFTypeID CGContextGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGContextRef (page 141).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGContext.h

CGContextGetUserSpaceToDeviceSpaceTransform
Returns an affine transform that maps user space coordinates to device space coordinates.

CGAffineTransform CGContextGetUserSpaceToDeviceSpaceTransform (
 CGContextRef c
);

Parameters
c

A graphics context.

Return Value
The affine transforms that maps the user space of the graphics context to the device space.

Functions 99
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextIsPathEmpty
Indicates whether the current path contains any subpaths.

bool CGContextIsPathEmpty (
 CGContextRef c
);

Parameters
c

The graphics context containing the path to examine.

Return Value
Returns 1 if the context’s path contains no subpaths, otherwise returns 0.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo

Declared In
CGContext.h

CGContextMoveToPoint
Begins a new subpath at the point you specify.

void CGContextMoveToPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
c

A graphics context.

x
The x-value, in user space coordinates, for the point.

y
The y-value, in user space coordinates, for the point.

Discussion
This point you specifies becomes the start point of a new subpath. The current point is set to this start point.

Availability
Available in Mac OS X v10.0 and later.

100 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Related Sample Code
Cocoa CG arc demo
FunHouse
HID Calibrator
OpenCL NBody Simulation Example
Quartz 2D Shadings

Declared In
CGContext.h

CGContextPathContainsPoint
Checks to see whether the specified point is contained in the current path.

bool CGContextPathContainsPoint (
 CGContextRef context,
 CGPoint point,
 CGPathDrawingMode mode
);

Parameters
context

A graphics context.

point
The point to check, specified in user space units.

mode
A path drawing mode—kCGPathFill, kCGPathEOFill, kCGPathStroke, kCGPathFillStroke,
or kCGPathEOFillStroke. See CGPathDrawingMode for more information on these modes.

Return Value
Returns true if point is inside the current path of the graphics context; false otherwise.

Discussion
A point is contained within the path of a graphics context if the point is inside the painted region when the
path is stroked or filled with opaque colors using the specified path drawing mode. A point can be inside a
path only if the path is explicitly closed by calling the function CGContextClosePath (page 80), for paths
drawn directly to the current context, or CGPathCloseSubpath (page 280), for paths first created as CGPath
objects and then drawn to the current context.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextRelease
Decrements the retain count of a graphics context.

Functions 101
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextRelease (
 CGContextRef c
);

Parameters
c

The graphics context to release.

Discussion
This function is equivalent to CFRelease, except it does not cause an error if c is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
From A View to A Movie
From A View to A Picture
OpenCL NBody Simulation Example
Quartz2DBasics
SampleRaster

Declared In
CGContext.h

CGContextReplacePathWithStrokedPath
Replaces the path in the graphics context with the stroked version of the path.

void CGContextReplacePathWithStrokedPath (
 CGContextRef c
);

Parameters
c

A graphics context.

Discussion
Quartz creates a stroked path using the parameters of the current graphics context. The new path is created
so that filling it draws the same pixels as stroking the original path.You can use this path in the same way
you use the path of any context. For example, you can clip to the stroked version of a path by calling this
function followed by a call to the function CGContextClip (page 77).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextRestoreGState
Sets the current graphics state to the state most recently saved.

102 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextRestoreGState (
 CGContextRef c
);

Parameters
c

The graphics context whose state you want to modify.

Discussion
Quartz removes the graphics state that is at the top of the stack so that the most recently saved state becomes
the current graphics state.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextSaveGState (page 104)

Related Sample Code
Cocoa CG arc demo
MovieVideoChart
OpenCL NBody Simulation Example
Quartz 2D Shadings
QuartzShapes

Declared In
CGContext.h

CGContextRetain
Increments the retain count of a graphics context.

CGContextRef CGContextRetain (
 CGContextRef c
);

Parameters
c

The graphics context to retain.

Return Value
The same graphics context you passed in as the context parameter.

Discussion
This function is equivalent to CFRetain, except it does not cause an error if c is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
From A View to A Movie
From A View to A Picture

Declared In
CGContext.h

Functions 103
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextRotateCTM
Rotates the user coordinate system in a context.

void CGContextRotateCTM (
 CGContextRef c,
 CGFloat angle
);

Parameters
c

A graphics context.

angle
The angle, in radians, by which to rotate the coordinate space of the specified context. Positive values
rotate counterclockwise and negative values rotate clockwise.)

Discussion
The direction that the context is rotated may appear to be altered by the state of the current transformation
matrix prior to executing this function. For example, on iOS, a UIView applies a transformation to the graphics
context that inverts the Y-axis (by multiplying it by -1). Rotating the user coordinate system on coordinate
system that was previously flipped results in a rotation in the opposite direction (that is, positive values
appear to rotate the coordinate system in the clockwise direction).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreTextArcCocoa
Quartz 2D Transformer
Quartz EB
Quartz2DBasics
QuartzShapes

Declared In
CGContext.h

CGContextSaveGState
Pushes a copy of the current graphics state onto the graphics state stack for the context.

void CGContextSaveGState (
 CGContextRef c
);

Parameters
c

The graphics context whose current graphics state you want to save.

Discussion
Each graphics context maintains a stack of graphics states. Note that not all aspects of the current drawing
environment are elements of the graphics state. For example, the current path is not considered part of the
graphics state and is therefore not saved when you call the CGContextSaveGState function. The graphics
state parameters that are saved are:

104 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

 ■ CTM (current transformation matrix)

 ■ clip region

 ■ image interpolation quality

 ■ line width

 ■ line join

 ■ miter limit

 ■ line cap

 ■ line dash

 ■ flatness

 ■ should anti-alias

 ■ rendering intent

 ■ fill color space

 ■ stroke color space

 ■ fill color

 ■ stroke color

 ■ alpha value

 ■ font

 ■ font size

 ■ character spacing

 ■ text drawing mode

 ■ shadow parameters

 ■ the pattern phase

 ■ the font smoothing parameter

 ■ blend mode

To restore your drawing environment to a previously saved state, you can use
CGContextRestoreGState (page 102).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo
MovieVideoChart
OpenCL NBody Simulation Example
Quartz 2D Shadings
QuartzShapes

Declared In
CGContext.h

Functions 105
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextScaleCTM
Changes the scale of the user coordinate system in a context.

void CGContextScaleCTM (
 CGContextRef c,
 CGFloat sx,
 CGFloat sy
);

Parameters
c

A graphics context.

sx
The factor by which to scale the x-axis of the coordinate space of the specified context.

sy
The factor by which to scale the y-axis of the coordinate space of the specified context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo
OpenCL NBody Simulation Example
Quartz 2D Shadings
Quartz2DBasics
QuartzCache

Declared In
CGContext.h

CGContextSelectFont
Sets the font and font size in a graphics context.

void CGContextSelectFont (
 CGContextRef c,
 const char *name,
 CGFloat size,
 CGTextEncoding textEncoding
);

Parameters
c

The graphics context for which to set the font and font size.

name
A null-terminated string that contains the PostScript name of the font to set.

size
A value that specifies the font size to set, in text space units.

textEncoding
A CGTextEncoding value that specifies the encoding used for the font. For a description of the
available values, see “CGTextEncoding” (page 150).

106 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextShowText (page 135)
CGContextShowTextAtPoint (page 136)

Related Sample Code
Cocoa PDE with Carbon Printing
DockBrowser
HID Calibrator
OpenCL NBody Simulation Example
Quartz EB

Declared In
CGContext.h

CGContextSetAllowsAntialiasing
Sets whether or not to allow anti-aliasing for a graphics context.

void CGContextSetAllowsAntialiasing (
 CGContextRef context,
 bool allowsAntialiasing
);

Parameters
context

A graphics context.

allowsAntialiasing
A Boolean value that specifies whether or not to allow antialiasing. Pass true to allow antialiasing;
false otherwise. This parameter is not part of the graphics state.

Discussion
Quartz performs antialiasing for a graphics context if both the allowsAntialiasing parameter and the
graphics state parameter shouldAntialias are true.

This parameter is not part of the graphics state.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextSetAllowsFontSmoothing
Sets whether or not to allow font smoothing for a graphics context.

Functions 107
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetAllowsFontSmoothing(
 CGContextRef context,
 bool allowsFontSmoothing
);

Parameters
context

A graphics context.

allowsFontSmoothing
A Boolean value that specifies whether font smoothing is allowed in the specified context.

Discussion
Font are smoothed if they are antialiased when drawn and if font smoothing is both allowed and enabled.
For information on how to enable font smoothing, see the CGContextSetShouldSmoothFonts (page 127)
function.

This parameter is not part of the graphics state.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

CGContextSetAllowsFontSubpixelPositioning
Sets whether or not to allow subpixel positioning for a graphics context

void CGContextSetAllowsFontSubpixelPositioning(
 CGContextRef context,
 bool allowsFontSubpixelPositioning
);

Parameters
context

A graphics context.

allowsFontSubpixelPositioning
A Boolean value that specifies whether subpixel positioning of glyphs is allowed in the specified
context.

Discussion
Subpixel positioning is used by the graphics context if it is allowed, enabled, and if the font itself is antialiased
when drawn. For information on how to enable subpixel positioning, see the
CGContextSetShouldSubpixelPositionFonts (page 127) function.

This parameter is not part of the graphics state.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

108 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetAllowsFontSubpixelQuantization
Sets whether or not to allow subpixel quantization for a graphics context

void CGContextSetAllowsFontSubpixelQuantization(
 CGContextRef context,
 bool allowsFontSubpixelQuantization
);

Parameters
context

A graphics context.

allowsFontSubpixelQuantization
A Boolean value that specifies whether subpixel quantization of glyphs is allowed in the specified
context.

Discussion
Subpixel quantization is used by the graphics context if it is allowed, enabled, and if glyphs would be drawn
at subpixel positions. For information on how to enable subpixel quantization, see the
CGContextSetShouldSubpixelQuantizeFonts (page 128) function.

This parameter is not part of the graphics state.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

CGContextSetAlpha
Sets the opacity level for objects drawn in a graphics context.

void CGContextSetAlpha (
 CGContextRef c,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current graphics state’s alpha value parameter.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
This function sets the alpha value parameter for the specified graphics context. To clear the contents of the
drawing canvas, use CGContextClearRect (page 76).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz2DBasics

Functions 109
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextSetBlendMode
Sets how Quartz composites sample values for a graphics context.

void CGContextSetBlendMode (
 CGContextRef context,
 CGBlendMode mode
);

Parameters
context

The graphics context to modify.

mode
A blend mode. See “CGBlendMode” (page 142) for a list of the constants you can supply.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GeekGameBoard
GLFullScreen
Quartz 2D Shadings
TextureUpload

Declared In
CGContext.h

CGContextSetCharacterSpacing
Sets the current character spacing.

void CGContextSetCharacterSpacing (
 CGContextRef c,
 CGFloat spacing
);

Parameters
c

The graphics context for which to set the character spacing.

spacing
A value that represents the amount of additional space to place between glyphs, in text space
coordinates.

Discussion
Quartz adds the additional space to the advance between the origin of one character and the origin of the
next character. For information about the text coordinate system, see CGContextSetTextMatrix (page
131).

Availability
Available in Mac OS X v10.0 and later.

110 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextSetCMYKFillColor
Sets the current fill color to a value in the DeviceCMYK color space.

void CGContextSetCMYKFillColor (
 CGContextRef c,
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current fill color.

cyan
The cyan intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

magenta
The magenta intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

yellow
The yellow intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

black
The black intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
Quartz provides convenience functions for each of the device color spaces that allow you to set the fill or
stroke color space and the fill or stroke color with one function call.

When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceCMYK.

 ■ Quartz sets the current fill color to the value specified by the cyan, magenta, yellow, black, and alpha
parameters.

Availability
Available in Mac OS X v10.0 and later.

Functions 111
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextSetCMYKStrokeColor (page 112)

Declared In
CGContext.h

CGContextSetCMYKStrokeColor
Sets the current stroke color to a value in the DeviceCMYK color space.

void CGContextSetCMYKStrokeColor (
 CGContextRef c,
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current stroke color.

cyan
The cyan intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

magenta
The magenta intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

yellow
The yellow intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

black
The black intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceCMYK.

 ■ Quartz sets the current stroke color to the value specified by the cyan, magenta, yellow, black, and
alpha parameters.

Availability
Available in Mac OS X v10.0 and later.

112 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextSetCMYKFillColor (page 111)

Declared In
CGContext.h

CGContextSetFillColor
Sets the current fill color.

void CGContextSetFillColor (
 CGContextRef c,
 const CGFloat components[]
);

Parameters
c

The graphics context for which to set the current fill color.

components
An array of intensity values describing the color to set. The number of array elements must equal the
number of components in the current fill color space, plus an additional component for the alpha
value.

Discussion
The current fill color space must not be a pattern color space. For information on setting the fill color when
using a pattern color space, see CGContextSetFillPattern (page 114). Note that the preferred API to use
is now CGContextSetFillColorWithColor (page 114).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuartzCache

Declared In
CGContext.h

CGContextSetFillColorSpace
Sets the fill color space in a graphics context.

void CGContextSetFillColorSpace (
 CGContextRef c,
 CGColorSpaceRef colorspace
);

Parameters
c

The graphics context for which to set the fill color space.

colorspace
The new fill color space. Quartz retains this object; upon return, you may safely release it.

Functions 113
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
As a side effect of this function, Quartz assigns an appropriate initial value to the fill color, based on the
specified color space. To change this value, call CGContextSetFillColor (page 113). Note that the preferred
API to use is now CGContextSetFillColorWithColor (page 114).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuartzCache

Declared In
CGContext.h

CGContextSetFillColorWithColor
Sets the current fill color in a graphics context, using a Quartz color.

void CGContextSetFillColorWithColor (
 CGContextRef c,
 CGColorRef color
);

Parameters
c

The graphics context for which to set the fill color.

color
The new fill color.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGContextSetFillColor (page 113)

Related Sample Code
CALayerEssentials
GeekGameBoard
ImageApp
LightTable
Quartz2DBasics

Declared In
CGContext.h

CGContextSetFillPattern
Sets the fill pattern in the specified graphics context.

114 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetFillPattern (
 CGContextRef c,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
c

The graphics context to modify.

pattern
A fill pattern. Quartz retains this object; upon return, you may safely release it.

components
If the pattern is an uncolored (or a masking) pattern, pass an array of intensity values that specify the
color to use when the pattern is painted. The number of array elements must equal the number of
components in the base space of the fill pattern color space, plus an additional component for the
alpha value.

If the pattern is a colored pattern, pass an alpha value.

Discussion
The current fill color space must be a pattern color space. Otherwise, the result of calling this function is
undefined. If you want to set a fill color, not a pattern, use CGContextSetFillColorWithColor (page 114).

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGContext.h

CGContextSetFlatness
Sets the accuracy of curved paths in a graphics context.

void CGContextSetFlatness (
 CGContextRef c,
 CGFloat flatness
);

Parameters
c

The graphics context to modify.

flatness
The largest permissible distance, measured in device pixels, between a point on the true curve and
a point on the approximated curve.

Discussion
This function controls how accurately curved paths are rendered. Setting the flatness value to less than 1.0
renders highly accurate curves, but lengthens rendering times.

In most cases, you should not change the flatness value. Customizing the flatness value for the capabilities
of a particular output device impairs the ability of your application to render to other devices.

Availability
Available in Mac OS X v10.0 and later.

Functions 115
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextSetFont
Sets the platform font in a graphics context.

void CGContextSetFont (
 CGContextRef c,
 CGFontRef font
);

Parameters
c

The graphics context for which to set the font.

font
A Quartz font.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGFontCreateWithPlatformFont (page 190)

Related Sample Code
CoreTextArcCocoa

Declared In
CGContext.h

CGContextSetFontSize
Sets the current font size.

void CGContextSetFontSize (
 CGContextRef c,
 CGFloat size
);

Parameters
c

A graphics context.

size
A font size, expressed in text space units.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreTextArcCocoa

Declared In
CGContext.h

116 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetGrayFillColor
Sets the current fill color to a value in the DeviceGray color space.

void CGContextSetGrayFillColor (
 CGContextRef c,
 CGFloat gray,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current fill color.

gray
A value that specifies the desired gray level. The DeviceGray color space permits the specification of
a value ranging from 0.0 (absolute black) to 1.0 (absolute white). Values outside this range are
clamped to 0.0 or 1.0.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceGray.

 ■ Quartz sets the current fill color to the value you specify in the gray and alpha parameters.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextSetGrayStrokeColor (page 117)

Related Sample Code
BlitNoVBL
MovieVideoChart
Quartz 2D Shadings

Declared In
CGContext.h

CGContextSetGrayStrokeColor
Sets the current stroke color to a value in the DeviceGray color space.

Functions 117
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetGrayStrokeColor (
 CGContextRef c,
 CGFloat gray,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current stroke color.

gray
A value that specifies the desired gray level. The DeviceGray color space permits the specification of
a value ranging from 0.0 (absolute black) to 1.0 (absolute white). Values outside this range are
clamped to 0.0 or 1.0.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceGray. The DeviceGray color space is a single-dimension
space in which color values are specified solely by the intensity of a gray value (from absolute black to
absolute white).

 ■ Quartz sets the current stroke color to the value you specify in the gray and alpha parameters.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextSetGrayFillColor (page 117)

Declared In
CGContext.h

CGContextSetInterpolationQuality
Sets the level of interpolation quality for a graphics context.

void CGContextSetInterpolationQuality (
 CGContextRef c,
 CGInterpolationQuality quality
);

Parameters
c

The graphics context to modify.

quality
A CGInterpolationQuality constant that specifies the required level of interpolation quality. For
possible values, see “CGInterpolationQuality” (page 146).

Discussion
Interpolation quality is merely a hint to the context—not all contexts support all interpolation quality levels.

118 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.1 and later.

See Also
CGContextGetInterpolationQuality (page 96)

Related Sample Code
ImageApp

Declared In
CGContext.h

CGContextSetLineCap
Sets the style for the endpoints of lines drawn in a graphics context.

void CGContextSetLineCap (
 CGContextRef c,
 CGLineCap cap
);

Parameters
c

The graphics context to modify.

cap
A line cap style constant—kCGLineCapButt (page 148) (the default), kCGLineCapRound (page 148),
or kCGLineCapSquare (page 148). See “CGLineCap” (page 147).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIBevelSample
MovieVideoChart
OpenCL NBody Simulation Example
Quartz EB

Declared In
CGContext.h

CGContextSetLineDash
Sets the pattern for dashed lines in a graphics context.

Functions 119
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetLineDash (
 CGContextRef c,
 CGFloat phase,
 const CGFloat lengths[],
 size_t count
);

Parameters
c

The graphics context to modify.

phase
A value that specifies how far into the dash pattern the line starts, in units of the user space. For
example, passing a value of 3 means the line is drawn with the dash pattern starting at three units
from its beginning. Passing a value of 0 draws a line starting with the beginning of a dash pattern.

lengths
An array of values that specify the lengths of the painted segments and unpainted segments,
respectively, of the dash pattern—or NULL for no dash pattern.

For example, passing an array with the values [2,3] sets a dash pattern that alternates between a
2-user-space-unit-long painted segment and a 3-user-space-unit-long unpainted segment. Passing
the values [1,3,4,2] sets the pattern to a 1-unit painted segment, a 3-unit unpainted segment, a
4-unit painted segment, and a 2-unit unpainted segment.

count
If the lengths parameter specifies an array, pass the number of elements in the array. Otherwise,
pass 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextSetLineJoin
Sets the style for the joins of connected lines in a graphics context.

void CGContextSetLineJoin (
 CGContextRef c,
 CGLineJoin join
);

Parameters
c

The graphics context to modify.

join
A line join value—kCGLineJoinMiter (page 148) (the default), kCGLineJoinRound (page 149), or
kCGLineJoinBevel (page 149). See “CGLineJoin” (page 148).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz EB

120 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextSetLineWidth
Sets the line width for a graphics context.

void CGContextSetLineWidth (
 CGContextRef c,
 CGFloat width
);

Parameters
c

The graphics context to modify.

width
The new line width to use, in user space units. The value must be greater than 0.

Discussion
The default line width is 1 unit. When stroked, the line straddles the path, with half of the total width on
either side.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
MovieVideoChart
OpenCL NBody Simulation Example
Quartz EB
QuartzShapes

Declared In
CGContext.h

CGContextSetMiterLimit
Sets the miter limit for the joins of connected lines in a graphics context.

void CGContextSetMiterLimit (
 CGContextRef c,
 CGFloat limit
);

Parameters
c

The graphics context to modify.

limit
The miter limit to use.

Functions 121
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
If the current line join style is set to kCGLineJoinMiter (see CGContextSetLineJoin (page 120)), Quartz
uses the miter limit to determine whether the lines should be joined with a bevel instead of a miter. Quartz
divides the length of the miter by the line width. If the result is greater than the miter limit, Quartz converts
the style to a bevel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextSetPatternPhase
Sets the pattern phase of a context.

void CGContextSetPatternPhase (
 CGContextRef c,
 CGSize phase
);

Parameters
c

The graphics context to modify.

phase
A pattern phase, specified in user space.

Discussion
The pattern phase is a translation that Quartz applies prior to drawing a pattern in the context. The pattern
phase is part of the graphics state of a context, and the default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you draw. For example, setting
the context’s pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGContext.h

CGContextSetRenderingIntent
Sets the rendering intent in the current graphics state.

void CGContextSetRenderingIntent (
 CGContextRef c,
 CGColorRenderingIntent intent
);

Parameters
c

The graphics context to modify.

122 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

intent
A rendering intent constant—kCGRenderingIntentDefault (page 55),
kCGRenderingIntentAbsoluteColorimetric (page 55),
kCGRenderingIntentRelativeColorimetric (page 55),
kCGRenderingIntentPerceptual (page 55), or kCGRenderingIntentSaturation (page 56).
For a discussion of these constants, see CGColorSpace Reference.

Discussion
The rendering intent specifies how Quartz should handle colors that are not located within the gamut of the
destination color space of a graphics context. If you do not explicitly set the rendering intent, Quartz uses
perceptual rendering intent for drawing sampled images and relative colorimetric rendering intent for all
other drawing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextSetRGBFillColor
Sets the current fill color to a value in the DeviceRGB color space.

void CGContextSetRGBFillColor (
 CGContextRef c,
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current fill color.

red
The red intensity value for the color to set. The DeviceRGB color space permits the specification of a
value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

green
The green intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

blue
The blue intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceRGB.

 ■ Quartz sets the current fill color to the value specified by the red, green, blue, and alpha parameters.

Functions 123
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextSetRGBStrokeColor (page 124)

Related Sample Code
HID Calibrator
MovieVideoChart
Quartz EB
QuartzShapes
SeeMyFriends

Declared In
CGContext.h

CGContextSetRGBStrokeColor
Sets the current stroke color to a value in the DeviceRGB color space.

void CGContextSetRGBStrokeColor (
 CGContextRef c,
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
c

The graphics context for which to set the current stroke color.

red
The red intensity value for the color to set. The DeviceRGB color space permits the specification of a
value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

green
The green intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

blue
The blue intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceRGB.

 ■ Quartz sets the current stroke color to the value specified by the red, green, blue, and alpha parameters.

124 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextSetRGBFillColor (page 123)

Related Sample Code
CoreTextArcCocoa
MovieVideoChart
OpenCL NBody Simulation Example
Quartz EB
QuartzShapes

Declared In
CGContext.h

CGContextSetShadow
Enables shadowing in a graphics context.

void CGContextSetShadow (
 CGContextRef context,
 CGSize offset,
 CGFloat blur
);

Parameters
context

A graphics context.

offset
Specifies a translation of the context’s coordinate system, to establish an offset for the shadow ({0,0}
specifies a light source immediately above the screen).

blur
A non-negative number specifying the amount of blur.

Discussion
Shadow parameters are part of the graphics state in a context. After shadowing is set, all objects drawn are
shadowed using a black color with 1/3 alpha (i.e., RGBA = {0, 0, 0, 1.0/3.0}) in the DeviceRGB color
space.

To turn off shadowing:

 ■ Use the standard save/restore mechanism for the graphics state.

 ■ Use CGContextSetShadowWithColor (page 126) to set the shadow color to a fully transparent color
(or pass NULL as the color).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SampleRaster

Functions 125
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextSetShadowWithColor
Enables shadowing with color a graphics context.

void CGContextSetShadowWithColor (
 CGContextRef context,
 CGSize offset,
 CGFloat blur,
 CGColorRef color
);

Parameters
context

The graphics context to modify.

offset
Specifies a translation in base-space.

blur
A non-negative number specifying the amount of blur.

color
Specifies the color of the shadow, which may contain a non-opaque alpha value. If NULL, then
shadowing is disabled.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGContextSetShadow (page 125)

Related Sample Code
OpenCL NBody Simulation Example

Declared In
CGContext.h

CGContextSetShouldAntialias
Sets anti-aliasing on or off for a graphics context.

void CGContextSetShouldAntialias (
 CGContextRef c,
 bool shouldAntialias
);

Parameters
c

The graphics context to modify.

shouldAntialias
A Boolean value that specifies whether anti-aliasing should be turned on. Anti-aliasing is turned on
by default when a window or bitmap context is created. It is turned off for other types of contexts.

126 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
Anti-aliasing is a graphics state parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo

Declared In
CGContext.h

CGContextSetShouldSmoothFonts
Enables or disables font smoothing in a graphics context.

void CGContextSetShouldSmoothFonts (
 CGContextRef c,
 bool shouldSmoothFonts
);

Parameters
c

The graphics context to modify.

shouldSmoothFonts
A Boolean value that specifies whether to enable font smoothing.

Discussion
There are cases, such as rendering to a bitmap, when font smoothing is not appropriate and should be
disabled. Note that some contexts (such as PostScript contexts) do not support font smoothing.

This parameter is part of the graphics state.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGContext.h

CGContextSetShouldSubpixelPositionFonts
Enables or disables subpixel positioning in a graphics context.

void CGContextSetShouldSubpixelPositionFonts(
 CGContextRef context,
 bool shouldSubpixelPositionFonts
);

Parameters
context

A graphics context.

shouldSubpixelPositionFonts
A Boolean value that specifies whether to enable subpixel positioning.

Functions 127
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
When enabled, the graphics context may position glyphs on nonintegral pixel boundaries. When disabled,
the position of glyphs are always forced to integral pixel boundaries.

This parameter is part of the graphics state.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

CGContextSetShouldSubpixelQuantizeFonts
Enables or disables subpixel quantization in a graphics context.

void CGContextSetShouldSubpixelQuantizeFonts(
 CGContextRef context,
 bool shouldSubpixelQuantizeFonts
);

Parameters
context

A graphics context.

shouldSubpixelQuantizeFonts
A Boolean value that specifies whether to enable subpixel quantization.

Discussion
When enabled, the graphics context may quantize the subpixel positions of glyphs.

This parameter is part of the graphics state.

Availability
Available in Mac OS X v10.6 and later.

Declared In
CGContext.h

CGContextSetStrokeColor
Sets the current stroke color.

void CGContextSetStrokeColor (
 CGContextRef c,
 const CGFloat components[]
);

Parameters
c

The graphics context for which to set the current stroke color.

128 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

components
An array of intensity values describing the color to set. The number of array elements must equal the
number of components in the current stroke color space, plus an additional component for the alpha
value.

Discussion
The current stroke color space must not be a pattern color space. For information on setting the stroke color
when using a pattern color space, see CGContextSetStrokePattern (page 130). Note that the preferred
API is now CGContextSetStrokeColorWithColor (page 129).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextSetStrokeColorSpace
Sets the stroke color space in a graphics context.

void CGContextSetStrokeColorSpace (
 CGContextRef c,
 CGColorSpaceRef colorspace
);

Parameters
c

The graphics context for the new stroke color space.

colorspace
The new stroke color space. Quartz retains this object; upon return, you may safely release it.

Discussion
As a side effect when you call this function, Quartz assigns an appropriate initial value to the stroke color,
based on the color space you specify. To change this value, call CGContextSetStrokeColor (page 128).
Note that the preferred API is now CGContextSetStrokeColorWithColor (page 129).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

CGContextSetStrokeColorWithColor
Sets the current stroke color in a context, using a Quartz color.

void CGContextSetStrokeColorWithColor (
 CGContextRef c,
 CGColorRef color
);

Parameters
c

The graphics context to modify.

Functions 129
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

color
The new stroke color.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGContextSetStrokeColor (page 128)

Related Sample Code
GeekGameBoard
Quartz2DBasics

Declared In
CGContext.h

CGContextSetStrokePattern
Sets the stroke pattern in the specified graphics context.

void CGContextSetStrokePattern (
 CGContextRef c,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
c

The graphics context to modify.

pattern
A pattern for stroking. Quartz retains this object; upon return, you may safely release it.

components
If the specified pattern is an uncolored (or masking) pattern, pass an array of intensity values that
specify the color to use when the pattern is painted. The number of array elements must equal the
number of components in the base space of the stroke pattern color space, plus an additional
component for the alpha value.

If the specified pattern is a colored pattern, pass an alpha value.

Discussion
The current stroke color space must be a pattern color space. Otherwise, the result of calling this function is
undefined. If you want to set a stroke color, not a stroke pattern, use
CGContextSetStrokeColorWithColor (page 129).

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGContext.h

CGContextSetTextDrawingMode
Sets the current text drawing mode.

130 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetTextDrawingMode (
 CGContextRef c,
 CGTextDrawingMode mode
);

Parameters
c

A graphics context.

mode
A text drawing mode (such as kCGTextFill (page 149) or kCGTextStroke (page 149)) that specifies
how Quartz renders individual glyphs in a graphics context. See “CGTextDrawingMode” (page 149)
for a complete list.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab
CaptureAndCompressIPBMovie
DockBrowser
QTPixelBufferVCToCGImage
Quartz EB

Declared In
CGContext.h

CGContextSetTextMatrix
Sets the current text matrix.

void CGContextSetTextMatrix (
 CGContextRef c,
 CGAffineTransform t
);

Parameters
c

A graphics context.

transform
The text matrix to set.

Discussion
The text matrix specifies the transform from text space to user space. To produce the final text rendering
matrix that is used to actually draw the text on the page, Quartz concatenates the text matrix with the current
transformation matrix and other parameters from the graphics state.

Note that the text matrix is not a part of the graphics state—saving or restoring the graphics state has no
effect on the text matrix. The text matrix is an attribute of the graphics context, not of the current font.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Functions 131
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CoreTextArcCocoa
CoreTextRTF
HID Calibrator
Quartz EB

Declared In
CGContext.h

CGContextSetTextPosition
Sets the location at which text is drawn.

void CGContextSetTextPosition (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
c

A graphics context.

x
A value for the x-coordinate at which to draw the text, in user space coordinates.

y
A value for the y-coordinate at which to draw the text, in user space coordinates.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CaptureAndCompressIPBMovie
CoreTextArcCocoa
CoreTextTest
QTPixelBufferVCToCGImage

Declared In
CGContext.h

CGContextShowGlyphs
Displays an array of glyphs at the current text position.

void CGContextShowGlyphs (
 CGContextRef c,
 const CGGlyph g[],
 size_t count
);

Parameters
c

The graphics context in which to display the glyphs.

132 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

glyphs
An array of glyphs to display.

count
The total number of glyphs passed in the g parameter.

Discussion
This function displays an array of glyphs at the current text position, a point specified by the current text
matrix.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextShowGlyphsAtPoint (page 133)
CGContextShowText (page 135)
CGContextShowTextAtPoint (page 136)
CGContextShowGlyphsWithAdvances (page 134)

Declared In
CGContext.h

CGContextShowGlyphsAtPoint
Displays an array of glyphs at a position you specify.

void CGContextShowGlyphsAtPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 const CGGlyph glyphs[],
 size_t count
);

Parameters
c

The graphics context in which to display the glyphs.

x
A value for the x-coordinate of the user space at which to display the glyphs.

y
A value for the y-coordinate of the user space at which to display the glyphs.

glyphs
An array of glyphs to display.

count
The total number of glyphs passed in the glyphs parameter.

Discussion
This function displays an array of glyphs at the specified position in the user space.

Availability
Available in Mac OS X v10.0 and later.

Functions 133
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextShowGlyphs (page 132)
CGContextShowText (page 135)
CGContextShowTextAtPoint (page 136)
CGContextShowGlyphsWithAdvances (page 134)

Declared In
CGContext.h

CGContextShowGlyphsAtPositions
Draws glyphs at the provided position.

void CGContextShowGlyphsAtPositions(
 CGContextRef context,
 const CGGlyph glyphs[],
 const CGPoint positions[],
 size_t count
);

Parameters
c

The graphics context in which to display the glyphs.

glyphs
An array of Quartz glyphs.

positions
The positions for the glyphs. Each item in this array matches with the glyph at the corresponding
index in the glyphs array. The position of each glyph is specified in text space, and, as a consequence,
is transformed through the text matrix to user space.

count
The number of items in the glyphs array.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CoreTextArcCocoa

Declared In
CGContext.h

CGContextShowGlyphsWithAdvances
Draws an array of glyphs with varying offsets.

134 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextShowGlyphsWithAdvances (
 CGContextRef c,
 const CGGlyph glyphs[],
 const CGSize advances[],
 size_t count
);

Parameters
c

The graphics context in which to display the glyphs.

glyphs
An array of Quartz glyphs.

advances
An array of offset values associated with each glyph in the array. Each value specifies the offset from
the previous glyph's origin to the origin of the corresponding glyph. Offsets are specified in user
space.

count
The number of glyphs in the specified array.

Discussion
This function draws an array of glyphs at the current point specified by the text matrix.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGContextShowGlyphs (page 132)
CGContextShowText (page 135)
CGContextShowTextAtPoint (page 136)
CGContextShowGlyphsAtPoint (page 133)

Declared In
CGContext.h

CGContextShowText
Displays a character array at the current text position, a point specified by the current text matrix.

void CGContextShowText (
 CGContextRef c,
 const char *string,
 size_t length
);

Parameters
c

A graphics context.

string
An array of characters to draw.

length
The length of the array specified in the bytes parameter.

Functions 135
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
Quartz uses font data provided by the system to map each byte of the array through the encoding vector of
the current font to obtain the glyph to display. Note that the font must have been set using
CGContextSelectFont (page 106). Don’t use CGContextShowText in conjunction with
CGContextSetFont (page 116).

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextShowTextAtPoint (page 136)
CGContextShowGlyphs (page 132)
CGContextShowGlyphsAtPoint (page 133)
CGContextShowGlyphsWithAdvances (page 134)

Related Sample Code
CaptureAndCompressIPBMovie
Cocoa PDE with Carbon Printing
QTPixelBufferVCToCGImage

Declared In
CGContext.h

CGContextShowTextAtPoint
Displays a character string at a position you specify.

void CGContextShowTextAtPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 const char *string,
 size_t length
);

Parameters
c

A graphics context .

x
A value for the x-coordinate (in user space) at which to display the text.

y
A value for the y-coordinate (in user space) at which to display the text.

string
An array of characters to draw.

length
The length of the array specified in the string parameter.

Discussion
Quartz uses font data provided by the system to map each byte of the array through the encoding vector of
the current font to obtain the glyph to display. Note that the font must have been set using
CGContextSelectFont (page 106). Don’t use CGContextShowTextAtPoint in conjunction with
CGContextSetFont (page 116).

136 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextShowText (page 135)
CGContextShowGlyphs (page 132)
CGContextShowGlyphsAtPoint (page 133)
CGContextShowGlyphsWithAdvances (page 134)

Related Sample Code
BrideOfMungGrab
Cocoa PDE with Carbon Printing
DockBrowser
HID Calibrator
Quartz EB

Declared In
CGContext.h

CGContextStrokeEllipseInRect
Strokes an ellipse that fits inside the specified rectangle.

void CGContextStrokeEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle that defines the area for the ellipse to fit in.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
FunHouse
Quartz 2D Shadings

Declared In
CGContext.h

CGContextStrokeLineSegments
Strokes a sequence of line segments.

Functions 137
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextStrokeLineSegments (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

Parameters
c

A graphics context.

points
An array of points, organized as pairs—the starting point of a line segment followed by the ending
point of a line segment. For example, the first point in the array specifies the starting position of the
first line, the second point specifies the ending position of the first line, the third point specifies the
starting position of the second line, and so forth.

count
The number of points in the points array.

Discussion
This function is equivalent to the following code:

CGContextBeginPath (context);
for (k = 0; k < count; k += 2) {
 CGContextMoveToPoint(context, s[k].x, s[k].y);
 CGContextAddLineToPoint(context, s[k+1].x, s[k+1].y);
}
CGContextStrokePath(context);

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GeekGameBoard

Declared In
CGContext.h

CGContextStrokePath
Paints a line along the current path.

void CGContextStrokePath (
 CGContextRef c
);

Parameters
c

A graphics context.

Discussion
Quartz uses the line width and stroke color of the graphics state to paint the path. As a side effect when you
call this function, Quartz clears the current path.

Availability
Available in Mac OS X v10.0 and later.

138 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextDrawPath (page 86)
CGContextFillPath (page 93)
CGContextEOFillPath (page 92)

Related Sample Code
Cocoa CG arc demo
FunHouse
Quartz 2D Shadings
Quartz EB
QuartzShapes

Declared In
CGContext.h

CGContextStrokeRect
Paints a rectangular path.

void CGContextStrokeRect (
 CGContextRef c,
 CGRect rect
);

Parameters
c

A graphics context .

rect
A rectangle, specified in user space coordinates.

Discussion
Quartz uses the line width and stroke color of the graphics state to paint the path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextStrokeRectWithWidth (page 140)

Related Sample Code
CoreTextArcCocoa
GeekGameBoard
HID Calibrator
HID Config Save
QuartzShapes

Declared In
CGContext.h

Functions 139
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextStrokeRectWithWidth
Paints a rectangular path, using the specified line width.

void CGContextStrokeRectWithWidth (
 CGContextRef c,
 CGRect rect,
 CGFloat width
);

Parameters
c

A graphics context.

rect
A rectangle, in user space coordinates.

width
A value, in user space units, that is greater than zero. This value does not affect the line width values
in the current graphics state.

Discussion
Aside from the line width value, Quartz uses the current attributes of the graphics state (such as stroke color)
to paint the line. The line straddles the path, with half of the total width on either side.

As a side effect when you call this function, Quartz clears the current path.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGContextStrokeRect (page 139)

Related Sample Code
LightTable
Quartz2DBasics

Declared In
CGContext.h

CGContextSynchronize
Marks a window context for update.

void CGContextSynchronize (
 CGContextRef c
);

Parameters
c

The window context to synchronize. If you pass a PDF context or a bitmap context, this function does
nothing.

Discussion
When you call this function, all drawing operations since the last update are flushed at the next regular
opportunity. Under normal conditions, you do not need to call this function.

140 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BrideOfMungGrab

Declared In
CGContext.h

CGContextTranslateCTM
Changes the origin of the user coordinate system in a context.

void CGContextTranslateCTM (
 CGContextRef c,
 CGFloat tx,
 CGFloat ty
);

Parameters
c

A graphics context.

tx
The amount to displace the x-axis of the coordinate space, in units of the user space, of the specified
context.

ty
The amount to displace the y-axis of the coordinate space, in units of the user space, of the specified
context.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa CG arc demo
OpenCL NBody Simulation Example
Quartz 2D Transformer
Quartz2DBasics
QuartzShapes

Declared In
CGContext.h

Data Types

CGContextRef
An opaque type that represents a Quartz 2D drawing environment.

Data Types 141
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

typedef struct CGContext * CGContextRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

Constants

CGBlendMode
Compositing operations for images.

enum CGBlendMode {
 kCGBlendModeNormal,
 kCGBlendModeMultiply,
 kCGBlendModeScreen,
 kCGBlendModeOverlay,
 kCGBlendModeDarken,
 kCGBlendModeLighten,
 kCGBlendModeColorDodge,
 kCGBlendModeColorBurn,
 kCGBlendModeSoftLight,
 kCGBlendModeHardLight,
 kCGBlendModeDifference,
 kCGBlendModeExclusion,
 kCGBlendModeHue,
 kCGBlendModeSaturation,
 kCGBlendModeColor,
 kCGBlendModeLuminosity,
 kCGBlendModeClear,
 kCGBlendModeCopy,
 kCGBlendModeSourceIn,
 kCGBlendModeSourceOut,
 kCGBlendModeSourceAtop,
 kCGBlendModeDestinationOver,
 kCGBlendModeDestinationIn,
 kCGBlendModeDestinationOut,
 kCGBlendModeDestinationAtop,
 kCGBlendModeXOR,
 kCGBlendModePlusDarker,
 kCGBlendModePlusLighter
};
typedef enum CGBlendMode CGBlendMode;

Constants
kCGBlendModeNormal

Paints the source image samples over the background image samples.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

142 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeMultiply
Multiplies the source image samples with the background image samples. This results in colors that
are at least as dark as either of the two contributing sample colors.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeScreen
Multiplies the inverse of the source image samples with the inverse of the background image samples.
This results in colors that are at least as light as either of the two contributing sample colors.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeOverlay
Either multiplies or screens the source image samples with the background image samples, depending
on the background color. The result is to overlay the existing image samples while preserving the
highlights and shadows of the background. The background color mixes with the source image to
reflect the lightness or darkness of the background.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeDarken
Creates the composite image samples by choosing the darker samples (either from the source image
or the background). The result is that the background image samples are replaced by any source
image samples that are darker. Otherwise, the background image samples are left unchanged.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeLighten
Creates the composite image samples by choosing the lighter samples (either from the source image
or the background). The result is that the background image samples are replaced by any source
image samples that are lighter. Otherwise, the background image samples are left unchanged.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeColorDodge
Brightens the background image samples to reflect the source image samples. Source image sample
values that specify black do not produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeColorBurn
Darkens the background image samples to reflect the source image samples. Source image sample
values that specify white do not produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

Constants 143
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeSoftLight
Either darkens or lightens colors, depending on the source image sample color. If the source image
sample color is lighter than 50% gray, the background is lightened, similar to dodging. If the source
image sample color is darker than 50% gray, the background is darkened, similar to burning. If the
source image sample color is equal to 50% gray, the background is not changed. Image samples that
are equal to pure black or pure white produce darker or lighter areas, but do not result in pure black
or white. The overall effect is similar to what you’d achieve by shining a diffuse spotlight on the source
image. Use this to add highlights to a scene.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeHardLight
Either multiplies or screens colors, depending on the source image sample color. If the source image
sample color is lighter than 50% gray, the background is lightened, similar to screening. If the source
image sample color is darker than 50% gray, the background is darkened, similar to multiplying. If
the source image sample color is equal to 50% gray, the source image is not changed. Image samples
that are equal to pure black or pure white result in pure black or white. The overall effect is similar to
what you’d achieve by shining a harsh spotlight on the source image. Use this to add highlights to a
scene.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeDifference
Subtracts either the source image sample color from the background image sample color, or the
reverse, depending on which sample has the greater brightness value. Source image sample values
that are black produce no change; white inverts the background color values.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeExclusion
Produces an effect similar to that produced by kCGBlendModeDifference, but with lower contrast.
Source image sample values that are black don’t produce a change; white inverts the background
color values.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeHue
Uses the luminance and saturation values of the background with the hue of the source image.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeSaturation
Uses the luminance and hue values of the background with the saturation of the source image. Areas
of the background that have no saturation (that is, pure gray areas) don’t produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

144 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeColor
Uses the luminance values of the background with the hue and saturation values of the source image.
This mode preserves the gray levels in the image. You can use this mode to color monochrome images
or to tint color images.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeLuminosity
Uses the hue and saturation of the background with the luminance of the source image. This mode
creates an effect that is inverse to the effect created by kCGBlendModeColor.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeClear
R = 0

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeCopy
R = S

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceIn
R = S*Da

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceOut
R = S*(1 - Da)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceAtop
R = S*Da + D*(1 - Sa)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationOver
R = S*(1 - Da) + D

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationIn
R = D*Sa

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationOut
R = D*(1 - Sa)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

Constants 145
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeDestinationAtop
R = S*(1 - Da) + D*Sa

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeXOR
R = S*(1 - Da) + D*(1 - Sa). This XOR mode is only nominally related to the classical bitmap
XOR operation, which is not supported by Quartz 2D.

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModePlusDarker
R = MAX(0, (1 - D) + (1 - S))

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModePlusLighter
R = MIN(1, S + D)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

Discussion
The blend mode constants introduced in Mac OS X v10.5 represent the Porter-Duff blend modes. The symbols
in the equations for these blend modes are:

 ■ R is the premultiplied result

 ■ S is the source color, and includes alpha

 ■ D is the destination color, and includes alpha

 ■ Ra, Sa, and Da are the alpha components of R, S, and D

You can find more information on blend modes, including examples of images produced using them, and
many mathematical descriptions of the modes, in PDF Reference, Fourth Edition, Version 1.5, Adobe Systems,
Inc. If you are a former QuickDraw developer, it may be helpful for you to think of blend modes as an alternative
to transfer modes

For examples of using blend modes see "Setting Blend Modes" and "Using Blend Modes With Images" in
Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGInterpolationQuality
Levels of interpolation quality for rendering an image.

146 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

enum CGInterpolationQuality {
 kCGInterpolationDefault = 0,
 kCGInterpolationNone = 1,
 kCGInterpolationLow = 2,
 kCGInterpolationMedium = 4,
 kCGInterpolationHigh = 3
};
typedef enum CGInterpolationQuality CGInterpolationQuality;

Constants
kCGInterpolationDefault

The default level of quality.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

kCGInterpolationNone
No interpolation.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

kCGInterpolationLow
A low level of interpolation quality. This setting may speed up image rendering.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

kCGInterpolationMedium
A medium level of interpolation quality. This setting is slower than the low setting but faster than the
high setting.

Available in Mac OS X v10.6 and later.

Declared in CGContext.h.

kCGInterpolationHigh
A high level of interpolation quality. This setting may slow down image rendering.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

Discussion
You use the function CGContextSetInterpolationQuality (page 118) to set the interpolation quality in
a graphics context.

Declared In
CGContext.h

CGLineCap
Styles for rendering the endpoint of a stroked line.

Constants 147
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

enum CGLineCap {
 kCGLineCapButt,
 kCGLineCapRound,
 kCGLineCapSquare
};
typedef enum CGLineCap CGLineCap;

Constants
kCGLineCapButt

A line with a squared-off end. Quartz draws the line to extend only to the exact endpoint of the path.
This is the default.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineCapRound
A line with a rounded end. Quartz draws the line to extend beyond the endpoint of the path. The line
ends with a semicircular arc with a radius of 1/2 the line’s width, centered on the endpoint.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineCapSquare
A line with a squared-off end. Quartz extends the line beyond the endpoint of the path for a distance
equal to half the line width.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
A line cap specifies the method used by CGContextStrokePath (page 138) to draw the endpoint of the
line. To change the line cap style in a graphics context, you use the function CGContextSetLineCap (page
119).

Declared In
CGContext.h

CGLineJoin
Junction types for stroked lines.

enum CGLineJoin {
 kCGLineJoinMiter,
 kCGLineJoinRound,
 kCGLineJoinBevel
};
typedef enum CGLineJoin CGLineJoin;

Constants
kCGLineJoinMiter

A join with a sharp (angled) corner. Quartz draws the outer sides of the lines beyond the endpoint of
the path, until they meet. If the length of the miter divided by the line width is greater than the miter
limit, a bevel join is used instead. This is the default. To set the miter limit, see
CGContextSetMiterLimit (page 121)

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

148 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGLineJoinRound
A join with a rounded end. Quartz draws the line to extend beyond the endpoint of the path. The
line ends with a semicircular arc with a radius of 1/2 the line’s width, centered on the endpoint.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineJoinBevel
A join with a squared-off end. Quartz draws the line to extend beyond the endpoint of the path, for
a distance of 1/2 the line’s width.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
A line join specifies how CGContextStrokePath (page 138) draws the junction between connected line
segments. To set the line join style in a graphics context, you use the function CGContextSetLineJoin (page
120).

Declared In
CGContext.h

CGTextDrawingMode
Modes for rendering text.

enum CGTextDrawingMode {
 kCGTextFill,
 kCGTextStroke,
 kCGTextFillStroke,
 kCGTextInvisible,
 kCGTextFillClip,
 kCGTextStrokeClip,
 kCGTextFillStrokeClip,
 kCGTextClip
};
typedef enum CGTextDrawingMode CGTextDrawingMode;

Constants
kCGTextFill

Perform a fill operation on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextStroke
Perform a stroke operation on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillStroke
Perform fill, then stroke operations on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Constants 149
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGTextInvisible
Do not draw the text, but do update the text position.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillClip
Perform a fill operation, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextStrokeClip
Perform a stroke operation, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillStrokeClip
Perform fill then stroke operations, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextClip
Specifies to intersect the text with the current clipping path. This mode does not paint the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
You provide a text drawing mode constant to the function CGContextSetTextDrawingMode (page 130) to
set the current text drawing mode for a graphics context. Text drawing modes determine how Quartz renders
individual glyphs onscreen. For example, you can set a text drawing mode to draw text filled in or outlined
(stroked) or both. You can also create special effects with the text clipping drawing modes, such as clipping
an image to a glyph shape.

Declared In
CGContext.h

CGTextEncoding
Text encodings for fonts.

enum CGTextEncoding {
 kCGEncodingFontSpecific,
 kCGEncodingMacRoman
};
typedef enum CGTextEncoding CGTextEncoding;

Constants
kCGEncodingFontSpecific

The built-in encoding of the font.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

150 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGEncodingMacRoman
The MacRoman encoding. MacRoman is an ASCII variant originally created for use in the Mac OS, in
which characters 127 and lower are ASCII, and characters 128 and higher are non-English characters
and symbols.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
For more information on setting the font in a graphics context, see CGContextSelectFont (page 106).

Declared In
CGContext.h

Constants 151
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

152 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGDataConsumer.h

Companion guide Quartz 2D Programming Guide

Overview

The CGDataConsumerRef opaque type abstracts the data-writing task and eliminates the need for applications
to manage data through a raw memory buffer. You can use data consumer objects to write image or PDF
data and all, except for CGDataConsumerCreateWithCFData (page 154), are available in Mac OS X v10.0
or later.

If your application runs in Mac OS X v10.4 or later, you should use CGImageDestination objects rather than
data consumers. See CGImageDestination Reference.

Functions by Task

Creating Data Consumers

CGDataConsumerCreate (page 154)
Creates a data consumer that uses callback functions to write data.

CGDataConsumerCreateWithURL (page 155)
Creates a data consumer that writes data to a location specified by a URL.

CGDataConsumerCreateWithCFData (page 154)
Creates a data consumer that writes to a CFData object.

Getting the CFType ID

CGDataConsumerGetTypeID (page 155)
Returns the Core Foundation type identifier for Quartz data consumers.

Overview 153
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Retaining and Releasing Data Consumers

CGDataConsumerRelease (page 156)
Decrements the retain count of a data consumer.

CGDataConsumerRetain (page 156)
Increments the retain count of a data consumer.

Functions

CGDataConsumerCreate
Creates a data consumer that uses callback functions to write data.

CGDataConsumerRef CGDataConsumerCreate (
 void *info,
 const CGDataConsumerCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it passes this pointer as the info parameter.

callbacks
A pointer to a CGDataConsumerCallbacks structure that specifies the callback functions you
implement to copy data sent to the consumer and to handle the consumer’s basic memory
management. For a complete description, see CGDataConsumerCallbacks (page 158).

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 156).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGDataConsumer.h

CGDataConsumerCreateWithCFData
Creates a data consumer that writes to a CFData object.

CGDataConsumerRef CGDataConsumerCreateWithCFData (
 CFMutableDataRef data
);

Parameters
data

The CFData object to write to.

154 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 156).

Discussion
You can use this function when you need to represent Quartz data as a CFData type. For example, you might
create a CFData object that you then copy to the pasteboard.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

CGDataConsumerCreateWithURL
Creates a data consumer that writes data to a location specified by a URL.

CGDataConsumerRef CGDataConsumerCreateWithURL (
 CFURLRef url
);

Parameters
url

A CFURL object that specifies the data destination.

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 156).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGDataConsumer.h

CGDataConsumerGetTypeID
Returns the Core Foundation type identifier for Quartz data consumers.

CFTypeID CGDataConsumerGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGDataConsumerRef (page 159).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGDataConsumer.h

Functions 155
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

CGDataConsumerRelease
Decrements the retain count of a data consumer.

void CGDataConsumerRelease (
 CGDataConsumerRef consumer
);

Parameters
consumer

The data consumer to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the consumer parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGDataConsumer.h

CGDataConsumerRetain
Increments the retain count of a data consumer.

CGDataConsumerRef CGDataConsumerRetain (
 CGDataConsumerRef consumer
);

Parameters
consumer

The data consumer to retain.

Return Value
The same data consumer you passed in as the consumer parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the consumer parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGDataConsumer.h

Callbacks

CGDataConsumerPutBytesCallback
Copies data from a Quartz-supplied buffer into a data consumer.

156 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

size_t (*CGDataConsumerPutBytesCallback) (
 void *info,
 const void *buffer,
 size_t count
);

If you name your function MyConsumerPutBytes, you would declare it like this:

size_t MyConsumerPutBytes (
 void *info,
 const void *buffer,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the pointer supplied
to CGDataConsumerCreate (page 154).

buffer
The Quartz-supplied buffer from which you copy the specified number of bytes.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the consumer, you should return 0.

Discussion
When Quartz is ready to send data to the consumer, your function is called. It should copy the specified
number of bytes from buffer into some resource under your control—for example, a file.

For information on how to associate your callback function with a data consumer, see
CGDataConsumerCreate (page 154) and CGDataConsumerCallbacks (page 158).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

CGDataConsumerReleaseInfoCallback
Releases any private data or resources associated with the data consumer.

void (*CGDataConsumerReleaseInfoCallback) (
 void *info
);

If you name your function MyConsumerReleaseInfo, you would declare it like this:

void MyConsumerReleaseInfo (
 void *info
);

Callbacks 157
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataConsumerCreate (page 154).

Discussion
When Quartz frees a data consumer that has an associated release function, the release function is called.

For information on how to associate your callback function with a data consumer, see
CGDataConsumerCreate (page 154) and CGDataConsumerCallbacks (page 158).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

Data Types

CGDataConsumerCallbacks
A structure that contains pointers to callback functions that manage the copying of data for a data consumer.

struct CGDataConsumerCallbacks {
 CGDataConsumerPutBytesCallback putBytes;
 CGDataConsumerReleaseInfoCallback releaseConsumer;
};
typedef struct CGDataConsumerCallbacks CGDataConsumerCallbacks;

Fields
putBytes

A pointer to a function that copies data to the data consumer. For more information, see
CGDataConsumerPutBytesCallback (page 156).

releaseConsumer
A pointer to a function that handles clean-up for the data consumer, or NULL. For more information,
see CGDataConsumerReleaseInfoCallback (page 157)

Discussion
The functions specified by the CGDataConsumerCallbacks structure are responsible for copying data that
Quartz sends to your consumer and for handling the consumer’s basic memory management. You supply a
CGDataConsumerCallbacks structure to the function CGDataConsumerCreate (page 154) to create a data
consumer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataConsumer.h

158 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

CGDataConsumerRef
An opaque type that handles the storage of data supplied by Quartz functions.

typedef struct CGDataConsumer *CGDataConsumerRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataConsumer.h

Data Types 159
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

160 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGDataProvider.h

Overview

The CGDataProvider header file declares a data type that supplies Quartz functions with data. Data provider
objects abstract the data-access task and eliminate the need for applications to manage data through a raw
memory buffer.

For information on how to use CGDataProvider functions, see Quartz 2D Programming Guide Programming
Guide.

See also CGDataConsumer Reference.

Functions

CGDataProviderCopyData
Returns a copy of the provider’s data.

CFDataRef CGDataProviderCopyData(
 CGDataProviderRef provider
);

Parameters
provider

The data provider whose data you want to copy.

Return Value
A new data object containing a copy of the provider’s data. You are responsible for releasing this object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

Overview 161
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderCreate
Creates a Quartz sequential-access data provider. (Deprecated in Mac OS X v10.5.)

CGDataProviderRef CGDataProviderCreate (
 void *info,
 const CGDataProviderCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this data.

callbacks
A pointer to a CGDataProviderCallbacks structure that specifies the callback functions you
implement to handle the data provider’s basic memory management. For a complete description,
see CGDataProviderCallbacks (page 177).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You use this function to create a sequential-access data provider that uses callback functions to read data
from your program in a stream.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CGDataProvider.h

CGDataProviderCreateDirect
Creates a Quartz direct-access data provider.

CGDataProviderRef CGDataProviderCreateDirect (
 void *info,
 off_t size,
 const CGDataProviderDirectCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

size
The number of bytes of data to provide.

callbacks
A pointer to a CGDataProviderDirectCallbacks structure that specifies the callback functions
you implement to handle the data provider’s basic memory management.

162 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program in a single block.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
MassiveImage

Declared In
CGDataProvider.h

CGDataProviderCreateDirectAccess
Creates a Quartz direct-access data provider. (Deprecated in Mac OS X v10.5.)

CGDataProviderRef CGDataProviderCreateDirectAccess (
 void *info,
 size_t size,
 const CGDataProviderDirectAccessCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

size
A value that specifies the number of bytes that the data provider contains.

callbacks
A pointer to a CGDataProviderDirectAccessCallbacks structure that specifies the callback
functions you implement to handle the data provider’s basic memory management. For a complete
description, see CGDataProviderDirectAccessCallbacks (page 177).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program in a single block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CGDataProvider.h

Functions 163
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderCreateSequential
Creates a Quartz sequential-access data provider.

CGDataProviderRef CGDataProviderCreateSequential (
 void *info,
 const CGDataProviderSequentialCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

callbacks
A pointer to a CGDataProviderSequentialCallbacks structure that specifies the callback functions
you implement to handle the data provider’s basic memory management.

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You use this function to create a sequential-access data provider that uses callback functions to read data
from your program in a single block.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderCreateWithCFData
Creates a Quartz data provider that reads from a CFData object.

CGDataProviderRef CGDataProviderCreateWithCFData (
 CFDataRef data
);

Parameters
data

The CFData object to read from.

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You can use this function when you need to represent Quartz data as a CFData type. For example, you might
create a CFData object when reading data from the pasteboard.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataProvider.h

164 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderCreateWithData
Creates a Quartz direct-access data provider that uses data your program supplies.

CGDataProviderRef CGDataProviderCreateWithData (
 void *info,
 const void *data,
 size_t size,
 CGDataProviderReleaseDataCallback releaseData
);

Parameters
info

A pointer to data of any type, or NULL. When Quartz calls the function specified in the releaseData
parameter, Quartz sends it this pointer as its first argument.

data
A pointer to the array of data that the provider contains.

size
A value that specifies the number of bytes that the data provider contains.

releaseData
A pointer to a release callback for the data provider, or NULL. Your release function is called when
Quartz frees the data provider. For more information, see
CGDataProviderReleaseDataCallback (page 173).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
167).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program an entire block at one time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
GLSL Showpiece Lite
MovieVideoChart
Quartz EB
QuartzCache

Declared In
CGDataProvider.h

CGDataProviderCreateWithFilename
Creates a Quartz direct-access data provider that uses a file to supply data.

Functions 165
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderRef CGDataProviderCreateWithFilename(
 const char *filename
);

Parameters
filename

The full or relative pathname to use for the data provider. When you supply Quartz data via the
provider, it reads the data from the specified file.

Return Value
A new data provider or NULL if the file could not be opened. You are responsible for releasing this object
using CGDataProviderRelease (page 167).

Discussion
You use this function to create a direct-access data provider that supplies data from a file. When you supply
Quartz with a direct-access data provider, Quartz obtains data from your program in a single block.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fireworks

Declared In
CGDataProvider.h

CGDataProviderCreateWithURL
Creates a Quartz direct-access data provider that uses a URL to supply data.

CGDataProviderRef CGDataProviderCreateWithURL (
 CFURLRef url
);

Parameters
url

A CFURL object to use for the data provider. When you supply Quartz data via the provider, it reads
the data from the URL address.

Return Value
A new data provider or NULL if the data from the URL could not be accessed. You are responsible for releasing
this object using CGDataProviderRelease (page 167).

Discussion
You use this function to create a direct-access data provider that supplies data from a URL. When you supply
Quartz with a direct-access data provider, Quartz obtains data from your program in a single entire block.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockBrowser

Declared In
CGDataProvider.h

166 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderGetTypeID
Returns the Core Foundation type identifier for Quartz data providers.

CFTypeID CGDataProviderGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGDataProviderRef (page 176).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDataProvider.h

CGDataProviderRelease
Decrements the retain count of a data provider.

void CGDataProviderRelease (
 CGDataProviderRef provider
);

Parameters
provider

The data provider to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the provider parameter
is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
DockBrowser
GLSL Showpiece Lite
MovieVideoChart
Quartz EB

Declared In
CGDataProvider.h

CGDataProviderRetain
Increments the retain count of a data provider.

Functions 167
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderRef CGDataProviderRetain (
 CGDataProviderRef provider
);

Parameters
provider

The data provider to retain.

Return Value
The same data provider you passed in as the provider parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the provider parameter
is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

Callbacks by Task

Sequential-Access Data Provider Callbacks

CGDataProviderGetBytesCallback (page 171)
A callback function that copies from a provider data stream into a Quartz-supplied buffer.

CGDataProviderReleaseInfoCallback (page 174)
A callback function that releases any private data or resources associated with the data provider.

CGDataProviderRewindCallback (page 174)
A callback function that moves the current position in the data stream back to the beginning.

CGDataProviderSkipBytesCallback (page 175)
A callback function that advances the current position in the data stream supplied by the provider.

CGDataProviderSkipForwardCallback (page 176)
A callback function that advances the current position in the data stream supplied by the provider.

Direct-Access Data Provider Callbacks

CGDataProviderGetBytePointerCallback (page 169)
A callback function that returns a generic pointer to the provider data.

CGDataProviderGetBytesAtOffsetCallback (page 169)
A callback function that copies data from the provider into a Quartz buffer.

CGDataProviderReleaseBytePointerCallback (page 172)
A callback function that releases the pointer Quartz obtained by calling
CGDataProviderGetBytePointerCallback (page 169).

168 Callbacks by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderReleaseDataCallback (page 173)
A callback function that releases data you supply to the function
CGDataProviderCreateWithData (page 165).

CGDataProviderGetBytesAtPositionCallback (page 170)
A callback function that copies data from the provider into a Quartz buffer.

Callbacks

CGDataProviderGetBytePointerCallback
A callback function that returns a generic pointer to the provider data.

const void * (*CGDataProviderGetBytePointerCallback) (
 void *info
);

If you name your function MyProviderGetBytePointer, you would declare it like this:

void *MyProviderGetBytePointer (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 163).

Return Value
A generic pointer to your provider data. By suppling this pointer, you are giving Quartz read-only access to
both the pointer and the underlying provider data. You must not move or modify the provider data until
Quartz calls your CGDataProviderReleaseBytePointerCallback (page 172) function.

Discussion
When Quartz needs direct access to your provider data, this function is called.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 163) andCGDataProviderDirectAccessCallbacks (page
177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesAtOffsetCallback
A callback function that copies data from the provider into a Quartz buffer.

Callbacks 169
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

typedef size_t (*CGDataProviderGetBytesAtOffsetCallback) (
 void *info,
 void *buffer,
 size_t offset,
 size_t count
);

If you name your function MyProviderGetBytesWithOffset, you would declare it like this:

size_t MyProviderGetBytesWithOffset (
 void *info,
 void *buffer,
 size_t offset,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 163).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

offset
Specifies the relative location in the data provider at which to begin copying data.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider, your function is called.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 163) andCGDataProviderDirectAccessCallbacks (page
177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesAtPositionCallback
A callback function that copies data from the provider into a Quartz buffer.

170 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

typedef size_t (*CGDataProviderGetBytesAtPositionCallback) (
 void *info,
 void *buffer,
 off_t position,
 size_t count
);

If you name your function MyProviderGetBytesAtPosition, you would declare it like this:

size_t MyProviderGetBytesAtPosition (
 void *info,
 void *buffer,
 off_t position,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirect (page 162).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

position
Specifies the relative location in the data provider at which to begin copying data.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider, your function is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesCallback
A callback function that copies from a provider data stream into a Quartz-supplied buffer.

size_t (*CGDataProviderGetBytesCallback) (
 void *info,
 void *buffer,
 size_t count
);

If you name your function MyProviderGetBytes, you would declare it like this:

size_t MyProviderGetBytes (
 void *info,

Callbacks 171
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

 void *buffer,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 162).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider data stream, your function is called. It should copy
the specified number of bytes into buffer.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 162) and CGDataProviderCallbacks (page 177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderReleaseBytePointerCallback
A callback function that releases the pointer Quartz obtained by calling
CGDataProviderGetBytePointerCallback (page 169).

typedef void (*CGDataProviderReleaseBytePointerCallback) (
 void *info,
 const void *pointer
);

If you name your function MyProviderReleaseBytePointer, you would declare it like this:

void MyProviderReleaseBytePointer (
 void *info,
 const void *pointer
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 163).

172 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

pointer
A pointer to your provider data. This is the same pointer you returned in
CGDataProviderGetBytePointerCallback (page 169).

Discussion
When Quartz no longer needs direct access to your provider data, your function is called. You may safely
modify, move, or release your provider data at this time.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 163) andCGDataProviderDirectAccessCallbacks (page
177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderReleaseDataCallback
A callback function that releases data you supply to the function CGDataProviderCreateWithData (page
165).

typedef void (*CGDataProviderReleaseDataCallback) (
 void *info,
 const void *data,
 size_t size
);

If you name your function MyProviderReleaseData, you would declare it like this:

void MyProviderReleaseData (
 void *info,
 const void *data,
 size_t size
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateWithData (page 165).

data
A pointer to your provider data.

size
The size of the data.

Discussion
When Quartz no longer needs direct access to your provider data, your function is called. You may safely
modify, move, or release your provider data at this time.

Availability
Available in Mac OS X v10.5 and later.

Callbacks 173
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Declared In
CGDataProvider.h

CGDataProviderReleaseInfoCallback
A callback function that releases any private data or resources associated with the data provider.

void (*CGDataProviderReleaseInfoCallback) (
 void *info
);

If you name your function MyProviderReleaseInfo, you would declare it like this:

void MyProviderReleaseInfo (
 void *info
);

Parameters
info

A generic pointer to private information shared among your callback functions. This is the same
pointer you supplied to CGDataProviderCreate (page 162).

Discussion
When Quartz frees a data provider that has an associated release function, the release function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 162) and CGDataProviderCallbacks (page 177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderRewindCallback
A callback function that moves the current position in the data stream back to the beginning.

void (*CGDataProviderRewindCallback) (
 void *info
);

If you name your function MyProviderRewind, you would declare it like this:

void MyProviderRewind (
 void *info
);

174 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 162).

Discussion
When Quartz needs to read from the beginning of the provider’s data stream, your function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 162) and CGDataProviderCallbacks (page 177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderSkipBytesCallback
A callback function that advances the current position in the data stream supplied by the provider.

void (*CGDataProviderSkipBytesCallback) (
 void *info,
 size_t count
);

If you name your function MyProviderSkipBytes, you would declare it like this:

void MyProviderSkipBytes (
 void *info,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 162).

count
The number of bytes to skip.

Discussion
When Quartz needs to advance forward in the provider’s data stream, your function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 162) and CGDataProviderCallbacks (page 177).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

Callbacks 175
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderSkipForwardCallback
A callback function that advances the current position in the data stream supplied by the provider.

off_t (*CGDataProviderSkipForwardCallback) (
 void *info,
 off_t count
);

If you name your function MyProviderSkipForwardBytes, you would declare it like this:

off_t MyProviderSkipForwardBytes (
 void *info,
 off_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 162).

count
The number of bytes to skip.

Return Value
The number of bytes that were actually skipped.

Discussion
When Quartz needs to advance forward in the provider’s data stream, your function is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

Data Types

CGDataProviderRef
Defines an opaque type that supplies Quartz with data.

typedef struct CGDataProvider *CGDataProviderRef;

Discussion
Some Quartz routines supply blocks of data to your program. Rather than reading through a raw memory
buffer, data provider objects of type CGDataProviderRef allow you to supply Quartz functions with data.

In Mac OS X version 10.2 and later, CGDataProviderRef is derived from CFTypeRef and inherits the
properties that all Core Foundation types have in common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.0 and later.

176 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Declared In
CGDataProvider.h

CGDataProviderCallbacks
Defines a structure containing pointers to client-defined callback functions that manage the sending of data
for a sequential-access data provider.

struct CGDataProviderCallbacks {
 CGDataProviderGetBytesCallback getBytes;
 CGDataProviderSkipBytesCallback skipBytes;
 CGDataProviderRewindCallback rewind;
 CGDataProviderReleaseInfoCallback releaseProvider;
};
typedef struct CGDataProviderCallbacks CGDataProviderCallbacks;

Fields
getBytes

A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesCallback (page 171).

skipBytes
A pointer to a function that Quartz calls to advance the stream of data supplied by the provider. For
more information, see CGDataProviderSkipBytesCallback (page 175).

rewind
A pointer to a function Quartz calls to return the provider to the beginning of the data stream. For
more information, see CGDataProviderRewindCallback (page 174).

releaseProvider
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 174).

Discussion
The functions specified by the CGDataProviderCallbacks structure are responsible for sequentially copying
data to a memory buffer for Quartz to use. The functions are also responsible for handling the data provider’s
basic memory management. You supply a CGDataProviderCallbacks structure to the function
CGDataProviderCreate (page 162) to create a sequential-access data provider.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderDirectAccessCallbacks
Defines pointers to client-defined callback functions that manage the sending of data for a direct-access data
provider.

Data Types 177
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

struct CGDataProviderDirectAccessCallbacks {
 CGDataProviderGetBytePointerCallback getBytePointer;
 CGDataProviderReleaseBytePointerCallback releaseBytePointer;
 CGDataProviderGetBytesAtOffsetCallback getBytes;
 CGDataProviderReleaseInfoCallback releaseProvider;
};
typedef struct CGDataProviderDirectAccessCallbacks
CGDataProviderDirectAccessCallbacks;

Fields
getBytePointer

A pointer to a function that returns a pointer to the provider’s data. For more information, see
CGDataProviderGetBytePointerCallback (page 169).

releaseBytePointer
A pointer to a function that Quartz calls to release a pointer to the provider’s data. For more information,
see CGDataProviderReleaseBytePointerCallback (page 172).

getBytes
A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesAtOffsetCallback (page 169).

releaseProvider
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 174).

Discussion
You supply a CGDataProviderDirectAccessCallbacks structure to the function
CGDataProviderCreateDirectAccess (page 163) to create a data provider for direct access. The functions
specified by the CGDataProviderDirectAccessCallbacks structure are responsible for copying data a
block at a time to a memory buffer for Quartz to use. The functions are also responsible for handling the data
provider’s basic memory management. For the callback to work, one of the getBytePointer and getBytes
parameters must be non-NULL. If both are non-NULL, then getBytePointer is used to access the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderDirectCallbacks
Defines pointers to client-defined callback functions that manage the sending of data for a direct-access data
provider.

struct CGDataProviderDirectCallbacks {
 unsigned int version;
 CGDataProviderGetBytePointerCallback getBytePointer;
 CGDataProviderReleaseBytePointerCallback releaseBytePointer;
 CGDataProviderGetBytesAtPositionCallback getBytesAtPosition;
 CGDataProviderReleaseInfoCallback releaseInfo;
};
typedef struct CGDataProviderDirectCallbacks CGDataProviderDirectCallbacks;

Fields
version

The version of this structure. It should be set to 0.

178 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

getBytePointer
A pointer to a function that returns a pointer to the provider’s data. For more information, see
CGDataProviderGetBytePointerCallback (page 169).

releaseBytePointer
A pointer to a function that Quartz calls to release a pointer to the provider’s data. For more information,
see CGDataProviderReleaseBytePointerCallback (page 172).

getBytesAtPosition
A pointer to a function that copies data from the provider.

releaseInfo
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 174).

Discussion
You supply a CGDataProviderDirectCallbacks structure to the function
CGDataProviderCreateDirect (page 162) to create a data provider for direct access. The functions specified
by the CGDataProviderDirectCallbacks structure are responsible for copying data a block at a time to
a memory buffer for Quartz to use. The functions are also responsible for handling the data provider’s basic
memory management. For the callback to work, one of the getBytePointer and getBytesAtPosition
parameters must be non-NULL. If both are non-NULL, then getBytePointer is used to access the data.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderSequentialCallbacks
Defines a structure containing pointers to client-defined callback functions that manage the sending of data
for a sequential-access data provider.

struct CGDataProviderSequentialCallbacks {
 unsigned int version;
 CGDataProviderGetBytesCallback getBytes;
 CGDataProviderSkipForwardCallback skipForward;
 CGDataProviderRewindCallback rewind;
 CGDataProviderReleaseInfoCallback releaseInfo;
};
typedef struct CGDataProviderSequentialCallbacks CGDataProviderSequentialCallbacks;

Fields
version

The version of this structure. It should be set to 0.

getBytes
A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesCallback (page 171).

skipForward
A pointer to a function that Quartz calls to advance the stream of data supplied by the provider.

rewind
A pointer to a function Quartz calls to return the provider to the beginning of the data stream. For
more information, see CGDataProviderRewindCallback (page 174).

Data Types 179
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

releaseInfo
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 174).

Discussion
The functions specified by the CGDataProviderSequentialCallbacks structure are responsible for
sequentially copying data to a memory buffer for Quartz to use. The functions are also responsible for handling
the data provider’s basic memory management. You supply a CGDataProviderCallbacks structure to the
function CGDataProviderCreateSequential (page 164) to create a sequential-access data provider.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

180 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGFont.h

Companion guide Quartz 2D Programming Guide

Overview

The CGFontRef opaque type encapsulates font information. A font is a set of shapes or glyphs associated
with a character set. A glyph can represent a single character (such as ‘b’), more than one character (such as
the “fi” ligature), or a special character such as a space. Quartz retrieves the glyphs for the font from ATS
(Apple Type Services) and paints the glyphs based on the relevant parameters of the current graphics state.

Quartz provides a limited, low-level interface for drawing text. For information on text-drawing functions,
see CGContext Reference. For full Unicode and text-layout support, use the services provided by Core Text or
ATSUI).

Functions by Task

Retaining and Releasing a CGFont Object

CGFontRelease (page 196)
Decrements the retain count of a Quartz font.

CGFontRetain (page 197)
Increments the retain count of a Quartz font.

Creating a CGFont Object

CGFontCreateWithDataProvider (page 189)
Creates a font object from data supplied from a data provider.

CGFontCreateWithFontName (page 189)
Creates a font object corresponding to the font specified by a PostScript or full name.

CGFontCreateCopyWithVariations (page 187)
Creates a copy of a font using a variation specification dictionary.

Overview 181
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontCreateWithPlatformFont (page 190) Deprecated in Mac OS X v10.6
Creates a font object from an Apple Type Services (ATS) font. (Deprecated. Use Core Text, documented
in Core Text Reference Collection, instead.)

Working With PostScript Fonts

CGFontCopyPostScriptName (page 184)
Obtains the PostScript name of a font.

CGFontCanCreatePostScriptSubset (page 183)
Determines whether Quartz can create a subset of the font in PostScript format.

CGFontCreatePostScriptSubset (page 188)
Creates a subset of the font in the specified PostScript format.

CGFontCreatePostScriptEncoding (page 187)
Creates a PostScript encoding of a font.

Working With Font Tables

CGFontCopyTableTags (page 185)
Returns an array of tags that correspond to the font tables for a font.

CGFontCopyTableForTag (page 185)
Returns the font table that corresponds to the provided tag.

Getting Font Information

CGFontGetTypeID (page 195)
Returns the Core Foundation type identifier for Quartz fonts.

CGFontCopyVariationAxes (page 186)
Returns an array of the variation axis dictionaries for a font.

CGFontCopyVariations (page 186)
Returns the variation specification dictionary for a font.

CGFontCopyFullName (page 184)
Returns the full name associated with a font object.

CGFontGetAscent (page 190)
Returns the ascent of a font.

CGFontGetDescent (page 191)
Returns the descent of a font.

CGFontGetLeading (page 194)
Returns the leading of a font.

CGFontGetCapHeight (page 191)
Returns the cap height of a font.

CGFontGetXHeight (page 196)
Returns the x-height of a font.

182 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetFontBBox (page 192)
Returns the bounding box of a font.

CGFontGetItalicAngle (page 194)
Returns the italic angle of a font.

CGFontGetStemV (page 195)
Returns the thickness of the dominant vertical stems of glyphs in a font.

CGFontGetGlyphBBoxes (page 193)
Get the bounding box of each glyph in an array.

CGFontGetGlyphWithGlyphName (page 193)
Returns the glyph for the glyph name associated with the specified font object.

CGFontCopyGlyphNameForGlyph (page 184)
Returns the glyph name of the specified glyph in the specified font.

CGFontGetNumberOfGlyphs (page 194)
Returns the number of glyphs in a font.

CGFontGetGlyphAdvances (page 192)
Gets the bound box of each glyph in the provided array.

CGFontGetUnitsPerEm (page 196)
Returns the number of glyph space units per em for the provided font.

Functions

CGFontCanCreatePostScriptSubset
Determines whether Quartz can create a subset of the font in PostScript format.

bool CGFontCanCreatePostScriptSubset (
 CGFontRef font,
 CGFontPostScriptFormat format
);

Parameters
font

A font object.

Return Value
Returns true if a subset in the PostScript format can be created for the font; false otherwise.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

Functions 183
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/

CGFontCopyFullName
Returns the full name associated with a font object.

CFStringRef CGFontCopyFullName (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The full name associated with the font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyGlyphNameForGlyph
Returns the glyph name of the specified glyph in the specified font.

CFStringRef CGFontCopyGlyphNameForGlyph (
 CGFontRef font
 CGGlyph glyph
);

Parameters
font

A font object.

glyph
The glyph whose name is desired.

Return Value
The name of the specified glyph, or NULL if the glyph isn’t associated with the font object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyPostScriptName
Obtains the PostScript name of a font.

184 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CFStringRef CGFontCopyPostScriptName (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The PostScript name of the font.

Discussion

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCopyTableForTag
Returns the font table that corresponds to the provided tag.

CFDataRef CGFontCopyTableForTag(
 CGFontRef font,
 uint32_t tag
);

Parameters
font

A font object.

tag
The tag for the table you want to obtain.

Return Value
The font table that corresponds to the tag, or NULL if no such table exists.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyTableTags
Returns an array of tags that correspond to the font tables for a font.

CFArrayRef CGFontCopyTableTags(
 CGFontRef font
);

Parameters
font

A CGFont object.

Functions 185
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Return Value
An array of font table tags.

Discussion
Each entry in the returned array is a four-byte value that represents a single TrueType or OpenType font table
tag. To obtain a tag at index k in a manner that is appropriate for 32-bit and 64-bit architectures, you need
to use code similar to the following:

tag = (uint32_t)(uintptr_t)CFArrayGetValue(table, k);

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyVariationAxes
Returns an array of the variation axis dictionaries for a font.

CFArrayRef CGFontCopyVariationAxes (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
An array of the variation axis dictionaries. Returns NULL if the font doesn't support variations.

Discussion
A variation axis is a range included in a font by the font designer that allows a font to produce different type
styles. Each variation axis dictionary contains key-value pairs that specify the variation axis name and the
minimum, maximum, and default values for that variation axis.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCopyVariations
Returns the variation specification dictionary for a font.

CFDictionaryRef CGFontCopyVariations (
 CGFontRef font
);

Parameters
font

A font object.

186 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Return Value
The variation specification dictionary for the font. Returns NULL if the font doesn't support variations.

Discussion
The variation specification dictionary contains keys that correspond to the variation axis names of the font.
Each key is a variation axis name. The value for each key is the value specified for that particular variation
axis represented as a CFNumber object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCreateCopyWithVariations
Creates a copy of a font using a variation specification dictionary.

CGFontRef CGFontCreateCopyWithVariations (
 CGFontRef font,
 CFDictionaryRef variations
);

Parameters
font

The Quartz font to copy.

variations
A variation specification dictionary that contains keys corresponding to the variation axis names of
the font. Each key in the dictionary is a variation axis name. The value for each key is the value specified
for that particular variation axis represented as a CFNumber object. If a variation axis name is not
specified in variations, then the current value from font is used.

Return Value
The font object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCreatePostScriptEncoding
Creates a PostScript encoding of a font.

CFDataRef CGFontCreatePostScriptEncoding (
 CGFontRef font,
 const CGGlyph encoding[256]
);

Parameters
font

A CGFont object.

Functions 187
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

encoding
The encoding to use.

Return Value
A PostScript encoding of the font that contains glyphs in the specified encoding.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCreatePostScriptSubset
Creates a subset of the font in the specified PostScript format.

CFDataRef CGFontCreatePostScriptSubset (
 CGFontRef font,
 CFStringRef subsetName,
 CGFontPostScriptFormat format,
 const CGGlyph glyphs[],
 size_t count,
 const CGGlyph encoding[256]
);

Parameters
font

A font object.

subsetName
The name of the subset.

format
The PostScript format of the font.

glyphs
An array that contains the glyphs in the subset.

count
The number of glyphs specified by the glyphs array.

encoding
The default encoding for the subset. You can pass NULL if you do not want to specify an encoding.

Return Value
A subset of the font created from the supplied parameters.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

188 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/
http://partners.adobe.com/

Declared In
CGFont.h

CGFontCreateWithDataProvider
Creates a font object from data supplied from a data provider.

CGFontRef CGFontCreateWithDataProvider (
 CGDataProviderRef provider
);

Parameters
provider

A data provider.

Return Value
The font object or NULL if the font can't be created. You are responsible for releasing this object using
CGFontRelease (page 196).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state by calling the
function CGContextSetFontSize (page 116).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCreateWithFontName
Creates a font object corresponding to the font specified by a PostScript or full name.

CGFontRef CGFontCreateWithFontName (
 CFStringRef name
);

Parameters
name

The PostScript or full name of a font.

Return Value
The font object or NULL if the font can't be created. You are responsible for releasing this object using
CGFontRelease (page 196).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state by calling the
function CGContextSetFont (page 116).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

Functions 189
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontCreateWithPlatformFont
Creates a font object from an Apple Type Services (ATS) font. (Deprecated in Mac OS X v10.6. Use Core Text,
documented in Core Text Reference Collection, instead.)

CGFontRef CGFontCreateWithPlatformFont (
 void *platformFontReference
);

Parameters
platformFontReference

A generic pointer to a font object. The font should be of a type appropriate to the platform on which
your program is running. For Mac OS X, you should pass a pointer to an ATS font.

Return Value
The font object, or NULL if the platform font could not be located. You are responsible for releasing this
object using CGFontRelease (page 196).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state. For ATS Fonts,
call this function to create a Quartz font, and pass it to CGContextSetFont (page 116).

Special Considerations

This function is deprecated because it takes a pointer to an ATSFontRef object—itself deprecated—and is
used almost solely by QuickDraw-based applications. There's no direct one-to-one replacement for the
function; however, Apple recommends that clients using ATSUI and QuickDraw move to Core Text and Core
Graphics instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
CGFont.h

CGFontGetAscent
Returns the ascent of a font.

int CGFontGetAscent (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The ascent of the font.

Discussion
The ascent is the maximum distance above the baseline of glyphs in a font. The value is specified in glyph
space units.

Availability
Available in Mac OS X v10.5 and later.

190 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Declared In
CGFont.h

CGFontGetCapHeight
Returns the cap height of a font.

int CGFontGetCapHeight (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The cap height of the font.

Discussion
The cap height is the distance above the baseline of the top of flat capital letters of glyphs in a font. The
value is specified in glyph space units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetDescent
Returns the descent of a font.

int CGFontGetDescent (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The descent of the font .

Discussion
The descent is the maximum distance below the baseline of glyphs in a font. The value is specified in glyph
space units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

Functions 191
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetFontBBox
Returns the bounding box of a font.

CGRect CGFontGetFontBBox (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The bounding box of the font.

Discussion
The font bounding box is the union of all of the bounding boxes for all the glyphs in a font. The value is
specified in glyph space units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetGlyphAdvances
Gets the bound box of each glyph in the provided array.

bool CGFontGetGlyphAdvances (
 CGFontRef font,
 const CGGlyph glyphs[],
 size_t count,
 int advances[]
);

Parameters
font

The font object associated with the provided glyphs.

glyphs
An array of glyphs.

count
The number of glyphs in the array.

advances
On output, an array of of advances for the provided glyphs.

Return Value
TRUE unless the advances can’t be provided for some reason.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

192 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetGlyphBBoxes
Get the bounding box of each glyph in an array.

bool CGFontGetGlyphBBoxes (
 CGFontRef font,
 const CGGlyph glyphs[],
 size_t count,
 CGRect bboxes[]
);

Parameters
font

A font object.

glyphs
A array of glyphs.

count
The number of items in the glyphs array.

bboxes
On return, the bounding boxes for each glyph.

Return Value
false if bounding boxes can't be retrieved for any reason; true otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetGlyphWithGlyphName
Returns the glyph for the glyph name associated with the specified font object.

CGGlyph CGFontGetGlyphWithGlyphName (
 CGFontRef font
 CFStringRef name
);

Parameters
font

A font object.

name
The name of the desired glyph.

Return Value
The named glyph, or 0 if the named glyph isn’t associated with the font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

Functions 193
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetItalicAngle
Returns the italic angle of a font.

CGFloat CGFontGetItalicAngle (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The italic angle of the font, measured in degrees counter-clockwise from the vertical.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetLeading
Returns the leading of a font.

int CGFontGetLeading (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The leading of the font.

Discussion
The leading is the spacing between consecutive lines of text in a font. The value is specified in glyph space
units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetNumberOfGlyphs
Returns the number of glyphs in a font.

194 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

size_t CGFontGetNumberOfGlyphs (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
The number of glyphs in the provided font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetStemV
Returns the thickness of the dominant vertical stems of glyphs in a font.

CGFloat CGFontGetItalicAngle (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The thickness of the dominant vertical stems of glyphs in a font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetTypeID
Returns the Core Foundation type identifier for Quartz fonts.

CFTypeID CGFontGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGFontRef (page 197).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFont.h

Functions 195
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetUnitsPerEm
Returns the number of glyph space units per em for the provided font.

int CGFontGetUnitsPerEm (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
The number of glyph space units per em for the provided font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetXHeight
Returns the x-height of a font.

int CGFontGetXHeight (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The x-height of the font.

Discussion
The x-height is the distance above the baseline of the top of flat, non-ascending lowercase letters (such as
x) of glyphs in a font. The value is specified in glyph space units.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontRelease
Decrements the retain count of a Quartz font.

196 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

void CGFontRelease (
 CGFontRef font
);

Parameters
font

The Quartz font to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the font parameter is
NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGFont.h

CGFontRetain
Increments the retain count of a Quartz font.

CGFontRef CGFontRetain (
 CGFontRef font
);

Parameters
font

The Quartz font to retain.

Return Value
The same font you specified in the font parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the font parameter is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGFont.h

Data Types

CGFontRef
An opaque type that encapsulates font information.

typedef struct CGFont *CGFontRef;

Availability
Available in Mac OS X v10.0 and later.

Data Types 197
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Declared In
CGFont.h

CGFontIndex
An index into a font table.

typedef unsigned short CGFontIndex;

Discussion
This integer type provides an additional way to specify a glyph identifier. CGFontIndex is equivalent to
CGGlyph (page 198), and you can use constants of either type interchangeably.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFont.h

CGGlyph
An index into the internal glyph table of a font.

typedef unsigned short CGGlyph;

Discussion
When drawing text, you typically specify a sequence of characters. However, Quartz also allows you to use
CGGlyph values to specify glyphs. In either case, Quartz renders the text using font data provided by the
Apple Type Services (ATS) framework.

You provide CGGlyph values to the functions CGContextShowGlyphs (page 132) and
CGContextShowGlyphsAtPoint (page 133). These functions display an array of glyphs at the current text
position or at a position you specify, respectively.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGFont.h

Constants

CGFontPostScriptFormat
Possible formats for a PostScript font subset.

198 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

enum CGFontPostScriptFormat {
 kCGFontPostScriptFormatType1 = 1,
 kCGFontPostScriptFormatType3 = 3,
 kCGFontPostScriptFormatType42 = 42
};
typedef enum CGFontPostScriptFormat CGFontPostScriptFormat;

Constants
kCGFontPostScriptFormatType1

This is documented in Adobe Type 1 Font Format, which is available from http://partners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontPostScriptFormatType3
This is documented in PostScript Language Reference, 3rd edition, which is available from http://part-
ners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontPostScriptFormatType42
This is documented in Adobe Technical Note 5012, The Type 42 Font Format Specification, which is
available from http://partners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

Font Table Index Values
Possible values for an index into a font table.

enum {
 kCGFontIndexMax = ((1 << 16) - 2),
 kCGFontIndexInvalid = ((1 << 16) - 1),
 kCGGlyphMax = kCGFontIndexMax
};

Constants
kCGFontIndexMax

The maximum allowed value for CGFontIndex (page 198).

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

kCGFontIndexInvalid
An invalid font index (a value which never represents a valid glyph).

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

kCGGlyphMax
The same as kCGFontIndexMax (page 199).

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

Discussion
See CGFontIndex (page 198).

Constants 199
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/
http://partners.adobe.com/
http://partners.adobe.com/
http://partners.adobe.com/

Obsolete Font Table Index Values
Deprecated values for an index into a font table. (Deprecated. Use kCGGlyphMax (page 199) instead.)

enum {
 CGGlyphMin = 0,
 CGGlyphMax = kCGGlyphMax
};

Constants
CGGlyphMin

Minimum font index value.

Available in Mac OS X v10.0 and later.

Declared in CGFont.h.

CGGlyphMax
Maximum font index value.

Available in Mac OS X v10.0 and later.

Declared in CGFont.h.

Font Variation Axis Keys
Keys used for a font variation axis dictionary.

const CFStringRef kCGFontVariationAxisName
const CFStringRef kCGFontVariationAxisMinValue
const CFStringRef kCGFontVariationAxisMaxValue
const CFStringRef kCGFontVariationAxisDefaultValue

Constants
kCGFontVariationAxisName

The key used to obtain the variation axis name from a variation axis dictionary. The value obtained
with this key is a CFStringRef that specifies the name of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontVariationAxisMinValue
The key used to obtain the minimum variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the minimum value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontVariationAxisMaxValue
The key used to obtain the maximum variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the maximum value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

200 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

kCGFontVariationAxisDefaultValue
The key used to obtain the default variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the default value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

Constants 201
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

202 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGFunction.h

Companion guide Quartz 2D Programming Guide

Overview

The CGFunctionRef opaque type provides a general facility for defining and using callback functions. These
functions can take an arbitrary number of floating-point input values and pass back an arbitrary number of
floating-point output values.

Quartz uses CGFunction objects to implement shadings. CGShading Reference describes the parameters and
semantics required for the callbacks used by CGFunction objects.

Functions by Task

Creating a CGFunction Object

CGFunctionCreate (page 204)
Creates a Quartz function.

Retaining and Releasing CGFunction Objects

CGFunctionRelease (page 205)
Decrements the retain count of a function object.

CGFunctionRetain (page 205)
Increments the retain count of a function object.

Getting the CFType ID

CGFunctionGetTypeID (page 205)
Returns the type identifier for Quartz function objects.

Overview 203
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Functions

CGFunctionCreate
Creates a Quartz function.

CGFunctionRef CGFunctionCreate (
 void *info,
 size_t domainDimension,
 const CGFloat *domain,
 size_t rangeDimension,
 const CGFloat *range,
 const CGFunctionCallbacks *callbacks
);

Parameters
info

A pointer to user-defined storage for data that you want to pass to your callbacks. You need to make
sure that the data persists for as long as it’s needed, which can be beyond the scope in which the
Quartz function is used.

domainDimension
The number of inputs.

domain
An array of (2*domainDimension) floats used to specify the valid intervals of input values. For each
k from 0 to (domainDimension - 1), domain[2*k]must be less than or equal to domain[2*k+1],
and the kth input value will be clipped to lie in the interval domain[2*k] ≤ input[k] ≤
domain[2*k+1]. If this parameter is NULL, then the input values are not clipped.

rangeDimension
The number of outputs.

range
An array of (2*rangeDimension) floats that specifies the valid intervals of output values. For each
k from 0 to (rangeDimension - 1), range[2*k] must be less than or equal to range[2*k+1],
and the kth output value will be clipped to lie in the interval range[2*k] ≤ output[k] ≤
range[2*k+1]. If this parameter is NULL, then the output values are not clipped.

callbacks
A pointer to a callback function table. This table should contain pointers to the callbacks you provide
to implement the semantics of this Quartz function. Quartz makes a copy of your table, so, for example,
you could safely pass in a pointer to a structure on the stack.

Return Value
The new Quartz function. You are responsible for releasing this object using CGFunctionRelease (page
205).

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
Quartz 2D Shadings
SampleRaster

204 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Declared In
CGFunction.h

CGFunctionGetTypeID
Returns the type identifier for Quartz function objects.

CFTypeID CGFunctionGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGFunctionRef (page 207).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

CGFunctionRelease
Decrements the retain count of a function object.

void CGFunctionRelease (
 CGFunctionRef function
);

Parameters
function

The function object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the function parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
Quartz 2D Shadings
SampleRaster

Declared In
CGFunction.h

CGFunctionRetain
Increments the retain count of a function object.

Functions 205
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

CGFunctionRef CGFunctionRetain (
 CGFunctionRef function
);

Parameters
function

The same function object you passed in as the function parameter.

Return Value
Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the function parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
Quartz 2D Shadings

Declared In
CGFunction.h

Callbacks

CGFunctionEvaluateCallback
Performs custom operations on the supplied input data to produce output data.

typedef void (*CGFunctionEvaluateCallback) (
 void *info,
 const float *inData,
 float *outData
);

If you name your function MyCGFunctionEvaluate, you would declare it like this:

void MyCGFunctionEvaluate (
 void *info,
 const float *inData,
 float *outData
);

Parameters
info

The info parameter passed to CGFunctionCreate (page 204).

inData
An array of floats. The size of the array is that specified by the domainDimension parameter passed
to the CGFunctionCreate (page 204) function.

206 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

outData
An array of floats. The size of the array is that specified by the rangeDimension parameter passed
to the CGFunctionCreate (page 204) function.

Discussion
The callback you write is responsible for implementing the calculation of output values from the supplied
input values. For example, if you want to implement a simple "squaring" function of one input argument to
one output argument, your evaluation function might be:

void evaluateSquare(void *info, const float *inData, float *outData)
{
 outData[0] = inData[0] * inData[0];
}

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFunction.h

CGFunctionReleaseInfoCallback
Performs custom clean-up tasks when Quartz deallocates a CGFunction object.

typedef void (*CGFunctionReleaseInfoCallback) (
 void *info
);

If you name your function MyCGFunctionReleaseInfo, you would declare it like this:

void MyCGFunctionReleaseInfo (
 void *info
);

Parameters
info

The info parameter passed to CGFunctionCreate (page 204).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFunction.h

Data Types

CGFunctionRef
An opaque type that represents a callback function.

Data Types 207
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

typedef struct CGFunction *CGFunctionRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

CGFunctionCallbacks
A structure that contains callbacks needed by a CGFunction object.

struct CGFunctionCallbacks
{
 unsigned int version;
 CGFunctionEvaluateCallback evaluate;
 CGFunctionReleaseInfoCallback releaseInfo
};

typedef struct CGFunctionCallbacks CGFunctionCallbacks;

Fields
version

The structure version number. For this structure, the version should be 0.

evaluate
The callback that evaluates the function.

releaseInfo
If non-NULL, the callback used to release the info parameter passed to CGFunctionCreate (page
204).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFunction.h

208 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Derived From: CGContextRef (page 141)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGLContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGGLContext header file defines functions that create and update a graphics context for OpenGL drawing.
A CGGLContext context is a type of CGContextRef (page 141) that is used for OpenGL content. However, its
use is not recommended.

Functions

CGGLContextCreate
Creates a Quartz graphics context from an OpenGL context. (Deprecated in Mac OS X v10.6.)

CGContextRef CGGLContextCreate (
 void *glContext,
 CGSize size,
 CGColorSpaceRef colorspace
);

Parameters
glContext

The context that the OpenGL system uses to manage OpenGL drawing.

size
The dimensions of the OpenGL viewport rectangle.

colorspace
An RGB color space that serves as the destination space when rendering device-independent colors.
If NULL, Quartz uses the default RGB color space. Quartz retains the color space you pass in; on return,
you may safely release it.

Return Value
A new Quartz graphics context. You are responsible for releasing this object by calling
CGContextRelease (page 101).

Overview 209
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

CGGLContext Reference

Discussion
The use of this function is not recommended.

Creates a Quartz context from the OpenGL context glContext. The context establishes an OpenGL viewport
rectangle with dimensions specified by the size parameter by calling glViewport(3G). If non-NULL, the
colorspace parameter should be an RGB profile that specifies the destination space when rendering
device-independent colors.

Availability
Available in Mac OS X version 10.3 and later.
Deprecated in Mac OS X v10.6.

Declared In
CGGLContext.h

CGGLContextUpdateViewportSize
Updates the size of the viewport associated with an OpenGL context. (Deprecated in Mac OS X v10.6.)

void CGGLContextUpdateViewportSize (
 CGContextRef c,
 CGSize size
);

Parameters
context

A Quartz graphics context obtained by calling CGGLContextCreate (page 209).

size
The new dimensions of the OpenGL viewport.

Discussion
The use of this function is not recommended.

You should call this function whenever the size of the associated OpenGL context changes.

Availability
Available in Mac OS X version 10.3 and later.
Deprecated in Mac OS X v10.6.

Declared In
CGGLContext.h

210 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

CGGLContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGradient.h

Companion guide Quartz 2D Programming Guide

Overview

A gradient defines a smooth transition between colors across an area. The CGGradientRef opaque type,
and the functions that operate on it, make creating and using radial and axial gradient fills an easy task. A
CGGradient object has a color space, two or more colors, and a location for each color. The color space cannot
be a pattern or indexed color space, otherwise it can be any Quartz color space (CGColorSpaceRef (page
52)).

Colors can be provided as component values (such as red, green, blue) or as Quartz color objects
(CGColorRef (page 35)). In Quartz, component can vary from 0.0 to 1.0, designating the proportion of the
component present in the color.

A location is a normalized value. When it comes time to paint the gradient, Quartz maps the normalized
location values to the points in coordinate space that you provide.

If you want more precise control over gradients, or if your application runs in versions of Mac OS X that are
earlier than v10.5, see CGShading Reference.

Functions by Task

Creating a CGGradient Object

CGGradientCreateWithColorComponents (page 212)
Creates a CGGradient object from a color space and the provided color components and locations.

CGGradientCreateWithColors (page 213)
Creates a CGGradient object from a color space and the provided color objects and locations.

Overview 211
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Retaining and Releasing a CGGradient Object

CGGradientRelease (page 214)
Decrements the retain count of a CGGradient object.

CGGradientRetain (page 214)
Increments the retain count of a CGGradient object.

Getting the Type ID for a CGGradient Object

CGGradientGetTypeID (page 214)
Returns the Core Foundation type identifier for CGGradient objects.

Functions

CGGradientCreateWithColorComponents
Creates a CGGradient object from a color space and the provided color components and locations.

CGGradientRef CGGradientCreateWithColorComponents(
 CGColorSpaceRef space,
 const CGFloat components[],
 const CGFloat locations[],
 size_t count
);

Parameters
space

The color space to use for the gradient. You cannot use a pattern or indexed color space.

components
The color components for each color that defines the gradient. The components should be in the
color space specified by space. If you are unsure of the number of components, you can call the
function CGColorSpaceGetNumberOfComponents (page 50).

The number of items in this array should be the product of count and the number of components
in the color space. For example, if the color space is an RGBA color space and you want to use two
colors in the gradient (one for a starting location and another for an ending location), then you need
to provide 8 values in components—red, green, blue, and alpha values for the first color, followed
by red, green, blue, and alpha values for the second color.

locations
The location for each color provided in components. Each location must be a CGFloat value in the
range of 0 to 1, inclusive. If 0 and 1 are not in the locations array, Quartz uses the colors provided
that are closest to 0 and 1 for those locations.

If locations is NULL, the first color in colors is assigned to location 0, the last color incolors is
assigned to location 1, and intervening colors are assigned locations that are at equal intervals in
between.

count
The number of locations provided in the locations parameters.

212 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Return Value
A CGGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGContextDrawLinearGradient (page 85)
CGContextDrawRadialGradient (page 88)

Related Sample Code
OpenCL NBody Simulation Example

Declared In
CGGradient.h

CGGradientCreateWithColors
Creates a CGGradient object from a color space and the provided color objects and locations.

CGGradientRef CGGradientCreateWithColors(
 CGColorSpaceRef space,
 CFArrayRef colors,
 const CGFloat locations[]
);

Parameters
space

The color space to use for the gradient. You cannot use a pattern or indexed color space.

colors
A non-empty array of CGColor objects that should be in the color space specified by space. If space
is not NULL, each color will be converted (if necessary) to that color space and the gradient will drawn
in that color space. Otherwise, each color will be converted to and drawn in the GenericRGB color
space.

locations
The location for each color provided in colors; each location must be a CGFloat value in the range
of 0 to 1, inclusive. If 0 and 1 are not in the locations array, Quartz uses the colors provided that
are closest to 0 and 1 for those locations.

If locations is NULL, the first color in colors is assigned to location 0, the last color incolors is
assigned to location 1, and intervening colors are assigned locations that are at equal intervals in
between.

The locations array should contain the same number of items as the colors array.

Return Value
A CGGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGContextDrawLinearGradient (page 85)
CGContextDrawRadialGradient (page 88)

Functions 213
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Related Sample Code
Quartz 2D Shadings

Declared In
CGGradient.h

CGGradientGetTypeID
Returns the Core Foundation type identifier for CGGradient objects.

CFTypeID CGGradientGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGGradientRef.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGGradient.h

CGGradientRelease
Decrements the retain count of a CGGradient object.

void CGGradientRelease (
 CGGradientRef gradient
);

Parameters
gradient

The gradient object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the gradient parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
OpenCL NBody Simulation Example
Quartz 2D Shadings

Declared In
CGGradient.h

CGGradientRetain
Increments the retain count of a CGGradient object.

214 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

CGGradientRef CGGradientRetain(
 CGGradientRef gradient
);

Parameters
gradient

The gradient object to retain.

Return Value
The same gradient object that you passed in as the gradient parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the gradient parameter
is NULL.

Availability
Available in Mac OS X version 10.5 and later.

Related Sample Code
Quartz 2D Shadings

Declared In
CGGradient.h

Data Types

CGGradientRef
An opaque type that represents a Quartz gradient.

typedef struct CGGradient *CGGradientRef;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGradient.h

Constants

Gradient Drawing Options
Drawing locations for gradients.

Data Types 215
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

enum {
 kCGGradientDrawsBeforeStartLocation = (1 << 0),
 kCGGradientDrawsAfterEndLocation = (1 << 1)
};
typedef enum CGGradientDrawingOptions CGGradientDrawingOptions;

Constants
kCGGradientDrawsBeforeStartLocation

The fill should extend beyond the starting location. The color that extends beyond the starting point
is the solid color defined by the CGGradient object to be at location 0.

Available in Mac OS X v10.5 and later.

Declared in CGGradient.h.

kCGGradientDrawsAfterEndLocation
The fill should extend beyond the ending location. The color that extends beyond the ending point
is the solid color defined by the CGGradient object to be at location 1.

Available in Mac OS X v10.5 and later.

Declared in CGGradient.h.

Declared In
CGGradient.h

216 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGImage.h

Companion guide Quartz 2D Programming Guide

Overview

The CGImageRef opaque type represents bitmap images and bitmap image masks, based on sample data
that you supply. A bitmap (or sampled) image is a rectangular array of pixels, with each pixel representing
a single sample or data point in a source image.

Functions by Task

Creating Bitmap Images

CGImageCreate (page 219)
Creates a bitmap image from data supplied by a data provider.

CGImageCreateCopy (page 220)
Creates a copy of a bitmap image.

CGImageCreateCopyWithColorSpace (page 221)
Create a copy of a bitmap image, replacing its colorspace.

CGImageCreateWithJPEGDataProvider (page 222)
Creates a bitmap image using JPEG-encoded data supplied by a data provider.

CGImageCreateWithPNGDataProvider (page 224)
Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.

CGImageCreateWithImageInRect (page 221)
Creates a bitmap image using the data contained within a subregion of an existing bitmap image.

CGImageCreateWithMask (page 223)
Creates a bitmap image from an existing image and an image mask.

CGImageCreateWithMaskingColors (page 224)
Creates a bitmap image by masking an existing bitmap image with the provided color values.

Overview 217
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Creating an Image Mask

CGImageMaskCreate (page 232)
Creates a bitmap image mask from data supplied by a data provider.

Retaining and Releasing Images

CGImageRetain (page 234)
Increments the retain count of a bitmap image.

CGImageRelease (page 233)
Decrements the retain count of a bitmap image.

Getting the CFType ID

CGImageGetTypeID (page 230)
Returns the type identifier for Quartz bitmap images.

Getting Information About an Image

CGImageGetAlphaInfo (page 225)
Returns the alpha channel information for a bitmap image.

CGImageGetBitmapInfo (page 226)
Returns the bitmap information for a bitmap image.

CGImageGetBitsPerComponent (page 226)
Returns the number of bits allocated for a single color component of a bitmap image.

CGImageGetBitsPerPixel (page 227)
Returns the number of bits allocated for a single pixel in a bitmap image.

CGImageGetBytesPerRow (page 227)
Returns the number of bytes allocated for a single row of a bitmap image.

CGImageGetColorSpace (page 228)
Return the color space for a bitmap image.

CGImageGetDataProvider (page 228)
Returns the data provider for a bitmap image.

CGImageGetDecode (page 228)
Returns the decode array for a bitmap image.

CGImageGetHeight (page 229)
Returns the height of a bitmap image.

CGImageGetShouldInterpolate (page 230)
Returns the interpolation setting for a bitmap image.

CGImageGetRenderingIntent (page 230)
Returns the rendering intent setting for a bitmap image.

CGImageGetWidth (page 231)
Returns the width of a bitmap image.

218 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageIsMask (page 231)
Returns whether a bitmap image is an image mask.

Functions

CGImageCreate
Creates a bitmap image from data supplied by a data provider.

CGImageRef CGImageCreate (
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bitsPerPixel,
 size_t bytesPerRow,
 CGColorSpaceRef colorspace,
 CGBitmapInfo bitmapInfo,
 CGDataProviderRef provider,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
width

The width, in pixels, of the required image.

height
The height, in pixels, of the required image

bitsPerComponent
The number of bits for each component in a source pixel. For example, if the source image uses the
RGBA-32 format, you would specify 8 bits per component.

bitsPerPixel
The total number of bits in a source pixel. This value must be at least bitsPerComponent times the
number of components per pixel.

bytesPerRow
The number of bytes of memory for each horizontal row of the bitmap.

colorspace
The color space for the image. Quartz retains the color space you pass in; on return, you may safely
release it.

bitmapInfo
A CGBitmapInfo constant that specifies whether the bitmap should contain an alpha channel and
its relative location in a pixel, along with whether the components are floating-point or integer values.

provider
The source of data for the bitmap. For information about supported data formats, see the discussion
below. Quartz retains this object; on return, you may safely release it.

Functions 219
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

decode
The decode array for the image. If you do not want to allow remapping of the image’s color values,
pass NULL for the decode array. For each color component in the image’s color space (including the
alpha component), a decode array provides a pair of values denoting the upper and lower limits of
a range. For example, the decode array for a source image in the RGB color space would contain six
entries total, consisting of one pair each for red, green, and blue. When the image is rendered, Quartz
uses a linear transform to map the original component value into a relative number within your
designated range that is appropriate for the destination color space.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image. Without interpolation, the
image may appear jagged or pixelated when drawn on an output device with higher resolution than
the image data.

intent
A rendering intent constant that specifies how Quartz should handle colors that are not located within
the gamut of the destination color space of a graphics context. The rendering intent determines the
exact method used to map colors from one color space to another. For descriptions of the defined
rendering-intent constants, see Color Rendering Intents (page 55).

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
233).

Discussion
The data provider should provide raw data that matches the format specified by the other input parameters.
To use encoded data (for example, from a file specified by a URL-based data provider), see
CGImageCreateWithJPEGDataProvider (page 222) and CGImageCreateWithPNGDataProvider (page
224). In Mac OS X version 10.3 and later, you can also use the QuickTime function
GraphicsImportCreateCGImage to decode an image file in any supported format and create a CGImage,
in a single operation.

For information on supported pixel formats, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CIVideoDemoGL
GLSL Showpiece Lite
MassiveImage
MovieVideoChart
Quartz EB

Declared In
CGImage.h

CGImageCreateCopy
Creates a copy of a bitmap image.

220 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageRef CGImageCreateCopy (
 CGImageRef image
);

Parameters
image

The image to copy.

Return Value
An copy of the image specified by the image parameter.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateCopyWithColorSpace
Create a copy of a bitmap image, replacing its colorspace.

CGImageRef CGImageCreateCopyWithColorSpace (
 CGImageRef image,
 CGColorSpaceRef colorspace
);

Parameters
image

The graphics image to copy.

colorspace
The destination color space. The number of components in this color space must be the same as the
number in the specified image.

Return Value
A new Quartz image that is a copy of the image passed as the image parameter but with its color space
replaced by that specified by the colorspace parameter. Returns NULL if image is an image mask, or if the
number of components of colorspace is not the same as the number of components of the colorspace of
image. You are responsible for releasing this object using CGImageRelease (page 233).

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
ImageApp

Declared In
CGImage.h

CGImageCreateWithImageInRect
Creates a bitmap image using the data contained within a subregion of an existing bitmap image.

Functions 221
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageRef CGImageCreateWithImageInRect (
 CGImageRef image,
 CGRect rect
);

Parameters
image

The image to extract the subimage from.

rect
A rectangle whose coordinates specify the area to create an image from.

Return Value
A CGImage object that specifies a subimage of the image. If the rect parameter defines an area that is not
in the image, returns NULL.

Discussion
Quartz performs these tasks to create the subimage:

 ■ Adjusts the area specified by the rect parameter to integral bounds by calling the function
CGRectIntegral.

 ■ Intersects the result with a rectangle whose origin is (0,0) and size is equal to the size of the image
specified by the image parameter.

 ■ References the pixels within the resulting rectangle, treating the first pixel within the rectangle as the
origin of the subimage.

If W and H are the width and height of image, respectively, then the point (0,0) corresponds to the first pixel
of the image data. The point (W–1, 0) is the last pixel of the first row of the image data while (0, H–1) is
the first pixel of the last row of the image data and (W–1, H–1) is the last pixel of the last row of the image
data.

The resulting image retains a reference to the original image, which means you may release the original
image after calling this function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithJPEGDataProvider
Creates a bitmap image using JPEG-encoded data supplied by a data provider.

CGImageRef CGImageCreateWithJPEGDataProvider (
 CGDataProviderRef source,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
source

A data provider supplying JPEG-encoded data.

222 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
233).

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGImage.h

CGImageCreateWithMask
Creates a bitmap image from an existing image and an image mask.

CGImageRef CGImageCreateWithMask (
 CGImageRef image,
 CGImageRef mask
);

Parameters
image

The image to apply the mask parameter to. This image must not be an image mask and may not have
an image mask or masking color associated with it.

mask
A mask. If the mask is an image, it must be in the DeviceGray color space, must not have an alpha
component, and may not itself be masked by an image mask or a masking color. If the mask is not
the same size as the image specified by the image parameter, then Quartz scales the mask to fit the
image.

Return Value
An image created by masking image with mask. You are responsible for releasing this object by calling
CGImageRelease (page 233).

Discussion
The resulting image depends on whether the mask parameter is an image mask or an image. If the mask
parameter is an image mask, then the source samples of the image mask act as an inverse alpha value. That
is, if the value of a source sample in the image mask is S, then the corresponding region in image is blended
with the destination using an alpha value of (1-S). For example, if S is 1, then the region is not painted, while
if S is 0, the region is fully painted.

If the mask parameter is an image, then it serves as an alpha mask for blending the image onto the destination.
The source samples of mask' act as an alpha value. If the value of the source sample in mask is S, then the
corresponding region in image is blended with the destination with an alpha of S. For example, if S is 0, then
the region is not painted, while if S is 1, the region is fully painted.

Functions 223
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithMaskingColors
Creates a bitmap image by masking an existing bitmap image with the provided color values.

CGImageRef CGImageCreateWithMaskingColors (
 CGImageRef image,
 const CGFloat components[]
);

Parameters
image

The image to mask. This parameter may not be an image mask, may not already have an image mask
or masking color associated with it, and cannot have an alpha component.

components
An array of color components that specify a color or range of colors to mask the image with. The array
must contain 2N values { min[1], max[1], ... min[N], max[N] } where N is the number of components
in color space of image. Each value in components must be a valid image sample value. If image has
integer pixel components, then each value must be in the range [0 .. 2**bitsPerComponent - 1]
(where bitsPerComponent is the number of bits/component of image). If image has floating-point
pixel components, then each value may be any floating-point number which is a valid color component.

Return Value
An image created by masking image with the colors specified in the components array. You are responsible
for releasing this object by calling CGImageRelease (page 233).

Discussion
Any image sample with color value {c[1], ... c[N]} where min[i] <= c[i] <= max[i] for 1 <= i <= N is masked out
(that is, not painted). This means that anything underneath the unpainted samples, such as the current fill
color, shows through.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithPNGDataProvider
Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.

224 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageRef CGImageCreateWithPNGDataProvider (
 CGDataProviderRef source,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
source

A data provider supplying PNG-encoded data.

decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
233).

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
DockBrowser
Fireworks

Declared In
CGImage.h

CGImageGetAlphaInfo
Returns the alpha channel information for a bitmap image.

CGImageAlphaInfo CGImageGetAlphaInfo (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
A CGImageAlphaInfo constant that specifies (1) whether the bitmap contains an alpha channel, (2) where
the alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. For possible
values, see “Constants” (page 235). The function returns kCGImageAlphaNone if the image parameter refers
to an image mask.

Discussion
The alpha value is what determines the opacity of a pixel when it is drawn.

Functions 225
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitmapInfo
Returns the bitmap information for a bitmap image.

CGBitmapInfo CGImageGetBitmapInfo (
 CGImageRef image
);

Parameters
image

An image.

Return Value
The bitmap information associated with an image.

Discussion
This function returns a constant that specifies:

 ■ The type of bitmap data—floating point or integer. You use the constant kCGBitmapFloatComponents
to extract this information.

 ■ Whether an alpha channel is in the data, and if so, how the alpha data is stored. You use the constant
kCGBitmapAlphaInfoMask to extract the alpha information. Alpha information is specified as one of
the constants listed in “Alpha Information for Images” (page 235).

You can extract the alpha information

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageGetBitsPerComponent
Returns the number of bits allocated for a single color component of a bitmap image.

size_t CGImageGetBitsPerComponent (
 CGImageRef image
);

Parameters
image

The image to examine.

226 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Return Value
The number of bits used in memory for each color component of the specified bitmap image (or image
mask). Possible values are 1, 2, 4, or 8. For example, for a 16-bit RGB(A) colorspace, the function would return
a value of 4 bits per color component.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitsPerPixel
Returns the number of bits allocated for a single pixel in a bitmap image.

size_t CGImageGetBitsPerPixel (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The number of bits used in memory for each pixel of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBytesPerRow
Returns the number of bytes allocated for a single row of a bitmap image.

size_t CGImageGetBytesPerRow (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The number of bytes used in memory for each row of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

Functions 227
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageGetColorSpace
Return the color space for a bitmap image.

CGColorSpaceRef CGImageGetColorSpace (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The source color space for the specified bitmap image, or NULL if the image is an image mask. You are
responsible for retaining and releasing the color space as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
FunHouse
ImageApp
Quartz 2D Transformer

Declared In
CGImage.h

CGImageGetDataProvider
Returns the data provider for a bitmap image.

CGDataProviderRef CGImageGetDataProvider (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The data provider for the specified bitmap image (or image mask). You are responsible for retaining and
releasing the data provider as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetDecode
Returns the decode array for a bitmap image.

228 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

const CGFloat * CGImageGetDecode (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The decode array for a bitmap image (or image mask). See the discussion for a description of possible return
values.

Discussion
For a bitmap image or image mask, for each color component in the source color space, the decode array
contains a pair of values denoting the upper and lower limits of a range. When the image is rendered, Quartz
uses a linear transform to map the original component value into a relative number, within the designated
range, that is appropriate for the destination color space. If remapping of the image’s color values is not
allowed, the returned value will be NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetHeight
Returns the height of a bitmap image.

size_t CGImageGetHeight (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The height in pixels of the bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
DockBrowser
GeekGameBoard
GLSL Showpiece Lite
ImageApp
ImproveYourImage

Declared In
CGImage.h

Functions 229
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageGetRenderingIntent
Returns the rendering intent setting for a bitmap image.

CGColorRenderingIntent CGImageGetRenderingIntent (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
Returns the CGColorRenderingIntent constant that specifies how Quartz should handle colors that are
not located within the gamut of the destination color space of a graphics context in which the image is
drawn. If the image is an image mask, this function returns kCGRenderingIntentDefault.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetShouldInterpolate
Returns the interpolation setting for a bitmap image.

bool CGImageGetShouldInterpolate (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
Returns 1 if interpolation is enabled for the specified bitmap image (or image mask), otherwise, returns 0.

Discussion
The interpolation setting specifies whether Quartz should apply an edge-smoothing algorithm to the associated
image.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetTypeID
Returns the type identifier for Quartz bitmap images.

230 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CFTypeID CGImageGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGImageRef (page 234).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGImage.h

CGImageGetWidth
Returns the width of a bitmap image.

size_t CGImageGetWidth (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The width, in pixels, of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
DockBrowser
GeekGameBoard
GLSL Showpiece Lite
ImageApp
ImproveYourImage

Declared In
CGImage.h

CGImageIsMask
Returns whether a bitmap image is an image mask.

bool CGImageIsMask (
 CGImageRef image
);

Parameters
image

The image to examine.

Functions 231
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Return Value
A Boolean value that indicates whether the image passed in the image parameter is an image mask (true
indicates that the image is an image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageMaskCreate
Creates a bitmap image mask from data supplied by a data provider.

CGImageRef CGImageMaskCreate (
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bitsPerPixel,
 size_t bytesPerRow,
 CGDataProviderRef provider,
 const CGFloat decode[],
 bool shouldInterpolate
);

Parameters
width

The width, in pixels, of the required image mask.

height
The height, in pixels, of the required image mask.

bitsPerComponent
The number of significant masking bits in a source pixel. For example, if the source image is an 8-bit
mask, you specify 8 bits per component. Image masks must be 1, 2, 4, or 8 bits per component.

bitsPerPixel
The total number of bits in a source pixel.

bytesPerRow
The number of bytes to use for each horizontal row of the image mask.

provider
The data source for the image mask.

decode
Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply an edge-smoothing algorithm to the image mask.

Return Value
A Quartz bitmap image mask. You are responsible for releasing this object by calling CGImageRelease (page
233).

232 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
A Quartz bitmap image mask is used the same way an artist uses a silkscreen, or a sign painter uses a stencil.
The bitmap represents a mask through which a color is transferred. The bitmap itself does not have a color.
It gets its color from the fill color currently set in the graphics state.

When you draw into a context with a bitmap image mask, Quartz uses the mask to determine where and
how the current fill color is applied to the image rectangle. Each sample value in the mask specifies how
much of the current fill color is masked out at a specific location. Effectively, the sample value specifies the
opacity of the mask. Larger values represent greater opacity and hence less color applied to the page.

Image masks must be 1, 2, 4, or 8 bits per component. For a 1-bit mask, a sample value of 1 specifies sections
of the mask that are masked out; these sections block the current fill color. A sample value of 0 specifies
sections of the mask that are not masked out; these sections show the current fill color of the graphics state
when the mask is painted. You can think of the sample values as an inverse alpha. That is, a value of 1 is
transparent and 0 is opaque.

For image masks that are 2, 4, or 8 bits per component, each component is mapped to a range of 0 to 1 by
scaling using this formula:

1/(2^bits per component – 1)

For example, a 4-bit mask has values that range from 0 to 15. These values are scaled by 1/15 so that each
component ranges from 0 to 1. Component values that rescale to 0 or 1 behave the same way as they behave
for 1-bit image masks. Values that scale to between 0 and 1 act as an inverse alpha. That is, the fill color is
painted as if it has an alpha value of (1 – MaskSampleValue). For example, if the sample value of an 8-bit
mask scales to 0.8, the current fill color is painted as if it has an alpha value of 0.2, that is (1–0.8).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageRelease
Decrements the retain count of a bitmap image.

void CGImageRelease (
 CGImageRef image
);

Parameters
image

The image to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CIAnnotation
GLSL Showpiece Lite

Functions 233
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

ImageApp
MovieVideoChart
Son of Grab

Declared In
CGImage.h

CGImageRetain
Increments the retain count of a bitmap image.

CGImageRef CGImageRetain (
 CGImageRef image
);

Parameters
image

The image to retain.

Return Value
The same image you passed in as the image parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
ImageApp
MovieVideoChart

Declared In
CGImage.h

Data Types

CGImageRef
An opaque type that encapsulates bitmap image information.

typedef struct CGImage *CGImageRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGImage.h

234 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Constants

Alpha Information for Images
Storage options for alpha component data.

enum CGImageAlphaInfo {
 kCGImageAlphaNone,
 kCGImageAlphaPremultipliedLast,
 kCGImageAlphaPremultipliedFirst,
 kCGImageAlphaLast,
 kCGImageAlphaFirst,
 kCGImageAlphaNoneSkipLast,
 kCGImageAlphaNoneSkipFirst
};
typedef enum CGImageAlphaInfo CGImageAlphaInfo;

Constants
kCGImageAlphaFirst

The alpha component is stored in the most significant bits of each pixel. For example, non-premultiplied
ARGB.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaLast
The alpha component is stored in the least significant bits of each pixel. For example, non-premultiplied
RGBA.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaNone
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNoneSkipLast.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaNoneSkipFirst
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the most significant bits are ignored.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaOnly
There is no color data, only an alpha channel.

Available in Mac OS X v10.3 and later.

Declared in CGImage.h.

Constants 235
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

kCGImageAlphaNoneSkipLast
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNone.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaPremultipliedFirst
The alpha component is stored in the most significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied ARGB.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaPremultipliedLast
The alpha component is stored in the least significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied RGBA.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

Discussion
A CGImageAlphaInfo constant specifies (1) whether a bitmap contains an alpha channel, (2) where the
alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. You can obtain a
CGImageAlphaInfo constant for an image by calling the function CGImageGetAlphaInfo (page 225). (You
provide a CGBitmapInfo constant to the function CGImageCreate (page 219), part of which is a
CGImageAlphaInfo constant.)

Quartz accomplishes alpha blending by combining the color components of the source image with the color
components of the destination image using the linear interpolation formula, where “source” is one color
component of one pixel of the new paint and “destination” is one color component of the background image.

Quartz supports premultiplied alpha only for images. You should not premultiply any other color values
specified in Quartz.

Declared In
CGImage.h

Image Bitmap Information
Component information for a bitmap image.

enum {
 kCGBitmapAlphaInfoMask = 0x1F,
 kCGBitmapFloatComponents = (1 << 8),

236 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

 kCGBitmapByteOrderMask = 0x7000,
 kCGBitmapByteOrderDefault = (0 << 12),
 kCGBitmapByteOrder16Little = (1 << 12),
 kCGBitmapByteOrder32Little = (2 << 12),
 kCGBitmapByteOrder16Big = (3 << 12),
 kCGBitmapByteOrder32Big = (4 << 12)
};
typedef uint32_t CGBitmapInfo;

Constants
kCGBitmapAlphaInfoMask

The alpha information mask. Use this to extract alpha information that specifies whether a bitmap
contains an alpha channel and how the alpha channel is generated.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapFloatComponents
The components of a bitmap are floating-point values.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrderMask
The byte ordering of pixel formats.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrderDefault
The default byte order.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder16Little
16-bit, little endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder32Little
32-bit, little endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder16Big
16-bit, big endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder32Big
32-bit, big endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

Constants 237
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
Applications that store pixel data in memory using ARGB format must take care in how they read data. If the
code is not written correctly, it’s possible to misread the data which leads to colors or alpha that appear
wrong. The Quartz byte order constants specify the byte ordering of pixel formats. To specify byte ordering
to Quartz use a bitwise OR operator to combine the appropriate constant with the bitmapInfo parameter.

Host Endian Bitmap Formats
Bit-depth constants for image bitmaps in host-endian byte order.

#ifdef __BIG_ENDIAN__
#define kCGBitmapByteOrder16Host kCGBitmapByteOrder16Big
#define kCGBitmapByteOrder32Host kCGBitmapByteOrder32Big
#else
#define kCGBitmapByteOrder16Host kCGBitmapByteOrder16Little
#define kCGBitmapByteOrder32Host kCGBitmapByteOrder32Little
#endif

Constants
kCGBitmapByteOrder16Host

16-bit, host endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder32Host
32-bit, host endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

238 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Derived From: CFType

Framework: ApplicationServices/ImageIO

Declared in CGImageDestination.h

Companion guide Quartz 2D Programming Guide

Overview

CGImageDestination objects, available in Mac OS X v10.4 or later, abstract the data-writing task. An image
destination can represent a single image or multiple images. It can contain thumbnail images as well as
properties for each image.

The functions described in this reference can write data to three kinds of destinations: a URL, a CFData object,
and a data consumer. After creating a CGImageDestination object for the appropriate destination, you can
add image data and set image properties. When you are finished adding data, call the function
CGImageDestinationFinalize to write the image data and properties to the URL, CFData object, or data
consumer.

Functions by Task

Creating Image Destinations

CGImageDestinationCreateWithDataConsumer (page 242)
Creates an image destination that writes to the specified data consumer.

CGImageDestinationCreateWithData (page 242)
Creates an image destination that writes to a Core Foundation mutable data object.

CGImageDestinationCreateWithURL (page 243)
Creates an image destination that writes to a location specified by a URL.

Adding Images

CGImageDestinationAddImage (page 240)
Adds an image to an image destination.

CGImageDestinationAddImageFromSource (page 241)
Adds an image from an image source to an image destination.

Overview 239
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Getting Type Identifiers

CGImageDestinationCopyTypeIdentifiers (page 241)
Returns an array of the uniform type identifiers (UTIs) that are supported for image destinations.

CGImageDestinationGetTypeID (page 244)
Returns the unique type identifier of an image destination opaque type.

Setting Properties

CGImageDestinationSetProperties (page 245)
Applies one or more properties to all images in an image destination.

Finalizing an Image Destination

CGImageDestinationFinalize (page 244)
Writes image data and properties to the data, URL, or data consumer associated with the image
destination.

Functions

CGImageDestinationAddImage
Adds an image to an image destination.

void CGImageDestinationAddImage (
 CGImageDestinationRef idst,
 CGImageRef image,
 CFDictionaryRef properties
);

Parameters
idst

An image destination

image
The image to add.

properties
An optional dictionary that specifies the properties of the added image. The dictionary can contain
any of the properties described in “Destination Properties” (page 246) or the image properties
described in CGImageProperties Reference.

Discussion
The function logs an error if you add more images than what you specified when you created the image
destination.

Availability
Available in Mac OS X version 10.4 and later.

240 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Related Sample Code
FunHouse
ImageKitDemo
Quartz 2D Transformer
Quartz2DBasics
UnsharpMask

Declared In
CGImageDestination.h

CGImageDestinationAddImageFromSource
Adds an image from an image source to an image destination.

void CGImageDestinationAddImageFromSource (
 CGImageDestinationRef idst,
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef properties
);

Parameters
idst

An image destination.

isrc
An image source.

index
An index that specifies the location of the image in the image source. The index is zero-based.

properties
A dictionary that specifies properties to overwrite or add to the source image properties. If a key in
properties has the value kCFNull, the corresponding property in the image destination is removed.
The dictionary can contain any of the properties described in “Destination Properties” (page
246) or the image properties described in CGImageProperties Reference.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCopyTypeIdentifiers
Returns an array of the uniform type identifiers (UTIs) that are supported for image destinations.

CFArrayRef CGImageDestinationCopyTypeIdentifiers (
 void
);

Return Value
Returns an array of the UTIs that are supported for image destinations. See Uniform Type Identifiers Overview
for a list of system-declared and third-party UTIs that can be returned.

Functions 241
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCreateWithData
Creates an image destination that writes to a Core Foundation mutable data object.

CGImageDestinationRef CGImageDestinationCreateWithData (
 CFMutableDataRef data,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
data

The data object to write to. For more information on data objects, see CFData Reference and Data
Objects.

type
The uniform type identifier (UTI) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
FunHouse
UnsharpMask

Declared In
CGImageDestination.h

CGImageDestinationCreateWithDataConsumer
Creates an image destination that writes to the specified data consumer.

242 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

CGImageDestinationRef CGImageDestinationCreateWithDataConsumer (
 CGDataConsumerRef consumer,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
consumer

The data consumer to write to. For information on data consumers see CGDataConsumer Reference
and Quartz 2D Programming Guide.

type
The uniform type identifier (UTI) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCreateWithURL
Creates an image destination that writes to a location specified by a URL.

CGImageDestinationRef CGImageDestinationCreateWithURL (
 CFURLRef url,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
url

The URL to write to. If the URL already exists, the data at this location is overwritten.

type
The UTI (uniform type identifier) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Functions 243
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CIVideoDemoGL
ImageApp
ImageKitDemo
Quartz 2D Transformer
Quartz2DBasics

Declared In
CGImageDestination.h

CGImageDestinationFinalize
Writes image data and properties to the data, URL, or data consumer associated with the image destination.

bool CGImageDestinationFinalize (
 CGImageDestinationRef idst
);

Parameters
idst

An image destination.

Return Value
Returns true if the image is successfully written; false otherwise.

Discussion
You must call this function or the output of the image destination will not be valid. After calling this function,
no additional data can be added to the image destination.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CIAnnotation
From A View to A Movie
FunHouse
ImageKitDemo
UnsharpMask

Declared In
CGImageDestination.h

CGImageDestinationGetTypeID
Returns the unique type identifier of an image destination opaque type.

244 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

CFTypeID CGImageDestinationGetTypeID (
 void
);

Return Value
Returns the Core Foundation type ID for an image destination.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationSetProperties
Applies one or more properties to all images in an image destination.

void CGImageDestinationSetProperties (
 CGImageDestinationRef idst,
 CFDictionaryRef properties
);

Parameters
idst

An image destination.

properties
A dictionary that contains the properties to apply. You can set any of the properties described in
“Destination Properties” (page 246) or the image properties described in CGImageProperties
Reference.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

Data Types

CGImageDestinationRef
An opaque type that represents an image destination.

typedef struct CGImageDestination *CGImageDestinationRef;

Availability
Available in Mac OS X v10.4 and later.

Data Types 245
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Declared In
CGImageDestination.h

Constants

Destination Properties
Properties for a single image in an image destination.

const CFStringRef kCGImageDestinationLossyCompressionQuality
const CFStringRef kCGImageDestinationBackgroundColor

Constants
kCGImageDestinationLossyCompressionQuality

The desired compression quality to use when writing to an image destination. If present, the value
associated with this key must be a CFNumberRef data type in the range 0.0 to 1.0. A value of 1.0
specifies to use lossless compression if destination format supports it. A value of 0.0 implies to use
maximum compression.

Available in Mac OS X v10.4 and later.

Declared in CGImageDestination.h.

kCGImageDestinationBackgroundColor
The desired background color to composite against when writing an image that has an alpha
component to a destination format that does not support alpha. If present, the value associated with
this key must be a CGColorRef (page 35) data type without an alpha component of its own. If not
present, and if a background color is needed, a white color is used.

Available in Mac OS X v10.4 and later.

Declared in CGImageDestination.h.

Declared In
CGImageDestination.h

246 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Derived From: CFType

Framework: ApplicationServices/ImageIO

Declared in CGImageSource.h

Companion guides Quartz 2D Programming Guide
CGImage Reference

Overview

CGImageSource objects, available in Mac OS X v10.4 or later, abstract the data-reading task. An image source
can read image data from a URL, a CFData object, or a data consumer.

After creating a CGImageSource object for the appropriate source, you can obtain images, thumbnails, image
properties, and other image information using CGImageSource functions.

Functions by Task

Creating an Image Source

CGImageSourceCreateWithDataProvider (page 253)
Creates an image source that reads data from the specified data provider.

CGImageSourceCreateWithData (page 252)
Creates an image source that reads from a Core Foundation data object.

CGImageSourceCreateWithURL (page 253)
Creates an image source that reads from a location specified by a URL.

Creating Images From an Image Source

CGImageSourceCreateImageAtIndex (page 250)
Creates a CGImage object for the image data associated with the specified index in an image source.

CGImageSourceCreateThumbnailAtIndex (page 251)
Creates a thumbnail image of the image located at a specified location in an image source.

CGImageSourceCreateIncremental (page 251)
Create an incremental image source.

Overview 247
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Updating an Image Source

CGImageSourceUpdateData (page 256)
Updates an incremental image source with new data.

CGImageSourceUpdateDataProvider (page 257)
Updates an incremental image source with a new data provider.

Getting Information From an Image Source

CGImageSourceGetTypeID (page 256)
Returns the unique type identifier of an image source opaque type.

CGImageSourceGetType (page 255)
Returns the uniform type identifier of the source container.

CGImageSourceCopyTypeIdentifiers (page 250)
Returns an array of uniform type identifiers (UTIs) that are supported for image sources.

CGImageSourceGetCount (page 254)
Returns the number of images (not including thumbnails) in the image source.

CGImageSourceCopyProperties (page 248)
Returns the properties of the image source.

CGImageSourceCopyPropertiesAtIndex (page 249)
Returns the properties of the image at a specified location in an image source.

CGImageSourceGetStatus (page 254)
Return the status of an image source.

CGImageSourceGetStatusAtIndex (page 255)
Returns the current status of an image that is at a specified location in an image source.

Functions

CGImageSourceCopyProperties
Returns the properties of the image source.

CFDictionaryRef CGImageSourceCopyProperties (
 CGImageSourceRef isrc,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

options
A dictionary you can use to request additional options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

248 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Return Value
A dictionary that contains the properties associated with the image source container. See CGImageProperties
Reference for a list of properties that can be in the dictionary.

Discussion
These properties apply to the container in general but not necessarily to any individual image contained in
the image source.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
ImageApp

Declared In
CGImageSource.h

CGImageSourceCopyPropertiesAtIndex
Returns the properties of the image at a specified location in an image source.

CFDictionaryRef CGImageSourceCopyPropertiesAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index of the image whose properties you want to obtain. The index is zero-based.

options
A dictionary you can use to request additional options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
A dictionary that contains the properties associated with the image. See CGImageProperties Reference for a
list of properties that can be in the dictionary.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CocoaSlides
ImageApp
Quartz 2D Transformer

Declared In
CGImageSource.h

Functions 249
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

CGImageSourceCopyTypeIdentifiers
Returns an array of uniform type identifiers (UTIs) that are supported for image sources.

CFArrayRef CGImageSourceCopyTypeIdentifiers (
 void
);

Return Value
Returns an array of the UTIs that are supported for image sources.

Discussion
See Uniform Type Identifiers Overview for a list of system-declared and third-party UTIs.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CIAnnotation
ImageBrowserViewAppearance
NSOperationSample
Quartz 2D Transformer

Declared In
CGImageSource.h

CGImageSourceCreateImageAtIndex
Creates a CGImage object for the image data associated with the specified index in an image source.

CGImageRef CGImageSourceCreateImageAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index that specifies the location of the image. The index is zero-based.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
Returns a CGImage object. You are responsible for releasing this object using CGImageRelease (page 233).

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
GeekGameBoard
ImageKitDemo

250 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Quartz2DBasics
QuartzCache
SeeMyFriends

Declared In
CGImageSource.h

CGImageSourceCreateIncremental
Create an incremental image source.

CGImageSourceRef CGImageSourceCreateIncremental (
 CFDictionaryRef options
);

Parameters
options

A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
Returns an image source object. You are responsible for releasing this object using CFRelease.

Discussion
The function CGImageSourceCreateIncremental creates an empty image source container to which you
can add data later by calling the functions CGImageSourceUpdateDataProvider or
CGImageSourceUpdateData. You don’t provide data when you call this function.

An incremental image is an image that is created in chunks, similar to the way large images viewed over the
web are loaded piece by piece.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateThumbnailAtIndex
Creates a thumbnail image of the image located at a specified location in an image source.

CGImageRef CGImageSourceCreateThumbnailAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index that specifies the location of the image. The index is zero-based.

Functions 251
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
A CGImage object. You are responsible for releasing this object using CGImageRelease (page 233).

Discussion
If the image source is a PDF, this function creates a 72 dpi image of the PDF page specified by the index
that you pass. You must, however, pass an options dictionary that contains either the
kCGImageSourceCreateThumbnailFromImageIfAbsent
or kCGImageSourceCreateThumbnailFromImageAlways keys, with the value of the key set to TRUE.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
Aperture Image Resizer
CocoaSlides
ImageApp
PhotoSearch

Declared In
CGImageSource.h

CGImageSourceCreateWithData
Creates an image source that reads from a Core Foundation data object.

CGImageSourceRef CGImageSourceCreateWithData (
 CFDataRef data,
 CFDictionaryRef options
);

Parameters
data

The data object to read from. For more information on data objects, see CFData Reference and Data
Objects.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
Aperture Image Resizer
FunHouse
GeekGameBoard
SeeMyFriends

252 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Declared In
CGImageSource.h

CGImageSourceCreateWithDataProvider
Creates an image source that reads data from the specified data provider.

CGImageSourceRef CGImageSourceCreateWithDataProvider (
 CGDataProviderRef provider,
 CFDictionaryRef options
);

Parameters
provider

The data provider to read from. For more information on data providers, see CGDataProvider Reference
and Quartz 2D Programming Guide.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateWithURL
Creates an image source that reads from a location specified by a URL.

CGImageSourceRef CGImageSourceCreateWithURL (
 CFURLRef url,
 CFDictionaryRef options
);

Parameters
url

The URL to read from.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 258) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
GeekGameBoard

Functions 253
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

ImageApp
ImageKitDemo
Quartz2DBasics
QuartzCache

Declared In
CGImageSource.h

CGImageSourceGetCount
Returns the number of images (not including thumbnails) in the image source.

size_t CGImageSourceGetCount (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
The number of images. If the image source is a multilayered PSD file, the function returns 1.

Discussion
This function does not extract the layers of a PSD file.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceGetStatus
Return the status of an image source.

CGImageSourceStatus CGImageSourceGetStatus (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
Returns the current status of the image source. See “Image Source Status” (page 257) for a list of possible
values.

Discussion
The status is particularly informative for incremental image sources, but may also be used by clients that
provide non-incremental data.

Availability
Available in Mac OS X version 10.4 and later.

254 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Declared In
CGImageSource.h

CGImageSourceGetStatusAtIndex
Returns the current status of an image that is at a specified location in an image source.

CGImageSourceStatus CGImageSourceGetStatusAtIndex (
 CGImageSourceRef isrc,
 size_t index
);

Parameters
isrc

An image source.

index
The index of the image whose status you want to obtain. The index is zero-based.

Return Value
Returns the current status of the image. See “Image Source Status” (page 257) for a list of possible values.

Discussion
The status is particularly informative for incremental image sources, but may also be used by clients that
provide non-incremental data.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceGetType
Returns the uniform type identifier of the source container.

CFStringRef CGImageSourceGetType (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
The uniform type identifier of the image.

Discussion
The uniform type identifier (UTI) of the source container can be different from the type of the images in the
container. For example, the .icns format supports embedded JPEG2000. The type of the source container
is "com.apple.icns" but type of the images is JPEG2000.

See Uniform Type Identifier Concepts for a list of system-declared and third-party UTIs.

Functions 255
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CocoaSlides
ImageApp

Declared In
CGImageSource.h

CGImageSourceGetTypeID
Returns the unique type identifier of an image source opaque type.

CFTypeID CGImageSourceGetTypeID (
 void
);

Return Value
Returns the Core Foundation type ID for an image source.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections. Note
that a CFType ID is different from a uniform type identifier (UTI).

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceUpdateData
Updates an incremental image source with new data.

void CGImageSourceUpdateData (
 CGImageSourceRef isrc,
 CFDataRef data,
 bool final
);

Parameters
isrc

An image source.

data
The data to add to the image source. Each time you call the function CGImageSourceUpdateData,
the data parameter must contain all of the image file data accumulated so far.

final
A value that specifies whether the data is the final set. Pass true if it is, false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

256 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Declared In
CGImageSource.h

CGImageSourceUpdateDataProvider
Updates an incremental image source with a new data provider.

void CGImageSourceUpdateDataProvider (
 CGImageSourceRef isrc,
 CGDataProviderRef provider,
 bool final
);

Parameters
isrc

An image source.

provider
The new data provider. The new data provider must provide all the previous data supplied to the
image source plus any additional new data.

final
A value that specifies whether the data is the final set. Pass true if it is, false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

Data Types

CGImageSourceRef
An opaque type that represents an image source.

typedef struct CGImageSource *CGImageSourceRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImageSource.h

Constants

Image Source Status
Status states for images and image sources.

Data Types 257
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

enum CGImageSourceStatus {
 kCGImageStatusUnexpectedEOF = -5,
 kCGImageStatusInvalidData = -4,
 kCGImageStatusUnknownType = -3,
 kCGImageStatusReadingHeader = -2,
 kCGImageStatusIncomplete = -1,
 kCGImageStatusComplete = 0
};
typedef enum CGImageSourceStatus CGImageSourceStatus;

Constants
kCGImageStatusUnexpectedEOF

The end of the file was encountered unexpectedly.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusInvalidData
The data is not valid.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusUnknownType
The image is an unknown type.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusReadingHeader
In the process of reading the header.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusIncomplete
The operation is not complete

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusComplete
The operation is complete.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Discussion
These status values are returned by the functions CGImageSourceGetStatus (page 254) and
CGImageSourceGetStatusAtIndex (page 255).

Declared In
CGImageSource.h

Image Source Option Dictionary Keys
Keys that you can include in the options dictionary to create an image source.

258 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

CFStringRef kCGImageSourceTypeIdentifierHint;
CFStringRef kCGImageSourceShouldAllowFloat;
CFStringRef kCGImageSourceShouldCache;
CFStringRef kCGImageSourceCreateThumbnailFromImageIfAbsent;
CFStringRef kCGImageSourceCreateThumbnailFromImageAlways;
CFStringRef kCGImageSourceThumbnailMaxPixelSize;
CFStringRef kCGImageSourceCreateThumbnailWithTransform

Constants
kCGImageSourceTypeIdentifierHint

The best guess of the uniform type identifier (UTI) for the format of the image source file. If specified,
the value of this key must be a CFString object. This key can be provided in the options dictionary
when you create a CGImageSource object.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceShouldAllowFloat
Whether the image should be returned as a CGImage object that uses floating-point values, if supported
by the file format. CGImage objects that use extended-range floating-point values may require
additional processing to render in a pleasing manner. The value of this key must be a CFBoolean
value. The default value is kCFBooleanFalse.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceShouldCache
Whether the image should be cached in a decoded form. The value of this key must be a CFBoolean
value. The default value is kCFBooleanTrue. This key can be provided in the options dictionary that
you can pass to the functions CGImageSourceCopyPropertiesAtIndex (page 249) and
CGImageSourceCreateImageAtIndex (page 250).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailFromImageIfAbsent
Whether a thumbnail should be automatically created for an image if a thumbnail isn't present in the
image source file. The thumbnail is created from the full image, subject to the limit specified by
kCGImageSourceThumbnailMaxPixelSize. If a maximum pixel size isn't specified, then the
thumbnail is the size of the full image, which in most cases is not desirable. This key must be a
CFBoolean value. The default value is kCFBooleanFalse. This key can be provided in the options
dictionary that you pass to the function CGImageSourceCreateThumbnailAtIndex (page 251).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailFromImageAlways
Whether a thumbnail should be created from the full image even if a thumbnail is present in the
image source file. The thumbnail is created from the full image, subject to the limit specified by
kCGImageSourceThumbnailMaxPixelSize. If a maximum pixel size isn't specified, then the
thumbnail is the size of the full image, which probably isn't what you want. This key must be a
CFBoolean value. The default value is kCFBooleanFalse. This key can be provided in the options
dictionary that you can pass to the function CGImageSourceCreateThumbnailAtIndex (page 251).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Constants 259
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

kCGImageSourceThumbnailMaxPixelSize
The maximum width and height in pixels of a thumbnail. If this key is not specified, the width and
height of a thumbnail is not limited and thumbnails may be as big as the image itself. If present, this
key must be a CFNumber value. This key can be provided in the options dictionary that you pass to
the function CGImageSourceCreateThumbnailAtIndex (page 251).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailWithTransform
Whether the thumbnail should be rotated and scaled according to the orientation and pixel aspect
ratio of the full image. The value of this key must be a CFBoolean value. The default value is
kCFBooleanFalse.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Discussion
Except for kCGImageSourceTypeIdentifierHint, which you use when creating an image source, these
constants specify options that you can set when creating an image from image source. Each constant is a
key; you must supply the appropriate value when you add this option to the options dictionary.

Declared In
CGImageSource.h

260 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGLayer.h

Overview

CGLayer objects are useful for offscreen drawing and can be used in much the same way that a bitmap
context can be used. In fact, a CGLayer object is a much better representation than a bitmap context.

Using CGLayer objects can improve performance, particularly when you need to capture a piece of drawing
that you stamp repeatedly (using the same scale factor and orientation). Quartz can cache CGLayer objects
to the video card, making drawing a CGLayer to a destination much faster than rendering the equivalent
image constructed from a bitmap context.

A CGLayer object is created relative to a graphics context. Although layer uses this graphics context as a
reference for initialization, you are not restricted to drawing the layer to this graphics context. You can draw
the layer to other graphics contexts, although any limitations of the original context are imposed. For example,
if you create a CGLayer object using a bitmap context, the layer is rendered as a bitmap when drawn to any
other graphics context.

You can use a CGLayer when you want to apply a shadow to a group of objects (such as a group of circles)
rather than to individual objects.

Use these layers in your code whenever you can, especially when:

 ■ You need to reuse a filled or stroked shape.

 ■ You are building a scene and at least some of it can be reused. Put the reusable drawing in its own
CGLayer.

Any CG object that you draw repeatedly—including CGPath, CGShading, and CGPDFPage—benefit from
improved performance if you draw it to a CGLayer object.

Functions by Task

Creating Layer Objects

CGLayerCreateWithContext (page 263)
Creates a CGLayer object that is associated with a graphics context.

Overview 261
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Drawing Layer Content

CGContextDrawLayerInRect (page 263)
Draws the contents of a CGLayer object into the specified rectangle.

CGContextDrawLayerAtPoint (page 262)
Draws the contents of a CGLayer object at the specified point.

Retaining and Releasing Layers

CGLayerRelease (page 266)
Decrements the retain count of a CGLayer object.

CGLayerRetain (page 266)
Increments the retain count of a CGLayer object.

Getting the CFType ID for a Layer

CGLayerGetTypeID (page 265)
Returns the unique type identifier used for CGLayer objects.

Getting Layer Information

CGLayerGetSize (page 265)
Returns the width and height of a CGLayer object.

CGLayerGetContext (page 264)
Returns the graphics context associated with a CGLayer object.

Functions

CGContextDrawLayerAtPoint
Draws the contents of a CGLayer object at the specified point.

void CGContextDrawLayerAtPoint (
 CGContextRef context,
 CGPoint point,
 CGLayerRef layer
);

Parameters
context

The graphics context associated with the layer.

point
The location, in current user space coordinates, to use as the origin for the drawing.

262 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

layer
The layer whose contents you want to draw.

Discussion
Calling the function CGContextDrawLayerAtPoint is equivalent to calling the function
CGContextDrawLayerInRect with a rectangle that has its origin at point and its size equal to the size of
the layer.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
Quartz2DBasics
QuartzCache

Declared In
CGLayer.h

CGContextDrawLayerInRect
Draws the contents of a CGLayer object into the specified rectangle.

void CGContextDrawLayerInRect (
 CGContextRef context,
 CGRect rect,
 CGLayerRef layer
);

Parameters
context

The graphics context associated with the layer.

rect
The rectangle, in current user space coordinates, to draw to.

layer
The layer whose contents you want to draw.

Discussion
The contents are scaled, if necessary, to fit into the rectangle.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerCreateWithContext
Creates a CGLayer object that is associated with a graphics context.

Functions 263
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

CGLayerRef CGLayerCreateWithContext (
 CGContextRef context,
 CGSize size,
 CFDictionaryRef auxiliaryInfo
);

Parameters
context

The graphics context you want to create the layer relative to. The layer uses this graphics context as
a reference for initialization.

size
The size, in default user space units, of the layer relative to the graphics context.

auxiliaryInfo
Reserved for future use. Pass NULL.

Return Value
A CGLayer object. You are responsible for releasing this object using the function CGLayerRelease (page
266) when you no longer need the layer.

Discussion
After you create a CGLayer object, you should reuse it whenever you can to facilitate the Quartz caching
strategy. Quartz caches any objects that are reused, including CGLayer objects. Objects that are reused
frequently remain in the cache. In contrast, objects that are used once in a while may be moved in and out
of the cache according to their frequency of use. If you don’t reuse CGLayer objects, Quartz won’t cache
them. This means that you lose an opportunity to improve the performance of your application.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
Quartz2DBasics
QuartzCache

Declared In
CGLayer.h

CGLayerGetContext
Returns the graphics context associated with a CGLayer object.

CGContextRef CGLayerGetContext (
 CGLayerRef layer
);

Parameters
layer

The layer whose graphics context you want to obtain.

Return Value
The graphics context associated with the layer.

Discussion
The context that’s returned is the context for the layer itself, not the context that you specified when you
created the layer.

264 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CIAnnotation
CIBevelSample
FunHouse
Quartz2DBasics
QuartzCache

Declared In
CGLayer.h

CGLayerGetSize
Returns the width and height of a CGLayer object.

CGSize CGLayerGetSize (
 CGLayerRef layer
);

Parameters
layer

The layer whose width and height you want to obtain.

Return Value
The width and height of the layer, in default user space coordinates.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
Quartz2DBasics

Declared In
CGLayer.h

CGLayerGetTypeID
Returns the unique type identifier used for CGLayer objects.

CFTypeID CGLayerGetTypeID (
 void
);

Return Value
The type identifier for CGLayer objects.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections.

Functions 265
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerRelease
Decrements the retain count of a CGLayer object.

void CGLayerRelease (
 CGLayerRef layer
);

Parameters
layer

The layer to release.

Discussion
This function is equivalent to calling CFRelease (layer) except that it does not crash (as CFRetain does)
if the layer parameter is null.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CIAnnotation
CIBevelSample
FunHouse
Quartz2DBasics

Declared In
CGLayer.h

CGLayerRetain
Increments the retain count of a CGLayer object.

CGLayerRef CGLayerRetain (
 CGLayerRef layer
);

Parameters
layer

The layer to retain.

Return Value
The same layer you passed in as the layer parameter.

Discussion
This function is equivalent to calling CFRetain (layer) except that it does not crash (as CFRetain does)
if the layer parameter is null.

266 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

Data Types

CGLayerRef
An opaque type used for offscreen drawing.

typedef struct CGLayer *CGLayerRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGLayer.h

Data Types 267
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

268 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPath.h

Companion guide Quartz 2D Programming Guide

Overview

A graphics path is a mathematical description of a series of shapes or lines. CGPathRef defines an opaque
type that represents an immutable graphics path. CGMutablePathRef defines an opaque type that represents
a mutable graphics path. Neither CGPathRef nor CGMutablePathRef define functions to draw a path. To
draw a Quartz path to a graphics context, you add the path to the graphics context by calling
CGContextAddPath (page 70) and then call one of the context’s drawing functions—see CGContext Reference.

Each figure in the graphics path is constructed with a connected set of lines and Bézier curves, called a
subpath. A subpath has an ordered set of path elements that represent single steps in the construction of
the subpath. (For example, a line segment from one corner of a rectangle to another corner is a path element.
Every subpath includes a starting point, which is the first point in the subpath. The path also maintains a
current point, which is the last point in the last subpath.

To append a new subpath onto a mutable path, your application typically calls CGPathMoveToPoint (page
286) to set the subpath’s starting point and initial current point, followed by a series of CGPathAdd* calls to
add line segments and curves to the subpath. As segments or curves are added to the subpath, the subpath’s
current point is updated to point to the end of the last segment or curve to be added. The lines and curves
of a subpath are always connected, but they are not required to form a closed set of lines. Your application
explicitly closes a subpath by calling CGPathCloseSubpath (page 280). Closing the subpath adds a line
segment that terminates at the subpath’s starting point, and also changes how those lines are rendered—for
more information see “Paths” in Quartz 2D Programming Guide.

Functions by Task

Creating and Managing Paths

CGPathCreateMutable (page 281)
Creates a mutable graphics path.

CGPathCreateMutableCopy (page 282)
Creates a mutable copy of an existing graphics path.

Overview 269
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathCreateCopy (page 281)
Creates an immutable copy of a graphics path.

CGPathRelease (page 286)
Decrements the retain count of a graphics path.

CGPathRetain (page 287)
Increments the retain count of a graphics path.

Modifying Quartz Paths

CGPathAddArc (page 271)
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

CGPathAddArcToPoint (page 272)
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

CGPathAddCurveToPoint (page 273)
Appends a cubic Bézier curve to a mutable graphics path.

CGPathAddLines (page 275)
Appends an array of new line segments to a mutable graphics path.

CGPathAddLineToPoint (page 275)
Appends a line segment to a mutable graphics path.

CGPathAddPath (page 276)
Appends a path to onto a mutable graphics path.

CGPathAddQuadCurveToPoint (page 277)
Appends a quadratic Bézier curve to a mutable graphics path.

CGPathAddRect (page 277)
Appends a rectangle to a mutable graphics path.

CGPathAddRects (page 278)
Appends an array of rectangles to a mutable graphics path.

CGPathApply (page 279)
For each element in a graphics path, calls a custom applier function.

CGPathMoveToPoint (page 286)
Starts a new subpath at a specified location in a mutable graphics path.

CGPathCloseSubpath (page 280)
Closes and completes a subpath in a mutable graphics path.

CGPathAddEllipseInRect (page 274)
Adds to a path an ellipse that fits inside a rectangle.

Getting Information about Quartz Paths

CGPathEqualToPath (page 282)
Indicates whether two graphics paths are equivalent.

CGPathGetBoundingBox (page 283)
Returns the bounding box containing all points in a graphics path.

270 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathGetPathBoundingBox (page 284)
Returns the bounding box of a graphics path.

CGPathGetCurrentPoint (page 283)
Returns the current point in a graphics path.

CGPathGetTypeID (page 284)
Returns the Core Foundation type identifier for Quartz graphics paths.

CGPathIsEmpty (page 285)
Indicates whether or not a graphics path is empty.

CGPathIsRect (page 285)
Indicates whether or not a graphics path represents a rectangle.

CGPathContainsPoint (page 280)
Checks whether a point is contained in a graphics path.

Functions

CGPathAddArc
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

void CGPathAddArc (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y,
 CGFloat radius,
 CGFloat startAngle,
 CGFloat endAngle,
 bool clockwise
);

Parameters
path

The mutable graphics path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the arc before it is added to the path.

x
The x-coordinate of the center point of the arc.

y
The y-coordinate of the center point of the arc.

r
The radius of the arc.

startAngle
The angle (in radians) from the horizontal that determines the starting point of the arc.

endAngle
The angle (in radians) from the horizontal that determines the ending point of the arc.

Functions 271
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

clockwise
A Boolean value that specifies whether or not to draw the arc in the clockwise direction, before
applying the transformation matrix.

Discussion
An arc is a segment of a circle with radius r centered at a point (x,y). When you call this function, you
provide the center point, radius, and two angles in radians. Quartz uses this information to determine the
end points of the arc, and then approximates the new arc using a sequence of cubic Bézier curves. The
clockwise parameter determines the direction in which the arc is created. The actual direction may change
depending on the coordinate system transformation applied to the path.

A transformation may be applied to the Bézier curves before they are added to the path. If no transform is
needed, the second argument should be NULL.

If the specified path already contains a subpath, Quartz implicitly adds a line connecting the subpath’s current
point to the beginning of the arc. If the path is empty, Quartz creates a new subpath with a starting point
set to the starting point of the arc.

The ending point of the arc becomes the new current point of the path.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathAddArcToPoint
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

void CGPathAddArcToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x1,
 CGFloat y1,
 CGFloat x2,
 CGFloat y2,
 CGFloat radius
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the arc before it is added to the path.

x1
The x-coordinate of the user space for the end point of the first tangent line. The first tangent line is
drawn from the current point to (x1,y1).

y1
The y-coordinate of the user space for the end point of the first tangent line. The first tangent line is
drawn from the current point to (x1,y1).

272 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

x2
The x-coordinate of the user space for the end point of the second tangent line. The second tangent
line is drawn from (x1,y1) to (x2,y2).

y2
The y-coordinate of the user space for the end point of the second tangent line. The second tangent
line is drawn from (x1,y1) to (x2,y2).

radius
The radius of the arc, in user space coordinates.

Discussion
This function uses a sequence of cubic Bézier curves to create an arc that is tangent to the line from the
current point to (x1,y1) and to the line from (x1,y1) to (x2,y2). The start and end points of the arc are located
on the first and second tangent lines, respectively. The start and end points of the arc are also the “tangent
points” of the lines.

If the current point and the first tangent point of the arc (the starting point) are not equal, Quartz appends
a straight line segment from the current point to the first tangent point.

The ending point of the arc becomes the new current point of the path.

For another way to draw an arc in a path, see CGPathAddArc (page 271).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathAddCurveToPoint
Appends a cubic Bézier curve to a mutable graphics path.

void CGPathAddCurveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat cp1x,
 CGFloat cp1y,
 CGFloat cp2x,
 CGFloat cp2y,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the curve before it is added to the path.

cx1
The x-coordinate of the first control point.

Functions 273
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

cy1
The y-coordinate of the first control point.

cx2
The x-coordinate of the second control point.

cy2
The y-coordinate of the second control point.

x
The x-coordinate of the end point of the curve.

y
The y-coordinate of the end point of the curve.

Discussion
Appends a cubic Bézier curve from the current point in a path to the specified location using two control
points, after an optional transformation. Before returning, this function updates the current point to the
specified location (x,y).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathAddEllipseInRect
Adds to a path an ellipse that fits inside a rectangle.

void CGPathAddEllipseInRect (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGRect rect
);

Parameters
path

The path to modify.

m
An affine transform to apply to the ellipse, or NULL if you don’t want to transform the ellipse.

rect
A rectangle to enclose the ellipse.

Discussion
The ellipse is approximated by a sequence of Bézier curves. Its center is the midpoint of the rectangle defined
by the rect parameter. If the rectangle is square, then the ellipse is circular with a radius equal to one-half
the width (or height) of the rectangle. If the rect parameter specifies a rectangular shape, then the major
and minor axes of the ellipse are defined by the width and height of the rectangle.

The ellipse forms a complete subpath of the path—that is, the ellipse drawing starts with a move-to operation
and ends with a close-subpath operation, with all moves oriented in the clockwise direction. If you supply
an affine transform, then the constructed Bézier curves that define the ellipse are transformed before they
are added to the path.

274 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz 2D Shadings

Declared In
CGPath.h

CGPathAddLines
Appends an array of new line segments to a mutable graphics path.

void CGPathAddLines (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 const CGPoint points[],
 size_t count
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the lines before adding them to the path.

points
An array of points that specifies the line segments to add.

count
The number of elements in the array.

Discussion
This is a convenience function that adds a sequence of connected line segments to a path, using the following
operation:

CGPathMoveToPoint (path, m, points[0].x, points[0].y);
for (k = 1; k < count; k++) {
 CGPathAddLineToPoint (path, m, points[k].x, points[k].y);
}

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
GeekGameBoard

Declared In
CGPath.h

CGPathAddLineToPoint
Appends a line segment to a mutable graphics path.

Functions 275
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

void CGPathAddLineToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the line before it is added to the path.

x
The x-coordinate of the end point of the line.

y
The y-coordinate of the end point of the line.

Discussion
Before returning, this function updates the current point to the specified location (x,y).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
Quartz 2D Shadings
Quartz2DBasics

Declared In
CGPath.h

CGPathAddPath
Appends a path to onto a mutable graphics path.

void CGPathAddPath (
 CGMutablePathRef path1,
 const CGAffineTransform *m,
 CGPathRef path2
);

Parameters
path1

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to path2 before it is added to path1.

path2
The path to add.

276 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Discussion
If the source path is non-empty, then its path elements are appended in order onto the mutable path. After
the call completes, the start point and current point of the path are those of the last subpath in path2.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathAddQuadCurveToPoint
Appends a quadratic Bézier curve to a mutable graphics path.

void CGPathAddQuadCurveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat cpx,
 CGFloat cpy,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the curve before adding it to the path.

cx
The x-coordinate of the control point.

cy
The y-coordinate of the control point.

x
The x-coordinate of the end point of the curve.

y
The y-coordinate of the end point of the curve.

Discussion
Before returning, this function updates the current point to the specified location (x, y).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathAddRect
Appends a rectangle to a mutable graphics path.

Functions 277
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

void CGPathAddRect (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGRect rect
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the rectangle before adding it to the path.

rect
The rectangle to add.

Discussion
This is a convenience function that adds a rectangle to a path, using the following sequence of operations:

// start at origin
CGPathMoveToPoint (path, m, CGRectGetMinX(rect), CGRectGetMinY(rect));

// add bottom edge
CGPathAddLineToPoint (path, m, CGRectGetMaxX(rect), CGRectGetMinY(rect));

// add right edge
CGPathAddLineToPoint (path, m, CGRectGetMaxX(rect), CGRectGetMaxY(rect);

// add top edge
CGPathAddLineToPoint (path, m, CGRectGetMinX(rect), CGRectGetMaxY(rect));

// add left edge and close
CGPathCloseSubpath (path);

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CoreTextRTF
CoreTextTest
Quartz 2D Shadings

Declared In
CGPath.h

CGPathAddRects
Appends an array of rectangles to a mutable graphics path.

278 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

void CGPathAddRects (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 const CGRect rects[],
 size_t count
);

Parameters
path

The mutable path to change.

m
An affine transformation matrix, or NULL if no transformation is needed. If specified, Quartz applies
the transformation to the rectangles before adding them to the path.

rects
The array of new rectangles to add.

count
The number of elements in the array.

Discussion
This is a convenience function that adds an array of rectangles to a path, using the following operation:

for (k = 0; k < count; k++) {
 CGPathAddRect (path, m, rects[k]);
}

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathApply
For each element in a graphics path, calls a custom applier function.

void CGPathApply (
 CGPathRef path,
 void *info,
 CGPathApplierFunction function
);

Parameters
path

The path to which the function will be applied.

info
A pointer to the user data that Quartz will pass to the function being applied, or NULL.

function
A pointer to the function to apply. See CGPathApplierFunction (page 287) for more information.

Discussion
For each element in the specified path, Quartz calls the applier function, which can examine (but not modify)
the element.

Functions 279
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathCloseSubpath
Closes and completes a subpath in a mutable graphics path.

void CGPathCloseSubpath (
 CGMutablePathRef path
);

Parameters
path

The path to change.

Discussion
Appends a line from the current point to the starting point of the current subpath and ends the subpath.

After closing the subpath, your application can begin a new subpath without first calling
CGPathMoveToPoint (page 286). In this case, a new subpath is implicitly created with a starting and current
point equal to the previous subpath’s starting point.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
GeekGameBoard
Quartz 2D Shadings
Quartz2DBasics

Declared In
CGPath.h

CGPathContainsPoint
Checks whether a point is contained in a graphics path.

bool CGPathContainsPoint (
 CGPathRef path,
 const CGAffineTransform *m,
 CGPoint point,
 bool eoFill
);

Parameters
path

The path to evaluate the point against.

280 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

m
An affine transform. If m is not NULL then the point is transformed by this affine transform prior to
determining whether the path contains the point.

point
The point to check.

eoFill
A Boolean value that, if true, specifies to use the even-odd fill rule to evaluate the painted region of
the path. If false, the winding fill rule is used.

Return Value
Returns true if the point is contained in the path; false otherwise.

Discussion
A point is contained in a path if it would be inside the painted region when the path is filled.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GeekGameBoard

Declared In
CGPath.h

CGPathCreateCopy
Creates an immutable copy of a graphics path.

CGPathRef CGPathCreateCopy (
 CGPathRef path
);

Parameters
path

The path to copy.

Return Value
A new, immutable copy of the specified path. You are responsible for releasing this object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathCreateMutable
Creates a mutable graphics path.

Functions 281
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGMutablePathRef CGPathCreateMutable (
 void
);

Return Value
A new mutable path. You are responsible for releasing this object.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
CoreTextRTF
CoreTextTest
Quartz 2D Shadings
Quartz2DBasics

Declared In
CGPath.h

CGPathCreateMutableCopy
Creates a mutable copy of an existing graphics path.

CGMutablePathRef CGPathCreateMutableCopy (
 CGPathRef path
);

Parameters
path

The path to copy.

Return Value
A new, mutable, copy of the specified path. You are responsible for releasing this object.

Discussion
You can modify a mutable graphics path by calling the various CGPath geometry functions, such as
CGPathAddArc (page 271), CGPathAddLineToPoint (page 275), and CGPathMoveToPoint (page 286).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathEqualToPath
Indicates whether two graphics paths are equivalent.

282 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

bool CGPathEqualToPath (
 CGPathRef path1,
 CGPathRef path2
);

Parameters
path1

The first path being compared.

path2
The second path being compared.

Return Value
A Boolean value that indicates whether or not the two specified paths contain the same sequence of path
elements. If the paths are not the same, returns false.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathGetBoundingBox
Returns the bounding box containing all points in a graphics path.

CGRect CGPathGetBoundingBox (
 CGPathRef path
);

Parameters
path

The graphics path to evaluate.

Return Value
A rectangle that represents the bounding box of the specified path. If the path is empty, this function returns
CGRectNull (page 445).

Discussion
The bounding box is the smallest rectangle completely enclosing all points in the path, including control
points for Bézier and quadratic curves.

Availability
Available in Mac OS X v10.2 and later.

See Also
CGPathGetPathBoundingBox (page 284)

Declared In
CGPath.h

CGPathGetCurrentPoint
Returns the current point in a graphics path.

Functions 283
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPoint CGPathGetCurrentPoint (
 CGPathRef path
);

Parameters
path

The path to evaluate.

Return Value
The current point in the specified path.

Discussion
If the path is empty—that is, if it has no elements—this function returns CGPointZero (page 444) (see
CGGeometry Reference). To determine whether a path is empty, use CGPathIsEmpty (page 285).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathGetPathBoundingBox
Returns the bounding box of a graphics path.

CGRect CGPathGetPathBoundingBox (
 CGPathRef path
);

Parameters
path

The graphics path to evaluate.

Return Value
A rectangle that represents the path bounding box of the specified path. If the path is empty, this function
returns CGRectNull (page 445).

Discussion
The path bounding box is the smallest rectangle completely enclosing all points in the path but not including
control points for Bézier and quadratic curves.

Availability
Available in Mac OS X v10.6 and later.

See Also
CGPathGetBoundingBox (page 283)

Declared In
CGPath.h

CGPathGetTypeID
Returns the Core Foundation type identifier for Quartz graphics paths.

284 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CFTypeID CGPathGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGPathRef (page 288).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathIsEmpty
Indicates whether or not a graphics path is empty.

bool CGPathIsEmpty (
 CGPathRef path
);

Parameters
path

The path to evaluate.

Return Value
A Boolean value that indicates whether the specified path is empty.

Discussion
An empty path contains no elements.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathIsRect
Indicates whether or not a graphics path represents a rectangle.

bool CGPathIsRect (
 CGPathRef path,
 CGRect *rect
);

Parameters
path

The path to evaluate.

rect
On input, a pointer to an uninitialized rectangle. If the specified path represents a rectangle, on return
contains a copy of the rectangle.

Functions 285
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Return Value
A Boolean value that indicates whether the specified path represents a rectangle. If the path represents a
rectangle, returns true.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathMoveToPoint
Starts a new subpath at a specified location in a mutable graphics path.

void CGPathMoveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the point before changing the path.

x
The x-coordinate of the new location.

y
The y-coordinate of the new location.

Discussion
This function ends the subpath already in progress (if any) and starts a new subpath, initializing the starting
point and the current point to the specified location (x,y) after an optional transformation.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
Quartz 2D Shadings
Quartz2DBasics

Declared In
CGPath.h

CGPathRelease
Decrements the retain count of a graphics path.

286 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

void CGPathRelease (
 CGPathRef path
);

Parameters
path

The graphics path to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the path parameter is
NULL.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
CALayerEssentials
Quartz2DBasics

Declared In
CGPath.h

CGPathRetain
Increments the retain count of a graphics path.

CGPathRef CGPathRetain (
 CGPathRef path
);

Parameters
path

The graphics path to retain.

Return Value
The same path you passed in as the path parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the path parameter is NULL.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

Callbacks

CGPathApplierFunction
Defines a callback function that can view an element in a graphics path.

Callbacks 287
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

typedef void (*CGPathApplierFunction) (
 void *info,
 const CGPathElement *element
);

If you name your function MyCGPathApplierFunc, you would declare it like this:

void MyCGPathApplierFunc (
 void *info,
 const CGPathElement *element
);

Discussion
See also CGPathApply (page 279).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

Data Types

CGPathRef
An opaque type that represents an immutable graphics path.

typedef const struct CGPath *CGPathRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGMutablePathRef
An opaque type that represents a mutable graphics path.

typedef struct CGPath *CGMutablePathRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

288 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathElement
A data structure that provides information about a path element.

struct CGPathElement {
 CGPathElementType type;
 CGPoint * points;
};
typedef struct CGPathElement CGPathElement;

Fields
type

An element type (or operation).

points
An array of one or more points that serve as arguments.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

Constants

CGPathDrawingMode
Options for rendering a path.

enum CGPathDrawingMode {
 kCGPathFill,
 kCGPathEOFill,
 kCGPathStroke,
 kCGPathFillStroke,
 kCGPathEOFillStroke
};
typedef enum CGPathDrawingMode CGPathDrawingMode;

Constants
kCGPathFill

Render the area contained within the path using the non-zero winding number rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathEOFill
Render the area within the path using the even-odd rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathStroke
Render a line along the path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Constants 289
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

kCGPathFillStroke
First fill and then stroke the path, using the nonzero winding number rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathEOFillStroke
First fill and then stroke the path, using the even-odd rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
You can pass a path drawing mode constant to the function CGContextDrawPath (page 86) to specify how
Quartz should paint a graphics context’s current path.

CGPathElementType
The type of element found in a path.

enum CGPathElementType {
 kCGPathElementMoveToPoint,
 kCGPathElementAddLineToPoint,
 kCGPathElementAddQuadCurveToPoint,
 kCGPathElementAddCurveToPoint,
 kCGPathElementCloseSubpath
};
typedef enum CGPathElementType CGPathElementType;

Constants
kCGPathElementMoveToPoint

The path element that starts a new subpath. See the function CGPathMoveToPoint (page 286).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddLineToPoint
The path element that adds a line from the current point to the specified point. See the function
CGPathAddLineToPoint (page 275).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddQuadCurveToPoint
The path element that adds a quadratic curve from the current point to the specified point. See the
function CGPathAddQuadCurveToPoint (page 277).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddCurveToPoint
The path element that adds a cubic curve from the current point to the specified point. See the
function CGPathAddCurveToPoint (page 273).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

290 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

kCGPathElementCloseSubpath
The path element that closes and completes a subpath. See the function CGPathCloseSubpath (page
280).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

Discussion
For more information about paths, see CGPathRef (page 288).

Constants 291
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

292 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPattern.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPatternRef opaque type represents a pattern that you can use to stroke along or fill in a graphics
path. Quartz tiles the pattern cell for you, based on parameters you specify when you call
CGPatternCreate (page 294).

To create a dashed line, see CGContextSetLineDash (page 119) in CGContext Reference.

Functions by Task

Creating a Pattern

CGPatternCreate (page 294)
Creates a pattern object.

Getting the CFType ID

CGPatternGetTypeID (page 295)
Returns the type identifier for Quartz patterns.

Retaining and Releasing a Pattern

CGPatternRetain (page 296)
Increments the retain count of a Quartz pattern.

CGPatternRelease (page 295)
Decrements the retain count of a Quartz pattern.

Overview 293
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Functions

CGPatternCreate
Creates a pattern object.

CGPatternRef CGPatternCreate (
 void *info,
 CGRect bounds,
 CGAffineTransform matrix,
 CGFloat xStep,
 CGFloat yStep,
 CGPatternTiling tiling,
 bool isColored,
 const CGPatternCallbacks *callbacks
);

Parameters
info

A pointer to private storage used by your pattern drawing function, or NULL. For more information,
see the discussion below.

bounds
The bounding box of the pattern cell, specified in pattern space. (Pattern space is an abstract space
that maps to the default user space by the transformation matrix you specify with the matrix
parameter.) The drawing done in your pattern drawing function is clipped to this rectangle.

matrix
A matrix that represents a transform from pattern space to the default user space of the context in
which the pattern is used. If no transform is needed, pass the identity matrix.

xStep
The horizontal displacement between cells, specified in pattern space. For no additional horizontal
space between cells (so that each pattern cells abuts the previous pattern cell in the horizontal
direction), pass the width of the pattern cell.

yStep
The vertical displacement between cells, specified in pattern space. For no additional vertical space
between cells (so that each pattern cells abuts the previous pattern cell in the vertical direction), pass
the height of the pattern cell.

tiling
A CGPatternTiling constant that specifies the desired tiling method. For more information about
tiling methods, see “Tiling Patterns” (page 299).

isColored
If you want to draw your pattern using its own intrinsic color, pass true. If you want to draw an
uncolored (or masking) pattern that uses the fill or stroke color in the graphics state, pass false.

callbacks
A pointer to a pattern callback function table—your pattern drawing function is an entry in this table.
See CGPatternCallbacks (page 298) for more information about callback function tables for patterns.

Return Value
A new Quartz pattern. You are responsible for releasing this object using CGPatternRelease (page 295).

294 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Discussion
Quartz calls your drawing function at the appropriate time to draw the pattern cell. A pattern cell must be
invariant—that is, the pattern cell should be drawn exactly the same way each time the drawing function is
called.

The appearance of a pattern cell is unaffected by changes in the graphics state of the context in which the
pattern is used.

See CGPatternDrawPatternCallback (page 296) for more information about pattern drawing functions.

Availability
Available in Mac OS X version 10.1 and later.

Related Sample Code
GeekGameBoard

Declared In
CGPattern.h

CGPatternGetTypeID
Returns the type identifier for Quartz patterns.

CFTypeID CGPatternGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGPatternRef (page 298).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPattern.h

CGPatternRelease
Decrements the retain count of a Quartz pattern.

void CGPatternRelease (
 CGPatternRef pattern
);

Parameters
pattern

The pattern to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the pattern parameter
is NULL.

Availability
Available in Mac OS X version 10.1 and later.

Functions 295
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Related Sample Code
GeekGameBoard

Declared In
CGPattern.h

CGPatternRetain
Increments the retain count of a Quartz pattern.

CGPatternRef CGPatternRetain (
 CGPatternRef pattern
);

Parameters
pattern

The pattern to retain.

Return Value
The same pattern you passed in as the pattern parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the pattern parameter is
NULL.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGPattern.h

Callbacks

CGPatternDrawPatternCallback
Draws a pattern cell.

typedef void (*CGPatternDrawPatternCallback) (
 void * info,
 CGContextRef context
);

If you name your function MyDrawPattern, you would declare it like this:

void MyDrawPattern (
 void * info,
 CGContextRef context
);

296 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Parameters
info

A generic pointer to private data associated with the pattern. This is the same pointer you supplied
to CGPatternCreate (page 294).

context
The graphics context for drawing the pattern cell.

Discussion
When a pattern is used to stroke or fill a graphics path, Quartz calls your custom drawing function at the
appropriate time to draw the pattern cell. The cell should be drawn exactly the same way each time the
drawing function is called.

In a drawing function associated with an uncolored pattern, you should not attempt to set a stroke or fill
color or color space—if you do so, the result is undefined.

To learn how to associate your drawing function with a Quartz pattern, see CGPatternCreate (page 294)
and CGPatternCallbacks (page 298).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPattern.h

CGPatternReleaseInfoCallback
Release private data or resources associated with the pattern.

typedef void (*CGPatternReleaseInfoCallback) (
 void * info
);

If you name your function MyCGPatternReleaseInfo, you would declare it like this:

void MyCGPatternReleaseInfo (
 void * info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPatternCreate (page 294).

Discussion
Quartz calls your release function when it frees your pattern object.

To learn how to associate your release function with a Quartz pattern, see CGPatternCreate (page 294) and
CGPatternCallbacks (page 298).

Availability
Available in Mac OS X v10.2 and later.

Callbacks 297
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Declared In
CGPattern.h

Data Types

CGPatternRef
An opaque type that represents a pattern.

typedef struct CGPattern * CGPatternRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGPattern.h

CGPatternCallbacks
A structure that holds a version and two callback functions for drawing a custom pattern.

struct CGPatternCallbacks {
 unsigned int version;
 CGPatternDrawPatternCallback drawPattern;
 CGPatternReleaseInfoCallback releaseInfo;
};
typedef struct CGPatternCallbacks CGPatternCallbacks;

Fields
version

The version of the structure passed in as a parameter to the CGPatternCreate (page 294). For this
version of the structure, you should set this value to zero.

drawPattern
A pointer to a custom function that draws the pattern. For information about this callback function,
see CGPatternDrawPatternCallback (page 296).

releaseInfo
An optional pointer to a custom function that’s invoked when the pattern is released.
CGPatternReleaseInfoCallback (page 297).

Discussion
You supply a CGPatternCallbacks structure to the function CGPatternCreate (page 294) to create a
data provider for direct access. The functions specified by the CGPatternCallbacks structure are responsible
for drawing the pattern and for handling the pattern’s memory management.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGPattern.h

298 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Constants

Tiling Patterns
Different methods for rendering a tiled pattern.

enum CGPatternTiling {
 kCGPatternTilingNoDistortion,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 kCGPatternTilingConstantSpacing
};
typedef enum CGPatternTiling CGPatternTiling;

Constants
kCGPatternTilingNoDistortion

The pattern cell is not distorted when painted. The spacing between pattern cells may vary by as
much as 1 device pixel.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

kCGPatternTilingConstantSpacingMinimalDistortion
Pattern cells are spaced consistently. The pattern cell may be distorted by as much as 1 device pixel
when the pattern is painted.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

kCGPatternTilingConstantSpacing
Pattern cells are spaced consistently, as with
kCGPatternTilingConstantSpacingMinimalDistortion. The pattern cell may be distorted
additionally to permit a more efficient implementation.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

Declared In
CGPattern.h

Constants 299
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

300 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFArray.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFArray header file defines an opaque type that encapsulates a PDF array. A PDF array represents
an array structure in a PDF document. PDF arrays may be heterogeneous—that is, they may contain any
other PDF objects, including PDF strings, PDF dictionaries, and other PDF arrays.

Many CGPDFArray functions to retrieve values from a PDF array take the form:

bool CGPDFArrayGet<DataType> (
 CGPDFArrayRef array,
 size_t index,
 <DataType>Ref *value
);

These functions test the data type of the object at the specified index. If the object is not of the expected
type, the function returns false. If the object is of the expected type, the function returns true, and the
object is passed back in the value parameter.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFArray objects exist only as constituent parts of a CGPDFDocument object, and they are managed
by their container.

Functions

CGPDFArrayGetArray
Returns whether an object at a given index in a PDF array is another PDF array and, if so, retrieves that array.

Overview 301
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

bool CGPDFArrayGetArray (
 CGPDFArrayRef array,
 size_t index,
 CGPDFArrayRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF array. If the value at the specified index is a PDF array, then on return
that array, otherwise the value is unspecified.

Return Value
Returns true if there is a PDF array at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetBoolean
Returns whether an object at a given index in a PDF array is a PDF Boolean and, if so, retrieves that Boolean.

bool CGPDFArrayGetBoolean (
 CGPDFArrayRef array,
 size_t index,
 CGPDFBoolean *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of array (0 to N-1, where
N is the count of array), the behavior is undefined.

value
On input, a pointer to a PDF Boolean. If the value at the specified index is a PDF Boolean, then on
return that Boolean, otherwise the value is undefined.

Return Value
Returns true if there is a PDF Boolean at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

302 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

CGPDFArrayGetCount
Returns the number of items in a PDF array.

size_t CGPDFArrayGetCount (
 CGPDFArrayRef array
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

Return Value
Returns the number of items in the array.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetDictionary
Returns whether an object at a given index in a PDF array is a PDF dictionary and, if so, retrieves that dictionary.

bool CGPDFArrayGetDictionary (
 CGPDFArrayRef array,
 size_t index,
 CGPDFDictionaryRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF dictionary. If the value at the specified index is a PDF dictionary, then on
return that dictionary, otherwise the value is undefined.

Return Value
Returns true if there is a PDF dictionary at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetInteger
Returns whether an object at a given index in a PDF array is a PDF integer and, if so, retrieves that object.

Functions 303
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

bool CGPDFArrayGetInteger (
 CGPDFArrayRef array,
 size_t index,
 CGPDFInteger *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF integer. If the value at the specified index is a PDF integer value, then
on return contains that value, otherwise the value is undefined.

Return Value
Returns true if there is a PDF integer at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetName
Returns whether an object at a given index in a PDF array is a PDF name reference (represented as a constant
C string) and, if so, retrieves that name.

bool CGPDFArrayGetName (
 CGPDFArrayRef array,
 size_t index,
 const char **value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
An uninitialized pointer to a constant C string. If the value at the specified index is a reference to a
PDF name (represented by a constant C string) then upon return, contains that value; otherwise the
value is undefined.

Return Value
Returns true if there is an array of characters at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

304 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Declared In
CGPDFArray.h

CGPDFArrayGetNull
Returns whether an object at a given index in a Quartz PDF array is a PDF null.

bool CGPDFArrayGetNull (
 CGPDFArrayRef array,
 size_t index
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

Return Value
Returns true if there is a PDF null at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetNumber
Returns whether an object at a given index in a PDF array is a PDF number and, if so, retrieves that object.

bool CGPDFArrayGetNumber (
 CGPDFArrayRef array,
 size_t index,
 CGPDFReal *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF number. If the value at the specified index is a PDF number, then on
return contains that value, otherwise the value is undefined.

Return Value
Returns true if there is a PDF number at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Functions 305
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Declared In
CGPDFArray.h

CGPDFArrayGetObject
Returns whether an object at a given index in a PDF array is a PDF object and, if so, retrieves that object.

bool CGPDFArrayGetObject (
 CGPDFArrayRef array,
 size_t index,
 CGPDFObjectRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF object. If the value at the specified index is a PDF object, then on return
contains that object, otherwise the value is undefined.

Return Value
Returns true if there is a PDF object at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetStream
Returns whether an object at a given index in a PDF array is a PDF stream and, if so, retrieves that stream.

bool CGPDFArrayGetStream (
 CGPDFArrayRef array,
 size_t index,
 CGPDFStreamRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF stream. If the value at the specified index is a PDF stream, then on return
that stream, otherwise the value is undefined.

306 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Return Value
Returns true if there is a PDF stream at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetString
Returns whether an object at a given index in a PDF array is a PDF string and, if so, retrieves that string.

bool CGPDFArrayGetString (
 CGPDFArrayRef array,
 size_t index,
 CGPDFStringRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF string. If the value at the specified index is a PDF string, then on return
that string, otherwise the value is undefined.

Return Value
Returns true if there is a PDF stream at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

Data Types

CGPDFArrayRef
An opaque type that encapsulates a PDF array.

typedef struct CGPDFArray *CGPDFArrayRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFArray.h

Data Types 307
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

308 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFContentStream.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFContentStreamRef opaque type provides access to the data that describes the appearance of
a PDF page. A CGPDFContentStream object represents one or more PDF content streams for a page and their
associated resource dictionaries. A PDF content stream is a sequential set of instructions that specifies how
to paint items on a PDF page. A resource dictionary contains information needed by the content stream in
order to decode the sequential instructions of the content stream.

CGPDFContentStream functions can retrieve both the content streams and the resource dictionaries associated
with a PDF page.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it.

Functions by Task

Creating a PDF Content Stream Object

CGPDFContentStreamCreateWithPage (page 310)
Creates a content stream object from a PDF page object.

CGPDFContentStreamCreateWithStream (page 310)
Creates a PDF content stream object from an existing PDF content stream object.

Getting Data from a PDF Content Stream Object

CGPDFContentStreamGetStreams (page 311)
Gets the array of PDF content streams contained in a PDF content stream object.

CGPDFContentStreamGetResource (page 311)
Gets the specified resource from a PDF content stream object.

Overview 309
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Retaining and Releasing a PDF Content Stream Object

CGPDFContentStreamRetain (page 312)
Increments the retain count of a PDF content stream object.

CGPDFContentStreamRelease (page 312)
Decrements the retain count of a PDF content stream object.

Functions

CGPDFContentStreamCreateWithPage
Creates a content stream object from a PDF page object.

CGPDFContentStreamRef CGPDFContentStreamCreateWithPage (
 CGPDFPageRef page
);

Parameters
page

A PDF page object.

Return Value
A new CGPDFContentStream object. You are responsible for releasing this object by calling the function
CGPDFContentStreamRelease.

Discussion
A CGPDFContentStream object can contain more than one PDF content stream. To retrieve an array of the
PDF content streams in the object, call the function CGPDFContentStreamGetStreams (page 311). To obtain
the resources associated with a CGPDFContentStream object, call the function
CGPDFContentStreamGetResource (page 311).

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamCreateWithStream
Creates a PDF content stream object from an existing PDF content stream object.

CGPDFContentStreamRef CGPDFContentStreamCreateWithStream (
 CGPDFStreamRef stream,
 CGPDFDictionaryRef streamResources,
 CGPDFContentStreamRef parent
);

Parameters
stream

The PDF stream you want to create a content stream from.

310 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

streamResources
A PDF dictionary that contains the resources associated with the stream you want to retrieve.

parent
The content stream of the page on which stream appears. Supply the parent parameter when you
create a content stream that’s used within a page.

Return Value
A CGPDFContentStream object created from the stream parameter. You are responsible for releasing this
object by calling the function CGPDFContentStreamRelease (page 312).

Discussion
You can use this function to get access to the contents of a form, pattern, Type3 font, or any PDF stream.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamGetResource
Gets the specified resource from a PDF content stream object.

CGPDFObjectRef CGPDFContentStreamGetResource (
 CGPDFContentStreamRef cs,
 const char *category,
 const char *name
);

Parameters
cs

A CGPDFContentStream object.

category
A string that specifies the category of the resource you want to obtain.

name
A string that specifies the name of the resource you want to obtain.

Return Value
The resource dictionary.

Discussion
You can use this function to obtain resources used by the content stream, such as forms, patterns, color
spaces, and fonts.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamGetStreams
Gets the array of PDF content streams contained in a PDF content stream object.

Functions 311
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

CFArrayRef CGPDFContentStreamGetStreams (
 CGPDFContentStreamRef cs
);

Parameters
cs

A CGPDFContentStream object.

Return Value
The array of PDF content streams that make up the content stream object represented by the cs parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamRelease
Decrements the retain count of a PDF content stream object.

void CGPDFContentStreamRelease (
 CGPDFContentStreamRef cs
);

Parameters
cs

A PDF content stream.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamRetain
Increments the retain count of a PDF content stream object.

CGPDFContentStreamRef CGPDFContentStreamRetain (
 CGPDFContentStreamRef cs
);

Parameters
cs

A PDF content stream.

Return Value
The same PDF content stream you passed in as the cs parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

312 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Data Types

CGPDFContentStreamRef
An opaque type that provides access to the data that describes the appearance of a PDF page.

typedef struct CGPDFContentStream *CGPDFContentStreamRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContentStream.h

Data Types 313
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

314 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Derived From: CGContextRef (page 141)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFContext header file defines functions that create and get information about a Quartz PDF context.
A CGPDFContext object is a type of CGContextRef (page 141) that is used for drawing PDF content. The
functions in this reference operate only on Quartz PDF graphics contexts created using the functions
CGPDFContextCreate (page 317) or CGPDFContextCreateWithURL (page 318).

When you draw to the PDF context using CGContext functions the drawing operations are recorded in PDF
format. The PDF commands that represent the drawing are written to the destination specified when you
create the PDF graphics context.

Functions by Task

Creating a Context

CGPDFContextCreate (page 317)
Creates a PDF graphics context.

CGPDFContextCreateWithURL (page 318)
Creates a URL-based PDF graphics context.

Beginning and Ending Pages

CGPDFContextBeginPage (page 316)
Begins a new page in a PDF graphics context.

CGPDFContextEndPage (page 319)
Ends the current page in the PDF graphics context.

Overview 315
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Working with Destinations

CGPDFContextAddDestinationAtPoint (page 316)
Sets a destination to jump to when a point in the current page of a PDF graphics context is clicked.

CGPDFContextSetDestinationForRect (page 320)
Sets a destination to jump to when a rectangle in the current PDF page is clicked.

CGPDFContextSetURLForRect (page 320)
Sets the URL associated with a rectangle in a PDF graphics context.

Closing a PDF Context

CGPDFContextClose (page 317)
Closes a PDF document.

Functions

CGPDFContextAddDestinationAtPoint
Sets a destination to jump to when a point in the current page of a PDF graphics context is clicked.

void CGPDFContextAddDestinationAtPoint (
 CGContextRef context,
 CFStringRef name,
 CGPoint point
);

Parameters
context

A PDF graphics context.

name
A destination name.

point
A location in the current page of the PDF graphics context.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextBeginPage
Begins a new page in a PDF graphics context.

316 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

void CGPDFContextBeginPage (
 CGContextRef context,
 CFDictionaryRef pageInfo
);

Parameters
context

A PDF graphics context.

pageInfo
A dictionary that contains key-value pairs that define the page properties.

Discussion
You must call the function CGPDFContextEndPage (page 319) to signal the end of the page.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextClose
Closes a PDF document.

void CGPDFContextClose(
 CGContextRef context
);

Parameters
context

A PDF graphics context.

Discussion
After closing the context, all pending data is written to the context destination, and the PDF file is completed.
No additional data can be written to the destination context after the PDF document is closed.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
SampleRaster

Declared In
CGPDFContext.h

CGPDFContextCreate
Creates a PDF graphics context.

Functions 317
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

CGContextRef CGPDFContextCreate (
 CGDataConsumerRef consumer,
 const CGRect *mediaBox,
 CFDictionaryRef auxiliaryInfo
);

Parameters
consumer

The data consumer to receive the PDF output data.

mediaBox
A pointer to a rectangle that defines the size and location of the PDF page, or NULL. The origin of the
rectangle should typically be (0,0). Quartz uses this rectangle as the default bounds of the page’s
media box. If you pass NULL, Quartz uses a default page size of 8.5 by 11 inches (612 by 792 points).

auxiliaryInfo
A dictionary that specifies any additional information to be used by the PDF context when generating
the PDF file, or NULL. The dictionary is retained by the new context, so on return you may safely
release it. See “Auxiliary Dictionary Keys” (page 321) for keys you can include in the dictionary.

Return Value
A new PDF context, or NULL if the context cannot be created. You are responsible for releasing this object
using CGContextRelease (page 101).

Discussion
This function creates a PDF drawing environment to your specifications. When you draw into the new context,
Quartz renders your drawing as a sequence of PDF drawing commands that are passed to the data consumer
object.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGPDFContext.h

CGPDFContextCreateWithURL
Creates a URL-based PDF graphics context.

CGContextRef CGPDFContextCreateWithURL (
 CFURLRef url,
 const CGRect *mediaBox,
 CFDictionaryRef auxiliaryInfo
);

Parameters
url

A Core Foundation URL that specifies where you want to place the resulting PDF file.

mediaBox
A rectangle that specifies the bounds of the PDF. The origin of the rectangle should typically be (0,0).
The CGPDFContextCreateWithURL function uses this rectangle as the default page media bounding
box. If you pass NULL, CGPDFContextCreateWithURL uses a default page size of 8.5 by 11 inches
(612 by 792 points).

318 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

auxiliaryInfo
A dictionary that specifies any additional information to be used by the PDF context when generating
the PDF file, or NULL. The dictionary is retained by the new context, so on return you may safely
release it.

Return Value
A new PDF context, or NULL if a context could not be created. You are responsible for releasing this object
using CGContextRelease (page 101).

Discussion
When you call this function, Quartz creates a PDF drawing environment—that is, a graphics context—to your
specifications. When you draw into the resulting context, Quartz renders your drawing as a series of PDF
drawing commands stored in the specified location.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
From A View to A Movie
From A View to A Picture
Quartz EB
Quartz2DBasics
SampleRaster

Declared In
CGPDFContext.h

CGPDFContextEndPage
Ends the current page in the PDF graphics context.

void CGPDFContextEndPage (
 CGContextRef context
);

Parameters
context

A PDF graphics context.

Discussion
You can call CGPDFContextEndPage only after you call the function CGPDFContextBeginPage (page 316).

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
SampleRaster

Declared In
CGPDFContext.h

Functions 319
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

CGPDFContextSetDestinationForRect
Sets a destination to jump to when a rectangle in the current PDF page is clicked.

void CGPDFContextSetDestinationForRect (
 CGContextRef context,
 CFStringRef name,
 CGRect rect
);

Parameters
context

A PDF graphics context.

name
A destination name.

rect
A rectangle that specifies an area of the current page of a PDF graphics context. The rectangle is
specified in default user space (not device space).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextSetURLForRect
Sets the URL associated with a rectangle in a PDF graphics context.

void CGPDFContextSetURLForRect (
 CGContextRef context,
 CFURLRef url,
 CGRect rect
);

Parameters
context

A PDF graphics context.

url
A CFURL object that specifies the destination of the contents associated with the rectangle.

rect
A rectangle specified in default user space (not device space).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

320 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Constants

Auxiliary Dictionary Keys
Keys that used to set up a PDF context.

CFStringRef kCGPDFContextAuthor;
CFStringRef kCGPDFContextCreator;
CFStringRef kCGPDFContextTitle;
CFStringRef kCGPDFContextOwnerPassword;
CFStringRef kCGPDFContextUserPassword;
CFStringRef kCGPDFContextAllowsPrinting;
CFStringRef kCGPDFContextAllowsCopying;
CFStringRef kCGPDFContextOutputIntent;
CFStringRef kCGPDFContextOutputIntents;
CFStringRef kCGPDFContextSubject;
CFStringRef kCGPDFContextKeywords;
CFStringRef kCGPDFContextEncryptionKeyLength;

Constants
kCGPDFContextAuthor

The corresponding value is a string that represents the name of the person who created the document.
This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextCreator
The corresponding value is a string that represents the name of the application used to produce the
document. This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextTitle
The corresponding value is a string that represents the title of the document. This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOwnerPassword
The owner password of the PDF document. If this key is specified, the document is encrypted using
the value as the owner password; otherwise, the document will not be encrypted. The value of this
key must be a CFString object that can be represented in ASCII encoding. Only the first 32 bytes are
used for the password. There is no default value for this key. If the value of this key cannot be
represented in ASCII, the document is not created and the creation function returns NULL.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Constants 321
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFContextUserPassword
The user password of the PDF document. If the document is encrypted, then the value of this key will
be the user password for the document. If not specified, the user password is the empty string. The
value of this key must be a CFString object that can be represented in ASCII encoding; only the first
32 bytes will be used for the password. If the value of this key cannot be represented in ASCII, the
document is not created and the creation function returns NULL.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextAllowsPrinting
Whether the document allows printing when unlocked with the user password. The value of this key
must be a CFBoolean value. The default value of this key is kCFBooleanTrue.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextAllowsCopying
Whether the document allows copying when unlocked with the user password. The value of this key
must be a CFBoolean object. The default value of this key is kCFBooleanTrue.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOutputIntent
The output intent PDF/X. This key is optional. If present, the value of this key must be a CFDictionary
object. The dictionary is added to the /OutputIntents entry in the PDF file document catalog. The
keys and values contained in the dictionary must match those specified in section 9.10.4 of the PDF
1.4 specification, ISO/DIS 15930-3 document published by ISO/TC 130, and Adobe Technical Note
#5413.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOutputIntents
Output intent dictionaries. This key is optional. If present, the value must be an array of one or more
kCGPDFContextOutputIntent dictionaries. The array is added to the PDF document in the
/OutputIntents entry in the PDF file's document catalog. Each dictionary in the array must be of
form specified for the kCGPDFContextOutputIntent key, except that only the first dictionary in
the array is required to contain the "S" key with a value of GTS_PDFX. If both the
kCGPDFContextOutputIntent and kCGPDFContextOutputIntents keys are specified, the former
is ignored.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextSubject
The subject of a document. Optional; if present, the value of this key must be a CFString object.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

322 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFContextKeywords
The keywords for this document. This key is optional. If the value of this key is a CFString object,
the /Keywords entry will be the specified string. If the value of this key is a CFArray object, then it
must be an array of CFString objects. The /Keywords entry will, in this case, be the concatenation
of the specified strings separated by commas (","). In addition, an entry with the key
"/AAPL:Keywords" is stored in the document information dictionary; its value is an array consisting
of each of the specified strings. The value of this key must be in one of the above forms; otherwise,
this key is ignored.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

kCGPDFContextEncryptionKeyLength
The encryption key length in bits; see Table 3.18 "Entries common to all encryption dictionaries", PDF
Reference: Adobe PDF version 1.5 (4th ed.) for more information. Optional; if present, the value of
this key must be a CFNumber object with value which is a multiple of 8 between 40 and 128, inclusive.
If this key is absent or invalid, the encryption key length defaults to 40 bits.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 317) and
CGPDFContextCreateWithURL (page 318).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Box Dictionary Keys
Keys that specify various PDF boxes.

CFStringRef kCGPDFContextMediaBox
CFStringRef kCGPDFContextCropBox
CFStringRef kCGPDFContextBleedBox
CFStringRef kCGPDFContextTrimBox
CFStringRef kCGPDFContextArtBox

Constants
kCGPDFContextMediaBox

The media box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextCropBox
The crop box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Constants 323
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFContextBleedBox
The bleed box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextTrimBox
The trim box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextArtBox
The art box for the document or for a given page. This key is optional. If present, the value of this key
must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 317) and
CGPDFContextCreateWithURL (page 318).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Output Intent Dictionary Keys
Keys to specify output intent options.

CFStringRef kCGPDFXOutputIntentSubtype;
CFStringRef kCGPDFXOutputConditionIdentifier;
CFStringRef kCGPDFXOutputCondition;
CFStringRef kCGPDFXRegistryName;
CFStringRef kCGPDFXInfo;
CFStringRef kCGPDFXDestinationOutputProfile;

Constants
kCGPDFXOutputIntentSubtype

The output intent subtype. This key is required. The value of this key must be a CFString object equal
to "GTS_PDFX"; otherwise, the dictionary is ignored.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXOutputConditionIdentifier
A string identifying the intended output device or production condition in a human- or
machine-readable form. This key is required. The value of this key must be a CFString object. For best
results, the string should be restricted to characters in the ASCII character set.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

324 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFXOutputCondition
A text string identifying the intended output device or production condition in a human- readable
form. This key is optional. If present, the value of this key must be a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXRegistryName
A string identifying the registry in which the condition designated by
kCGPDFXOutputConditionIdentifier is defined. This key is optional. If present, the value of this
key must be a CFString object. For best results, the string should be lossless in ASCII encoding.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXInfo
A human-readable text string containing additional information or comments about the intended
target device or production condition. This key is required if the value of
kCGPDFXOutputConditionIdentifier does not specify a standard production condition. It is
optional otherwise. If present, the value of this key must be a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXDestinationOutputProfile
An ICC profile stream defining the transformation from the PDF document's source colors to output
device colorants. This key is required if the value of kCGPDFXOutputConditionIdentifier does
not specify a standard production condition. It is optional otherwise. If present, the value of this key
must be an ICC-based color space specified as a CGColorSpace object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 317) and
CGPDFContextCreateWithURL (page 318).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Constants 325
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

326 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFDictionary.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFDictionaryRef opaque type encapsulates a PDF dictionary whose key-value pairs can specify
any kind of PDF object, including another dictionary. Dictionary objects are the main building blocks of a
PDF document. A key-value pair within a dictionary is called an entry. In a PDF dictionary, the key must be
an array of characters. Within a given dictionary, the keys are unique—that is, no two keys in a single dictionary
are equal (as determined by strcmp). The value associated with a key can be any kind of PDF object, including
another dictionary. Dictionary objects are the main building blocks of a PDF document.

Many functions that retrieve values from a PDF dictionary take the form:

bool CGPDFDictionaryGet<DataType> (
 CGPDFDictionaryRef dictionary,
 const char *key,
 <DataType>Ref *value
);

These functions test whether there is an object associated with the specified key. If there is an object associated
with the specified key, they test its data type. If there is no associated object, or if there is but it is not of the
expected type, the function returns false. If there is an object associated with the specified key and it is of
the expected type, the function returns true and the object is passed back in the value parameter.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFDictionary objects exist only as constituent parts of a CGPDFDocument object, and they are managed
by their container.

Functions by Task

Applying a Function to All Entries

CGPDFDictionaryApplyFunction (page 328)
Applies a function to each entry in a dictionary.

Overview 327
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Getting Data from a Dictionary

CGPDFDictionaryGetArray (page 329)
Returns whether there is a PDF array associated with a specified key in a PDF dictionary and, if so,
retrieves that array.

CGPDFDictionaryGetBoolean (page 330)
Returns whether there is a PDF Boolean value associated with a specified key in a PDF dictionary and,
if so, retrieves the Boolean value.

CGPDFDictionaryGetCount (page 330)
Returns the number of entries in a PDF dictionary.

CGPDFDictionaryGetDictionary (page 330)
Returns whether there is another PDF dictionary associated with a specified key in a PDF dictionary
and, if so, retrieves that dictionary.

CGPDFDictionaryGetInteger (page 331)
Returns whether there is a PDF integer associated with a specified key in a PDF dictionary and, if so,
retrieves that integer.

CGPDFDictionaryGetName (page 332)
Returns whether an object with a specified key in a PDF dictionary is a PDF name reference (represented
as a constant C string) and, if so, retrieves that name.

CGPDFDictionaryGetNumber (page 332)
Returns whether there is a PDF number associated with a specified key in a PDF dictionary and, if so,
retrieves that number.

CGPDFDictionaryGetObject (page 333)
Returns whether there is a PDF object associated with a specified key in a PDF dictionary and, if so,
retrieves that object.

CGPDFDictionaryGetStream (page 333)
Returns whether there is a PDF stream associated with a specified key in a PDF dictionary and, if so,
retrieves that stream.

CGPDFDictionaryGetString (page 334)
Returns whether there is a PDF string associated with a specified key in a PDF dictionary and, if so,
retrieves that string.

Functions

CGPDFDictionaryApplyFunction
Applies a function to each entry in a dictionary.

328 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

void CGPDFDictionaryApplyFunction (
 CGPDFDictionaryRef dict,
 CGPDFDictionaryApplierFunction function,
 void *info
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

function
The function to apply to each entry in the dictionary.

info
A pointer to contextual information to pass to the function.

Discussion
This function enumerates all of the entries in the dictionary, calling the function once for each. The current
key, its associated value, and the contextual information are passed to the function (see also
CGPDFDictionaryApplierFunction (page 334)).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetArray
Returns whether there is a PDF array associated with a specified key in a PDF dictionary and, if so, retrieves
that array.

bool CGPDFDictionaryGetArray (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFArrayRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, an uninitialized pointer to a PDF array. If the value associated with the specified key is a
PDF array, then on return contains that array; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF array associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Functions 329
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

CGPDFDictionaryGetBoolean
Returns whether there is a PDF Boolean value associated with a specified key in a PDF dictionary and, if so,
retrieves the Boolean value.

bool CGPDFDictionaryGetBoolean (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFBoolean *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF Boolean value. If the value associated with the specified key is a PDF
Boolean value, then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF Boolean value associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetCount
Returns the number of entries in a PDF dictionary.

size_t CGPDFDictionaryGetCount (
 CGPDFDictionaryRef dict
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

Return Value
Returns the number of entries in the dictionary.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetDictionary
Returns whether there is another PDF dictionary associated with a specified key in a PDF dictionary and, if
so, retrieves that dictionary.

330 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

bool CGPDFDictionaryGetDictionary (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFDictionaryRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF dictionary. If the value associated with the specified key is a PDF dictionary,
then on return contains that dictionary; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF dictionary associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetInteger
Returns whether there is a PDF integer associated with a specified key in a PDF dictionary and, if so, retrieves
that integer.

bool CGPDFDictionaryGetInteger (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFInteger *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF integer. If the value associated with the specified key is a PDF integer,
then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF integer associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Functions 331
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

CGPDFDictionaryGetName
Returns whether an object with a specified key in a PDF dictionary is a PDF name reference (represented as
a constant C string) and, if so, retrieves that name.

bool CGPDFDictionaryGetName (
 CGPDFDictionaryRef dict,
 const char *key,
 const char **value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF name reference, represented as a constant C string. If the value associated
with the specified key is a reference to a PDF name, then on return, the variable points to the name;
otherwise, the value is undefined.

Return Value
Returns true if there is a character array associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetNumber
Returns whether there is a PDF number associated with a specified key in a PDF dictionary and, if so, retrieves
that number.

bool CGPDFDictionaryGetNumber (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFReal *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF number. If the value associated with the specified key is a PDF number
(real or integer), then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF number associated with the specified key; otherwise, false.

332 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetObject
Returns whether there is a PDF object associated with a specified key in a PDF dictionary and, if so, retrieves
that object.

bool CGPDFDictionaryGetObject (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFObjectRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF object. If the value associated with the specified key is a PDF object, then
on return contains that object; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF object associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetStream
Returns whether there is a PDF stream associated with a specified key in a PDF dictionary and, if so, retrieves
that stream.

bool CGPDFDictionaryGetStream (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFStreamRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to be retrieved.

Functions 333
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

value
On input, a pointer to a PDF stream. If the value associated with the specified key is a PDF stream,
then on return contains that stream; otherwise, the value is unspecified.

Return Value
Returns true if there is a PDF stream associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetString
Returns whether there is a PDF string associated with a specified key in a PDF dictionary and, if so, retrieves
that string.

bool CGPDFDictionaryGetString (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFStringRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF string. If the value associated with the specified key is a PDF string, then
on return contains that string; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF string associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Callbacks

CGPDFDictionaryApplierFunction
Performs custom processing on a key-value pair from a PDF dictionary, using optional contextual information.

334 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

typedef void (*CGPDFDictionaryApplierFunction) (
 const char *key,
 CGPDFObjectRef value,
 void *info,
);

If you name your function MyFunction, you would declare it like this:

void MyFunction (
 const char *key,
 CGPDFObjectRef object,
 void *info
);

Parameters
key

The current key in the dictionary.

object
The value in the dictionary associated with the key.

info
The contextual information that your provided in the info parameter in
CGPDFDictionaryApplyFunction (page 328).

Discussion
CGPDFDictionaryApplierFunction defines the callback for CGPDFDictionaryApplyFunction, that
enumerates all of the entries in the dictionary, calling your custom applier function once for each entry. The
current key, its associated value, and the contextual information are passed to your applier function using
the key, value, and info parameters respectively.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFDictionary.h

Data Types

CGPDFDictionaryRef
An opaque type that encapsulates a PDF dictionary.

typedef struct CGPDFDictionary *CGPDFDictionaryRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFDictionary.h

Data Types 335
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

336 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFDocument.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFDocumentRef opaque type encapsulates a document that contains PDF (Portable Document
Format) drawing information. PDF provides an efficient format for cross-platform exchange of documents
with rich content. PDF files can contain multiple pages of images and text. A PDF document object contains
all the information relating to a PDF document, including its catalog and contents.

Note that PDF documents may be encrypted, and that some operations may be restricted until a valid
password is supplied—see the functions listed in “Managing Encryption” (page 338). Quartz also supports
decrypting encrypted documents.

Quartz can both display and generate files that are compliant with the PDF standard. When imaging PDF
files, CGPDFDocumentRef is the basic type used to represent a PDF document.

Functions by Task

Creating PDF Document Objects

CGPDFDocumentCreateWithProvider (page 340)
Creates a Quartz PDF document using a data provider.

CGPDFDocumentCreateWithURL (page 340)
Creates a Quartz PDF document using data specified by a URL.

Retaining and Releasing PDF Documents

CGPDFDocumentRelease (page 349)
Decrements the retain count of a PDF document.

CGPDFDocumentRetain (page 349)
Increments the retain count of a Quartz PDF document.

Overview 337
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Getting the CFType ID for a PDF Document Object

CGPDFDocumentGetTypeID (page 347)
Returns the type identifier for Quartz PDF documents.

Getting Information About Quartz PDF Documents

CGPDFDocumentGetCatalog (page 342)
Returns the document catalog of a Quartz PDF document.

CGPDFDocumentGetNumberOfPages (page 345)
Returns the number of pages in a PDF document.

CGPDFDocumentGetPage (page 345)
Returns a page from a Quartz PDF document.

CGPDFDocumentGetVersion (page 347)
Returns the major and minor version numbers of a Quartz PDF document.

CGPDFDocumentGetInfo (page 344)
Gets the information dictionary for a PDF document.

CGPDFDocumentGetID (page 343)
Gets the file identifier for a PDF document.

Managing Encryption

CGPDFDocumentAllowsCopying (page 339)
Returns whether the specified PDF document allows copying.

CGPDFDocumentAllowsPrinting (page 339)
Returns whether a PDF document allows printing.

CGPDFDocumentIsEncrypted (page 348)
Returns whether the specified PDF file is encrypted.

CGPDFDocumentIsUnlocked (page 348)
Returns whether the specified PDF document is currently unlocked.

CGPDFDocumentUnlockWithPassword (page 350)
Unlocks an encrypted PDF document, if a valid password is supplied.

Getting Page Information

CGPDFDocumentGetArtBox (page 341) Deprecated in Mac OS X version 10.3 and later
Returns the art box of a page in a PDF document.

CGPDFDocumentGetBleedBox (page 341) Deprecated in Mac OS X version 10.3 and later
Returns the bleed box of a page in a PDF document.

CGPDFDocumentGetCropBox (page 343) Deprecated in Mac OS X version 10.3 and later
Returns the crop box of a page in a PDF document.

CGPDFDocumentGetMediaBox (page 344) Deprecated in Mac OS X version 10.3 and later
Returns the media box of a page in a PDF document.

338 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGPDFDocumentGetRotationAngle (page 346) Deprecated in Mac OS X version 10.3 and later
Returns the rotation angle of a page in a PDF document.

CGPDFDocumentGetTrimBox (page 346) Deprecated in Mac OS X version 10.3 and later
Returns the trim box of a page in a PDF document.

Functions

CGPDFDocumentAllowsCopying
Returns whether the specified PDF document allows copying.

bool CGPDFDocumentAllowsCopying (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document allows copying. If the value is false, the document
does not allow copying.

Discussion
This function returns true if the specified PDF document allows copying. It returns false if the document
is encrypted and the current password doesn't grant permission to perform copying.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentAllowsPrinting
Returns whether a PDF document allows printing.

bool CGPDFDocumentAllowsPrinting (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document allows printing. If the value is false, the document
does not allow printing.

Discussion
This function returns true if the specified PDF document allows printing. It returns false if the document
is encrypted and the current password doesn't grant permission to perform printing.

Functions 339
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentCreateWithProvider
Creates a Quartz PDF document using a data provider.

CGPDFDocumentRef CGPDFDocumentCreateWithProvider (
 CGDataProviderRef provider
);

Parameters
provider

A data provider that supplies the PDF document data.

Return Value
A new Quartz PDF document, or NULL if a document can not be created. You are responsible for releasing
the object using CGPDFDocumentRelease (page 349).

Discussion
Distributing individual pages of a PDF document to separate threads is not supported. If you want to use
threads, consider creating a separate document for each thread and operating on a block of pages per thread.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextDrawPDFDocument (page 87)

Declared In
CGPDFDocument.h

CGPDFDocumentCreateWithURL
Creates a Quartz PDF document using data specified by a URL.

CGPDFDocumentRef CGPDFDocumentCreateWithURL (
 CFURLRef url
);

Parameters
url

The URL address at which the PDF document data is located.

Return Value
A new Quartz PDF document, or NULL if a document could not be created. You are responsible for releasing
the object using CGPDFDocumentRelease (page 349).

Discussion
Distributing individual pages of a PDF document to separate threads is not supported. If you want to use
threads, consider creating a separate document for each thread and operating on a block of pages per thread.

340 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextDrawPDFDocument (page 87)

Related Sample Code
Quartz EB

Declared In
CGPDFDocument.h

CGPDFDocumentGetArtBox
Returns the art box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetArtBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the art box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The art box defines the extent of the page’s meaningful content (including potential white space) as intended
by the document creator. The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetBleedBox
Returns the bleed box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

Functions 341
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGRect CGPDFDocumentGetBleedBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the bleed box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The bleed box defines the bounds to which the contents of the page should be clipped when output in a
production environment. The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetCatalog
Returns the document catalog of a Quartz PDF document.

CGPDFDictionaryRef CGPDFDocumentGetCatalog (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
The document catalog of the specified document.

Discussion
The entries in a PDF document catalog recursively describe the contents of the PDF document. You can
access the contents of a PDF document catalog by calling the function CGPDFDocumentGetCatalog. For
information on accessing PDF metadata, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

342 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGPDFDocumentGetCropBox
Returns the crop box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetCropBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the crop box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The crop box defines the region to which the contents of the page are to be clipped (or cropped) when
displayed or printed. Unlike the other boxes, the crop box has no defined meaning in terms of physical page
geometry or intended use—it merely suggests where the page should be clipped.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetID
Gets the file identifier for a PDF document.

CGPDFArrayRef CGPDFDocumentGetID (
 CGPDFDocumentRef document
);

Parameters
document

The document whose file identifier you want to obtain.

Return Value
Returns the file identifier for the document.

Discussion
A PDF file identifier is defined in the PDF specification as an array of two strings, the first of which is a
permanent identifier that doesn’t change even when the file is updated. The second string changes each
time the file is updated. For more information, see PDF Reference: Version 1.3 (Second Edition), Adobe Systems
Incorporated.

Functions 343
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetInfo
Gets the information dictionary for a PDF document.

CGPDFDictionaryRef CGPDFDocumentGetInfo (
 CGPDFDocumentRef document
);

Parameters
document

The document whose dictionary you want to obtain.

Return Value
The information dictionary for the document.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetMediaBox
Returns the media box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetMediaBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the media box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The media box defines the location and size of the physical medium on which the page is intended to be
displayed or printed. For example, if the page size is 8.5 by 11 inches, this function returns the coordinate
pairs (0,0) and (612,792).

344 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Related Sample Code
Quartz EB

Declared In
CGPDFDocument.h

CGPDFDocumentGetNumberOfPages
Returns the number of pages in a PDF document.

size_t CGPDFDocumentGetNumberOfPages (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to examine.

Return Value
The total number of pages in the PDF document.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Quartz EB

Declared In
CGPDFDocument.h

CGPDFDocumentGetPage
Returns a page from a Quartz PDF document.

CGPDFPageRef CGPDFDocumentGetPage (
 CGPDFDocumentRef document,
 size_t pageNumber
);

Parameters
document

A PDF document.

pageNumber
The number of the page requested.

Return Value
Return the PDF page corresponding to the specified page number, or NULL if no such page exists in the
document. Pages are numbered starting at 1.

Functions 345
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetRotationAngle
Returns the rotation angle of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

int CGPDFDocumentGetRotationAngle (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
The rotation angle of the page, expressed in degrees. If the specified page does not exist, returns 0.

Discussion
The replacement function for this one isCGPDFPageGetRotationAngle. For more information seeCGPDFPage
Reference.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetTrimBox
Returns the trim box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetTrimBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
A value specifying the number of the page to examine.

Return Value
Returns a rectangle that represents the trim box for the specified page, expressed in default PDF user space
units (points).

346 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The trim box defines the intended dimensions of the finished page after trimming. It may be smaller than
the media box, to allow for production-related content such as printing instructions, cut marks, or color bars.
The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetTypeID
Returns the type identifier for Quartz PDF documents.

CFTypeID CGPDFDocumentGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGPDFDocumentRef (page 350).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetVersion
Returns the major and minor version numbers of a Quartz PDF document.

void CGPDFDocumentGetVersion (
 CGPDFDocumentRef document,
 int *majorVersion,
 int *minorVersion
);

Parameters
document

A PDF document.

majorVersion
On return, contains the major version number of the document.

minorVersion
On return, contains the minor version number of the document.

Functions 347
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Return Value
On return, the values of the majorVersion and minorVersion parameters are set to the major and minor
version numbers of the document respectively.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentIsEncrypted
Returns whether the specified PDF file is encrypted.

bool CGPDFDocumentIsEncrypted (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document is encrypted. If the value is false, the document is not
encrypted.

Discussion
If the document is encrypted, a password must be supplied before certain operations are enabled. For more
information, see CGPDFDocumentUnlockWithPassword (page 350).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentIsUnlocked
Returns whether the specified PDF document is currently unlocked.

bool CGPDFDocumentIsUnlocked (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document is not locked. If the value is false, the document is
locked.

Discussion
There are two possible reasons why a PDF document is unlocked:

348 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

 ■ The document is not encrypted.

 ■ The document is encrypted, and a valid password was previously specified using
CGPDFDocumentUnlockWithPassword (page 350).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentRelease
Decrements the retain count of a PDF document.

void CGPDFDocumentRelease (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the document parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Quartz EB

Declared In
CGPDFDocument.h

CGPDFDocumentRetain
Increments the retain count of a Quartz PDF document.

CGPDFDocumentRef CGPDFDocumentRetain (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to retain.

Return Value
The same document you passed in as the document parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the document parameter
is NULL.

Functions 349
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentUnlockWithPassword
Unlocks an encrypted PDF document, if a valid password is supplied.

bool CGPDFDocumentUnlockWithPassword (
 CGPDFDocumentRef document,
 const char *password
);

Parameters
document

A PDF document.

password
A pointer to a string that contains the password.

Return Value
A Boolean that, if true, indicates that the document has been successfully unlocked. If the value is false,
the document has not been unlocked.

Discussion
Given an encrypted PDF document and a password, this function does the following:

 ■ Sets the lock state of the document, based on the validity of the password.

 ■ Returns true if the document is unlocked.

 ■ Returns false if the document cannot be unlocked with the specified password.

Unlocking a PDF document makes it possible to decrypt the document and perform other privileged
operations. Different passwords enable different operations.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

Data Types

CGPDFDocumentRef
An opaque type that represents a PDF (Portable Document Format) document.

350 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

typedef struct CGPDFDocument * CGPDFDocumentRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGPDFDocument.h

Data Types 351
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

352 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFObject.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFObjectRef opaque type represents PDF objects in a PDF document. PDF supports several basic
types of object: Boolean values, integer and real numbers, strings, names, arrays, dictionaries, and streams.
Most of these are represented in Quartz by corresponding specific types. A CGPDFObject can represent any
of these types. You use CGPDFObject functions to determine the type of the object, and retrieve the object
value if it is of an expected type.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFObject objects exist as constituent parts of a CGPDFDocument object, and are managed by their
container.

Functions

CGPDFObjectGetType
Returns the PDF type identifier of an object.

CGPDFObjectType CGPDFObjectGetType (
 CGPDFObjectRef object
);

Parameters
object

A PDF object. If the value if not a PDF object, the behavior is unspecified.

Return Value
Returns the type of the object parameter. See “Data Types” (page 354).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFObject.h

Overview 353
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

CGPDFObjectGetValue
Returns whether an object is of a given type and if it is, retrieves its value.

bool CGPDFObjectGetValue (
 CGPDFObjectRef object,
 CGPDFObjectType type,
 void *value
);

Parameters
object

A PDF object.

type
A PDF object type.

value
If the object parameter is a PDF object of the specified type, then on return contains that object,
otherwise the value is unspecified.

Return Value
Returns true if the specified object is a PDF object of the specified type, otherwise false.

Discussion
The function gets the value of the object parameter. If the type of object is equal to the type specified,
then:

 ■ If the value parameter is not a null pointer, then the value of object is copied to value, and the
function returns true.

 ■ If the value parameter is a null pointer, then the function simply returns true. This allows you to test
whether object is of the type specified.

If the type of object is kCGPDFObjectTypeInteger and type is equal to kCGPDFObjectTypeReal, then
the value of object is converted to floating point, the result copied to value, and the function returns true.
If none of the preceding conditions is met, returns false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFObject.h

Data Types

CGPDFObjectRef
An opaque type that contains information about a PDF object.

typedef union CGPDFObject *CGPDFObjectRef;

Availability
Available in Mac OS X v10.3 and later.

354 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

Declared In
CGPDFObject.h

CGPDFBoolean
A PDF Boolean value.

typedef unsigned char CGPDFBoolean;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

CGPDFInteger
A PDF integer value.

typedef long int CGPDFInteger;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

CGPDFReal
A PDF real value.

typedef CGFloat CGPDFReal;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

Constants

PDF Object Types
Types of PDF object.

Constants 355
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

enum CGPDFObjectType {
 kCGPDFObjectTypeNull = 1,
 kCGPDFObjectTypeBoolean,
 kCGPDFObjectTypeInteger,
 kCGPDFObjectTypeReal,
 kCGPDFObjectTypeName,
 kCGPDFObjectTypeString,
 kCGPDFObjectTypeArray,
 kCGPDFObjectTypeDictionary,
 kCGPDFObjectTypeStream
};typedef enum CGPDFObjectType CGPDFObjectType;

Constants
kCGPDFObjectTypeNull

The type for a PDF null.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeBoolean
The type for a PDF Boolean.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeInteger
The type for a PDF integer.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeReal
The type for a PDF real.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeName
Type for a PDF name.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeString
The type for a PDF string.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeArray
Type for a PDF array.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeDictionary
The type for a PDF dictionary.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

356 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

kCGPDFObjectTypeStream
The type for a PDF stream.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

Declared In
CGPDFObject.h

Constants 357
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

358 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFOperatorTable.h

Overview

A CGPDFOperatorTable object stores callback functions for PDF operators. You pass an operator table and
a PDF content stream to a CGPDFScanner object. When the scanner parses a PDF operator, Quartz invokes
your callback for that operator. See also CGPDFScanner Reference and CGPDFContentStream Reference.

Note: This opaque type is not derived from CFType and therefore you can’t use the Core Foundation base
functions on it, such as CFRetain and CFRelease. Memory management is handled by the specific functions
CGPDFOperatorTableRetain (page 360) and CGPDFOperatorTableRelease (page 360).

For more about PDF operators, see the latest version of PDF Reference, Adobe Systems Incorporated.

Functions by Task

Creating a PDF Operator Table

CGPDFOperatorTableCreate (page 360)
Creates an empty PDF operator table.

Setting Callback Functions

CGPDFOperatorTableSetCallback (page 361)
Sets a callback function for a PDF operator.

Retaining and Releasing a PDF Operator Table

CGPDFOperatorTableRetain (page 360)
Increments the retain count of a CGPDFOperatorTable object.

Overview 359
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

CGPDFOperatorTableRelease (page 360)
Decrements the retain count of a CGPDFOperatorTable object.

Functions

CGPDFOperatorTableCreate
Creates an empty PDF operator table.

CGPDFOperatorTableRef CGPDFOperatorTableCreate (
 void
);

Return Value
An empty PDF operator table. You are responsible for releasing this object by calling
CGPDFOperatorTableRelease (page 360).

Discussion
Call the function CGPDFOperatorTableSetCallback (page 361) to fill the operator table with callbacks.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableRelease
Decrements the retain count of a CGPDFOperatorTable object.

void CGPDFOperatorTableRelease (
 CGPDFOperatorTableRef table
);

Parameters
table

A PDF operator table.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableRetain
Increments the retain count of a CGPDFOperatorTable object.

360 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

CGPDFOperatorTableRef CGPDFOperatorTableRetain (
 CGPDFOperatorTableRef table
);

Parameters
table

A PDF operator table.

Return Value
The same PDF operator table you passed in as the table parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableSetCallback
Sets a callback function for a PDF operator.

void CGPDFOperatorTableSetCallback (
 CGPDFOperatorTableRef table,
 const char *name,
 CGPDFOperatorCallback callback
);

Parameters
table

A PDF operator table.

name
The name of the PDF operator you want to set a callback for.

callback
The callback to invoke for the PDF operator specified by the name parameter.

Discussion
You call the function CGPDFOperatorTableSetCallback for each PDF operator for which you want to
provide a callback. See Appendix A in the PDF Reference, Second Edition, version 1.3, Adobe Systems
Incorporated for a summary of PDF operators.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

Callbacks

CGPDFOperatorCallback
Performs custom processing for PDF operators.

Callbacks 361
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

typedef void (*CGPDFOperatorCallback)(
 CGPDFScannerRef scanner,
 void *info
);

If you name your function MyCGPDFOperatorCallback, you would declare it like this:

void MyCGPDFOperatorCallback (
 CGPDFScannerRef scanner,
 void *info
);

Parameters
scanner

A CGPDFScanner object. Quartz passes the scanner to your callback function. The scanner contains
the PDF content stream that has the PDF operator that corresponds to this callback.

info
A pointer to data passed to the callback.

Discussion
Your callback function takes any action that’s appropriate for your application. For example, if you want to
count the number of inline images in a PDF but ignore the image data, you would set a callback for the EI
operator. In your callback you would increment a counter for each call.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFOperatorTable.h

Data Types

CGPDFOperatorTableRef
An opaque type that stores callback functions for PDF operators.

typedef struct CGPDFOperatorTable *CGPDFOperatorTableRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFOperatorTable.h

362 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFPage.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFPageRef opaque type represents a page in a PDF document.

Functions by Task

Retaining and Releasing a PDF Page

CGPDFPageRetain (page 368)
Increments the retain count of a PDF page.

CGPDFPageRelease (page 367)
Decrements the retain count of a PDF page.

Getting the CFType ID

CGPDFPageGetTypeID (page 367)
Returns the CFType ID for PDF page objects.

Getting Page Information

CGPDFPageGetBoxRect (page 364)
Returns the rectangle that represents a type of box for a content region or page dimensions of a PDF
page.

CGPDFPageGetDictionary (page 364)
Returns the dictionary of a PDF page.

CGPDFPageGetDocument (page 365)
Returns the document for a page.

Overview 363
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

CGPDFPageGetDrawingTransform (page 365)
Returns the affine transform that maps a box to a given rectangle on a PDF page.

CGPDFPageGetPageNumber (page 366)
Returns the page number of the specified PDF page.

CGPDFPageGetRotationAngle (page 367)
Returns the rotation angle of a PDF page.

Functions

CGPDFPageGetBoxRect
Returns the rectangle that represents a type of box for a content region or page dimensions of a PDF page.

CGRect CGPDFPageGetBoxRect (
 CGPDFPageRef page,
 CGPDFBox box
);

Parameters
page

A PDF page.

box
A CGPDFBox constant that specifies the type of box. For possible values, see “PDF Boxes” (page
369).

Return Value
Returns the rectangle associated with the type of box specified by the box parameter in the specified page.

Discussion
Returns the rectangle associated with the specified box in the specified page. This is the value of the
corresponding entry (such as /MediaBox, /ArtBox, and so on) in the page’s dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetDictionary
Returns the dictionary of a PDF page.

CGPDFDictionaryRef CGPDFPageGetDictionary (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

364 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Return Value
Returns the PDF dictionary for the specified page.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetDocument
Returns the document for a page.

CGPDFDocumentRef CGPDFPageGetDocument (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The PDF document with which the specified page is associated.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetDrawingTransform
Returns the affine transform that maps a box to a given rectangle on a PDF page.

CGAffineTransform CGPDFPageGetDrawingTransform (
 CGPDFPageRef page,
 CGPDFBox box,
 CGRect rect,
 int rotate,
 bool preserveAspectRatio
);

Parameters
page

A PDF page.

box
A CGPDFBox constant that specifies the type of box. For possible values, see “PDF Boxes” (page
369).

rect
A Quartz rectangle.

Functions 365
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

rotate
An integer, that must be a multiple of 90, that specifies the angle by which the specified rectangle is
rotated clockwise.

preserveAspectRatio
A Boolean value that specifies whether or not the aspect ratio should be preserved. A value of true
specifies that the aspect ratio should be preserved.

Return Value
An affine transform that maps the box specified by the box parameter to the rectangle specified by the rect
parameter.

Discussion
Quartz constructs the affine transform as follows:

 ■ Computes the effective rectangle by intersecting the rectangle associated with box and the /MediaBox
entry of the specified page.

 ■ Rotates the effective rectangle according to the page’s /Rotate entry.

 ■ Centers the resulting rectangle on rect. If the value of the rotate parameter is non-zero, then the
rectangle is rotated clockwise by rotate degrees. The value of rotate must be a multiple of 90.

 ■ Scales the rectangle, if necessary, so that it coincides with the edges of rect. If the value of
preserveAspectRatio parameter is true, then the final rectangle coincides with the edges of rect
only in the more restrictive dimension.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetPageNumber
Returns the page number of the specified PDF page.

size_t CGPDFPageGetPageNumber (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
Returns the page number of the specified page.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

366 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

CGPDFPageGetRotationAngle
Returns the rotation angle of a PDF page.

int CGPDFPageGetRotationAngle (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The rotation angle (in degrees) of the specified page. This is the value of the /Rotate entry in the page’s
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetTypeID
Returns the CFType ID for PDF page objects.

CFTypeID CGPDFPageGetTypeID (
 void
);

Return Value
Returns the Core Foundation type for a PDF page.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageRelease
Decrements the retain count of a PDF page.

void CGPDFPageRelease (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the page parameter is
NULL.

Functions 367
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageRetain
Increments the retain count of a PDF page.

CGPDFPageRef CGPDFPageRetain (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The same page you passed in as the page parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the page parameter is NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

Data Types

CGPDFPageRef
An opaque type that represents a page in a PDF document.

typedef struct CGPDFPage *CGPDFPageRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

368 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Constants

PDF Boxes
Box types for a PDF page.

enum CGPDFBox {
 kCGPDFMediaBox = 0,
 kCGPDFCropBox = 1,
 kCGPDFBleedBox = 2,
 kCGPDFTrimBox = 3,
 kCGPDFArtBox = 4
};
typedef enum CGPDFBox CGPDFBox;

Constants
kCGPDFMediaBox

The page media box—a rectangle, expressed in default user space units, that defines the boundaries
of the physical medium on which the page is intended to be displayed or printed

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFCropBox
The page crop box—a rectangle, expressed in default user space units, that defines the visible region
of default user space. When the page is displayed or printed, its contents are to be clipped to this
rectangle.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFBleedBox
The page bleed box—a rectangle, expressed in default user space units, that defines the region to
which the contents of the page should be clipped when output in a production environment

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFTrimBox
The page trim box—a rectangle, expressed in default user space units, that defines the intended
dimensions of the finished page after trimming.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFArtBox
The page art box—a rectangle, expressed in default user space units, defining the extent of the page’s
meaningful content (including potential white space) as intended by the page’s creator.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

Declared In
CGPDFPage.h

Constants 369
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

370 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFScanner.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFScannerRef opaque type is used to parse a PDF content stream. You can set up the PDF scanner
object to invoke callbacks when it encounters specific PDF operators in the stream.

This opaque type is not derived from CFType. Use CGPDFScannerRetain (page 378) and
CGPDFScannerRelease (page 377) to manage the retain count of CGPDFScannerRef instances; do not use
CFRetain and CFRelease.

Functions by Task

Creating a PDF Scanner Object

CGPDFScannerCreate (page 372)
Creates a PDF scanner.

Retaining and Releasing PDF Scanner Objects

CGPDFScannerRetain (page 378)
Increments the retain count of a scanner object.

CGPDFScannerRelease (page 377)
Decrements the retain count of a scanner object.

Parsing Content

CGPDFScannerScan (page 378)
Parses the content stream of a PDF scanner object.

Overview 371
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

CGPDFScannerGetContentStream (page 373)
Returns the content stream associated with a PDF scanner object.

Getting PDF Objects from the Scanner Stack

CGPDFScannerPopObject (page 376)
Retrieves an object from the scanner stack.

CGPDFScannerPopBoolean (page 374)
Retrieves a Boolean object from the scanner stack.

CGPDFScannerPopInteger (page 375)
Retrieves an integer object from the scanner stack.

CGPDFScannerPopNumber (page 375)
Retrieves a real value object from the scanner stack.

CGPDFScannerPopName (page 375)
Retrieves a character string from the scanner stack.

CGPDFScannerPopString (page 377)
Retrieves a string object from the scanner stack.

CGPDFScannerPopArray (page 373)
Retrieves an array object from the scanner stack.

CGPDFScannerPopDictionary (page 374)
Retrieves a PDF dictionary object from the scanner stack.

CGPDFScannerPopStream (page 376)
Retrieves a PDF stream object from the scanner stack.

Functions

CGPDFScannerCreate
Creates a PDF scanner.

CGPDFScannerRef CGPDFScannerCreate (
 CGPDFContentStreamRef cs,
 CGPDFOperatorTableRef table,
 void *info
);

Parameters
cs

A PDF content stream object. (See CGPDFContentStream Reference.)

table
A table of callbacks for the PDF operators you want to handle.

info
A pointer to data you want passed to your callback function. (See CGPDFOperatorTable Reference.)

372 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Return Value
A PDF scanner object. You are responsible for releasing this object by calling the function
CGPDFScannerRelease.

Discussion
When you want to parse the contents of the PDF stream, call the function CGPDFScannerScan (page 378).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerGetContentStream
Returns the content stream associated with a PDF scanner object.

CGPDFContentStreamRef CGPDFScannerGetContentStream (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object whose content stream you want to obtain.

Return Value
The content stream associated with scanner.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopArray
Retrieves an array object from the scanner stack.

bool CGPDFScannerPopArray (
 CGPDFScannerRef scanner,
 CGPDFArrayRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the PDF array object popped from the scanner stack.

Return Value
true if the array object is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Functions 373
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Declared In
CGPDFScanner.h

CGPDFScannerPopBoolean
Retrieves a Boolean object from the scanner stack.

bool CGPDFScannerPopBoolean (
 CGPDFScannerRef scanner,
 CGPDFBoolean *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the PDF Boolean object popped from the scanner stack.

Return Value
true if the boolean object is retrieved successfully; otherwise,false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopDictionary
Retrieves a PDF dictionary object from the scanner stack.

bool CGPDFScannerPopDictionary (
 CGPDFScannerRef scanner,
 CGPDFDictionaryRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the PDF dictionary object popped from the scanner stack.

Return Value
true if the PDF dictionary object is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

374 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

CGPDFScannerPopInteger
Retrieves an integer object from the scanner stack.

bool CGPDFScannerPopInteger (
 CGPDFScannerRef scanner,
 CGPDFInteger *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the PDF integer object popped from the scanner stack.

Return Value
true if the PDF integer is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopName
Retrieves a character string from the scanner stack.

bool CGPDFScannerPopName (
 CGPDFScannerRef scanner,
 const char **value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the character string popped from the scanner stack.

Return Value
true if the string is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopNumber
Retrieves a real value object from the scanner stack.

Functions 375
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

bool CGPDFScannerPopNumber (
 CGPDFScannerRef scanner,
 CGPDFReal *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the real value object popped from the scanner stack.

Return Value
true if the real value is retrieved successfully; otherwise, false.

Discussion
The number retrieved from the scanner can be a real value or an integer value. However, the result is always
converted to a value of type CGPDFReal.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopObject
Retrieves an object from the scanner stack.

bool CGPDFScannerPopObject (
 CGPDFScannerRef scanner,
 CGPDFObjectRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the object popped from the scanner stack.

Return Value
true if the object is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopStream
Retrieves a PDF stream object from the scanner stack.

376 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

bool CGPDFScannerPopStream (
 CGPDFScannerRef scanner,
 CGPDFStreamRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the PDF stream object popped from the scanner stack.

Return Value
true if the stream object is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopString
Retrieves a string object from the scanner stack.

bool CGPDFScannerPopString (
 CGPDFScannerRef scanner,
 CGPDFStringRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the string object popped from the scanner stack.

Return Value
true if the string is retrieved successfully; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerRelease
Decrements the retain count of a scanner object.

Functions 377
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

void CGPDFScannerRelease (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object to release.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerRetain
Increments the retain count of a scanner object.

CGPDFScannerRef CGPDFScannerRetain (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object to retain.

Return Value
The same scanner object passed to the function in the scanner parameter.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerScan
Parses the content stream of a PDF scanner object.

bool CGPDFScannerScan (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object whose content stream you want to parse.

Return Value
true if the entire stream is parsed successfully; false if parsing fails (for example, if the stream data is
corrupted).

Discussion
The function CGPDFScannerScan parses the PDF content stream associated with the scanner. Each time
Quartz parses a PDF operator for which you register a callback, Quartz invokes your callback.

378 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

Data Types

CGPDFScannerRef
An opaque type used to parse a PDF content stream.

typedef struct CGPDFScanner *CGPDFScannerRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

Data Types 379
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

380 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFStream.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFStreamRef opaque type represents a PDF stream. A PDF stream consists of a dictionary that
describes a sequence of bytes. Streams typically represent objects with potentially large amounts of data,
such as images and page descriptions.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it.

Functions

CGPDFStreamCopyData
Returns the data associated with a PDF stream.

CFDataRef CGPDFStreamCopyData (
 CGPDFStreamRef stream,
 CGPDFDataFormat *format
);

Parameters
stream

A PDF stream.

format
On return, contains a constant that specifies the format of the data
returned—CGPDFDataFormatRaw (page 383), CGPDFDataFormatJPEGEncoded (page 383), or
CGPDFDataFormatJPEG2000 (page 383).

Return Value
A CFData object that contains a copy of the stream data. You are responsible for releasing this object.

Availability
Available in Mac OS X version 10.3 and later.

Overview 381
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

Declared In
CGPDFStream.h

CGPDFStreamGetDictionary
Returns the dictionary associated with a PDF stream.

CGPDFDictionaryRef CGPDFStreamGetDictionary (
 CGPDFStreamRef stream
);

Parameters
stream

A PDF stream.

Return Value
The PDF dictionary for the specified stream.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFStream.h

Data Types

CGPDFStream
An opaque type that represents a PDF stream.

typedef struct CGPDFStream *CGPDFStreamRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFStream.h

Constants

CGPDFDataFormat
The encoding format of PDF data.

382 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

enum CGPDFDataFormat {
 CGPDFDataFormatRaw,
 CGPDFDataFormatJPEGEncoded,
 CGPDFDataFormatJPEG2000
};
typedef enum CGPDFDataFormat CGPDFDataFormat;

Constants
CGPDFDataFormatRaw

The data stream is not encoded.

Available in Mac OS X v10.3 and later.

Declared in CGPDFStream.h.

CGPDFDataFormatJPEGEncoded
The data stream is encoded in JPEG format.

Available in Mac OS X v10.3 and later.

Declared in CGPDFStream.h.

CGPDFDataFormatJPEG2000
The data stream is encoded in JPEG-2000 format.

Available in Mac OS X v10.4 and later.

Declared in CGPDFStream.h.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFStream.h

Constants 383
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

384 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFString.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFStringRef opaque type represents a string in a PDF document A PDF string object of a series of
bytes—unsigned integer values in the range 0 to 255. The string elements are not integer objects, but are
stored in a more compact format. For more information on the representation of strings in PDF, see the latest
version of PDF Reference, Adobe Systems Incorporated.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFString objects exist as constituent parts of a CGPDFDocument object, and are managed by their
container.

Functions by Task

Converting PDF Strings

CGPDFStringCopyDate (page 386)
Converts a string to a date.

CGPDFStringCopyTextString (page 386) Deprecated in Mac OS X v10.6
Returns a CFString object that represents a PDF string as a text string.

Getting PDF String Data

CGPDFStringGetBytePtr (page 386)
Returns a pointer to the bytes of a PDF string.

CGPDFStringGetLength (page 387)
Returns the number of bytes in a PDF string.

Overview 385
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

Functions

CGPDFStringCopyDate
Converts a string to a date.

CFDateRef CGPDFStringCopyDate (
 CGPDFStringRef string
);

Parameters
string

The string to convert to a date.

Return Value
A CFDate object.

Discussion
The PDF specification defines a specific format for strings that represent dates. This function converts strings
in that form to CFDate objects.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFString.h

CGPDFStringCopyTextString
Returns a CFString object that represents a PDF string as a text string.

CFStringRef CGPDFStringCopyTextString (
 CGPDFStringRef string
);

Parameters
string

A PDF string. If this value is NULL, it will cause an error.

Return Value
Returns a CFString object that represents the specified PDF string as a text string. You are responsible for
releasing this object.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

CGPDFStringGetBytePtr
Returns a pointer to the bytes of a PDF string.

386 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

const unsigned char * CGPDFStringGetBytePtr (
 CGPDFStringRef string
);

Parameters
string

A PDF string.

Return Value
Returns a pointer to the bytes of the specified string. If the string is NULL, the function returns NULL.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

CGPDFStringGetLength
Returns the number of bytes in a PDF string.

size_t CGPDFStringGetLength (
 CGPDFStringRef string
);

Parameters
string

A PDF string.

Return Value
Returns the number of bytes referenced by the string, or 0 if the string is NULL.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

Data Types

CGPDFStringRef
An opaque data type that represents a string in a PDF document.

typedef struct CGPDFString *CGPDFStringRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFString.h

Data Types 387
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

388 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPSConverter.h

Companion guide Quartz 2D Programming Guide

Overview

CGPSConverterRef is an opaque type used to convert PostScript data to PDF data. The PostScript data is
supplied by a data provider and written into a data consumer. When you create a PostScript converter object,
you can supply callback functions for Quartz to invoke at various stages of the conversion process,

Functions

CGPSConverterAbort
Tells a PostScript converter to abort a conversion at the next available opportunity.

bool CGPSConverterAbort (
 CGPSConverterRef converter
);

Parameters
converter

A PostScript converter.

Return Value
A Boolean value that indicates whether the converter is currently converting data (true if it is).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterConvert
Uses a PostScript converter to convert PostScript data to PDF data.

Overview 389
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

bool CGPSConverterConvert (
 CGPSConverterRef converter,
 CGDataProviderRef provider,
 CGDataConsumerRef consumer,
 CFDictionaryRef options
);

Parameters
converter

A PostScript converter.

provider
A Quartz data provider that supplies PostScript data.

consumer
A Quartz data provider that will receive the resulting PDF data.

options
This parameter should be NULL; it is reserved for future expansion of the API.

Return Value
A Boolean value that indicates whether the PostScript conversion completed successfully (true if it did).

Discussion
The conversion is thread safe, however it is not possible to have more than one conversion job in process
within a given address space or process. If a given thread is running a conversion and another thread starts
a new conversion, the second conversion will block until the first conversion is complete.

Important: Although CGPSConverterConvert is thread safe (it uses locks to prevent more than one
conversion at a time in the same process), it is not thread safe with respect to the Resource Manager. If your
application uses the Resource Manager on a separate thread, you should either use locks to prevent
CGPSConverterConvert from executing during your usage of the Resource Manager or you should perform
your conversions using the Post Script converter in a separate process.

In general, you can avoid this issue by using nib files instead of Resource Manager resources.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterCreate
Creates a new PostScript converter.

CGPSConverterRef CGPSConverterCreate (
 void *info,
 const CGPSConverterCallbacks *callbacks,
 CFDictionaryRef options
);

Parameters
info

A pointer to the data that will be passed to the callbacks.

390 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

callbacks
A pointer to a PostScript converter callbacks structure that specifies the callbacks to be used during
a conversion process.

options
This parameter should be NULL; it is reserved for future expansion of the API.

Return Value
A new PostScript converter, or NULL if a converter could not be created. You are responsible for releasing
this object.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterGetTypeID
Returns the Core Foundation type identifier for PostScript converters.

CFTypeID CGPSConverterGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGPSConverterRef (page 396).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterIsConverting
Checks whether the converter is currently converting data.

bool CGPSConverterIsConverting (
 CGPSConverterRef converter
);

Parameters
converter

A PostScript converter.

Return Value
Returns true that indicates if the conversion is in progress.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

Functions 391
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Callbacks by Task

Performing Custom Tasks at the Document Level

CGPSConverterBeginDocumentCallback (page 392)
Performs custom tasks at the beginning of a PostScript conversion process.

CGPSConverterEndDocumentCallback (page 393)
Performs custom tasks at the end of a PostScript conversion process.

Performing Custom Tasks at the Page Level

CGPSConverterBeginPageCallback (page 393)
Performs custom tasks at the beginning of each page in a PostScript conversion process.

CGPSConverterEndPageCallback (page 394)
Performs custom tasks at the end of each page of a PostScript conversion process.

Reporting Progress and Messages

CGPSConverterProgressCallback (page 395)
Reports progress periodically during a PostScript conversion process.

CGPSConverterMessageCallback (page 394)
Passes messages generated during a PostScript conversion process.

Performing Custom Clean-up Tasks

CGPSConverterReleaseInfoCallback (page 396)
Performs custom tasks when a PostScript converter is released.

Callbacks

CGPSConverterBeginDocumentCallback
Performs custom tasks at the beginning of a PostScript conversion process.

typedef void (*CGPSConverterBeginDocumentCallback)(void
*info);

If you name your function MyConverterBeginDocument, you would declare it like this:

size_t MyConverterBeginDocument (
 void *info
);

392 Callbacks by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterBeginPageCallback
Performs custom tasks at the beginning of each page in a PostScript conversion process.

typedef void (*CGPSConverterBeginPageCallback)(void
*info, size_t pageNumber, CFDictionaryRef pageInfo);

If you name your function MyConverterBeginDocument, you would declare it like this:

void MyConverterBeginPage (
 void *info,
 size_t pageNumber,
 CFDictionaryRef pageInfo
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

pageNumber
The current page number. Page numbers start at 1.

pageInfo
A dictionary that contains contextual information about the page. This parameter is reserved for
future API expansion, and is currently unused.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterEndDocumentCallback
Performs custom tasks at the end of a PostScript conversion process.

typedef void (*CGPSConverterEndDocumentCallback)(void
*info, bool success);

If you name your function MyConverterEndDocument, you would declare it like this:

void MyConverterEndDocument (
 void *info,

Callbacks 393
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

 bool success
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

success
A Boolean value that indicates whether the PostScript conversion completed successfully (true if it
did).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterEndPageCallback
Performs custom tasks at the end of each page of a PostScript conversion process.

typedef void (*CGPSConverterEndPageCallback)(void
*info, size_t pageNumber, CFDictionaryRef pageInfo);

If you name your function MyConverterEndPage, you would declare it like this:

void MyConverterEndPage (
 void *info,
 size_t *pageNumber,
 CFDictionaryRef pageInfo
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

pageNumber
The current page number. Page numbers start at 1.

pageInfo
A dictionary that contains contextual information about the page. This parameter is reserved for
future API expansion, and is currently unused.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterMessageCallback
Passes messages generated during a PostScript conversion process.

394 Callbacks
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

typedef void (*CGPSConverterMessageCallback)(void
*info, CFStringRef message);

If you name your function MyConverterMessage, you would declare it like this:

void MyConverterMessage (
 void *info,
 CFStringRef message
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

message
A string containing the message from the PostScript conversion process.

Discussion
There are several kinds of message that might be sent during a conversion process. The most likely are font
substitution messages, and any messages that the PostScript code itself generates. Any PostScript messages
written to stdout are routed through this callback—typically these are debugging or status messages and,
although uncommon, can be useful in debugging. In addition, there may be error messages if the document
is malformed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterProgressCallback
Reports progress periodically during a PostScript conversion process.

typedef void (*CGPSConverterProgressCallback)(void
*info);

If you name your function MyConverterProgress, you would declare it like this:

void MyConverterProgress (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Callbacks 395
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

CGPSConverterReleaseInfoCallback
Performs custom tasks when a PostScript converter is released.

typedef void (*CGPSConverterReleaseInfoCallback)(void
*info);

If you name your function MyConverterReleaseInfo, you would declare it like this:

void MyConverterReleaseInfo (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 390).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Data Types

CGPSConverterRef
An opaque data type used to convert PostScript data to PDF data.

typedef struct CGPSConverter *CGPSConverterRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterCallbacks
A structure for holding the callbacks provided when you create a PostScript converter object.

396 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

struct CGPSConverterCallbacks {
 unsigned int version;
 CGPSConverterBeginDocumentCallback beginDocument;
 CGPSConverterEndDocumentCallback endDocument;
 CGPSConverterBeginPageCallback beginPage;
 CGPSConverterEndPageCallback endPage;
 CGPSConverterProgressCallback noteProgress;
 CGPSConverterMessageCallback noteMessage;
 CGPSConverterReleaseInfoCallback releaseInfo;
};
typedef struct CGPSConverterCallbacks CGPSConverterCallbacks;

Fields
version

The version number of the structure passed in as a parameter to the converter creation functions.
The structure defined below is version 0.

beginDocument
The callback called at the beginning of the conversion of the PostScript document, or NULL.

endDocument
The callback called at the end of conversion of the PostScript document, or NULL.

beginPage
The callback called at the start of the conversion of each page in the PostScript document, or NULL.

endPage
The callback called at the end of the conversion of each page in the PostScript document, or NULL.

noteProgress
The callback called periodically during the conversion to indicate that conversion is proceeding, or
NULL.

noteMessage
The callback called to pass any messages that might result during the conversion, or NULL.

releaseInfo
The callback called when the converter is deallocated, or NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Data Types 397
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

398 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGShading.h

Companion guide Quartz 2D Programming Guide

Overview

CGShadingRef is an opaque type used to define linear (axial) and radial gradient fills whose color transitions
are controlled by a function (CGFunctionRef (page 207)) that you provide. Shading means to fill using a
smooth transition between colors across an area. To paint with a Quartz shading, you call
CGContextDrawShading (page 89). This function fills the current clipping path using the specified color
gradient, calling your parametric function repeatedly as it draws

An alternative to using a CGShading object is to use the CGGradientRef (page 215) opaque type. For
applications that run in Mac OS X v10.5 and later, CGGradient objects are much simpler to use. (See CGGradient
Reference.)

Functions by Task

Creating Shading Objects

CGShadingCreateAxial (page 400)
Creates a shading object to use for axial shading.

CGShadingCreateRadial (page 401)
Creates a shading object to use for radial shading.

Retaining and Releasing Shading Objects

CGShadingRetain (page 402)
Increments the retain count of a shading object.

CGShadingRelease (page 402)
Decrements the retain count of a shading object.

Overview 399
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

Getting the CFType ID

CGShadingGetTypeID (page 402)
Returns the Core Foundation type identifier for Quartz shading objects.

Functions

CGShadingCreateAxial
Creates a shading object to use for axial shading.

CGShadingRef CGShadingCreateAxial (
 CGColorSpaceRef colorspace,
 CGPoint start,
 CGPoint end,
 CGFunctionRef function,
 bool extendStart,
 bool extendEnd
);

Parameters
colorspace

The color space in which color values are expressed. Quartz retains this object; upon return, you may
safely release it.

start
The starting point of the axis, in the shading's target coordinate space.

end
The ending point of the axis, in the shading's target coordinate space.

function
A CGFunction object created by the function CGFunctionCreate. This object refers to your function
for creating an axial shading. Quartz retains this object; upon return, you may safely release it.

extendStart
A Boolean value that specifies whether to extend the shading beyond the starting point of the axis.

extendEnd
A Boolean value that specifies whether to extend the shading beyond the ending point of the axis.

Return Value
A new Quartz axial shading. You are responsible for releasing this object using CGShadingRelease (page
402).

Discussion
An axial shading is a color blend that varies along a linear axis between two endpoints and extends indefinitely
perpendicular to that axis. When you are ready to draw the shading, call the function
CGContextDrawShading (page 89).

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
Quartz 2D Shadings

400 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

SampleRaster

Declared In
CGShading.h

CGShadingCreateRadial
Creates a shading object to use for radial shading.

CGShadingRef CGShadingCreateRadial (
 CGColorSpaceRef colorspace,
 CGPoint start,
 CGFloat startRadius,
 CGPoint end,
 CGFloat endRadius,
 CGFunctionRef function,
 bool extendStart,
 bool extendEnd
);

Parameters
colorspace

The color space in which color values are expressed. Quartz retains this object; upon return, you may
safely release it.

start
The center of the starting circle, in the shading's target coordinate space.

startRadius
The radius of the starting circle, in the shading's target coordinate space.

end
The center of the ending circle, in the shading's target coordinate space.

endRadius
The radius of the ending circle, in the shading's target coordinate space.

function
A CGFunction object created by the function CGFunctionCreate. This object refers to your function
for creating a radial shading. Quartz retains this object; upon return, you may safely release it.

extendStart
A Boolean value that specifies whether to extend the shading beyond the starting circle.

extendEnd
A Boolean value that specifies whether to extend the shading beyond the ending circle.

Return Value
A new Quartz radial shading. You are responsible for releasing this object using CGShadingRelease (page
402).

Discussion
A radial shading is a color blend that varies between two circles. To draw the shading, call the function
CGContextDrawShading (page 89).

Availability
Available in Mac OS X version 10.2 and later.

Functions 401
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

Related Sample Code
Quartz 2D Shadings

Declared In
CGShading.h

CGShadingGetTypeID
Returns the Core Foundation type identifier for Quartz shading objects.

CFTypeID CGShadingGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGShadingRef (page 403).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

CGShadingRelease
Decrements the retain count of a shading object.

void CGShadingRelease (
 CGShadingRef shading
);

Parameters
shading

The shading object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the shading parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
Quartz 2D Shadings
SampleRaster

Declared In
CGShading.h

CGShadingRetain
Increments the retain count of a shading object.

402 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

CGShadingRef CGShadingRetain (
 CGShadingRef shading
);

Parameters
shading

The shading object to retain.

Return Value
The same shading object you passed in as the shading parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the shading parameter is
NULL.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

Data Types

CGShadingRef
An opaque type that represents a Quartz shading.

typedef struct CGShading *CGShadingRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGShading.h

Data Types 403
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

404 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

405
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Other References

406
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Other References

Framework: ApplicationServices/ApplicationServices.h

Declared in CGAffineTransform.h

Companion guide Quartz 2D Programming Guide

Overview

The CGAffineTransform data structure represents a matrix used for affine transformations. A transformation
specifies how points in one coordinate system map to points in another coordinate system. An affine
transformation is a special type of mapping that preserves parallel lines in a path but does not necessarily
preserve lengths or angles. Scaling, rotation, and translation are the most commonly used manipulations
supported by affine transforms, but skewing is also possible.

Quartz provides functions that create, concatenate, and apply affine transformations using the
CGAffineTransform data structure. For information on how to use affine transformation functions, see
Quartz 2D Programming Guide.

You typically do not need to create an affine transform directly—CGContext Reference describes functions
that modify the current affine transform. If you don’t plan to reuse an affine transform, you may want to use
CGContextScaleCTM (page 106),CGContextRotateCTM (page 104),CGContextTranslateCTM (page 141),
or CGContextConcatCTM (page 80).

Functions by Task

Creating an Affine Transformation Matrix

CGAffineTransformMake (page 410)
Returns an affine transformation matrix constructed from values you provide.

CGAffineTransformMakeRotation (page 412)
Returns an affine transformation matrix constructed from a rotation value you provide.

CGAffineTransformMakeScale (page 413)
Returns an affine transformation matrix constructed from scaling values you provide.

CGAffineTransformMakeTranslation (page 413)
Returns an affine transformation matrix constructed from translation values you provide.

Overview 407
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

Modifying Affine Transformations

CGAffineTransformTranslate (page 416)
Returns an affine transformation matrix constructed by translating an existing affine transform.

CGAffineTransformScale (page 415)
Returns an affine transformation matrix constructed by scaling an existing affine transform.

CGAffineTransformRotate (page 414)
Returns an affine transformation matrix constructed by rotating an existing affine transform.

CGAffineTransformInvert (page 409)
Returns an affine transformation matrix constructed by inverting an existing affine transform.

CGAffineTransformConcat (page 408)
Returns an affine transformation matrix constructed by combining two existing affine transforms.

Applying Affine Transformations

CGPointApplyAffineTransform (page 416)
Returns the point resulting from an affine transformation of an existing point.

CGSizeApplyAffineTransform (page 418)
Returns the height and width resulting from a transformation of an existing height and width.

CGRectApplyAffineTransform (page 417)
Applies an affine transform to a rectangle.

Evaluating Affine Transforms

CGAffineTransformIsIdentity (page 410)
Checks whether an affine transform is the identity transform.

CGAffineTransformEqualToTransform (page 409)
Checks whether two affine transforms are equal.

Functions

CGAffineTransformConcat
Returns an affine transformation matrix constructed by combining two existing affine transforms.

CGAffineTransform CGAffineTransformConcat (
 CGAffineTransform t1,
 CGAffineTransform t2
);

Parameters
t1

The first affine transform.

408 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

t2
The second affine transform. This affine transform is concatenated to the first affine transform.

Return Value
A new affine transformation matrix. That is, t’ = t1*t2.

Discussion
Concatenation combines two affine transformation matrices by multiplying them together. You might perform
several concatenations in order to create a single affine transform that contains the cumulative effects of
several transformations.

Note that matrix operations are not commutative—the order in which you concatenate matrices is important.
That is, the result of multiplying matrix t1 by matrix t2 does not necessarily equal the result of multiplying
matrix t2 by matrix t1.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
ImageApp

Declared In
CGAffineTransform.h

CGAffineTransformEqualToTransform
Checks whether two affine transforms are equal.

bool CGAffineTransformEqualToTransform (
 CGAffineTransform t1,
 CGAffineTransform t2
);

Parameters
t1

An affine transform.

t2
An affine transform.

Return Value
Returns true if t1 and t2 are equal, false otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGAffineTransform.h

CGAffineTransformInvert
Returns an affine transformation matrix constructed by inverting an existing affine transform.

Functions 409
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGAffineTransform CGAffineTransformInvert (
 CGAffineTransform t
);

Parameters
t

An existing affine transform.

Return Value
A new affine transformation matrix. If the affine transform passed in parameter t cannot be inverted, Quartz
returns the affine transform unchanged.

Discussion
Inversion is generally used to provide reverse transformation of points within transformed objects. Given the
coordinates (x,y), which have been transformed by a given matrix to new coordinates (x’,y’), transforming
the coordinates (x’,y’) by the inverse matrix produces the original coordinates (x,y).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformIsIdentity
Checks whether an affine transform is the identity transform.

bool CGAffineTransformIsIdentity (
 CGAffineTransform t
);

Parameters
t

The affine transform to check.

Return Value
Returns true if t is the identity transform, false otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGAffineTransform.h

CGAffineTransformMake
Returns an affine transformation matrix constructed from values you provide.

410 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGAffineTransform CGAffineTransformMake (
 CGFloat a,
 CGFloat b,
 CGFloat c,
 CGFloat d,
 CGFloat tx,
 CGFloat ty
);

Parameters
a

The value at position [1,1] in the matrix.

b
The value at position [1,2] in the matrix.

c
The value at position [2,1] in the matrix.

d
The value at position [2,2] in the matrix.

tx
The value at position [3,1] in the matrix.

ty
The value at position [3,2] in the matrix.

Return Value
A new affine transform matrix constructed from the values you specify.

Discussion
This function creates a CGAffineTransform structure that represents a new affine transformation matrix,
which you can use (and reuse, if you want) to transform a coordinate system. The matrix takes the following
form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

If you want only to transform an object to be drawn, it is not necessary to construct an affine transform to
do so. The most direct way to transform your drawing is by calling the appropriate CGContext function to
adjust the current transformation matrix. For a list of functions, see CGContext Reference.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
GeekGameBoard
JAWTExample
Quartz 2D Transformer
Quartz EB

Functions 411
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

QuartzShapes

Declared In
CGAffineTransform.h

CGAffineTransformMakeRotation
Returns an affine transformation matrix constructed from a rotation value you provide.

CGAffineTransform CGAffineTransformMakeRotation (
 CGFloat angle
);

Parameters
angle

The angle, in radians, by which this matrix rotates the coordinate system axes. In iOS, a positive value
specifies counterclockwise rotation and a negative value specifies clockwise rotation. In Mac OS X, a
positive value specifies clockwise rotation and a negative value specifies counterclockwise rotation.

Return Value
A new affine transformation matrix.

Discussion
This function creates a CGAffineTransform structure, which you can use (and reuse, if you want) to rotate
a coordinate system. The matrix takes the following form:

The actual direction of rotation is dependent on the coordinate system orientation of the target platform,
which is different in iOS and Mac OS X. Because the third column is always (0,0,1), the CGAffineTransform
data structure returned by this function contains values for only the first two columns.

These are the resulting equations that Quartz uses to apply the rotation to a point (x, y):

If you want only to rotate an object to be drawn, it is not necessary to construct an affine transform to do
so. The most direct way to rotate your drawing is by calling the function CGContextRotateCTM (page 104).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Quartz 2D Shadings

Declared In
CGAffineTransform.h

412 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGAffineTransformMakeScale
Returns an affine transformation matrix constructed from scaling values you provide.

CGAffineTransform CGAffineTransformMakeScale (
 CGFloat sx,
 CGFloat sy
);

Parameters
sx

The factor by which to scale the x-axis of the coordinate system.

sy
The factor by which to scale the y-axis of the coordinate system.

Return Value
A new affine transformation matrix.

Discussion
This function creates a CGAffineTransform structure, which you can use (and reuse, if you want) to scale
a coordinate system. The matrix takes the following form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

These are the resulting equations that Quartz uses to scale the coordinates of a point (x,y):

If you want only to scale an object to be drawn, it is not necessary to construct an affine transform to do so.
The most direct way to scale your drawing is by calling the function CGContextScaleCTM (page 106).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
ImageApp

Declared In
CGAffineTransform.h

CGAffineTransformMakeTranslation
Returns an affine transformation matrix constructed from translation values you provide.

Functions 413
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGAffineTransform CGAffineTransformMakeTranslation (
 CGFloat tx,
 CGFloat ty
);

Parameters
tx

The value by which to move the x-axis of the coordinate system.

ty
The value by which to move the y-axis of the coordinate system.

Return Value
A new affine transform matrix.

Discussion
This function creates a CGAffineTransform structure. which you can use (and reuse, if you want) to move
a coordinate system. The matrix takes the following form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

These are the resulting equations Quartz uses to apply the translation to a point (x,y):

If you want only to move the location where an object is drawn, it is not necessary to construct an affine
transform to do so. The most direct way to move your drawing is by calling the function
CGContextTranslateCTM (page 141).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CIAnnotation

Declared In
CGAffineTransform.h

CGAffineTransformRotate
Returns an affine transformation matrix constructed by rotating an existing affine transform.

414 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGAffineTransform CGAffineTransformRotate (
 CGAffineTransform t,
 CGFloat angle
);

Parameters
t

An existing affine transform.

angle
The angle, in radians, by which to rotate the affine transform. In iOS, a positive value specifies
counterclockwise rotation and a negative value specifies clockwise rotation. In Mac OS X, a positive
value specifies clockwise rotation and a negative value specifies counterclockwise rotation.

Return Value
A new affine transformation matrix.

Discussion
You use this function to create a new affine transformation matrix by adding a rotation value to an existing
affine transform. The resulting structure represents a new affine transform, which you can use (and reuse, if
you want) to rotate a coordinate system.

The actual direction of rotation is dependent on the coordinate system orientation of the target platform,
which is different in iOS and Mac OS X.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformScale
Returns an affine transformation matrix constructed by scaling an existing affine transform.

CGAffineTransform CGAffineTransformScale (
 CGAffineTransform t,
 CGFloat sx,
 CGFloat sy
);

Parameters
t

An existing affine transform.

sx
The value by which to scale x values of the affine transform.

sy
The value by which to scale y values of the affine transform.

Return Value
A new affine transformation matrix.

Functions 415
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

Discussion
You use this function to create a new affine transformation matrix by adding scaling values to an existing
affine transform. The resulting structure represents a new affine transform, which you can use (and reuse, if
you want) to scale a coordinate system.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CIAnnotation
HID Calibrator

Declared In
CGAffineTransform.h

CGAffineTransformTranslate
Returns an affine transformation matrix constructed by translating an existing affine transform.

CGAffineTransform CGAffineTransformTranslate (
 CGAffineTransform t,
 CGFloat tx,
 CGFloat ty
);

Parameters
t

An existing affine transform.

tx
The value by which to move x values with the affine transform.

ty
The value by which to move y values with the affine transform.

Return Value
A new affine transformation matrix.

Discussion
You use this function to create a new affine transform by adding translation values to an existing affine
transform. The resulting structure represents a new affine transform, which you can use (and reuse, if you
want) to move a coordinate system.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CIAnnotation

Declared In
CGAffineTransform.h

CGPointApplyAffineTransform
Returns the point resulting from an affine transformation of an existing point.

416 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGPoint CGPointApplyAffineTransform (
 CGPoint point,
 CGAffineTransform t
);

Parameters
point

A point that specifies the x- and y-coordinates to transform.

t
The affine transform to apply.

Return Value
A new point resulting from applying the specified affine transform to the existing point.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGRectApplyAffineTransform
Applies an affine transform to a rectangle.

CGRect CGRectApplyAffineTransform (
 CGRect rect,
 CGAffineTransform t
);

Parameters
rect

The rectangle whose corner points you want to transform.

t
The affine transform to apply to the rect parameter.

Return Value
The transformed rectangle.

Discussion
Because affine transforms do not preserve rectangles in general, the functionCGRectApplyAffineTransform
returns the smallest rectangle that contains the transformed corner points of the rect parameter. If the
affine transform t consists solely of scaling and translation operations, then the returned rectangle coincides
with the rectangle constructed from the four transformed corners.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
DispatchFractal
ImageApp

Declared In
CGAffineTransform.h

Functions 417
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

CGSizeApplyAffineTransform
Returns the height and width resulting from a transformation of an existing height and width.

CGSize CGSizeApplyAffineTransform (
 CGSize size,
 CGAffineTransform t
);

Parameters
size

A size that specifies the height and width to transform.

t
The affine transform to apply.

Return Value
A new size resulting from applying the specified affine transform to the existing size.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

Data Types

CGAffineTransform
A structure for holding an affine transformation matrix.

struct CGAffineTransform {
 CGFloat a;
 CGFloat b;
 CGFloat c;
 CGFloat d;
 CGFloat tx;
 CGFloat ty;
};
typedef struct CGAffineTransform CGAffineTransform;

Fields
a

The entry at position [1,1] in the matrix.

b
The entry at position [1,2] in the matrix.

c
The entry at position [2,1] in the matrix.

d
The entry at position [2,2] in the matrix.

tx
The entry at position [3,1] in the matrix.

418 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

ty
The entry at position [3,2] in the matrix.

Discussion
In Quartz 2D, an affine transformation matrix is used to rotate, scale, translate, or skew the objects you draw
in a graphics context. The CGAffineTransform type provides functions for creating, concatenating, and
applying affine transformations.

In Quartz, affine transforms are represented by a 3 by 3 matrix:

Because the third column is always (0,0,1), the CGAffineTransform data structure contains values for
only the first two columns.

Conceptually, a Quartz affine transform multiplies a row vector representing each point (x,y) in your drawing
by this matrix, producing a vector that represents the corresponding point (x’,y’):

Given the 3 by 3 matrix, Quartz uses the following equations to transform a point (x, y) in one coordinate
system into a resultant point (x’,y’) in another coordinate system.

The matrix thereby “links” two coordinate systems—it specifies how points in one coordinate system map
to points in another.

Note that you do not typically need to create affine transforms directly. If you want only to draw an object
that is scaled or rotated, for example, it is not necessary to construct an affine transform to do so. The most
direct way to manipulate your drawing—whether by movement, scaling, or rotation—is to call the functions
CGContextTranslateCTM (page 141), CGContextScaleCTM (page 106), or CGContextRotateCTM (page
104), respectively. You should generally only create an affine transform if you want to reuse it later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGAffineTransform.h

Data Types 419
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

Constants

CGAffineTransformIdentity
The identity transform.

const CGAffineTransform CGAffineTransformIdentity;

Constants
CGAffineTransformIdentity

The identity transform:

Available in Mac OS X v10.0 and later.

Declared in CGAffineTransform.h.

Declared In
CGAffineTransform.h

420 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

CGAffineTransform Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGeometry.h

Companion guide Quartz 2D Programming Guide

Overview

CGGeometry Reference defines structures for geometric primitives and functions that operate on them. The
data structure CGPoint represents a point in a two-dimensional coordinate system. The data structure
CGRect represents the location and dimensions of a rectangle. The data structure CGSize represents the
dimensions of width and height.

The height and width stored in a CGRect data structure can be negative. For example, a rectangle with an
origin of [0.0, 0.0] and a size of [10.0,10.0] is exactly equivalent to a rectangle with an origin of
[10.0, 10.0] and a size of [-10.0,-10.0]. Your application can standardize a rectangle—that is, ensure
that the height and width are stored as positive values—by calling the CGRectStandardize function. All
functions described in this reference that take CGRect data structures as inputs implicitly standardize those
rectangles before calculating their results. For this reason, your applications should avoid directly reading
and writing the data stored in the CGRect data structure. Instead, use the functions described here to
manipulate rectangles and to retrieve their characteristics.

Functions by Task

Creating a Dictionary Representation from a Geometric Primitive

CGPointCreateDictionaryRepresentation (page 424)
Returns a dictionary representation of the specified point.

CGSizeCreateDictionaryRepresentation (page 440)
Returns a dictionary representation of the specified size.

CGRectCreateDictionaryRepresentation (page 427)
Returns a dictionary representation of the provided rectangle.

Creating a Geometric Primitive from a Dictionary Representation

CGPointMakeWithDictionaryRepresentation (page 425)
Fills in a point using the contents of the specified dictionary.

Overview 421
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGSizeMakeWithDictionaryRepresentation (page 441)
Fills in a size using the contents of the specified dictionary.

CGRectMakeWithDictionaryRepresentation (page 438)
Fills in a rectangle using the contents of the specified dictionary.

Creating a Geometric Primitive from Values

CGPointMake (page 424)
Returns a point with the specified coordinates.

CGRectMake (page 437)
Returns a rectangle with the specified coordinate and size values.

CGSizeMake (page 441)
Returns a size with the specified dimension values.

Modifying Rectangles

CGRectDivide (page 427)
Divides a source rectangle into two component rectangles.

CGRectInset (page 433)
Returns a rectangle that is smaller or larger than the source rectangle, with the same center point.

CGRectIntegral (page 433)
Returns the smallest rectangle that results from converting the source rectangle values to integers.

CGRectIntersection (page 434)
Returns the intersection of two rectangles.

CGRectOffset (page 438)
Returns a rectangle with an origin that is offset from that of the source rectangle.

CGRectStandardize (page 439)
Returns a rectangle with a positive width and height.

CGRectUnion (page 439)
Returns the smallest rectangle that contains the two source rectangles.

Comparing Values

CGPointEqualToPoint (page 424)
Returns whether two points are equal.

CGSizeEqualToSize (page 440)
Returns whether two sizes are equal.

CGRectEqualToRect (page 428)
Returns whether two rectangles are equal in size and position.

CGRectIntersectsRect (page 435)
Returns whether two rectangles intersect.

422 Functions by Task
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Checking for Membership

CGRectContainsPoint (page 426)
Returns whether a rectangle contains a specified point.

CGRectContainsRect (page 426)
Returns whether the first rectangle contains the second rectangle.

Getting Min, Mid, and Max Values

CGRectGetMinX (page 431)
Returns the x-coordinate that establishes the left edge of a rectangle.

CGRectGetMinY (page 431)
Returns the y-coordinate that establishes the bottom edge of a rectangle.

CGRectGetMidX (page 430)
Returns the x- coordinate that establishes the center of a rectangle.

CGRectGetMidY (page 430)
Returns the y-coordinate that establishes the center of a rectangle.

CGRectGetMaxX (page 429)
Returns the x-coordinate that establishes the right edge of a rectangle.

CGRectGetMaxY (page 429)
Returns the y-coordinate that establishes the top edge of a rectangle.

Getting Height and Width

CGRectGetHeight (page 428)
Returns the height of a rectangle.

CGRectGetWidth (page 432)
Returns the width of a rectangle.

Checking Rectangle Characteristics

CGRectIsEmpty (page 435)
Returns whether a rectangle has zero width or height, or is a null rectangle.

CGRectIsNull (page 436)
Returns whether the rectangle is equal to the null rectangle.

CGRectIsInfinite (page 436)
Returns whether a rectangle is infinite.

Functions by Task 423
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Functions

CGPointCreateDictionaryRepresentation
Returns a dictionary representation of the specified point.

CFDictionaryRef CGPointCreateDictionaryRepresentation(
 CGPoint point
);

Parameters
point

A point.

Return Value
The dictionary representation of the point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGPointEqualToPoint
Returns whether two points are equal.

bool CGPointEqualToPoint (
 CGPoint point1,
 CGPoint point2
);

Parameters
point1

The first point to examine.

point2
The second point to examine.

Return Value
true if the two specified points are the same; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGPointMake
Returns a point with the specified coordinates.

424 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Parameters
x

The x-coordinate of the point to construct.

y
The y-coordinate of the point to construct.

Return Value
A point.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
OpenCL NBody Simulation Example
Quartz 2D Shadings
Quartz EB
QuartzCache

Declared In
CGGeometry.h

CGPointMakeWithDictionaryRepresentation
Fills in a point using the contents of the specified dictionary.

bool CGPointMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGPoint *point
);

Parameters
dict

A dictionary that was previously returned from the function
CGPointCreateDictionaryRepresentation (page 424).

point
On return, the point created from the provided dictionary.

Return Value
true if successful; otherwise false.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

Functions 425
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGRectContainsPoint
Returns whether a rectangle contains a specified point.

bool CGRectContainsPoint (
 CGRect rect,
 CGPoint point
);

Parameters
rect

The rectangle to examine.

point
The point to examine.

Return Value
true if the rectangle is not null or empty and the point is located within the rectangle; otherwise, false.

Discussion
A point is considered inside the rectangle if its coordinates lie inside the rectangle or on the minimum X or
minimum Y edge.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRectContainsRect
Returns whether the first rectangle contains the second rectangle.

bool CGRectContainsRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The rectangle to examine for containment of the rectangle passed in rect2.

rect2
The rectangle to examine for being contained in the rectangle passed in rect1.

Return Value
true if the rectangle specified by rect2 is contained in the rectangle passed in rect1; otherwise, false.
The first rectangle contains the second if the union of the two rectangles is equal to the first rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

426 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGRectCreateDictionaryRepresentation
Returns a dictionary representation of the provided rectangle.

CFDictionaryRef CGRectCreateDictionaryRepresentation(
 CGRect rect
);

Parameters
rect

A rectangle.

Return Value
The dictionary representation of the rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGRectDivide
Divides a source rectangle into two component rectangles.

void CGRectDivide (
 CGRect rect,
 CGRect *slice,
 CGRect *remainder,
 CGFloat amount,
 CGRectEdge edge
);

Parameters
rect

The source rectangle.

slice
On input, a pointer to an uninitialized rectangle. On return, the rectangle is filled in with the specified
edge and values that extends the distance beyond the edge specified by the amount parameter.

remainder
On input, a pointer to an uninitialized rectangle. On return, the rectangle contains the portion of the
source rectangle that remains after CGRectEdge produces the “slice” rectangle.

amount
A distance from the rectangle side that is specified in the edge parameter. This distance defines the
line, parallel to the specified side, that Quartz uses to divide the source rectangle.

edge
An edge value that specifies the side of the rectangle from which the distance passed in the amount
parameter is measured. CGRectDivide produces a “slice” rectangle that contains the specified edge
and extends amount distance beyond it.

Availability
Available in Mac OS X v10.0 and later.

Functions 427
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Related Sample Code
CoreTextRTF

Declared In
CGGeometry.h

CGRectEqualToRect
Returns whether two rectangles are equal in size and position.

bool CGRectEqualToRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The first rectangle to examine.

rect2
The second rectangle to examine.

Return Value
true if the two specified rectangles have equal size and origin values, or if both rectangles are null rectangles.
Otherwise, false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRectGetHeight
Returns the height of a rectangle.

CGFloat CGRectGetHeight (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The height of the specified rectangle.

Discussion
Regardless of whether the height is stored in the CGRect data structure as a positive or negative number,
this function returns the height as if the rectangle were standardized. That is, the result is never a negative
number.

Availability
Available in Mac OS X v10.0 and later.

428 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Related Sample Code
CIColorTracking
HID Calibrator
LightTable
OpenCL NBody Simulation Example
WhackedTV

Declared In
CGGeometry.h

CGRectGetMaxX
Returns the x-coordinate that establishes the right edge of a rectangle.

CGFloat CGRectGetMaxX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the top-right corner of the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIColorTracking
GeekGameBoard
HID Calibrator
HID Explorer
LightTable

Declared In
CGGeometry.h

CGRectGetMaxY
Returns the y-coordinate that establishes the top edge of a rectangle.

CGFloat CGRectGetMaxY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The y-coordinate of the top-right corner of the specified rectangle.

Functions 429
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIColorTracking
GeekGameBoard
HID Explorer
LightTable
MovieVideoChart

Declared In
CGGeometry.h

CGRectGetMidX
Returns the x- coordinate that establishes the center of a rectangle.

CGFloat CGRectGetMidX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the center of the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreTextArcCocoa
GeekGameBoard
HID Calibrator
LightTable

Declared In
CGGeometry.h

CGRectGetMidY
Returns the y-coordinate that establishes the center of a rectangle.

CGFloat CGRectGetMidY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

430 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Return Value
The y-coordinate of the center of the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
HID Calibrator
HID Explorer
LightTable
MovieVideoChart

Declared In
CGGeometry.h

CGRectGetMinX
Returns the x-coordinate that establishes the left edge of a rectangle.

CGFloat CGRectGetMinX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the bottom-left corner of the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
HID Config Save
HID Explorer
LightTable
OpenCL NBody Simulation Example

Declared In
CGGeometry.h

CGRectGetMinY
Returns the y-coordinate that establishes the bottom edge of a rectangle.

Functions 431
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGFloat CGRectGetMinY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The y-coordinate of the bottom-left corner of the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
HID Explorer
LightTable
MovieVideoChart
OpenCL NBody Simulation Example

Declared In
CGGeometry.h

CGRectGetWidth
Returns the width of a rectangle.

CGFloat CGRectGetWidth (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The width of the specified rectangle.

Discussion
Regardless of whether the width is stored in the CGRect data structure as a positive or negative number,
this function returns the width as if the rectangle were standardized. That is, the result is never a negative
number.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIColorTracking
HID Config Save
HID Explorer
LightTable
WhackedTV

432 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Declared In
CGGeometry.h

CGRectInset
Returns a rectangle that is smaller or larger than the source rectangle, with the same center point.

CGRect CGRectInset (
 CGRect rect,
 CGFloat dx,
 CGFloat dy
);

Parameters
rect

The source CGRect structure.

dx
The x-coordinate value to use for adjusting the source rectangle. To create an inset rectangle, specify
a positive value. To create a larger, encompassing rectangle, specify a negative value.

dy
The y-coordinate value to use for adjusting the source rectangle. To create an inset rectangle, specify
a positive value. To create a larger, encompassing rectangle, specify a negative value.

Return Value
A rectangle. The origin value is offset in the x-axis by the distance specified by the dx parameter and in the
y-axis by the distance specified by the dy parameter, and its size adjusted by (2*dx,2*dy), relative to the
source rectangle. If dx and dy are positive values, then the rectangle’s size is decreased. If dx and dy are
negative values, the rectangle’s size is increased.

Discussion
The rectangle is standardized and then the inset parameters are applied. If the resulting rectangle would
have a negative height or width, a null rectangle is returned.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIDemoImageUnit
CoreTextRTF
GeekGameBoard
SeeMyFriends

Declared In
CGGeometry.h

CGRectIntegral
Returns the smallest rectangle that results from converting the source rectangle values to integers.

Functions 433
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGRect CGRectIntegral (
 CGRect rect
);

Parameters
rect

The source rectangle.

Return Value
A rectangle with the smallest integer values for its origin and size that contains the source rectangle. That
is, given a rectangle with fractional origin or size values, CGRectIntegral rounds the rectangle’s origin
downward and its size upward to the nearest whole integers, such that the result contains the original
rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CIFilterGeneratorTest
CIRAWFilterSample
ImageApp
WhackedTV

Declared In
CGGeometry.h

CGRectIntersection
Returns the intersection of two rectangles.

CGRect CGRectIntersection (
 CGRect r1,
 CGRect r2
);

Parameters
rect1

The first source rectangle.

rect2
The second source rectangle.

Return Value
A rectangle that represents the intersection of the two specified rectangles. If the two rectangles do not
intersect, returns the null rectangle. To check for this condition, use CGRectIsNull (page 436).

Discussion
Both rectangles are standardized prior to calculating the intersection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIFilterGeneratorTest

434 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CIRAWFilterSample
FunHouse
WebKitCIPlugIn
WhackedTV

Declared In
CGGeometry.h

CGRectIntersectsRect
Returns whether two rectangles intersect.

bool CGRectIntersectsRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The first rectangle to examine.

rect2
The second rectangle to examine.

Return Value
true if the two specified rectangles intersect; otherwise, false. The first rectangle intersects the second if
the intersection of the rectangles is not equal to the null rectangle.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SeeMyFriends

Declared In
CGGeometry.h

CGRectIsEmpty
Returns whether a rectangle has zero width or height, or is a null rectangle.

bool CGRectIsEmpty (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
true if the specified rectangle is empty; otherwise, false.

Discussion
An empty rectangle is either a null rectangle or a valid rectangle with zero height or width.

Functions 435
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
CGRectIsNull (page 436)

Declared In
CGGeometry.h

CGRectIsInfinite
Returns whether a rectangle is infinite.

bool CGRectIsInfinite (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
Returns true if the specified rectangle is infinite; otherwise, false.

Discussion
An infinite rectangle is one that has no defined bounds. Infinite rectangles can be created as output from a
tiling filter. For example, the Core Image framework perspective tile filter creates an image whose extent is
described by an infinite rectangle.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
CIFilterGeneratorTest
FunHouse
Reducer
WhackedTV

Declared In
CGGeometry.h

CGRectIsNull
Returns whether the rectangle is equal to the null rectangle.

bool CGRectIsNull (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

436 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Return Value
true if the specified rectangle is null; otherwise, false.

Discussion
A null rectangle is the equivalent of an empty set. For example, the result of intersecting two disjoint rectangles
is a null rectangle. A null rectangle cannot be drawn and interacts with other rectangles in special ways.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGRectIsEmpty (page 435)

Related Sample Code
QTPixelBufferVCToCGImage

Declared In
CGGeometry.h

CGRectMake
Returns a rectangle with the specified coordinate and size values.

CGRect CGRectMake (
 CGFloat x,
 CGFloat y,
 CGFloat width,
 CGFloat height
);

Parameters
x

The x-coordinate of the rectangle’s origin point.

y
The y-coordinate of the rectangle’s origin point.

width
The width of the rectangle.

height
The height of the rectangle.

Return Value
A rectangle with the specified location and dimensions.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
ImageKitDemo
LightTable
MovieVideoChart
QuartzCache

Functions 437
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Declared In
CGGeometry.h

CGRectMakeWithDictionaryRepresentation
Fills in a rectangle using the contents of the specified dictionary.

bool CGRectMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGRect *rect
);

Parameters
dict

A dictionary that was previously returned from the function
CGRectCreateDictionaryRepresentation (page 427).

rect
On return, the rectangle created from the specified dictionary.

Return Value
true if successful; otherwise, false.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Son of Grab

Declared In
CGGeometry.h

CGRectOffset
Returns a rectangle with an origin that is offset from that of the source rectangle.

CGRect CGRectOffset (
 CGRect rect,
 CGFloat dx,
 CGFloat dy
);

Parameters
rect

The source rectangle.

dx
The offset value for the x-coordinate.

dy
The offset value for the y-coordinate.

Return Value
A rectangle that is the same size as the source, but with its origin offset by dx units along the x-axis and dy
units along the y-axis with respect to the source.

438 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRectStandardize
Returns a rectangle with a positive width and height.

CGRect CGRectStandardize (
 CGRect rect
);

Parameters
rect

The source rectangle.

Return Value
A rectangle that represents the source rectangle, but with positive width and height values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRectUnion
Returns the smallest rectangle that contains the two source rectangles.

CGRect CGRectUnion (
 CGRect r1,
 CGRect r2
);

Parameters
r1

The first source rectangle.

r2
The second source rectangle.

Return Value
The smallest rectangle that completely contains both of the source rectangles.

Discussion
Both rectangles are standardized prior to calculating the union. If either of the rectangles is a null rectangle,
a copy of the other rectangle is returned (resulting in a null rectangle if both rectangles are null). Otherwise
a rectangle that completely contains the source rectangles is returned.

Availability
Available in Mac OS X v10.0 and later.

Functions 439
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Related Sample Code
CIAnnotation
GeekGameBoard
MovieVideoChart

Declared In
CGGeometry.h

CGSizeCreateDictionaryRepresentation
Returns a dictionary representation of the specified size.

CFDictionaryRef CGSizeCreateDictionaryRepresentation(
 CGSize size
);

Parameters
size

A size.

Return Value
The dictionary representation of the size.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGSizeEqualToSize
Returns whether two sizes are equal.

bool CGSizeEqualToSize (
 CGSize size1,
 CGSize size2
);

Parameters
size1

The first size to examine.

size2
The second size to examine.

Return Value
true if the two specified sizes are equal; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LightTable

440 Functions
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Declared In
CGGeometry.h

CGSizeMake
Returns a size with the specified dimension values.

CGSize CGSizeMake (
 CGFloat width,
 CGFloat height
);

Parameters
width

A width value.

height
A height value.

Return Value
Returns a CGSize structure with the specified width and height.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Fire
OpenCL NBody Simulation Example
Quartz2DBasics
QuartzCache
VBL

Declared In
CGGeometry.h

CGSizeMakeWithDictionaryRepresentation
Fills in a size using the contents of the specified dictionary.

bool CGSizeMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGSize *size
);

Parameters
dict

A dictionary that was previously returned from the function
CGSizeCreateDictionaryRepresentation (page 440).

size
On return, the size created from the specified dictionary.

Return Value
true if successful; otherwise, false.

Functions 441
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

Data Types

CGFloat
The basic type for all floating-point values.

// 32-bittypedef float CGFloat;

// 64-bittypedef double CGFloat;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGBase.h

CGPoint
A structure that contains a point in a two-dimensional coordinate system.

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

Fields
x

The x-coordinate of the point.

y
The y-coordinate of the point.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRect
A structure that contains the location and dimensions of a rectangle.

442 Data Types
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

Fields
origin

A point that specifies the coordinates of the rectangle’s origin.

size
A size that specifies the height and width of the rectangle.

Discussion
In the default Quartz coordinate space, the origin is located in the lower-left corner of the rectangle and the
rectangle extends towards the upper-right corner. If the context has a flipped-coordinate space—often the
case on iOS—the origin is in the upper-left corner and the rectangle extends towards the lower-right corner.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGSize
A structure that contains width and height values.

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

Fields
width

A width value.

height
A height value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

Constants

CGRectInfinite
A rectangle that has infinite extent.

Constants 443
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

const CGRect CGRectInfinite;

Constants
CGRectInfinite

A rectangle that has infinite extent.

Available in Mac OS X v10.4 and later.

Declared in CGGeometry.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGGeometry.h

Geometric Zeros
A zero point, zero rectangle, or zero size.

const CGPoint CGPointZero;
const CGRect CGRectZero;
const CGSize CGSizeZero;

Constants
CGPointZero

A point constant with location (0,0). The zero point is equivalent to CGPointMake(0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectZero
A rectangle constant with location (0,0), and width and height of 0. The zero rectangle is equivalent
to CGRectMake(0,0,0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGSizeZero
A size constant with width and height of 0. The zero size is equivalent to CGSizeMake(0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

Geometrical Null
The null or empty rectangle.

444 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

const CGRect CGRectNull;

Constants
CGRectNull

The null rectangle. This is the rectangle returned when, for example, you intersect two disjoint
rectangles. Note that the null rectangle is not the same as the zero rectangle. For example, the union
of a rectangle with the null rectangle is the original rectangle (that is, the null rectangle contributes
nothing).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

CGRectEdge
Coordinates that establish the edges of a rectangle.

enum CGRectEdge {
 CGRectMinXEdge,
 CGRectMinYEdge,
 CGRectMaxXEdge,
 CGRectMaxYEdge
};
typedef enum CGRectEdge CGRectEdge;

Constants
CGRectMinXEdge

The x-coordinate that establishes the left edge of a rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMinYEdge
The y-coordinate that establishes the minimum edge of a rectangle. In Mac OS X, this is typically the
bottom edge of the rectangle. If the coordinate system is flipped (or if you are using the default
coordinate system in iOS), this constant refers to the top edge of the rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMaxXEdge
The x-coordinate that establishes the right edge of a rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMaxYEdge
The y-coordinate that establishes the maximum edge of a rectangle. In Mac OS X, this is typically the
top edge of the rectangle. If the coordinate system is flipped (or if you are using the default coordinate
system in iOS), this constant refers to the bottom edge of the rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

Constants 445
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

CGFloat Informational Macros
Informational macros for the CGFloat type.

// 32-bit#define CGFLOAT_MIN FLT_MIN
#define CGFLOAT_MAX FLT_MAX
#define CGFLOAT_IS_DOUBLE 0

// 64-bit#define CGFLOAT_MIN DBL_MIN
#define CGFLOAT_MAX DBL_MAX
#define CGFLOAT_IS_DOUBLE 1

Constants
CGFLOAT_MIN

The minimum allowable value for a CGFloat type. For 32-bit code, this value is 1.17549435e-38F.
For 64-bit code, it is 2.2250738585072014e-308.

Available in Mac OS X v10.5 and later.

Declared in CGBase.h.

CGFLOAT_MAX
The maximum allowable value for a CGFloat type. For 32-bit code, this value is 3.40282347e+38F.
For 64-bit code, it is 1.7976931348623157e+308.

Available in Mac OS X v10.5 and later.

Declared in CGBase.h.

CGFLOAT_IS_DOUBLE
Indicates whether CGFloat is defined as a float or double type.

Available in Mac OS X v10.5 and later.

Declared in CGBase.h.

446 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

CGGeometry Reference

Framework: ApplicationServices/ImageIO

Declared in CGImageProperties.h

Overview

CGImageProperties Reference defines constants that represent characteristics of images used by the Image
I/O framework.

Constants

Format-Specific Dictionaries
Properties that have an associated dictionary of file-format or metadata-format specific key-value pairs.

CFStringRef kCGImagePropertyTIFFDictionary;
CFStringRef kCGImagePropertyGIFDictionary;
CFStringRef kCGImagePropertyJFIFDictionary;
CFStringRef kCGImagePropertyExifDictionary;
CFStringRef kCGImagePropertyPNGDictionary;
CFStringRef kCGImagePropertyIPTCDictionary;
CFStringRef kCGImagePropertyGPSDictionary;
CFStringRef kCGImagePropertyRawDictionary;
CFStringRef kCGImagePropertyCIFFDictionary;
CFStringRef kCGImageProperty8BIMDictionary;
CFStringRef kCGImagePropertyDNGDictionary;
CFStringRef kCGImagePropertyExifAuxDictionary;

Constants
kCGImagePropertyTIFFDictionary

A dictionary of key-value pairs for an image that uses Tagged Image File Format (TIFF). See “TIFF
Dictionary Keys” (page 475).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFDictionary
A dictionary of key-value pairs for an image that uses Graphics Interchange Format (GIF). See “GIF
Dictionary Keys” (page 462).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Overview 447
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyJFIFDictionary
A dictionary of key-value pairs for an image that uses JPEG File Interchange Format (JFIF). See “JFIF
Dictionary Keys” (page 474).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDictionary
A dictionary of key-value pairs for an image that uses Exchangeable Image File Format (EXIF). See
“EXIF Dictionary Keys” (page 453).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGDictionary
A dictionary of key-value pairs for an image that uses Portable Network Graphics (PNG) format. See
“PNG Dictionary Keys” (page 475).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDictionary
A dictionary of key-value pairs for an image that uses International Press Telecommunications Council
(IPTC) metadata. See “IPTC Dictionary Keys” (page 466).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDictionary
A dictionary of key-value pairs for an image that has Global Positioning System (GPS) information.
See “GPS Dictionary Keys” (page 462).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyRawDictionary
A dictionary of key-value pairs for an image that contains minimally processed, or raw, data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFDictionary
A dictionary of key-value pairs for an image that uses Camera Image File Format (CIFF). See “CIFF
Dictionary Keys” (page 479).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImageProperty8BIMDictionary
A dictionary of key-value pairs for an Adobe Photoshop image. See “8BIM Dictionary Keys” (page 478).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGDictionary
A dictionary of key-value pairs for an image that uses the Digital Negative (DNG) archival format. See
“DNG Dictionary Keys” (page 478).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

448 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifAuxDictionary
An auxiliary dictionary of key-value pairs for an image that uses Exchangeable Image File Format
(EXIF).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Discussion
If any of these constants are returned by the functionsCGImageSourceCopyProperties (page 248) or
CGImageSourceCopyPropertiesAtIndex (page 249) the associated value is a dictionary of key-value pairs
that are specific to that file format or metadata format.

Camera-Maker Dictionaries
Properties that have an associated dictionary of key-value pairs for a specific camera manufacturer.

CFStringRef kCGImagePropertyMakerCanonDictionary;
CFStringRef kCGImagePropertyMakerNikonDictionary;
CFStringRef kCGImagePropertyMakerMinoltaDictionary;
CFStringRef kCGImagePropertyMakerFujiDictionary;
CFStringRef kCGImagePropertyMakerOlympusDictionary;
CFStringRef kCGImagePropertyMakerPentaxDictionary;

Constants
kCGImagePropertyMakerCanonDictionary

A dictionary of key-value pairs for an image from a Canon camera. See “Canon Camera Dictionary
Keys” (page 484).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonDictionary
A dictionary of key-value pairs for an image from a Nikon camera. See “Nikon Camera Dictionary
Keys” (page 481).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerMinoltaDictionary
A dictionary of key-value pairs for an image from a Minolta camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerFujiDictionary
A dictionary of key-value pairs for an image from a Fuji camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerOlympusDictionary
A dictionary of key-value pairs for an image from a Olympus camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 449
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyMakerPentaxDictionary
A dictionary of key-value pairs for an image from a Pentax camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Image Source Container Properties
Properties that apply to the container in general but not necessarily to any individual image in the container.

CFStringRef kCGImagePropertyFileSize;

Constants
kCGImagePropertyFileSize

The size of the image file in bytes, if known. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
These properties can be returned by the function CGImageSourceCopyProperties (page 248).

Individual Image Properties
Properties that apply to an individual image in an image source.

CFStringRef kCGImagePropertyDPIHeight;
CFStringRef kCGImagePropertyDPIWidth;
CFStringRef kCGImagePropertyPixelWidth;
CFStringRef kCGImagePropertyPixelHeight;
CFStringRef kCGImagePropertyDepth;
CFStringRef kCGImagePropertyOrientation;
CFStringRef kCGImagePropertyIsFloat;
CFStringRef kCGImagePropertyIsIndexed;
CFStringRef kCGImagePropertyHasAlpha;
CFStringRef kCGImagePropertyColorModel;
CFStringRef kCGImagePropertyProfileName;

Constants
kCGImagePropertyDPIHeight

The resolution, in dots per inch, in the x dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDPIWidth
The resolution, in dots per inch, in the y dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPixelWidth
The number of pixels in the x dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

450 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyPixelHeight
The number of pixels in the y dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDepth
The number of bits in each color sample of each pixel. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyOrientation
The intended display orientation of the image. If present, this key is a CFNumber value with the same
value as defined by the TIFF and EXIF specifications. The value specifies where the origin (0,0) of
the image is located, as shown in Table 32-1. If not present, a value of 1 is assumed.

Table 32-1

Location of the origin of the imageValue

Top, left1

Top, right2

Bottom, right3

Bottom, left4

Left, top5

Right, top6

Right, bottom7

Left, bottom8

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIsFloat
Whether or not the image contains floating-point pixel samples. The value of this key is
kCFBooleanTrue if the image contains them.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIsIndexed
Whether or not the image contains indexed pixel samples (sometimes called paletted samples). The
value of this key is kCFBooleanTrue if the image contains them.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 451
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyHasAlpha
Whether or not the image has an alpha channel. The value of this key is kCFBooleanTrue if the
image contains an alpha channel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModel
The color model of the image such as, RGB, CMYK, Gray, or Lab. The value of this key is of type
CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyProfileName
The name of the optional ICC profile embedded in the image, if known. If present, the value of this
key is of type CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
These properties can be returned by the function CGImageSourceCopyPropertiesAtIndex (page 249).

Color Model Values
Values for the color model property.

const CFStringRef kCGImagePropertyColorModelRGB;
const CFStringRef kCGImagePropertyColorModelGray;
const CFStringRef kCGImagePropertyColorModelCMYK;
const CFStringRef kCGImagePropertyColorModelLab;

Constants
kCGImagePropertyColorModelRGB

An RGB color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModelGray
A grayscale color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModelCMYK
A CMYK color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModelLab
A Lab color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

452 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

Discussion
A color model describes how color values are represented mathematically. A color space is a color model
combined with a definition of how to interpret values within the model.

EXIF Dictionary Keys
Keys for an image that uses Exchangeable Image File Format (EXIF).

Constants 453
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

const CFStringRef kCGImagePropertyExifExposureTime;
const CFStringRef kCGImagePropertyExifFNumber;
const CFStringRef kCGImagePropertyExifExposureProgram;
const CFStringRef kCGImagePropertyExifSpectralSensitivity;
const CFStringRef kCGImagePropertyExifISOSpeedRatings;
const CFStringRef kCGImagePropertyExifOECF;
const CFStringRef kCGImagePropertyExifVersion;
const CFStringRef kCGImagePropertyExifDateTimeOriginal;
const CFStringRef kCGImagePropertyExifDateTimeDigitized;
const CFStringRef kCGImagePropertyExifComponentsConfiguration;
const CFStringRef kCGImagePropertyExifCompressedBitsPerPixel;
const CFStringRef kCGImagePropertyExifShutterSpeedValue;
const CFStringRef kCGImagePropertyExifApertureValue;
const CFStringRef kCGImagePropertyExifBrightnessValue;
const CFStringRef kCGImagePropertyExifExposureBiasValue;
const CFStringRef kCGImagePropertyExifMaxApertureValue;
const CFStringRef kCGImagePropertyExifSubjectDistance;
const CFStringRef kCGImagePropertyExifMeteringMode;
const CFStringRef kCGImagePropertyExifLightSource;
const CFStringRef kCGImagePropertyExifFlash;
const CFStringRef kCGImagePropertyExifFocalLength;
const CFStringRef kCGImagePropertyExifSubjectArea;
const CFStringRef kCGImagePropertyExifMakerNote;
const CFStringRef kCGImagePropertyExifUserComment;
const CFStringRef kCGImagePropertyExifSubsecTime;
const CFStringRef kCGImagePropertyExifSubsecTimeOrginal;
const CFStringRef kCGImagePropertyExifSubsecTimeDigitized;
const CFStringRef kCGImagePropertyExifFlashPixVersion;
const CFStringRef kCGImagePropertyExifColorSpace;
const CFStringRef kCGImagePropertyExifPixelXDimension;
const CFStringRef kCGImagePropertyExifPixelYDimension;
const CFStringRef kCGImagePropertyExifRelatedSoundFile;
const CFStringRef kCGImagePropertyExifFlashEnergy;
const CFStringRef kCGImagePropertyExifSpatialFrequencyResponse;
const CFStringRef kCGImagePropertyExifFocalPlaneXResolution;
const CFStringRef kCGImagePropertyExifFocalPlaneYResolution;
const CFStringRef kCGImagePropertyExifFocalPlaneResolutionUnit;
const CFStringRef kCGImagePropertyExifSubjectLocation;
const CFStringRef kCGImagePropertyExifExposureIndex;
const CFStringRef kCGImagePropertyExifSensingMethod;
const CFStringRef kCGImagePropertyExifFileSource;
const CFStringRef kCGImagePropertyExifSceneType;
const CFStringRef kCGImagePropertyExifCFAPattern;
const CFStringRef kCGImagePropertyExifCustomRendered;
const CFStringRef kCGImagePropertyExifExposureMode;
const CFStringRef kCGImagePropertyExifWhiteBalance;
const CFStringRef kCGImagePropertyExifDigitalZoomRatio;
const CFStringRef kCGImagePropertyExifFocalLenIn35mmFilm;
const CFStringRef kCGImagePropertyExifSceneCaptureType;
const CFStringRef kCGImagePropertyExifGainControl;
const CFStringRef kCGImagePropertyExifContrast;
const CFStringRef kCGImagePropertyExifSaturation;
const CFStringRef kCGImagePropertyExifSharpness;
const CFStringRef kCGImagePropertyExifDeviceSettingDescription;
const CFStringRef kCGImagePropertyExifSubjectDistRange;
const CFStringRef kCGImagePropertyExifImageUniqueID;
const CFStringRef kCGImagePropertyExifGamma;

454 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

Constants
kCGImagePropertyExifExposureTime

The exposure time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFNumber
The F-number.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureProgram
The exposure program.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSpectralSensitivity
The spectral sensitivity of each channel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifISOSpeedRatings
The ISO speed ratings.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifOECF
The opto-electrical conversion function (OECF), which defines the relationship between the optical
input of the camera and the image values.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifVersion
The Exif version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDateTimeOriginal
The original date and time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDateTimeDigitized
The digitized date and time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifComponentsConfiguration
The components configuration. For compressed data, specifies that the channels of each component
are arranged in increasing numeric order (from first component to the fourth).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 455
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifCompressedBitsPerPixel
The bits per pixel of the compression mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifShutterSpeedValue
The shutter speed value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifApertureValue
The aperture value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifBrightnessValue
The brightness value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureBiasValue
The exposure bias value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMaxApertureValue
The maximum aperture value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectDistance
The distance to the subject, in meters.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMeteringMode
The metering mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifLightSource
The light source.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlash
The flash status when the image was shot.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

456 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifFocalLength
The focal length.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectArea
The subject area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMakerNote
Information specified by the camera manufacturer.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifUserComment
A user comment.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTime
The fraction of seconds for the date and time tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTimeOrginal
The fraction of seconds for the original date and time tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTimeDigitized
The fraction of seconds for the digitized time and date tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlashPixVersion
The FlashPix version supported by an FPXR file. FlashPix is a format for multiresolution tiled images
that facilitates fast onscreen viewing.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifColorSpace
The color space.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifPixelXDimension
The x dimension of a pixel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 457
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifPixelYDimension
The y dimension of a pixel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifRelatedSoundFile
A sound file related to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlashEnergy
The strobe energy when the image was captured, in beam candle power seconds.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSpatialFrequencyResponse
The spatial frequency table and spatial frequency response values in the direction of image width,
image height, and diagonal directions. See ISO 12233.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneXResolution
The number of image-width pixels (x) per focal plane resolution unit.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneYResolution
The number of image-height pixels (y)per focal plane resolution unit.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneResolutionUnit
The unit of measurement for the focal plane x and y tags.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectLocation
The location of the image’s primary subject.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureIndex
The selected exposure index.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSensingMethod
The sensor type of the camera or input device.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

458 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifFileSource
The image source.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSceneType
The scene type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifCFAPattern
The color filter array (CFA) pattern, which is the geometric pattern of the image sensor for a 1-chip
color sensor area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifCustomRendered
Special rendering performed on the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureMode
The exposure mode setting.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifWhiteBalance
The white balance mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDigitalZoomRatio
The digital zoom ratio.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalLenIn35mmFilm
The equivalent focal length in 35 mm film.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSceneCaptureType
The scene capture type (standard, landscape, portrait, night).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifGainControl
The gain adjustment applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 459
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifContrast
The contrast applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSaturation
The saturation applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSharpness
The sharpness applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDeviceSettingDescription
For a particular camera mode, indicates the conditions for taking the picture.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectDistRange
The distance to the subject.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifImageUniqueID
The unique ID of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifGamma
The gamma setting.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

EXIF Auxiliary Dictionary Keys
Auxiliary keys for an image that uses Exchangeable Image File Format (EXIF).

460 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

const CFStringRef kCGImagePropertyExifAuxLensInfo;
const CFStringRef kCGImagePropertyExifAuxLensModel;
const CFStringRef kCGImagePropertyExifAuxSerialNumber;
const CFStringRef kCGImagePropertyExifAuxLensID;
const CFStringRef kCGImagePropertyExifAuxLensSerialNumber;
const CFStringRef kCGImagePropertyExifAuxImageNumber;
const CFStringRef kCGImagePropertyExifAuxFlashCompensation;
const CFStringRef kCGImagePropertyExifAuxOwnerName;
const CFStringRef kCGImagePropertyExifAuxFirmware;

Constants
kCGImagePropertyExifAuxLensInfo

Lens information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxSerialNumber
The serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensID
The lens ID.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensSerialNumber
The lens serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxImageNumber
The image number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxFlashCompensation
Flash compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxOwnerName
The owner name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 461
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyExifAuxFirmware
Firmware information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

GIF Dictionary Keys
Keys for an image that uses Graphics Interchange Format (GIF).

const CFStringRef kCGImagePropertyGIFLoopCount;
const CFStringRef kCGImagePropertyGIFDelayTime;
const CFStringRef kCGImagePropertyGIFImageColorMap;
const CFStringRef kCGImagePropertyGIFHasGlobalColorMap;

Constants
kCGImagePropertyGIFLoopCount

The number of times to repeat an animated sequence.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFDelayTime
The amount of time, in hundredths of a second, to wait before displaying the next image in an
animated sequence.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFImageColorMap
The image color map.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFHasGlobalColorMap
Whether or not the GIF has a global color map.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

GPS Dictionary Keys
Keys for an image that has Global Positioning System (GPS) information.

462 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

const CFStringRef kCGImagePropertyGPSVersion;
const CFStringRef kCGImagePropertyGPSLatitudeRef;
const CFStringRef kCGImagePropertyGPSLatitude;
const CFStringRef kCGImagePropertyGPSLongitudeRef;
const CFStringRef kCGImagePropertyGPSLongitude;
const CFStringRef kCGImagePropertyGPSAltitudeRef;
const CFStringRef kCGImagePropertyGPSAltitude;
const CFStringRef kCGImagePropertyGPSTimeStamp;
const CFStringRef kCGImagePropertyGPSSatellites;
const CFStringRef kCGImagePropertyGPSStatus;
const CFStringRef kCGImagePropertyGPSMeasureMode;
const CFStringRef kCGImagePropertyGPSDOP;
const CFStringRef kCGImagePropertyGPSSpeedRef;
const CFStringRef kCGImagePropertyGPSSpeed;
const CFStringRef kCGImagePropertyGPSTrackRef;
const CFStringRef kCGImagePropertyGPSTrack;
const CFStringRef kCGImagePropertyGPSImgDirectionRef;
const CFStringRef kCGImagePropertyGPSImgDirection;
const CFStringRef kCGImagePropertyGPSMapDatum;
const CFStringRef kCGImagePropertyGPSDestLatitudeRef;
const CFStringRef kCGImagePropertyGPSDestLatitude;
const CFStringRef kCGImagePropertyGPSDestLongitudeRef;
const CFStringRef kCGImagePropertyGPSDestLongitude;
const CFStringRef kCGImagePropertyGPSDestBearingRef;
const CFStringRef kCGImagePropertyGPSDestBearing;
const CFStringRef kCGImagePropertyGPSDestDistanceRef;
const CFStringRef kCGImagePropertyGPSDestDistance;
const CFStringRef kCGImagePropertyGPSProcessingMethod;
const CFStringRef kCGImagePropertyGPSAreaInformation;
const CFStringRef kCGImagePropertyGPSDateStamp;
const CFStringRef kCGImagePropertyGPSDifferental;

Constants
kCGImagePropertyGPSVersion

The version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLatitudeRef
Whether the latitude is north or south.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLatitude
The latitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLongitudeRef
Whether the longitude is east or west.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 463
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyGPSLongitude
The longitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAltitudeRef
The reference altitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAltitude
The altitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSTimeStamp
The time as UTC (Coordinated Universal Time).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSatellites
The satellites used for GPS measurements.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSStatus
The status of the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSMeasureMode
The measurement mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDOP
The degree of precision (DOP) of the data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSpeedRef
The unit for expressing the GPS receiver speed of movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSpeed
The GPS receiver speed of movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

464 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyGPSTrackRef
The reference for the direction of GPS receiver movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSTrack
The direction of GPS receiver movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSImgDirectionRef
The reference for the direction of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSImgDirection
The direction of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSMapDatum
The geodetic survey data used by the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLatitudeRef
Whether the latitude of the destination point is northern or southern.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLatitude
The latitude of the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLongitudeRef
Whether the longitude of the destination point is east or west.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLongitude
The longitude of the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestBearingRef
The reference for giving the bearing to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 465
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyGPSDestBearing
The bearing to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestDistanceRef
The units for expressing the distance to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestDistance
The distance to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSProcessingMethod
The name of the method used for finding a location.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAreaInformation
The name of the GPS area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDateStamp
The data and time information relative to Coordinated Universal Time (UTC).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDifferental
Whether differential correction is applied to the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

IPTC Dictionary Keys
Keys for an image that uses International Press Telecommunications Council (IPTC) metadata.

466 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

const CFStringRef kCGImagePropertyIPTCObjectTypeReference;
const CFStringRef kCGImagePropertyIPTCObjectAttributeReference;
const CFStringRef kCGImagePropertyIPTCObjectName;
const CFStringRef kCGImagePropertyIPTCEditStatus;
const CFStringRef kCGImagePropertyIPTCEditorialUpdate;
const CFStringRef kCGImagePropertyIPTCUrgency;
const CFStringRef kCGImagePropertyIPTCSubjectReference;
const CFStringRef kCGImagePropertyIPTCCategory;
const CFStringRef kCGImagePropertyIPTCSupplementalCategory;
const CFStringRef kCGImagePropertyIPTCFixtureIdentifier;
const CFStringRef kCGImagePropertyIPTCKeywords;
const CFStringRef kCGImagePropertyIPTCContentLocationCode;
const CFStringRef kCGImagePropertyIPTCContentLocationName;
const CFStringRef kCGImagePropertyIPTCReleaseDate;
const CFStringRef kCGImagePropertyIPTCReleaseTime;
const CFStringRef kCGImagePropertyIPTCExpirationDate;
const CFStringRef kCGImagePropertyIPTCExpirationTime;
const CFStringRef kCGImagePropertyIPTCSpecialInstructions;
const CFStringRef kCGImagePropertyIPTCActionAdvised;
const CFStringRef kCGImagePropertyIPTCReferenceService;
const CFStringRef kCGImagePropertyIPTCReferenceDate;
const CFStringRef kCGImagePropertyIPTCReferenceNumber;
const CFStringRef kCGImagePropertyIPTCDateCreated;
const CFStringRef kCGImagePropertyIPTCTimeCreated;
const CFStringRef kCGImagePropertyIPTCDigitalCreationDate;
const CFStringRef kCGImagePropertyIPTCDigitalCreationTime;
const CFStringRef kCGImagePropertyIPTCOriginatingProgram;
const CFStringRef kCGImagePropertyIPTCProgramVersion;
const CFStringRef kCGImagePropertyIPTCObjectCycle;
const CFStringRef kCGImagePropertyIPTCByline;
const CFStringRef kCGImagePropertyIPTCBylineTitle;
const CFStringRef kCGImagePropertyIPTCCity;
const CFStringRef kCGImagePropertyIPTCSubLocation;
const CFStringRef kCGImagePropertyIPTCProvinceState;
const CFStringRef kCGImagePropertyIPTCCountryPrimaryLocationCode;
const CFStringRef kCGImagePropertyIPTCCountryPrimaryLocationName;
const CFStringRef kCGImagePropertyIPTCOriginalTransmissionReference;
const CFStringRef kCGImagePropertyIPTCHeadline;
const CFStringRef kCGImagePropertyIPTCCredit;
const CFStringRef kCGImagePropertyIPTCSource;
const CFStringRef kCGImagePropertyIPTCCopyrightNotice;
const CFStringRef kCGImagePropertyIPTCContact;
const CFStringRef kCGImagePropertyIPTCCaptionAbstract;
const CFStringRef kCGImagePropertyIPTCWriterEditor;
const CFStringRef kCGImagePropertyIPTCImageType;
const CFStringRef kCGImagePropertyIPTCImageOrientation;
const CFStringRef kCGImagePropertyIPTCLanguageIdentifier;
const CFStringRef kCGImagePropertyIPTCStarRating;
const CFStringRef kCGImagePropertyIPTCCreatorContactInfo;
const CFStringRef kCGImagePropertyIPTCRightsUsageTerms
const CFStringRef kCGImagePropertyIPTCScene;

Constants
kCGImagePropertyIPTCObjectTypeReference

The object type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 467
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCObjectAttributeReference
The object attribute.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCObjectName
The object name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCEditStatus
The edit status.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCEditorialUpdate
An editorial update.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCUrgency
The urgency level.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSubjectReference
The subject.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCategory
The category.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSupplementalCategory
A supplemental category.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCFixtureIdentifier
A fixture identifier.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCKeywords
Keywords.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

468 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCContentLocationCode
The content location code.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContentLocationName
The content location name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReleaseDate
The earliest date the image is to be used, in the form CCYYMMDD.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReleaseTime
The earliest time on the release date the image is to be used, in the form HHMMSS.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCExpirationDate
The latest date the image is to be used, in the form CCYYMMDD.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCExpirationTime
The latest time on the expiration date the image is to be used, in the form HHMMSS.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSpecialInstructions
Special instructions about the use of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCActionAdvised
The advised action.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReferenceService
The reference service.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReferenceDate
The reference date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 469
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCReferenceNumber
The reference number.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDateCreated
The date created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCTimeCreated
The time created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDigitalCreationDate
The digital creation date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDigitalCreationTime
The digital creation time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCOriginatingProgram
The originating application.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCProgramVersion
The application version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCObjectCycle
The editorial cycle (morning, evening, or both) of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCByline
The name of the person who created the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCBylineTitle
The title of the person who created the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

470 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCCity
The city where the image was created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSubLocation
The location within the city where the image was created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCProvinceState
The province or state.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCountryPrimaryLocationCode
The country primary location code, a three-letter code defined by ISO 3166-1

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCountryPrimaryLocationName
The country primary location name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCOriginalTransmissionReference
The call letter/number combination associated with the originating point of an image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCHeadline
A summary of the contents of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCredit
The name of the service that provided the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSource
The original owner of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCopyrightNotice
The copyright notice.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 471
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCContact
Contact information for further information on the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCaptionAbstract
The description of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCWriterEditor
The name of the person who wrote or edited the description of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCImageType
The image type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCImageOrientation
The image orientation (portrait, landscape, or square).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCLanguageIdentifier
The language identifier, a two-letter code defined by ISO 639:1988.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCStarRating
The star rating.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCreatorContactInfo
The creator’s contact info. See “IPTC Creator Contact Info Dictionary Keys” (page 473).

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCRightsUsageTerms
The usage rights for the image.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCScene
The scene codes for the image; a scene code is a six-digit string.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

472 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

Discussion
IPTC constants are metadata elements of the Information Interchange Model (IIM) used to provide information
about images. The IIM was developed by the Newspaper Association of America (NAA) and the International
Press Telecommunications Council (IPTC).

IPTC Creator Contact Info Dictionary Keys
Keys for an image that uses International Press Telecommunications Council (IPTC) metadata. These keys are
used to reference data stored in the dictionary attached to the
kCGImagePropertyIPTCCreatorContactInfo (page 472) key.

const CFStringRef kCGImagePropertyIPTCContactInfoCity;
const CFStringRef kCGImagePropertyIPTCContactInfoCountry;
const CFStringRef kCGImagePropertyIPTCContactInfoAddress;
const CFStringRef kCGImagePropertyIPTCContactInfoPostalCode;
const CFStringRef kCGImagePropertyIPTCContactInfoStateProvince;
const CFStringRef kCGImagePropertyIPTCContactInfoEmails;
const CFStringRef kCGImagePropertyIPTCContactInfoPhones;
const CFStringRef kCGImagePropertyIPTCContactInfoWebURLs;

Constants
kCGImagePropertyIPTCContactInfoCity

The city portion of the contact information.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoCountry
The country portion of the contact information.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoAddress
The address portion of the contact information.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoPostalCode
The postal code portion of the contact information.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoStateProvince
The state or province for the contact.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoEmails
Email addresses for the contact.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

Constants 473
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyIPTCContactInfoPhones
Phone numbers for the contact.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContactInfoWebURLs
Web addresses for the contact.

Available in Mac OS X v10.6 and later.

Declared in CGImageProperties.h.

Discussion
IPTC constants are metadata elements of the Information Interchange Model (IIM) used to provide information
about images. The IIM was developed by the Newspaper Association of America (NAA) and the International
Press Telecommunications Council (IPTC).

Declared In
CGImageProperties.h

JFIF Dictionary Keys
Keys for an image that uses JPEG File Interchange Format (JFIF).

const CFStringRef kCGImagePropertyJFIFVersion;
const CFStringRef kCGImagePropertyJFIFXDensity;
const CFStringRef kCGImagePropertyJFIFYDensity;
const CFStringRef kCGImagePropertyJFIFDensityUnit;
const CFStringRef kCGImagePropertyJFIFIsProgressive;

Constants
kCGImagePropertyJFIFVersion

The version of JFIF.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFXDensity
The x pixel density.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFYDensity
The y pixel density.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFDensityUnit
The units for the x and y density fields.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

474 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyJFIFIsProgressive
Whether there are versions of the image of increasing quality.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

PNG Dictionary Keys
Keys for an image that uses Portable Network Graphics (PNG) format.

const CFStringRef kCGImagePropertyPNGGamma;
const CFStringRef kCGImagePropertyPNGInterlaceType;
const CFStringRef kCGImagePropertyPNGXPixelsPerMeter;
const CFStringRef kCGImagePropertyPNGYPixelsPerMeter;
const CFStringRef kCGImagePropertyPNGsRGBIntent;
const CFStringRef kCGImagePropertyPNGChromaticities;

Constants
kCGImagePropertyPNGGamma

The gamma value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGInterlaceType
The interlace type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGXPixelsPerMeter
The number of x pixels per meter.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGYPixelsPerMeter
The number of y pixels per meter.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGsRGBIntent
The sRGB intent.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGChromaticities
The chromaticities.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

TIFF Dictionary Keys
Keys for an image that uses Tagged Image File Format (TIFF).

Constants 475
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

const CFStringRef kCGImagePropertyTIFFCompression;
const CFStringRef kCGImagePropertyTIFFPhotometricInterpretation;
const CFStringRef kCGImagePropertyTIFFDocumentName;
const CFStringRef kCGImagePropertyTIFFImageDescription;
const CFStringRef kCGImagePropertyTIFFMake;
const CFStringRef kCGImagePropertyTIFFModel;
const CFStringRef kCGImagePropertyTIFFOrientation;
const CFStringRef kCGImagePropertyTIFFXResolution;
const CFStringRef kCGImagePropertyTIFFYResolution;
const CFStringRef kCGImagePropertyTIFFResolutionUnit;
const CFStringRef kCGImagePropertyTIFFSoftware;
const CFStringRef kCGImagePropertyTIFFTransferFunction;
const CFStringRef kCGImagePropertyTIFFDateTime;
const CFStringRef kCGImagePropertyTIFFArtist;
const CFStringRef kCGImagePropertyTIFFHostComputer;
const CFStringRef kCGImagePropertyTIFFCopyright;
const CFStringRef kCGImagePropertyTIFFWhitePoint;
const CFStringRef kCGImagePropertyTIFFPrimaryChromaticities;

Constants
kCGImagePropertyTIFFCompression

The compression scheme used on the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFPhotometricInterpretation
The color space of the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFDocumentName
The document name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFImageDescription
The image description.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFMake
The name of the manufacturer of the camera or input device.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFModel
The camera or input device model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFOrientation
The image orientation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

476 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyTIFFXResolution
The number of pixels per resolution unit in the image width direction.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFYResolution
The number of pixels per resolution unit in the image height direction.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFResolutionUnit
The units of resolution.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFSoftware
The name and version of the software used for image creation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFTransferFunction
The transfer function, in tabular format, used to map pixel components from a nonlinear form into a
linear form.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFDateTime
The date and time that the image was created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFArtist
The artist who created the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFHostComputer
The computer or operating system used when the image was created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFCopyright
Copyright information.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFWhitePoint
The white point of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 477
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyTIFFPrimaryChromaticities
The chromaticities of the primaries of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

DNG Dictionary Keys
Keys for an image that uses the Digital Negative (DNG) archival format.

CFStringRef kCGImagePropertyDNGVersion;
CFStringRef kCGImagePropertyDNGBackwardVersion;
CFStringRef kCGImagePropertyDNGUniqueCameraModel;
CFStringRef kCGImagePropertyDNGLocalizedCameraModel;
CFStringRef kCGImagePropertyDNGCameraSerialNumber;
CFStringRef kCGImagePropertyDNGLensInfo;

Constants
kCGImagePropertyDNGVersion

An encoding of the four-tier version number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGBackwardVersion
The oldest version for which a file is compatible.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGUniqueCameraModel
A unique, nonlocalized name for the camera model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGLocalizedCameraModel
The localized camera model name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGLensInfo
Information about the lens used for the image.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

8BIM Dictionary Keys
A key for an Adobe Photoshop image.

478 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

CFStringRef kCGImageProperty8BIMLayerNames;

Constants
kCGImageProperty8BIMLayerNames

The layer names for an Adobe Photoshop file.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

CIFF Dictionary Keys
Keys for an image that uses Camera Image File Format (CIFF).

CFStringRef kCGImagePropertyCIFFDescription;
CFStringRef kCGImagePropertyCIFFFirmware;
CFStringRef kCGImagePropertyCIFFOwnerName;
CFStringRef kCGImagePropertyCIFFImageName;
CFStringRef kCGImagePropertyCIFFImageFileName;
CFStringRef kCGImagePropertyCIFFReleaseMethod;
CFStringRef kCGImagePropertyCIFFReleaseTiming;
CFStringRef kCGImagePropertyCIFFRecordID;
CFStringRef kCGImagePropertyCIFFSelfTimingTime;
CFStringRef kCGImagePropertyCIFFCameraSerialNumber;
CFStringRef kCGImagePropertyCIFFImageSerialNumber;
CFStringRef kCGImagePropertyCIFFContinuousDrive;
CFStringRef kCGImagePropertyCIFFFocusMode;
CFStringRef kCGImagePropertyCIFFMeteringMode;
CFStringRef kCGImagePropertyCIFFShootingMode;
CFStringRef kCGImagePropertyCIFFLensMaxMM;
CFStringRef kCGImagePropertyCIFFLensMinMM;
CFStringRef kCGImagePropertyCIFFLensModel;
CFStringRef kCGImagePropertyCIFFWhiteBalanceIndex;
CFStringRef kCGImagePropertyCIFFFlashExposureComp;
CFStringRef kCGImagePropertyCIFFMeasuredEV;

Constants
kCGImagePropertyCIFFDescription

The camera description.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFFirmware
The firmware version of the camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFOwnerName
The name of the camera’s owner.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 479
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyCIFFImageName
The image name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFImageFileName
The image file name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFReleaseMethod
The method of shutter release—single-shot or continuous.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFReleaseTiming
The priority for shutter release timing—shutter or focus.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFRecordID
The number of images taken since the camera shipped.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFSelfTimingTime
The time in milliseconds until shutter release when using the self-timer.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFImageSerialNumber
The image serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFContinuousDrive
The continuous drive mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFFocusMode
The focus mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

480 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyCIFFMeteringMode
The metering mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFShootingMode
The shooting mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensMaxMM
The maximum lens length in millimeters.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensMinMM
The minimum lens length in millimeters.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFWhiteBalanceIndex
The white balance index.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFFlashExposureComp
The flash exposure compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFMeasuredEV
The measured exposure value.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

Nikon Camera Dictionary Keys
Keys for an image from a Nikon camera.

Constants 481
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

CFStringRef kCGImagePropertyMakerNikonISOSetting;
CFStringRef kCGImagePropertyMakerNikonColorMode;
CFStringRef kCGImagePropertyMakerNikonQuality;
CFStringRef kCGImagePropertyMakerNikonWhiteBalanceMode;
CFStringRef kCGImagePropertyMakerNikonSharpenMode;
CFStringRef kCGImagePropertyMakerNikonFocusMode;
CFStringRef kCGImagePropertyMakerNikonFlashSetting;
CFStringRef kCGImagePropertyMakerNikonISOSelection;
CFStringRef kCGImagePropertyMakerNikonFlashExposureComp;
CFStringRef kCGImagePropertyMakerNikonImageAdjustment;
CFStringRef kCGImagePropertyMakerNikonLensAdapter;
CFStringRef kCGImagePropertyMakerNikonLensType;
CFStringRef kCGImagePropertyMakerNikonLensInfo;
CFStringRef kCGImagePropertyMakerNikonFocusDistance;
CFStringRef kCGImagePropertyMakerNikonDigitalZoom;
CFStringRef kCGImagePropertyMakerNikonShootingMode;
CFStringRef kCGImagePropertyMakerNikonShutterCount;
CFStringRef kCGImagePropertyMakerNikonCameraSerialNumber;

Constants
kCGImagePropertyMakerNikonISOSetting

The ISO setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonColorMode
The color mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonQuality
The quality setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonWhiteBalanceMode
The white balance mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonSharpenMode
The sharpening mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFocusMode
The focus mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFlashSetting
The flash setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

482 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyMakerNikonISOSelection
The ISO selection.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFlashExposureComp
The flash exposure compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonImageAdjustment
The image adjustment setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensAdapter
The lens adapter.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensType
The lens type.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensInfo
Lens information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFocusDistance
The focus distance.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonDigitalZoom
The digital zoom setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonShootingMode
The shooting mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonShutterCount
The number of times the shutter has been actuated.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 483
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyMakerNikonCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Canon Camera Dictionary Keys
Keys for an image from a Canon camera.

CFStringRef kCGImagePropertyMakerCanonOwnerName;
CFStringRef kCGImagePropertyMakerCanonCameraSerialNumber;
CFStringRef kCGImagePropertyMakerCanonImageSerialNumber;
CFStringRef kCGImagePropertyMakerCanonFlashExposureComp;
CFStringRef kCGImagePropertyMakerCanonContinuousDrive;
CFStringRef kCGImagePropertyMakerCanonLensModel;
CFStringRef kCGImagePropertyMakerCanonFirmware;
CFStringRef kCGImagePropertyMakerCanonAspectRatioInfo;

Constants
kCGImagePropertyMakerCanonOwnerName

The name of the camera's owner.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonImageSerialNumber
The image serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonFlashExposureComp
The flash exposure compensation setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonContinuousDrive
The presence of a continuous drive.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

484 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

kCGImagePropertyMakerCanonFirmware
The firmware version.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonAspectRatioInfo
The image aspect ratio.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 485
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

486 Constants
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

CGImageProperties Reference

This table describes the changes to Quartz 2D Reference Collection.

NotesDate

Updated with new documents for Mac OS X v10.5.2006-12-18

First publication of this content as a collection of separate documents.2006-05-23

First publication of this content as a collection of separate documents.

487
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

488
2006-12-18 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Quartz 2D Reference Collection
	Contents
	Tables
	Introduction
	Part I: Opaque Types
	CGBitmapContext Reference
	Overview
	Functions by Task
	Creating Bitmap Contexts
	Getting Information About Bitmap Contexts

	Functions
	CGBitmapContextCreate
	CGBitmapContextCreateImage
	CGBitmapContextCreateWithData
	CGBitmapContextGetAlphaInfo
	CGBitmapContextGetBitmapInfo
	CGBitmapContextGetBitsPerComponent
	CGBitmapContextGetBitsPerPixel
	CGBitmapContextGetBytesPerRow
	CGBitmapContextGetColorSpace
	CGBitmapContextGetData
	CGBitmapContextGetHeight
	CGBitmapContextGetWidth

	Data Types
	CGBitmapContextReleaseDataCallback

	CGColor Reference
	Overview
	Functions by Task
	Getting a Constant Color
	Retaining and Releasing Color Objects
	Creating Quartz Colors
	Getting Information about Quartz Colors

	Functions
	CGColorCreate
	CGColorCreateCopy
	CGColorCreateCopyWithAlpha
	CGColorCreateGenericCMYK
	CGColorCreateGenericGray
	CGColorCreateGenericRGB
	CGColorCreateWithPattern
	CGColorEqualToColor
	CGColorGetAlpha
	CGColorGetColorSpace
	CGColorGetComponents
	CGColorGetConstantColor
	CGColorGetNumberOfComponents
	CGColorGetPattern
	CGColorGetTypeID
	CGColorRelease
	CGColorRetain

	Data Types
	CGColorRef

	Constants
	Constant Colors

	CGColorSpace Reference
	Overview
	Functions by Task
	Creating Device-Independent Color Spaces
	Creating Generic or Device-Dependent Color Spaces
	Creating Special Color Spaces
	Getting Information About Color Spaces
	Retaining and Releasing Color Spaces

	Functions
	CGColorSpaceCopyICCProfile
	CGColorSpaceCopyName
	CGColorSpaceCreateCalibratedGray
	CGColorSpaceCreateCalibratedRGB
	CGColorSpaceCreateDeviceCMYK
	CGColorSpaceCreateDeviceGray
	CGColorSpaceCreateDeviceRGB
	CGColorSpaceCreateICCBased
	CGColorSpaceCreateIndexed
	CGColorSpaceCreateLab
	CGColorSpaceCreatePattern
	CGColorSpaceCreateWithICCProfile
	CGColorSpaceCreateWithName
	CGColorSpaceCreateWithPlatformColorSpace
	CGColorSpaceGetBaseColorSpace
	CGColorSpaceGetColorTable
	CGColorSpaceGetColorTableCount
	CGColorSpaceGetModel
	CGColorSpaceGetNumberOfComponents
	CGColorSpaceGetTypeID
	CGColorSpaceRelease
	CGColorSpaceRetain

	Data Types
	CGColorSpaceRef

	Constants
	Color Space Names
	Color Space Models
	Color Rendering Intents

	CGContext Reference
	Overview
	Functions by Task
	Managing Graphics Contexts
	Saving and Restoring the Current Graphics State
	Getting and Setting Graphics State Parameters
	Constructing Paths
	Painting Paths
	Getting Information About Paths
	Modifying Clipping Paths
	Setting Color, Color Space, and Shadow Values
	Transforming User Space
	Using Transparency Layers
	Drawing an Image to a Graphics Context
	Drawing PDF Content to a Graphics Context
	Drawing With a Gradient
	Drawing With a Shading
	Setting Up a Page-Based Graphics Context
	Drawing Glyphs
	Drawing Text
	Converting Between Device Space and User Space

	Functions
	CGContextAddArc
	CGContextAddArcToPoint
	CGContextAddCurveToPoint
	CGContextAddEllipseInRect
	CGContextAddLines
	CGContextAddLineToPoint
	CGContextAddPath
	CGContextAddQuadCurveToPoint
	CGContextAddRect
	CGContextAddRects
	CGContextBeginPage
	CGContextBeginPath
	CGContextBeginTransparencyLayer
	CGContextBeginTransparencyLayerWithRect
	CGContextClearRect
	CGContextClip
	CGContextClipToMask
	CGContextClipToRect
	CGContextClipToRects
	CGContextClosePath
	CGContextConcatCTM
	CGContextConvertPointToDeviceSpace
	CGContextConvertPointToUserSpace
	CGContextConvertRectToDeviceSpace
	CGContextConvertRectToUserSpace
	CGContextConvertSizeToDeviceSpace
	CGContextConvertSizeToUserSpace
	CGContextCopyPath
	CGContextDrawImage
	CGContextDrawLinearGradient
	CGContextDrawPath
	CGContextDrawPDFDocument
	CGContextDrawPDFPage
	CGContextDrawRadialGradient
	CGContextDrawShading
	CGContextDrawTiledImage
	CGContextEndPage
	CGContextEndTransparencyLayer
	CGContextEOClip
	CGContextEOFillPath
	CGContextFillEllipseInRect
	CGContextFillPath
	CGContextFillRect
	CGContextFillRects
	CGContextFlush
	CGContextGetClipBoundingBox
	CGContextGetCTM
	CGContextGetInterpolationQuality
	CGContextGetPathBoundingBox
	CGContextGetPathCurrentPoint
	CGContextGetTextMatrix
	CGContextGetTextPosition
	CGContextGetTypeID
	CGContextGetUserSpaceToDeviceSpaceTransform
	CGContextIsPathEmpty
	CGContextMoveToPoint
	CGContextPathContainsPoint
	CGContextRelease
	CGContextReplacePathWithStrokedPath
	CGContextRestoreGState
	CGContextRetain
	CGContextRotateCTM
	CGContextSaveGState
	CGContextScaleCTM
	CGContextSelectFont
	CGContextSetAllowsAntialiasing
	CGContextSetAllowsFontSmoothing
	CGContextSetAllowsFontSubpixelPositioning
	CGContextSetAllowsFontSubpixelQuantization
	CGContextSetAlpha
	CGContextSetBlendMode
	CGContextSetCharacterSpacing
	CGContextSetCMYKFillColor
	CGContextSetCMYKStrokeColor
	CGContextSetFillColor
	CGContextSetFillColorSpace
	CGContextSetFillColorWithColor
	CGContextSetFillPattern
	CGContextSetFlatness
	CGContextSetFont
	CGContextSetFontSize
	CGContextSetGrayFillColor
	CGContextSetGrayStrokeColor
	CGContextSetInterpolationQuality
	CGContextSetLineCap
	CGContextSetLineDash
	CGContextSetLineJoin
	CGContextSetLineWidth
	CGContextSetMiterLimit
	CGContextSetPatternPhase
	CGContextSetRenderingIntent
	CGContextSetRGBFillColor
	CGContextSetRGBStrokeColor
	CGContextSetShadow
	CGContextSetShadowWithColor
	CGContextSetShouldAntialias
	CGContextSetShouldSmoothFonts
	CGContextSetShouldSubpixelPositionFonts
	CGContextSetShouldSubpixelQuantizeFonts
	CGContextSetStrokeColor
	CGContextSetStrokeColorSpace
	CGContextSetStrokeColorWithColor
	CGContextSetStrokePattern
	CGContextSetTextDrawingMode
	CGContextSetTextMatrix
	CGContextSetTextPosition
	CGContextShowGlyphs
	CGContextShowGlyphsAtPoint
	CGContextShowGlyphsAtPositions
	CGContextShowGlyphsWithAdvances
	CGContextShowText
	CGContextShowTextAtPoint
	CGContextStrokeEllipseInRect
	CGContextStrokeLineSegments
	CGContextStrokePath
	CGContextStrokeRect
	CGContextStrokeRectWithWidth
	CGContextSynchronize
	CGContextTranslateCTM

	Data Types
	CGContextRef

	Constants
	CGBlendMode
	CGInterpolationQuality
	CGLineCap
	CGLineJoin
	CGTextDrawingMode
	CGTextEncoding

	CGDataConsumer Reference
	Overview
	Functions by Task
	Creating Data Consumers
	Getting the CFType ID
	Retaining and Releasing Data Consumers

	Functions
	CGDataConsumerCreate
	CGDataConsumerCreateWithCFData
	CGDataConsumerCreateWithURL
	CGDataConsumerGetTypeID
	CGDataConsumerRelease
	CGDataConsumerRetain

	Callbacks
	CGDataConsumerPutBytesCallback
	CGDataConsumerReleaseInfoCallback

	Data Types
	CGDataConsumerCallbacks
	CGDataConsumerRef

	CGDataProvider Reference
	Overview
	Functions
	CGDataProviderCopyData
	CGDataProviderCreate
	CGDataProviderCreateDirect
	CGDataProviderCreateDirectAccess
	CGDataProviderCreateSequential
	CGDataProviderCreateWithCFData
	CGDataProviderCreateWithData
	CGDataProviderCreateWithFilename
	CGDataProviderCreateWithURL
	CGDataProviderGetTypeID
	CGDataProviderRelease
	CGDataProviderRetain

	Callbacks by Task
	Sequential-Access Data Provider Callbacks
	Direct-Access Data Provider Callbacks

	Callbacks
	CGDataProviderGetBytePointerCallback
	CGDataProviderGetBytesAtOffsetCallback
	CGDataProviderGetBytesAtPositionCallback
	CGDataProviderGetBytesCallback
	CGDataProviderReleaseBytePointerCallback
	CGDataProviderReleaseDataCallback
	CGDataProviderReleaseInfoCallback
	CGDataProviderRewindCallback
	CGDataProviderSkipBytesCallback
	CGDataProviderSkipForwardCallback

	Data Types
	CGDataProviderRef
	CGDataProviderCallbacks
	CGDataProviderDirectAccessCallbacks
	CGDataProviderDirectCallbacks
	CGDataProviderSequentialCallbacks

	CGFont Reference
	Overview
	Functions by Task
	Retaining and Releasing a CGFont Object
	Creating a CGFont Object
	Working With PostScript Fonts
	Working With Font Tables
	Getting Font Information

	Functions
	CGFontCanCreatePostScriptSubset
	CGFontCopyFullName
	CGFontCopyGlyphNameForGlyph
	CGFontCopyPostScriptName
	CGFontCopyTableForTag
	CGFontCopyTableTags
	CGFontCopyVariationAxes
	CGFontCopyVariations
	CGFontCreateCopyWithVariations
	CGFontCreatePostScriptEncoding
	CGFontCreatePostScriptSubset
	CGFontCreateWithDataProvider
	CGFontCreateWithFontName
	CGFontCreateWithPlatformFont
	CGFontGetAscent
	CGFontGetCapHeight
	CGFontGetDescent
	CGFontGetFontBBox
	CGFontGetGlyphAdvances
	CGFontGetGlyphBBoxes
	CGFontGetGlyphWithGlyphName
	CGFontGetItalicAngle
	CGFontGetLeading
	CGFontGetNumberOfGlyphs
	CGFontGetStemV
	CGFontGetTypeID
	CGFontGetUnitsPerEm
	CGFontGetXHeight
	CGFontRelease
	CGFontRetain

	Data Types
	CGFontRef
	CGFontIndex
	CGGlyph

	Constants
	CGFontPostScriptFormat
	Font Table Index Values
	Obsolete Font Table Index Values
	Font Variation Axis Keys

	CGFunction Reference
	Overview
	Functions by Task
	Creating a CGFunction Object
	Retaining and Releasing CGFunction Objects
	Getting the CFType ID

	Functions
	CGFunctionCreate
	CGFunctionGetTypeID
	CGFunctionRelease
	CGFunctionRetain

	Callbacks
	CGFunctionEvaluateCallback
	CGFunctionReleaseInfoCallback

	Data Types
	CGFunctionRef
	CGFunctionCallbacks

	CGGLContext Reference
	Overview
	Functions
	CGGLContextCreate
	CGGLContextUpdateViewportSize

	CGGradient Reference
	Overview
	Functions by Task
	Creating a CGGradient Object
	Retaining and Releasing a CGGradient Object
	Getting the Type ID for a CGGradient Object

	Functions
	CGGradientCreateWithColorComponents
	CGGradientCreateWithColors
	CGGradientGetTypeID
	CGGradientRelease
	CGGradientRetain

	Data Types
	CGGradientRef

	Constants
	Gradient Drawing Options

	CGImage Reference
	Overview
	Functions by Task
	Creating Bitmap Images
	Creating an Image Mask
	Retaining and Releasing Images
	Getting the CFType ID
	Getting Information About an Image

	Functions
	CGImageCreate
	CGImageCreateCopy
	CGImageCreateCopyWithColorSpace
	CGImageCreateWithImageInRect
	CGImageCreateWithJPEGDataProvider
	CGImageCreateWithMask
	CGImageCreateWithMaskingColors
	CGImageCreateWithPNGDataProvider
	CGImageGetAlphaInfo
	CGImageGetBitmapInfo
	CGImageGetBitsPerComponent
	CGImageGetBitsPerPixel
	CGImageGetBytesPerRow
	CGImageGetColorSpace
	CGImageGetDataProvider
	CGImageGetDecode
	CGImageGetHeight
	CGImageGetRenderingIntent
	CGImageGetShouldInterpolate
	CGImageGetTypeID
	CGImageGetWidth
	CGImageIsMask
	CGImageMaskCreate
	CGImageRelease
	CGImageRetain

	Data Types
	CGImageRef

	Constants
	Alpha Information for Images
	Image Bitmap Information
	Host Endian Bitmap Formats

	CGImageDestination Reference
	Overview
	Functions by Task
	Creating Image Destinations
	Adding Images
	Getting Type Identifiers
	Setting Properties
	Finalizing an Image Destination

	Functions
	CGImageDestinationAddImage
	CGImageDestinationAddImageFromSource
	CGImageDestinationCopyTypeIdentifiers
	CGImageDestinationCreateWithData
	CGImageDestinationCreateWithDataConsumer
	CGImageDestinationCreateWithURL
	CGImageDestinationFinalize
	CGImageDestinationGetTypeID
	CGImageDestinationSetProperties

	Data Types
	CGImageDestinationRef

	Constants
	Destination Properties

	CGImageSource Reference
	Overview
	Functions by Task
	Creating an Image Source
	Creating Images From an Image Source
	Updating an Image Source
	Getting Information From an Image Source

	Functions
	CGImageSourceCopyProperties
	CGImageSourceCopyPropertiesAtIndex
	CGImageSourceCopyTypeIdentifiers
	CGImageSourceCreateImageAtIndex
	CGImageSourceCreateIncremental
	CGImageSourceCreateThumbnailAtIndex
	CGImageSourceCreateWithData
	CGImageSourceCreateWithDataProvider
	CGImageSourceCreateWithURL
	CGImageSourceGetCount
	CGImageSourceGetStatus
	CGImageSourceGetStatusAtIndex
	CGImageSourceGetType
	CGImageSourceGetTypeID
	CGImageSourceUpdateData
	CGImageSourceUpdateDataProvider

	Data Types
	CGImageSourceRef

	Constants
	Image Source Status
	Image Source Option Dictionary Keys

	CGLayer Reference
	Overview
	Functions by Task
	Creating Layer Objects
	Drawing Layer Content
	Retaining and Releasing Layers
	Getting the CFType ID for a Layer
	Getting Layer Information

	Functions
	CGContextDrawLayerAtPoint
	CGContextDrawLayerInRect
	CGLayerCreateWithContext
	CGLayerGetContext
	CGLayerGetSize
	CGLayerGetTypeID
	CGLayerRelease
	CGLayerRetain

	Data Types
	CGLayerRef

	CGPath Reference
	Overview
	Functions by Task
	Creating and Managing Paths
	Modifying Quartz Paths
	Getting Information about Quartz Paths

	Functions
	CGPathAddArc
	CGPathAddArcToPoint
	CGPathAddCurveToPoint
	CGPathAddEllipseInRect
	CGPathAddLines
	CGPathAddLineToPoint
	CGPathAddPath
	CGPathAddQuadCurveToPoint
	CGPathAddRect
	CGPathAddRects
	CGPathApply
	CGPathCloseSubpath
	CGPathContainsPoint
	CGPathCreateCopy
	CGPathCreateMutable
	CGPathCreateMutableCopy
	CGPathEqualToPath
	CGPathGetBoundingBox
	CGPathGetCurrentPoint
	CGPathGetPathBoundingBox
	CGPathGetTypeID
	CGPathIsEmpty
	CGPathIsRect
	CGPathMoveToPoint
	CGPathRelease
	CGPathRetain

	Callbacks
	CGPathApplierFunction

	Data Types
	CGPathRef
	CGMutablePathRef
	CGPathElement

	Constants
	CGPathDrawingMode
	CGPathElementType

	CGPattern Reference
	Overview
	Functions by Task
	Creating a Pattern
	Getting the CFType ID
	Retaining and Releasing a Pattern

	Functions
	CGPatternCreate
	CGPatternGetTypeID
	CGPatternRelease
	CGPatternRetain

	Callbacks
	CGPatternDrawPatternCallback
	CGPatternReleaseInfoCallback

	Data Types
	CGPatternRef
	CGPatternCallbacks

	Constants
	Tiling Patterns

	CGPDFArray Reference
	Overview
	Functions
	CGPDFArrayGetArray
	CGPDFArrayGetBoolean
	CGPDFArrayGetCount
	CGPDFArrayGetDictionary
	CGPDFArrayGetInteger
	CGPDFArrayGetName
	CGPDFArrayGetNull
	CGPDFArrayGetNumber
	CGPDFArrayGetObject
	CGPDFArrayGetStream
	CGPDFArrayGetString

	Data Types
	CGPDFArrayRef

	CGPDFContentStream Reference
	Overview
	Functions by Task
	Creating a PDF Content Stream Object
	Getting Data from a PDF Content Stream Object
	Retaining and Releasing a PDF Content Stream Object

	Functions
	CGPDFContentStreamCreateWithPage
	CGPDFContentStreamCreateWithStream
	CGPDFContentStreamGetResource
	CGPDFContentStreamGetStreams
	CGPDFContentStreamRelease
	CGPDFContentStreamRetain

	Data Types
	CGPDFContentStreamRef

	CGPDFContext Reference
	Overview
	Functions by Task
	Creating a Context
	Beginning and Ending Pages
	Working with Destinations
	Closing a PDF Context

	Functions
	CGPDFContextAddDestinationAtPoint
	CGPDFContextBeginPage
	CGPDFContextClose
	CGPDFContextCreate
	CGPDFContextCreateWithURL
	CGPDFContextEndPage
	CGPDFContextSetDestinationForRect
	CGPDFContextSetURLForRect

	Constants
	Auxiliary Dictionary Keys
	Box Dictionary Keys
	Output Intent Dictionary Keys

	CGPDFDictionary Reference
	Overview
	Functions by Task
	Applying a Function to All Entries
	Getting Data from a Dictionary

	Functions
	CGPDFDictionaryApplyFunction
	CGPDFDictionaryGetArray
	CGPDFDictionaryGetBoolean
	CGPDFDictionaryGetCount
	CGPDFDictionaryGetDictionary
	CGPDFDictionaryGetInteger
	CGPDFDictionaryGetName
	CGPDFDictionaryGetNumber
	CGPDFDictionaryGetObject
	CGPDFDictionaryGetStream
	CGPDFDictionaryGetString

	Callbacks
	CGPDFDictionaryApplierFunction

	Data Types
	CGPDFDictionaryRef

	CGPDFDocument Reference
	Overview
	Functions by Task
	Creating PDF Document Objects
	Retaining and Releasing PDF Documents
	Getting the CFType ID for a PDF Document Object
	Getting Information About Quartz PDF Documents
	Managing Encryption
	Getting Page Information

	Functions
	CGPDFDocumentAllowsCopying
	CGPDFDocumentAllowsPrinting
	CGPDFDocumentCreateWithProvider
	CGPDFDocumentCreateWithURL
	CGPDFDocumentGetArtBox
	CGPDFDocumentGetBleedBox
	CGPDFDocumentGetCatalog
	CGPDFDocumentGetCropBox
	CGPDFDocumentGetID
	CGPDFDocumentGetInfo
	CGPDFDocumentGetMediaBox
	CGPDFDocumentGetNumberOfPages
	CGPDFDocumentGetPage
	CGPDFDocumentGetRotationAngle
	CGPDFDocumentGetTrimBox
	CGPDFDocumentGetTypeID
	CGPDFDocumentGetVersion
	CGPDFDocumentIsEncrypted
	CGPDFDocumentIsUnlocked
	CGPDFDocumentRelease
	CGPDFDocumentRetain
	CGPDFDocumentUnlockWithPassword

	Data Types
	CGPDFDocumentRef

	CGPDFObject Reference
	Overview
	Functions
	CGPDFObjectGetType
	CGPDFObjectGetValue

	Data Types
	CGPDFObjectRef
	CGPDFBoolean
	CGPDFInteger
	CGPDFReal

	Constants
	PDF Object Types

	CGPDFOperatorTable Reference
	Overview
	Functions by Task
	Creating a PDF Operator Table
	Setting Callback Functions
	Retaining and Releasing a PDF Operator Table

	Functions
	CGPDFOperatorTableCreate
	CGPDFOperatorTableRelease
	CGPDFOperatorTableRetain
	CGPDFOperatorTableSetCallback

	Callbacks
	CGPDFOperatorCallback

	Data Types
	CGPDFOperatorTableRef

	CGPDFPage Reference
	Overview
	Functions by Task
	Retaining and Releasing a PDF Page
	Getting the CFType ID
	Getting Page Information

	Functions
	CGPDFPageGetBoxRect
	CGPDFPageGetDictionary
	CGPDFPageGetDocument
	CGPDFPageGetDrawingTransform
	CGPDFPageGetPageNumber
	CGPDFPageGetRotationAngle
	CGPDFPageGetTypeID
	CGPDFPageRelease
	CGPDFPageRetain

	Data Types
	CGPDFPageRef

	Constants
	PDF Boxes

	CGPDFScanner Reference
	Overview
	Functions by Task
	Creating a PDF Scanner Object
	Retaining and Releasing PDF Scanner Objects
	Parsing Content
	Getting PDF Objects from the Scanner Stack

	Functions
	CGPDFScannerCreate
	CGPDFScannerGetContentStream
	CGPDFScannerPopArray
	CGPDFScannerPopBoolean
	CGPDFScannerPopDictionary
	CGPDFScannerPopInteger
	CGPDFScannerPopName
	CGPDFScannerPopNumber
	CGPDFScannerPopObject
	CGPDFScannerPopStream
	CGPDFScannerPopString
	CGPDFScannerRelease
	CGPDFScannerRetain
	CGPDFScannerScan

	Data Types
	CGPDFScannerRef

	CGPDFStream Reference
	Overview
	Functions
	CGPDFStreamCopyData
	CGPDFStreamGetDictionary

	Data Types
	CGPDFStream

	Constants
	CGPDFDataFormat

	CGPDFString Reference
	Overview
	Functions by Task
	Converting PDF Strings
	Getting PDF String Data

	Functions
	CGPDFStringCopyDate
	CGPDFStringCopyTextString
	CGPDFStringGetBytePtr
	CGPDFStringGetLength

	Data Types
	CGPDFStringRef

	CGPSConverter Reference
	Overview
	Functions
	CGPSConverterAbort
	CGPSConverterConvert
	CGPSConverterCreate
	CGPSConverterGetTypeID
	CGPSConverterIsConverting

	Callbacks by Task
	Performing Custom Tasks at the Document Level
	Performing Custom Tasks at the Page Level
	Reporting Progress and Messages
	Performing Custom Clean-up Tasks

	Callbacks
	CGPSConverterBeginDocumentCallback
	CGPSConverterBeginPageCallback
	CGPSConverterEndDocumentCallback
	CGPSConverterEndPageCallback
	CGPSConverterMessageCallback
	CGPSConverterProgressCallback
	CGPSConverterReleaseInfoCallback

	Data Types
	CGPSConverterRef
	CGPSConverterCallbacks

	CGShading Reference
	Overview
	Functions by Task
	Creating Shading Objects
	Retaining and Releasing Shading Objects
	Getting the CFType ID

	Functions
	CGShadingCreateAxial
	CGShadingCreateRadial
	CGShadingGetTypeID
	CGShadingRelease
	CGShadingRetain

	Data Types
	CGShadingRef

	Part II: Other References
	CGAffineTransform Reference
	Overview
	Functions by Task
	Creating an Affine Transformation Matrix
	Modifying Affine Transformations
	Applying Affine Transformations
	Evaluating Affine Transforms

	Functions
	CGAffineTransformConcat
	CGAffineTransformEqualToTransform
	CGAffineTransformInvert
	CGAffineTransformIsIdentity
	CGAffineTransformMake
	CGAffineTransformMakeRotation
	CGAffineTransformMakeScale
	CGAffineTransformMakeTranslation
	CGAffineTransformRotate
	CGAffineTransformScale
	CGAffineTransformTranslate
	CGPointApplyAffineTransform
	CGRectApplyAffineTransform
	CGSizeApplyAffineTransform

	Data Types
	CGAffineTransform

	Constants
	CGAffineTransformIdentity

	CGGeometry Reference
	Overview
	Functions by Task
	Creating a Dictionary Representation from a Geometric Primitive
	Creating a Geometric Primitive from a Dictionary Representation
	Creating a Geometric Primitive from Values
	Modifying Rectangles
	Comparing Values
	Checking for Membership
	Getting Min, Mid, and Max Values
	Getting Height and Width
	Checking Rectangle Characteristics

	Functions
	CGPointCreateDictionaryRepresentation
	CGPointEqualToPoint
	CGPointMake
	CGPointMakeWithDictionaryRepresentation
	CGRectContainsPoint
	CGRectContainsRect
	CGRectCreateDictionaryRepresentation
	CGRectDivide
	CGRectEqualToRect
	CGRectGetHeight
	CGRectGetMaxX
	CGRectGetMaxY
	CGRectGetMidX
	CGRectGetMidY
	CGRectGetMinX
	CGRectGetMinY
	CGRectGetWidth
	CGRectInset
	CGRectIntegral
	CGRectIntersection
	CGRectIntersectsRect
	CGRectIsEmpty
	CGRectIsInfinite
	CGRectIsNull
	CGRectMake
	CGRectMakeWithDictionaryRepresentation
	CGRectOffset
	CGRectStandardize
	CGRectUnion
	CGSizeCreateDictionaryRepresentation
	CGSizeEqualToSize
	CGSizeMake
	CGSizeMakeWithDictionaryRepresentation

	Data Types
	CGFloat
	CGPoint
	CGRect
	CGSize

	Constants
	CGRectInfinite
	Geometric Zeros
	Geometrical Null
	CGRectEdge
	CGFloat Informational Macros

	CGImageProperties Reference
	Overview
	Constants
	Format-Specific Dictionaries
	Camera-Maker Dictionaries
	Image Source Container Properties
	Individual Image Properties
	Color Model Values
	EXIF Dictionary Keys
	EXIF Auxiliary Dictionary Keys
	GIF Dictionary Keys
	GPS Dictionary Keys
	IPTC Dictionary Keys
	IPTC Creator Contact Info Dictionary Keys
	JFIF Dictionary Keys
	PNG Dictionary Keys
	TIFF Dictionary Keys
	DNG Dictionary Keys
	8BIM Dictionary Keys
	CIFF Dictionary Keys
	Nikon Camera Dictionary Keys
	Canon Camera Dictionary Keys

	Revision History

