
I/O Kit Fundamentals
Drivers, Kernel, & Hardware: Kernel Device Drivers

2007-05-17

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, FireWire,
Logic, Mac, Mac OS, Macintosh, Objective-C,
Pages, Power Mac, Quartz, QuickTime, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Finder is a trademark of Apple Inc.

CDB is a trademark of Third Eye Software, Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

VMS is a trademark of Digital Equipment
Corporation.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to I/O Kit Fundamentals 11

Who Should Read This Document? 11
Organization of This Document 11
See Also 12

Chapter 1 What Is the I/O Kit? 15

Before You Begin 15
I/O Kit Features 15
Design Principles of the I/O Kit 16
Limitations of the I/O Kit 17
Language Choice 17

Using Namespaces in an I/O Kit Driver 18
Using Static Constructors in an I/O Kit Driver 18

The Parts of the I/O Kit 19
Frameworks and Libraries 19
Applications and Tools 20
Other I/O Kit Resources 21

Should You Program in the Kernel? 21
When Code Should Reside in the Kernel 22
Alternatives to Kernel-Resident Code 22

Chapter 2 Architectural Overview 23

Driver Layering 23
Families and Drivers 24
Drivers and Nubs 24
The Anatomy of an I/O Connection 25

The Runtime Environment of Device Drivers 26
Runtime Features 27
Kernel Programming Constraints 28

The I/O Registry and the I/O Catalog 28
Driver Matching 29
The I/O Kit Class Hierarchy 30

The OS Classes 31
The General I/O Kit Classes 31
The I/O Kit Family Classes 32

Controlling Devices From Outside the Kernel 33
The Device-Interface Mechanism 34
POSIX Device Files 35

3
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

Chapter 3 The I/O Registry 37

I/O Registry Architecture and Construction 37
The I/O Registry Explorer 39

Chapter 4 Driver and Device Matching 41

Driver Personalities and Matching Languages 41
Driver Matching and Loading 44

Driver Matching 44
Device Probing 45
Driver Loading 46

Device Matching 46

Chapter 5 The Base Classes 49

The libkern Base Classes 50
Object Creation and Disposal (OSObject) 50
Runtime Type Information (OSMetaClass) 52
Defining C++ Classes in libkern 54

The I/O Kit Base Classes 56
Dynamic Driver Registration (IORegistryEntry) 56
Basic Driver Behavior (IOService) 57

Chapter 6 I/O Kit Families 63

Drivers and Families 63
Families As Libraries 64

Library Versioning 65
Library Loading 65

The Programmatic Structure of Families 66
Typical Classes 66
Naming and Coding Conventions 67

Creating An I/O Kit Family 68

Chapter 7 Handling Events 69

Work Loops 69
Work Loop Architecture 70
Shared and Dedicated Work Loops 71
Examples of Obtaining Work Loops 71

Event Sources 72
Handling Interrupts 73
Handling Timer Events 78
I/O Requests and Command Gates 79

4
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 8 Managing Data 83

Handling I/O Transfers 83
Memory Descriptors and Memory Cursors 84
Memory in an I/O Request 85
Issues With 64-Bit System Architectures 87

Relaying I/O Requests 90
More on Memory Descriptors 90
More on Memory Cursors 91

DMA and System Memory 91
Dealing With Hardware Constraints 92
IOMemoryCursor Subclasses 93

Chapter 9 Managing Power 95

Power Events 95
The Power Plane: A Hierarchy of Power Dependencies 96
Devices and Power States 98
Deciding How to Implement Power Management in Your Driver 98
Implementing Basic Power Management 100
Implementing Advanced Power Management 102

Defining and Using Multiple Power States 103
Changing the Power State of a Device 105
Implementing Idleness Determination and Idle Power Saving 107
Receiving Notification of Power-State Changes in Other Devices 108
Receiving Shutdown and Restart Notifications 109
Keeping Power On for Future Device Attachment 111

Chapter 10 Managing Device Removal 113

The Phases of Device Removal 113
Making Drivers Inactive 114
Clearing I/O Queues 114
Detaching and Releasing Objects 115

Chapter 11 Base and Helper Class Hierarchy 117

Bibliography Bibliography 119

System Internals 119
Websites - Online Resources 119

5
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Glossary 121

Appendix A I/O Kit Family Reference 127

ADB 127
ATA and ATAPI 128
Audio 129
FireWire 131
Graphics 133

A Note on NDRV Compatibility 134
HID 135
Network 136
PC Card 139
PCI and AGP 140
SBP-2 141
SCSI Parallel 142
SCSI Architecture Model 143
Serial 146
Storage 148

IOMedia Filter Schemes 150
IOMedia Properties 151
Accessing IOMedia From Applications 152

USB 152
Devices Without I/O Kit Families 155

Imaging Devices 156
Digital Video 156
Sequential Access Devices (Tape Drives) 156
Telephony Devices 156
Vendor-Specific Devices 156

Document Revision History 159

Index 161

6
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 What Is the I/O Kit? 15

Table 1-1 Frameworks and libraries of the I/O Kit 19
Table 1-2 Applications used in driver development 20
Table 1-3 Command-line tools used in driver development 20

Chapter 2 Architectural Overview 23

Figure 2-1 Driver objects as clients and providers 25
Figure 2-2 Driver objects in a connection for a SCSI disk driver 26
Figure 2-3 I/O Kit extended class hierarchy 30
Figure 2-4 An application controlling a SCSI device through a device interface. 34

Chapter 3 The I/O Registry 37

Figure 3-1 Two planes in the I/O Registry 38
Figure 3-2 A sample I/O Registry Explorer window 40

Chapter 4 Driver and Device Matching 41

Listing 4-1 A partial listing of an XML personality for an Ethernet controller 42
Listing 4-2 Driver personalities for the AppleUSBAudio driver 43

Chapter 5 The Base Classes 49

Figure 5-1 The base classes of the I/O Kit class hierarchy 49
Figure 5-2 Driver object life-cycle functions 58
Table 5-1 OSMetaClass type-casting and introspection APIs 53
Listing 5-1 Implementing an init method 55
Listing 5-2 Creating an instance and calling its init method 55
Listing 5-3 Implementing the free function 56

Chapter 6 I/O Kit Families 63

Figure 6-1 A driver’s relationships with I/O Kit families 64
Figure 6-2 OSBundleLibraries and the dependency tree 66
Table 6-1 API prefixes reserved by Apple 67
Listing 6-1 The OSBundleLibraries property 65

7
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

Chapter 7 Handling Events 69

Figure 7-1 Driver objects sharing a work loop 71
Figure 7-2 A work loop and its event sources 75
Listing 7-1 Creating a dedicated work loop 72
Listing 7-2 Adding an interrupt event source to a work loop 75
Listing 7-3 Disposing of an IOInterruptEventSource 76
Listing 7-4 Setting up an IOFilterInterruptEventSource 76
Listing 7-5 Creating and registering a timer event source 78
Listing 7-6 Disposing of a timer event source 79
Listing 7-7 Creating and registering a command gate 80
Listing 7-8 Issuing an I/O request through the command gate 80
Listing 7-9 Disposing of an IOCommandGate 81

Chapter 8 Managing Data 83

Figure 8-1 The role of the user client in an I/O command 86
Figure 8-2 The principal I/O Kit objects in an I/O transfer 87
Table 8-1 Subclasses of IOMemoryDescriptor 91
Table 8-2 Apple-provided subclasses of IOMemoryCursor 93

Chapter 9 Managing Power 95

Figure 9-1 The power plane shown in I/O Registry Explorer 97
Table 9-1 Fields and appropriate values in the IOPMPowerState structure 103
Table 9-2 Power flags that describe device capabilities 104
Listing 9-1 Building the power-state array and registering the driver 104
Listing 9-2 Getting notification of system shutdown or restart 110

Chapter 10 Managing Device Removal 113

Figure 10-1 Phases of device removal 113

Appendix A I/O Kit Family Reference 127

Figure A-1 Storage family driver stack 148
Table A-1 Clients and providers of the ADB family 128
Table A-2 Clients and providers of the ATA and ATAPI family 129
Table A-3 Clients and providers of the Audio family 130
Table A-4 Clients and providers of the FireWire family 132
Table A-5 Clients and providers of the Graphics family 134
Table A-6 Clients and providers of the HID family 136
Table A-7 Clients and providers of the Network family 138
Table A-8 Clients and providers of the PCI and AGP family 141
Table A-9 Clients and providers of the SBP2 family 142

8
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table A-10 Clients and providers of the SCSI Parallel family 143
Table A-11 SCSI Architecture Model family—Transport Driver layer 144
Table A-12 Clients and providers of the Serial family 147
Table A-13 Storage family (IOMedia) properties 151
Table A-14 Clients and providers of the USB family 155

9
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

10
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document explains the terminology, concepts, architecture, and basic mechanisms of the I/O Kit, Apple’s
object-oriented framework for developing device drivers for Mac OS X. It contains essential background
information for anyone wanting to create device drivers for this platform.

Who Should Read This Document?

There are two general types of I/O Kit developers, and this document tries to be useful to both. The first type
is the developer creating a device driver that is to be resident in the kernel; the second type is the application
developer who is using an I/O Kit device interface to communicate with hardware. Some chapters contain
information useful to both types of developers, and others contain information that is of interest only to
writers of kernel-resident drivers.

Obviously there are things I/O Kit Fundamentals does not cover. It does not, for example, describe the use of
the development tools or the use of specific driver programming interfaces. But it does help you to understand
the hows and whys of the I/O Kit, enabling you to obtain the most value from the more specific documentation
and examples.

Organization of This Document

I/O Kit Fundamentals gives a broad, conceptual description of the I/O Kit and device-driver development on
Mac OS X. It contains the following chapters:

 ■ “What Is the I/O Kit?” (page 15)

Describes the features and benefits of the I/O Kit, and also discusses the philosophy and decisions
informing its design.

 ■ “Architectural Overview” (page 23)

Gives a high-level description of the I/O Kit’s architecture, essential concepts, and basic mechanisms.

 ■ “The I/O Registry” (page 37)

Describes the I/O Registry, a dynamic database capturing the client/provider relationships among active
driver objects.

 ■ “Driver and Device Matching” (page 41)

Explains the matching process by which the most appropriate client drivers are found for registered
providers. It also summarizes the procedure processes in user space follow to find suitable devices and
their drivers.

 ■ “The Base Classes” (page 49)

Who Should Read This Document? 11
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to I/O Kit Fundamentals

Describes the base classes that each driver object directly or indirectly inherits from. It includes discussions
of object construction and disposal, driver objects as I/O Registry entries, and the driver life cycle.

 ■ “Handling Events” (page 69)

Explains the architecture and usage of work loops and event sources, mechanisms that the I/O Kit uses
to process events such as interrupts and I/O requests in a protected single-threaded environment.

 ■ “Managing Data” (page 83)

Describes how to use memory cursors, memory descriptors, and related objects to handle I/O transfers.
It also discusses how drivers should deal with hardware constraints, such as those imposed by DMA
engines.

 ■ “Managing Power” (page 95)

Explains the concepts of Mac OS X power management and describes different ways drivers can
power-manage their devices.

 ■ “Managing Device Removal” (page 113)

Explains how to respond to device removal (hot-swapping).

 ■ “I/O Kit Family Reference” (page 127)

Displays a class hierarchy chart for each family and provides family-specific information that might differ
from generic I/O Kit information.

 ■ “Base and Helper Class Hierarchy” (page 117)

Provides a class hierarchy chart for all I/O Kit classes that are not members of a specific family.

 ■ “Document Revision History” (page 159)

Lists changes to this document.

 ■ “Bibliography” (page 119)

Lists additional sources for information on Mac OS X and related topics.

 ■ “Glossary” (page 121)

Defines key terms used in this document.

See Also

Once you’ve absorbed the information in I/O Kit Fundamentals, you should be able to forge ahead and actually
create a device driver. Apple provides several documents and other sources of information to help you with
your efforts:

 ■ I/O Kit Device Driver Design Guidelines describes the general steps required to design, code, debug, and
build a device driver that will be resident in the kernel.

 ■ Accessing Hardware From Applications discusses how to use the I/O Kit’s “device interface” feature; it also
includes information on serial and storage I/O via BSD device files.

 ■ Kernel Extension Programming Topics contains a collection of tutorials that introduce you to the
development tools and take you through the steps required to create, debug, and package kernel
extensions and I/O Kit drivers (a type of kernel extension). It also includes information on other aspects
of kernel extensions.

12 See Also
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to I/O Kit Fundamentals

 ■ Documentation that provides in-depth information on writing drivers for specific driver families and
related reference documentation is available in Hardware & Drivers Documentation.

 ■ Kernel Programming Guide provides an overview of the architecture and components of the Mac OS X
kernel environment (Mach, BSD, networking, file systems, I/O Kit). All developers who intend to program
in the kernel (including device-driver writers) should read this document.

 ■ Mac OS X Technology Overview provides an introduction to Mac OS X as a whole, which is useful for
developers new to the platform.

Of course, you can always browse the header files shipped with the I/O Kit, which are installed in
Kernel.framework/Headers/iokit (kernel-resident) andIOKit.framework/Headers (device interface).)

You can also view developer documentation in Xcode. To do this, select Help from the Xcode menu and then
click Show Documentation Window.

You can browse the BSD man pages for more information on BSD and POSIX APIs in two ways: You can type
manfunction_name in a Terminal window (for example, man gdb) or you can view an HTML version at Mac
OS X Man Pages.

If you're ready to develop a universal binary version of a device driver to run in an Intel-based Macintosh,
first read Universal Binary Programming Guidelines, Second Edition. Then, see I/O Kit Device Driver Design
Guidelines for an overview of issues of particular interest to device driver developers. Related information
that is specific to a particular device type is available in the documents listed at Hardware & Drivers Docu-
mentation.

Apple maintains several websites where developers can go for general and technical information on Mac OS
X.

 ■ Apple Developer Connection Reference Library (http://developer.apple.com/referencelibrary/index.html)
contains a comprehensive collection of technical resources, including documentation, sample code, and
Technical Notes.

 ■ Apple Developer Connection: Mac OS X (http://developer.apple.com/macosx) offers SDKs, release notes,
product notes and news, and other resources and information related to Mac OS X.

 ■ The AppleCare Support site (http://www.apple.com/support) provides a search feature that enables you
to locate technical articles, manuals, specifications, and discussions on Mac OS X and other areas.

See Also 13
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to I/O Kit Fundamentals

http://developer.apple.com/documentation/HardwareDrivers/index.html
http://developer.apple.com/documentation/HardwareDrivers/index.html
http://developer.apple.com/documentation/HardwareDrivers/index.html
http://developer.apple.com/referencelibrary/index.html
http://developer.apple.com/macosx
http://www.apple.com/support

14 See Also
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to I/O Kit Fundamentals

The I/O Kit is a collection of system frameworks, libraries, tools, and other resources for creating device drivers
in Mac OS X. It is based on an object-oriented programming model implemented in a restricted form of C++
that omits features unsuitable for use within a multithreaded kernel. By modeling the hardware connected
to a Mac OS X system and abstracting common functionality for devices in particular categories, the I/O Kit
streamlines the process of device-driver development.

This chapter talks about the inherent capabilities of the I/O Kit (and of the drivers developed with it), about
the decisions informing its design, and about the I/O Kit when considered as a product. It also offers some
caveats and guidelines for those considering developing kernel software such as device drivers.

Before You Begin

You might have developed device drivers for other platforms—Mac OS 9, perhaps, or BSD or another flavor
of UNIX. One thing you’ll discover reading this document is how different the approach is with the I/O Kit.
Although writing drivers for Mac OS X requires new ways of thinking and different ways of programming,
you are amply rewarded for shifting to this new approach. The I/O Kit simplifies driver development and
supports many categories of devices. Once you get the basics of the I/O Kit down, you’ll find it a relatively
easy and efficient matter to create device drivers.

Before you attempt driver development with the I/O Kit, Apple highly recommends certain prerequisites.
Because the framework uses an object-oriented programming model, which is implemented in a restricted
subset of C++, it helps to know C++ or object-oriented concepts in general. Also, device drivers are not the
same thing as applications because, being kernel-resident, they must abide by more restrictive rules.
Knowledge of kernel programming is therefore very useful.

Indeed, programming in the kernel is discouraged except when it is absolutely necessary. Many alternatives
for communicating with hardware and networks exist at higher levels of the system, including the “device
interface” feature of the I/O Kit described in “Controlling Devices From Outside the Kernel” (page 33) See
“Should You Program in the Kernel? ” (page 21) for more on alternatives to kernel programming.

I/O Kit Features

From its inception, the fundamental goal for the I/O Kit has been to accommodate and augment native
features and capabilities of Mac OS X, particularly those of the kernel environment. As the driver model for
Mac OS X, the I/O Kit supports the following features:

 ■ Dynamic and automatic device configuration (plug-and-play)

 ■ Many new types of devices, including graphics acceleration and multimedia devices

 ■ Power management (for example, “sleep” mode)

Before You Begin 15
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

 ■ The kernel’s enforcement of protected memory—separate address spaces for kernel and user programs

 ■ Preemptive multitasking

 ■ Symmetric multiprocessing

 ■ Common abstractions shared between types of devices

 ■ Enhanced development experience—new drivers should be easy to write

The I/O Kit supports these kernel features with its new model for device drivers and adds some additional
features:

 ■ An object-oriented framework implementing common behavior shared among all drivers and types
(families) of drivers

 ■ Many families for developers to build upon

 ■ Threading, communication, and data-management primitives for dealing with issues related to
multiprocessing, task control, and I/O-transfers

 ■ A robust, efficient match-and-load mechanism that scales well to all bus types

 ■ The I/O Registry, a database that tracks instantiated objects (such as driver instances) and provides
information about them

 ■ The I/O Catalog, a database of all I/O Kit classes available on a system

 ■ A set of device interfaces—plug-in mechanisms that allows applications and other software in “user
space” to communicate with drivers

 ■ Excellent overall performance

 ■ Support for arbitrarily complex layering of client and provider objects

The I/O Kit’s object-oriented programming model is implemented in a restricted subset of C++.
Object-orientation just in itself is an advantage in driver development because of the code reusability it
fosters. Once you are familiar with the I/O Kit, you can write device drivers much more quickly and efficiently
than you can using a procedural model. In addition, code reusability decreases the memory footprint of
drivers; drivers ported from Mac OS 9, for example, have been up to 75% smaller in Mac OS X.

Design Principles of the I/O Kit

Mac OS X is largely the product of two strains of operating-system technology: Mac OS 9 (and its predecessors)
and BSD. Given this pedigree, one might have expected Apple to adopt the device-driver model of Mac OS
9 or FreeBSD. Instead, Apple chose to redesign the model. Several reasons motivated this decision.

First, neither the Mac OS 9 driver model nor the FreeBSD driver model offers a set of features rich enough
to meet the needs of Mac OS X. The Mac OS X kernel is significantly more advanced than its Mac OS precursors;
it handles memory protection, preemptive multitasking, multiprocessing, and other features not present in
previous versions of Mac OS. Although FreeBSD is capable of handling these features, the BSD model does
not offer other features expected in a modern operating system, including automatic configuration, driver
stacking, power management, and dynamic loading of devices.

16 Design Principles of the I/O Kit
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

Thus the primary motivation behind the I/O Kit was the inadequacy of the currently available driver models.
The redesign of the I/O architecture had to take advantage of and support the operating-system features of
Mac OS X. Toward this end, the I/O Kit’s designers settled on an object-oriented programming model that
abstracted the kernel capabilities and hardware of a Mac OS X system and provided a view of this abstraction
to the upper layers of the operating system. The compelling part of this abstraction is the implementation
of behavior common to all device drivers (or types of device drivers) in the classes of the I/O Kit.

As an example, consider virtual memory. In Mac OS 9, virtual memory is not a fundamental part of the
operating system; it is an option. Because of this, a developer must always take virtual memory into account
when creating a driver, and this raises certain complications. In contrast, virtual memory is an inherent
capability of Mac OS X and cannot be turned off. Because virtual memory is a fundamental and assumed
capability, knowledge of it is incorporated into system software and driver writers do not have to take it into
account.

The I/O Kit functions as a kind of foundation and coordinator for device drivers. This is a departure from
previous driver models. In Mac OS 9, all software development kits (SDKs) are independent of each other
and duplicate common functionality. Mac OS X delivers the I/O Kit as part of a single kernel development kit
(KDK); all portions of the KDK rest on common underpinnings. Mac OS X helps developers take advantage
of hardware complexity without requiring them to encode software complexity into each new device driver.
In most cases, they need only add the specific code that makes their drivers different.

Another part of the design philosophy of the I/O Kit is to make the design completely open. Rather than
hiding APIs in an attempt to protect developers from themselves, all I/O Kit source code is available as part
of Darwin. Developers can use the source code as an aid to designing (and debugging) new drivers.

Limitations of the I/O Kit

Although the I/O Kit supports most types of hardware on a Mac OS X system, it does not fully support all
hardware. One category of such devices are those used for imaging, among them printers, scanners, and
digital cameras. The I/O Kit provides only limited support for these devices, handling communication with
these devices through the FireWire and USB families. Applications or other programs in user space are
responsible for controlling the particular characteristics of these devices (see “Controlling Devices From
Outside the Kernel” (page 33) for details). If your application needs to drive an imaging device, you should
use the appropriate imaging software development kit (SDK).

Although the I/O Kit attempts to represent the hierarchy and dynamic relationships among hardware devices
and services in a Mac OS X system, some things are difficult to abstract. It is in these gray areas of abstraction,
such as when layering violations occur, that driver writers are more on their own. Even when the I/O Kit
representation is clean and accurate, the reusability of I/O Kit family code can be limited. All hardware can
have its own quirks and a driver’s code must take these quirks into account.

Language Choice

Apple considered several programming languages for the I/O Kit and chose a restricted subset of C++.

C++ was chosen for several reasons. The C++ compiler is mature and the language provides support for
system programming. In addition, there is already a large community of Macintosh (and BSD) developers
with C++ experience.

Limitations of the I/O Kit 17
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

The restricted subset disallows certain features of C++, including

 ■ Exceptions

 ■ Multiple inheritance

 ■ Templates

 ■ Runtime type information (RTTI)—the I/O Kit uses its own implementation of a runtime typing system

These features were dropped because they were deemed unsuitable for use within a multithreaded kernel.
If you feel you need these features, you should reconsider your design. You should be able to write any driver
you require using I/O Kit with these restrictions in place.

Using Namespaces in an I/O Kit Driver

Note that you can use namespaces in your I/O Kit driver. The use of namespaces can help you avoid name
collisions and may make your code easier to read and more maintainable. Be sure to use reverse-DNS format
for the namespace name (for example, com.mycompany) to avoid potential namespace collisions.

If you decide to use namespaces in your in-kernel I/O Kit driver, do not declare any subclass of OSObject in
a namespace or your driver will not load. At present, the loader does not support OSObject-derived classes
that require qualification, such as the one shown below:

namespace com.mycompany {
 class com.mycompany.driver.myClass : public IOService { // This is not
allowed.
 OSDeclareDefaultStructors (com.mycompany.driver.myClass);
 };
};

Using Static Constructors in an I/O Kit Driver

In Mac OS X v10.4, GCC 4.0 is the default compiler for all new projects, including I/O Kit drivers. This section
describes a particular difference between GCC 3.3 and GCC 4.0 that may affect the compatibility of your
in-kernel driver between Mac OS X v10.3.x and Mac OS X v10.4.x. For more information on the differences
between GCC 3.3 (the default compiler in Mac OS X v10.3) and GCC 4.0, including porting guidance, see GCC
Porting Guide.

If you perform static construction within a function in a C++ I/O Kit driver (or other KEXT) compiled with GCC
3.3 or earlier, be aware that the same KEXT compiled with GCC 4.0 will no longer load successfully. This is
because GCC 4.0 is more strict about taking and releasing locks in the kernel environment. If you perform
in-function static construction in your I/O Kit driver compiled with GCC 4.0, you will probably see the following
error when you try to load it:

kld():Undefined symbols:
__cxa_guard_acquire
__cxa_guard_release

The solution to this problem is simple: move the static constructor to a global namespace. For example,
suppose that your I/O Kit driver includes an in-function static construction, such as in the code shown below:

class com_mycompany_driver_mystaticclass;

18 Language Choice
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

void com_mycompany_driver_myclass::myfunction(void)
{
 static com_mycompany_driver_mystaticclass staticclass;
 staticclass.anotherfunction();
}

You can avoid loading errors by changing this code to avoid in-function static construction, as in the code
shown below:

class com_mycompany_driver_mystaticclass;
static com_mycompany_driver_mystaticclasss staticclass;
void com_mycompany_driver_myclass::myfunction(void)
{
 staticclass.anotherfunction();
}

Note that you may be able to avoid the load errors associated with in-function static construction without
changing your code if you compile your KEXT with GCC 4.0 using the -fno-threadsafe-statics compiler
option, but this may lead to other problems. Specifically, unless you can guarantee thread safety in other
ways, compiling your KEXT with this option may break your code.

The Parts of the I/O Kit

Physically and electronically, the I/O Kit is composed of many parts: frameworks and libraries, development
and testing tools, and informational resources such as example projects, documentation, and header files.
This section catalogs these parts and indicates where they are installed and how they can be accessed.

Frameworks and Libraries

The I/O Kit is based on three C++ libraries. All of them are packaged in frameworks, but only IOKit.framework
is a true framework. The Kernel framework exists primarily to expose kernel header files, including those of
libkern and IOKit. The code of these “libraries” is actually built into the kernel; however, drivers (when loaded)
do link against the kernel as if it were a library.

Table 1-1 Frameworks and libraries of the I/O Kit

Description and locationFramework or library

The library used for developing kernel-resident device drivers. Headers location:
Kernel.framework/Headers/IOKit

Kernel/IOKit

The library containing classes useful for all development of kernel software. Headers
location: Kernel.framework/Headers/libkern

Kernel/libkern

The framework used for developing device interfaces. Location: IOKit.frameworkIOKit

The Parts of the I/O Kit 19
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

Applications and Tools

You use a handful of development applications to build, manage, debug, examine, and package device
drivers. Table 1-2 (page 20) lists the applications used in driver development; these applications are installed
in /Developer/Applications.

Table 1-2 Applications used in driver development

DescriptionApplication

The primary development application for Mac OS X. Xcode manages projects,
provides a full-featured code editor, builds projects according to arbitrarily complex
rules, provides a user interface for software configuration, and acts as a front end
for debugging and documentation searches.

Xcode

Enables the graphical exploration of the contents and structure of the I/O Registry.I/O Registry Explorer

Creates an installation package for the Installer application; used for deployment of
kernel extensions (including device drivers).

Package Maker

Table 1-3 (page 20) describes the command-line tools used in developing device drivers with the I/O Kit; all
tools are located in /usr/sbin/ or /sbin.

Note: You can view on-line documentation of these tools (called man pages in the UNIX world) by entering
a command in the shell provided by the Terminal application. The command is man, and the main argument
to the man command is the name of the tool for which you want to see documentation. For example, to see
the man page for the kextload tool, enter the following line in Terminal:

man kextload

Table 1-3 Command-line tools used in driver development

Description and locationTool

Prints the contents of the I/O Registry (a command-line version of the I/O Registry Explorer
application).

ioreg

Loads a kernel extension (such as device driver) or generates a statically linked symbol
file for remote debugging.

kextload

Unloads a kernel extension (if possible).kextunload

Prints statistics about currently loaded drivers and other kernel extensions.kextstat

Displays kernel I/O statistics on terminal, disk, and CPU operations.iostat

Displays instance count of a specified class.ioclasscount

Displays some accounting of memory allocated by I/O Kit objects in the kernel.ioalloccount

Compresses and archives kernel extensions (including drivers) so they can be automatically
loaded into the kernel at boot time. See Loading Kernel Extensions at Boot Time.

kextcache

20 The Parts of the I/O Kit
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

Description and locationTool

Apple’s version of the GNU C++ compiler; Xcode automatically invokes it with the correct
set of flags for I/O Kit projects.

gcc

Apple’s version of the GNU debugger; Xcode automatically invokes it with the correct
set of flags for I/O Kit projects.

gdb

Other I/O Kit Resources

Several informational resources are included with the I/O Kit “product,” particularly documentation and
header files. Some of these resources are described in the preceding chapter, “Introduction to I/O Kit
Fundamentals” (page 11)

The I/O Kit is part of the Darwin Open Source project. Apple maintains a website where you can find much
information related to the I/O Kit and other Open Source projects managed by Apple. The following two
locations are of particular interest:

 ■ Open Source Projects—http://developer.apple.com/darwin/projects/

Here you can find links to the Darwin and Darwin Streaming projects, among other projects. Also featured
are links to documentation and tools.

 ■ Mailing lists—http://developer.apple.com/darwin/mail.html

This page features links that will put you on the Darwin-Development and DarwinOS-Users mailing lists,
among others.

Should You Program in the Kernel?

If you are thinking of writing code for the kernel environment, think carefully. Programming in the kernel
can be a difficult and dangerous task. And often there is a way to accomplish what you want to do without
touching the kernel.

Software that resides in the kernel tends to be expensive. Kernel code is “wired” into physical memory and
thus cannot be paged out by the virtual memory system. As more code is put into the kernel, less physical
memory is available to user-space processes. Consequently, paging activity will probably intensify, thereby
degrading system performance.

Kernel code is also inherently destabilizing, much more so than application code. The kernel environment is
a single process, and this means that there is no memory protection between your driver and anything else
in the kernel. Access memory in the wrong place and the entire system can grind to a halt, a victim of a kernel
panic.

Moreover, because kernel code usually provides services to numerous user-space clients, any inefficiencies
in the code can be propagated to those clients, thereby affecting the system globally.

Finally, kernel software is a real pain to write. There are subtleties to grapple with that are unknown in the
realm of application development. And bugs in kernel code are harder to find than in user-space software.

Should You Program in the Kernel? 21
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

http://developer.apple.com/darwin/projects/
http://developer.apple.com/darwin/mail.html

With all this in mind, the message is clear. It is in everyone's best interest to put as little code as possible into
the kernel. And any code that ends up in the kernel should be honed and rigorously tested.

When Code Should Reside in the Kernel

A handful of situations warrant loading a driver or extension into the kernel environment:

 ■ The software is used by the kernel environment itself.

 ■ User-space programs will frequently use the software.

 ■ The software needs to respond directly to primary interrupts (those delivered by the CPU's interrupt
controller).

If the software you are writing does not match any of these criteria, it probably doesn’t belong in the kernel.
If your software is a driver for a disk, a network controller, or a keyboard, it should reside in the kernel. If it is
an extension to the file system, it should live in the kernel. If, on the other hand, it is used only now and then
by a single user-space program, it should be loaded by the program and reside within it. Drivers for printers
and scanners fall into this latter category.

Alternatives to Kernel-Resident Code

Apple provides a number of technologies that might let you accomplish what you want to do and stay out
of the kernel. First are the higher-level APIs that give you some hardware-level access. For example, Open
Transport is a powerful resource for many networking capabilities, and Quartz Compositor enables you to
do some fairly low-level things with the graphics subsystem.

Second, and just as important, is the device-interface technology of the I/O Kit framework. Through a plug-in
architecture, this technology makes it possible for your application to interact with the kernel to access
hardware. In addition, you can—with a little help from the I/O Kit—use POSIX APIs to access serial, storage,
or network devices. See “Controlling Devices From Outside the Kernel” (page 33) for a summary of device
interfaces and see the documentAccessingHardware FromApplications for a full discussion of this technology.

Note: Objective-C does not provide device-level I/O services. However, in your Cocoa application, you can
call the C APIs for device-level functionality that the I/O Kit and BSD provide. Note that you can view the man
pages that document BSD and POSIX functions and tools at Mac OS X Man Pages.

22 Should You Program in the Kernel?
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

What Is the I/O Kit?

As you can with any complex system, you can look at the design of the I/O Kit from various angles and at
different granularities. This chapter introduces you to the more important architectural elements and
conceptual domains of the I/O Kit:

 ■ Hardware modeling, the layering of driver objects, and the roles played by families, drivers, and nubs

 ■ The runtime environment of device drivers

 ■ The I/O Kit Registry and I/O Catalog

 ■ Driver matching

 ■ The I/O Kit class hierarchy

 ■ Device interfaces

Keep in mind that this chapter is an overview, and so the discussion it devotes to each of these topics is
intentionally brief. Later chapters cover most of these topics in more detail. In the case of device interfaces,
the document Accessing Hardware From Applications describes the technology in great detail.

Driver Layering

Central to the design of the I/O Kit is a modular, layered runtime architecture that models the hardware of
a Mac OS X system by capturing the dynamic relationships among the multiple pieces—hardware and
software—involved in an I/O connection. The layers of the connection, comprising driver objects and the
families these objects are members of, are stacked in provider-client relationships.

The chain of interconnected services or devices starts with a computer’s logic board (and the driver that
controls it) and, through a process of discovery and “matching,” extends the connection with layers of driver
objects controlling the system buses (PCI, USB, and so on) and the individual devices and services attached
to these buses.

You can view the layering of driver objects in a running Mac OS X system using the I/O Registry Explorer
application, included in the developer version of Mac OS X. The developer version also includes a command-line
version of the application, ioreg, that you can run in a Terminal window to display current I/O Registry
information.

This section examines the I/O Kit’s layered architecture and describes the major constituent elements: families,
drivers, and nubs.

Driver Layering 23
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

Families and Drivers

An I/O Kit family is one or more C++ classes that implement software abstractions common to all devices of
a particular type. The I/O Kit has families for bus protocols (such as SCSI Parallel, USB, and FireWire), for storage
(disk) devices, for network services (including Ethernet), for human-interface devices (such as mice, keyboards,
and joysticks), and for a host of other devices.

A driver becomes a member of a family through inheritance; the driver’s class is almost always a subclass of
some class in a family. By being a member of a family, the driver inherits the data structures (instance variables)
and the behaviors that are common to all members of the family. For example, all SCSI controllers have
certain things they must do, such as scanning the SCSI bus; the SCSI Parallel family defines and implements
this scanning functionality. Thus, you do not need to include scanning code in your new SCSI controller driver
(unless you require a different scanning implementation).

Most I/O Kit development involves writing specific driver classes, each of which inherits from the superclass
in the family that provides the functionality the driver requires. A driver for an Ethernet controller, for example,
inherits from the IOEthernetController superclass in the Network family. The bulk of a driver’s interaction
with its own family involves implementing member functions that the family invokes. These are typically
client configuration and I/O requests. Some families also define objects and functions for your driver to use.
The exact nature of these objects and functions depends on the family your driver works with.

However, a driver typically works with two families. In addition to the family a driver is a member of, the
driver class must communicate with a nub published by the family for the bus or protocol the device is
attached to. A nub (as “Drivers and Nubs” (page 24) explains in detail) is an object that defines an access
point and communication channel for a given protocol. A family (usually representing a bus such as PCI or
USB) acts as the driver’s provider through the nub that it creates. The driver uses the nub to attach into the
I/O Registry and communicate with its device. As an example, a PCI Ethernet driver would use an IOPCIDevice
nub from the PCI family to attach to and communicate over the PCI bus. A driver’s main interaction with the
nub involves the issuing of requests or commands on whatever bus the nub is a client of. A SCSI device driver,
for example, issues SCSI command blocks and checks results through the nub.

For more on families, particularly the nature and composition of superclasses in a family, see “The I/O Kit
Family Classes” (page 32)

Drivers and Nubs

The I/O Kit supports two broad types of driver objects. The first is the nub, an object that defines an access
point and communication channel, usually for a given protocol, such as PCI, USB, or Ethernet. The second
type is the specific driver for an individual device or service. The specific driver communicates with the
hardware, through a nub, to perform I/O operations. Both drivers and nubs in the I/O Kit must inherit from
the IOService class.

A driver is an I/O Kit object that manages a specific piece of hardware. Drivers are written as kernel extensions
and are usually installed in the Extensions folder (at /System/Library/Extensions.) See Kernel Extension
Overview in Kernel Programming Guide for more information about creating and installing kernel extensions.

When a driver is selected for a device, but before it is loaded into the kernel (as a kernel extension), all required
families—in terms of superclasses and their dependencies—are loaded to provide the common functionality
for the driver and others of its type. (Of course, if these families have already been loaded, this step is not
necessary.) After all requirements for the driver are met, the driver is loaded and instantiated as an object.
See “The Anatomy of an I/O Connection” (page 25) for an illustration of this process.

24 Driver Layering
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

A nub is an I/O Kit object that represents a communication channel for a device or logical service and mediates
access to the device and service. For example, a nub could represent a bus, a disk, a disk partition, a graphics
adaptor, or a keyboard. It might help to think of a nub as the software representation of a device slot or
connector. Nubs also provide services such as arbitration, power management, and driver matching (see
“The I/O Registry and the I/O Catalog” (page 28)).

Nubs act as bridges between two drivers and, by extension, between two families. A driver communicates
with a nub (and the nub’s family) as its client and may, through its family, publish a nub which finds (by
matching) a driver for which it is a provider. Usually a driver publishes one nub for each individual device or
service it controls; however, when a driver supports a specific piece of hardware it can act as its own nub.

The Anatomy of an I/O Connection

The I/O Kit’s layered architecture models the chain of connections between the system’s hardware buses
and devices, gathering common functionality into classes your driver can interact with. Each layer is a client
of the layer below it and a provider of services to the layer above it. Broad groupings of layers, defined by
the I/O Kit families, define the functionality common to a general type of I/O provider, such as networking
or PCI bus devices.

Consider Figure 2-1 (page 25) which illustrates a typical layering of client and provider objects for a PCI-based
Ethernet controller driver in the Network family.

Figure 2-1 Driver objects as clients and providers

IOEthernet Interface

Controller Driver

IOPCIDevice

IOPCIBridge

IONetwork StackC
lient of

Pr
ov

id
er

 to

...

As this diagram shows, your driver typically fits between two families, inheriting from a class in the upper-layer
family and using the services of the lower-layer family. In the case of the Ethernet controller, the driver
participates in a stack of C++ objects comprising instances of classes from the networking and PCI families:

Connects I/O Kit objects to the BSD networking facilities.IONetworkStack (interface
managing object)

Manages device-independent data transmission and reception.IOEthernetInterface (nub)

Operates the Ethernet controller through the IOPCIDevice object. This
object inherits from a networking family class called
IOEthernetController.

Controller Driver (driver)

Match point for the controller; provides basic PCI bus interaction to
the controller.

IOPCIDevice (nub)

Driver Layering 25
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

Manages the PCI bus. (Other objects provide services to the
IOPCIBridge; their specific identities depend on the hardware
configuration.)

IOPCIBridge (driver)

Another way to look at a stack of driver objects in a typical I/O connection is to consider the stack from a
dynamic perspective. In other words, what happens when a Mac OS X system discovers a new device attached
to it? How is the stack of driver objects constructed? For this, let’s use the example of a SCSI disk drive; the
general order of creation or discovery in Figure 2-2 (page 26) is left to right.

Figure 2-2 Driver objects in a connection for a SCSI disk driver

PCI
device nub

PCI bus
controller

driver

(Adaptec)
SCSI controller

driver
SCSI

device nub

(Generic)
SCSI disk

driver

This figure illustrates how a SCSI disk driver, a member of the Storage family, is connected to the PCI bus. As
each individual connection is made, the newly created driver or nub is also added to the I/O Registry (described
in “The I/O Registry and the I/O Catalog” (page 28)). The chain of connections takes place in several steps:

1. The PCI bus controller driver, a member of the PCI family, discovers a PCI device and announces its
presence by creating a nub (IOPCIDevice).

2. The nub identifies (matches) an appropriate device driver—in this case, a SCSI controller driver—and
requests that it be loaded. Loading the SCSI controller driver causes the SCSI Parallel family, and all
families that it depends on, to be loaded as well. The SCSI controller driver is given a reference to the
IOPCIDevice nub.

3. The SCSI controller driver, which is a client of the PCI family and a provider of SCSI Parallel family services,
scans the SCSI bus for devices that might be clients of these services. Upon finding such a device (a disk),
the driver announces the device’s presence by creating a nub (IOSCSIDevice).

4. The nub, by going through the matching procedure, finds a device driver (a disk driver) that is appropriate
for the device and requests that this driver be loaded. Loading the disk driver causes the Storage family,
and all families that it depends on, to be loaded as well. The disk driver is now a client of the SCSI Parallel
family and a member of the Storage family. The disk driver is given a reference to the IOSCSIDevice
nub.

In many cases, applications and other “user space” programs can use the I/O Kit’s device-interface technology
to drive devices (including mass storage devices), obviating the need for a kernel-resident driver. See
“Controlling Devices From Outside the Kernel” (page 33) for an overview of this plug-in technology.

The Runtime Environment of Device Drivers

The I/O Kit provides a runtime environment with several powerful features for driver writers, including:

 ■ A dynamic, layered driver architecture that allows drivers to be loaded and unloaded at any time and
delays reserving costly system resources until they’re needed

26 The Runtime Environment of Device Drivers
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

 ■ Standard facilities for managing data during common I/O operations

 ■ A robust system for protecting access to driver resources during I/O operations, which frees driver writers
from having to write their own code to enable and disable interrupts and manage locks on the driver’s
private resources

 ■ Access to services in the libkern C++ library (on which the I/O Kit itself is based) to manage collections,
perform atomic operations, and byte-swap values for use on different kinds of hardware

The following section summarizes each of these features.

Runtime Features

I/O Kit drivers can be loaded and unloaded or activated and deactivated at any time, through events initiated
by software—as when networking stacks are brought up and down—and by hardware—as when a USB
device is added to or removed from the bus. Nearly all drivers must work within the context of a dynamically
changing system. The I/O Kit makes this easier by defining a standard life cycle for driver objects. By
implementing a small set of functions, summarized in “The General I/O Kit Classes” (page 31) your driver can
gracefully handle the addition and removal of devices and services, as well as changes induced by the
power-management system.

Nearly all I/O operations require the same preparation in Mac OS X:

 ■ Paging virtual memory into physical memory

 ■ Wiring memory down so it can’t be paged out during I/O operations

 ■ Building scatter/gather lists that describe the data buffers to read or write

The I/O Kit provides a set of utility classes to help drivers prepare memory for I/O operations and to build
scatter/gather lists, including the IOMemoryDescriptor and IOMemoryCursor classes. For more information
on these facilities, see the chapter “Managing Data” (page 83)

Drivers running in a multithreaded system must be able to protect their resources from reentrant or concurrent
access. The I/O Kit includes a small set of classes for this purpose. A work loop object runs a dedicated thread
and manages a gating mechanism for exclusive access to data. Other objects, called event sources, use the
gating mechanism to serialize function calls that access critical resources, closing the work loop gate before
invoking the function. For more information on work loops and event sources, see the chapter “Handling
Events” (page 69)

The libkern C++ library, on which the I/O Kit itself is based, provides services commonly needed by drivers,
including:

 ■ Arithmetic and logical operations that are guaranteed to be atomic

 ■ Byte-swapping of values between big-endian and little-endian formats

 ■ Classes for common collections of data such as strings, arrays, and dictionaries

For more information on the libkern classes see “The OS Classes” (page 31) as well as the libkern reference
documentation installed with the Mac OS X Developer package.

The Runtime Environment of Device Drivers 27
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

Kernel Programming Constraints

Kernel code is always held resident in physical memory, and cannot be paged out by the virtual memory
system. This makes kernel resources much more expensive than application program resources. Your driver
should reside in the kernel if:

 ■ It takes primary interrupts (in which case it must live in the kernel)

 ■ Its primary client resides in the kernel; for example, mass storage drivers because file-system stacks reside
in the kernel

Drivers for disks, network controllers, and keyboards, for example, reside in the kernel. If your driver is only
occasionally used by one user-space program at a time, it should be loaded by the program and reside within
it. Drivers for such devices as scanners and printers reside within user-space programs, using the I/O Kit’s
device-interface mechanism to communicate with devices. For more information on device interfaces, see
“Controlling Devices From Outside the Kernel” (page 33)

Even if your driver resides in the kernel, you should minimize the amount of kernel-resident code and the
amount of processing done by that code. For example, a dedicated application that controls an interrupt-driven
hardware device should supply a driver that puts the minimum code in the kernel needed to service the
interrupt, make the data available to its client, then return. For additional reasons to be cautious about
programming in the kernel, see “Should You Program in the Kernel? ” (page 21)

If your driver must reside in the kernel, you should be aware of the following issues:

 ■ Most importantly, the kernel is a single program—there is no memory protection between your driver
and the rest of the kernel. A kernel-resident driver that behaves badly can crash or hang the operating
system.

 ■ A more subtle issue is that function call stacks within the kernel are limited to 16 KB. Be careful not to
declare large local variables in functions. Whenever possible, you should preallocate buffers and reuse
them.

Kernel-resident drivers have full access to kernel programming interfaces. However, because of their low
level of operation, drivers should use only Mach calls and not BSD calls. Many parts of the BSD kernel code
aren’t currently safe for multithreading or multiprocessing. In any case, drivers rarely need to perform Mach
calls directly, as the I/O Kit provides interfaces to most of the kernel-level functionality needed by a driver.

The I/O Registry and the I/O Catalog

The I/O Registry is a dynamic database that records the network of driver objects participating in hardware
connections on a Mac OS X system and tracks the provider-client relationships among those objects. A device
driver must be recorded in the I/O Registry to participate in most I/O Kit services.

The I/O Registry is a critical part of the I/O Kit because it supports the dynamic features of the operating
system, which allows users to add or remove devices (particularly FireWire or USB devices) to and from a
running system and have them immediately available, without the need for a reboot. As hardware is added,
the system automatically finds and loads the necessary drivers and updates the I/O Registry to reflect the
new device configuration; when hardware is removed, the appropriate drivers are unloaded and the Registry
is updated again. The Registry always resides in system memory and is not stored on disk or archived between
boots.

28 The I/O Registry and the I/O Catalog
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

The I/O Registry structures its data as an inverted tree. Each object in the tree descends from a parent node
and can have one or more child nodes; if it is a “leaf” node, it has no children. Almost every node in the tree
represents a driver object: a nub or an actual driver. These objects must inherit from the IORegistryEntry class
(which is the superclass of IOService, the superclass of all driver classes). The central characteristic of
IORegistryEntry objects is a list of associated properties. These properties reflect the personality used in driver
matching (see “Driver Matching” (page 29)) and otherwise add information about a driver. The properties
captured in the Registry derive from each driver’s information property list, a file in the driver KEXT containing
key-value pairs describing the driver’s characteristics, settings, and requirements.

Another dynamic database, the I/O Catalog, works closely with the I/O Registry. The I/O Catalog maintains
entries for all available drivers on a system. When a nub discovers a device, it requests a list of all drivers of
the device’s family from the I/O Catalog.

You can examine the I/O Registry using the I/O Registry Explorer application and the ioreg command-line
tool, both included in the Mac OS X Developer package. You can also programmatically explore and manipulate
the properties of Registry entries using the member functions of the IORegistryEntry class. From applications
and other programs in user space, you can search for and access driver information in the I/O Registry using
APIs in the I/O Kit framework.

For more about the I/O Registry and the I/O Catalog see the chapter “The I/O Registry” (page 37) For further
information about the IORegistryEntry class see “Dynamic Driver Registration (IORegistryEntry)” (page 56)
in the chapter ““The Base Classes” (page 49)”

Driver Matching

A primary function of nubs is to provide matching services, matching drivers to devices. Unlike in Mac OS 8
and 9, drivers are not loaded automatically simply because they are installed. In Mac OS X, a driver must first
be matched to an existing device before that driver can be loaded.

Driver matching is an I/O Kit process in which a nub, after discovering a specific hardware device, searches
for the driver or drivers most suited to that device. To support driver matching, each device driver defines
one or more personalitiesthat specify the kinds of devices it can support. This information is stored in XML
dictionaries defined in the information property list in the driver’s bundle. The dictionary values specify
whether a driver is a candidate for a particular device.

When a nub detects a device, the I/O Kit finds and loads a driver for the nub in three distinct phases, using
a subtractive process until a successful candidate is found. The phases of matching are:

1. Class matching—eliminates drivers of the wrong device class.

2. Passive matching—examines each remaining driver’s personalities for properties specific to the device,
eliminating those drivers that don’t match.

3. Active matching—the remaining driver candidates probe the device to verify that they can drive it.

When a matching driver is found, its code is loaded and an instance of the principal class listed in the
personality is created. At this point the driver’s life cycle begins. See “Driver Object Life Cycle” (page 58) in
the chapter ““The Base Classes” (page 49)” for details.

For a detailed discussion of driver personalities and the matching process, see the chapter “Driver and Device
Matching” (page 41)

Driver Matching 29
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

The I/O Kit Class Hierarchy

The I/O Kit encompasses dozens of C++ classes and is itself an extension of the libkern C++ library, the
foundation for loadable kernel modules. Taken together, the I/O Kit and libkern would seem to form a
forbiddingly large and complex hierarchy of classes. Yet the essential structure of that hierarchy is fairly
simple, as Figure 2-3 (page 30) illustrates.

You can break down the extended I/O Kit class hierarchy into three broad groupings:

 ■ The classes of libkern (sometimes called the OS classes because of their “OS” prefix)

 ■ The I/O Kit base classes and helper classes

 ■ The classes of the I/O Kit families

For information on where the binaries and header files of libkern and the I/O Kit library are installed, see
“Frameworks and Libraries” (page 19) For detailed information on the features and interfaces of the base
classes in this hierarchy—OSObject, OSMetaClass, IORegistryEntry, and IOService—see “The Base Classes” (page
49)

Figure 2-3 I/O Kit extended class hierarchy

OSObject

OSMetaClassOS data
containers

IORegistryEntry

IOService

IO Kit
family

superclasses

I/O Kit
helper classes

OS classes
(general)

I/O Kit classes
(general)

Family classes
(specific)

30 The I/O Kit Class Hierarchy
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

Note: The appendix “Base and Helper Class Hierarchy” (page 117) contains a hierarchy chart for the I/O Kit
base and helper classes; the appendix “I/O Kit Family Reference” (page 127)includes class hierarchy charts for
most I/O Kit families.

The OS Classes

The I/O Kit is built on top of the libkern C++ library; that is to say, the root superclass for the I/O Kit–specific
classes is IORegistryEntry, which inherits from libkern’s OSObject. As is the I/O Kit, libkern is written in a subset
of C++ suitable for use in loadable kernel modules. Specifically, the libkern C++ environment excludes the
C++ exception-handling and the Runtime Type Information (RTTI) facilities. Instead the OS base classes
implement a suitable equivalent of the RTTI feature, among other things.

At the root of the extended hierarchy is the OSObject class and closely related to this class is the OSMetaClass
class. All other OS classes are “helper” classes for such things as collections and other data containers. The
following summarizes the roles these classes play:

 ■ OSMetaClass implements a runtime type information (RTTI) mechanism, enables some degree of object
introspection, and supports runtime allocation of objects derived from OSObject by class name.

 ■ OSObject features APIs for reference counting (retain and release), memory management of retained
objects, and the automatic disposal of objects when they are no longer needed. OSObject also provides
a dynamic default implementation of the init and free methods.

 ■ The OS data containers are subclasses of OSObject whose instances encapsulate various types of data
values (such as booleans, numbers, strings) and implement and iterate over collections such as arrays
and dictionaries.

The OS data containers approximately match their user-space counterparts, the Core Foundation
containers, in both name and behavior. Because the characteristics of the OS and Core Foundation classes
are so similar, the system can easily convert a Core Foundation type to an OS type and vice versa. For
example, a CFArray object is transformed into an OSArray when crossing the user-kernel boundary.

The OS classes are generally useful for all code written for the kernel, not just device drivers. For example,
kernel extensions implementing networking services or file systems can also take advantage of these classes.
OSObject in particular is an essential common superclass for kernel code. For one kernel module (KMOD) to
reference objects created by another KMOD, the objects must ultimately derive from OSObject. Most I/O Kit
classes assume that the objects being passed around are derived from OSObject.

If you are porting existing C++ code to the I/O Kit, you are not required to use the OS classes. But if you
decide to forgo the features that the these classes provide, such as reference counting or data containers,
you’ll probably need to implement them yourself.

For more on the OSObject and OSMetaClass classes, see “The libkern Base Classes” (page 50) in the chapter
““The Base Classes” (page 49)”

The General I/O Kit Classes

The middle group of the extended class hierarchy comprises the IO Kit base classes— IORegistryEntry and
IOService—and a set of helper classes for resource management, data management, and thread and input
control. This group of I/O Kit classes is designated “general” because all device-driver classes can potentially
make use of them.

The I/O Kit Class Hierarchy 31
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

The root class of the I/O Kit hierarchy is IORegistryEntry; by virtue of inheritance from IORegistryEntry, an I/O
Kit object can be a node in the I/O Registry and have one or more property tables (driver personalities)
associated with it. IORegistryEntry implements a number of features:

 ■ It manages connection into the Registry through a driver’s attach and detach entry points

 ■ It manages the property tables defining driver personalities using OSDictionary objects

 ■ It implements locking in the Registry, allowing updates to the Registry to be made atomically

IOService is the sole direct subclass of IORegistryEntry. Almost all I/O Kit family superclasses inherit, directly
or indirectly, from IOService. Most importantly, IOService specifies the life cycle of device drivers within a
dynamic runtime environment. Through matching pairs of virtual functions—such as init/free, start/stop,
and open/close—IOService defines how driver objects initialize themselves, attach themselves into the I/O
Registry, perform all necessary allocations, and then reverse the effects of these actions in the proper order.
To support its management of driver life cycles, IOService provides matching services (assisting with probing,
for instance) and instantiates drivers based on the existence of a provider. In addition, IOService includes
member functions that are useful for various purposes, including:

 ■ Notification and messaging

 ■ Power management

 ■ Device memory (mapping and accessing)

 ■ Device interrupts (registering, unregistering, enabling, causing, and so on)

For more on the IORegistryEntry and IOService classes, see “The I/O Kit Base Classes” (page 56) in the chapter
““The Base Classes” (page 49)”

Most I/O Kit helper classes have several functions related to the runtime environment of device drivers:

 ■ Implementing work loops and event sources (interrupts, timers and commands) along with associated
locks and queues

 ■ Implementing memory cursors and memory descriptors for managing the data involved in I/O transfers

For more on the I/O Kit helper classes, see the chapters “Handling Events” (page 69) and “Managing
Data” (page 83)

The I/O Kit Family Classes

Most drivers are instances of a subclass of a class in an I/O Kit family; the family classes, in turn, tend to be
subclasses of IOService. Your driver class should be a direct subclass of the most appropriate family class for
the driver you’re trying to write. For example, if you are writing an Ethernet controller driver, your driver class
should be a subclass of IOEthernetController, not IONetworkController (the superclass of IOEthernetController).

The I/O Kit has over a dozen families, each with its own set of classes; these families include the following:

 ■ ADB

 ■ ATA and ATAPI

 ■ Audio

 ■ FireWire

32 The I/O Kit Class Hierarchy
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

 ■ Graphics

 ■ HID (Human Interface Devices)

 ■ Network

 ■ PC Card

 ■ PCI and AGP

 ■ SBP-2

 ■ SCSI Architectural Model

 ■ SCSI Parallel

 ■ Serial

 ■ Storage

 ■ USB

Apple will add additional families as they are developed. If you require a family for a device and it’s currently
not supported, you can try writing your own family classes. However, don’t assume that a new family is
required if one does not currently exist. In many cases, the IOService class provides all the services a driver
requires; such “family-less” drivers can support many devices that are specific to certain vendors. For more
information on families, see the chapter “I/O Kit Families” (page 63) and the appendix “I/O Kit Family
Reference” (page 127)

Controlling Devices From Outside the Kernel

Perhaps one of the more compelling features of Mac OS X is the inviolable separation it enforces between
the virtual address spaces of processes. Unless laborious arrangements are made for shared memory, one
process cannot directly touch data mapped to another process’s address space. This separation enhances
the stability and reliability of the system by preventing memory trashers and similar annoyances from bringing
processes down.

Even more important is the separation between the address spaces of the kernel and of all other processes,
which are sometimes said (from the perspective of the kernel) to inhabit “user space.” If an application or
other program in user space somehow violates the address space of the kernel, the whole system can come
crashing down. To make this separation between kernel and user space even more airtight, programs in user
space cannot even directly call kernel APIs. They must make system calls to (indirectly) access kernel APIs.

Sometimes, however, a program in user space needs to control or configure a device, and thus needs access
to I/O Kit services in the kernel. For example, a game might need to set monitor depth or sound volume, or
a disk-backup program might need to act as the driver for a tape drive. Other examples of applications that
must somehow interact with the kernel to drive hardware include those running or interpreting data from
scanners, joysticks, and digital cameras.

To answer this requirement, the I/O Kit includes two mechanisms: device interfaces and POSIX device nodes.
Through a plug-in architecture and well-defined interfaces, the device-interface mechanism enables a program
in user space to communicate with a nub in the kernel that is appropriate to the type of device it wishes to
control. Through the nub the program gains access to I/O Kit services and to the device itself. For storage,
serial, and networking devices, applications can obtain the information they need from the I/O Kit to access
and control these devices using POSIX APIs.

Controlling Devices From Outside the Kernel 33
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

Keep in mind that there are some family services that the I/O Kit refuses to export to user space as device
interfaces; these services are available only inside the kernel. An example is the PCI family. For reasons of
stability and security, external access to PCI resources is forbidden. The appendix “I/O Kit Family
Reference” (page 127) identifies the families that export device interfaces.

This section summarizes information in Accessing Hardware From Applications. Refer to this document for a
complete description of device interfaces and how to use them.

The Device-Interface Mechanism

A device interface is a plug-in interface between the kernel and a process in user space. The interface conforms
to the plug-in architecture defined by Core Foundation Plug-in Services (CFPlugIn), which, in turn, is compatible
with the basics of Microsoft’s Component Object Model (COM). In the CFPlugIn model, the kernel acts as the
plug-in host with its own set of well-defined I/O Kit interfaces, and the I/O Kit framework provides a set of
plug-ins (device interfaces) for applications to use.

Conceptually, a device interface straddles the boundary between user space and the kernel. It handles
negotiation, authentication, and similar tasks as if it were a kernel-resident driver. On the user-space side, it
enables communication with the application (or other program) through its exported programmatic interfaces.
On the kernel side it enables communication with an appropriate I/O Kit family through a nub created by a
driver object of that family. From the kernel’s perspective, a device interface appears to be a driver and is
known as a “user client.” From the application’s perspective, the device interface appears as a set of functions
that it can call and through which it can pass data to the kernel and receive data back from it. That’s because,
at an elemental level, a device interface is a pointer to a table of function pointers (although it can also include
data fields). Applications, once they obtain an instance of a device interface, can call any of the functions of
the interface.

Figure 2-4 (page 34) illustrates the architecture of a device interface, showing an application that has acquired
access to a SCSI hard disk through a device interface. It is best to view this diagram as a variation of Figure
2-2 (page 26) which shows the series of driver-object connections made for a kernel-resident SCSI disk driver.

Figure 2-4 An application controlling a SCSI device through a device interface.

Kernel space

User space

Device
interface

Application

SCSI controller
driver

SCSI
device nub

34 Controlling Devices From Outside the Kernel
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

At the start, the same series of actions—device discovery, nub creation, matching, driver loading—occurs
from the PCI bus driver to the SCSI device nub. But then the SCSI device nub matches and loads the device
interface as its driver instead of a kernel-resident driver.

Before an application can use the device-interface mechanism to access a device, it must find the device. It
accomplishes this through a process called device matching. In device matching, an application creates a
“matching dictionary” that specifies the properties of the target device, then calls an I/O Kit function, passing
in the dictionary. The function searches the I/O Registry and returns one or more matching driver objects
that the application can then use to load an appropriate device interface. For more on this topic, see “Device
Matching” (page 46)

If you develop a custom driver that is a not a subclass of a class in an I/O Kit family, and you want applications
to be able to access the driver, you have to write your own device interface. Any code that communicates
between user space and the kernel must use of one or more of the following facilities:

 ■ BSD system calls

 ■ Mach IPC

 ■ Mach shared memory

The I/O Kit uses primarily Mach IPC and Mach shared memory. In contrast, the networking and file-system
components of Mac OS X use primarily BSD system calls.

POSIX Device Files

BSD, a central component of the Mac OS X kernel environment, exports a number of programmatic interfaces
that are consistent with the POSIX standard. These interfaces enable communication with serial, storage, and
network devices through device files. In any UNIX-based system such as BSD, a device file is a special file
located in /dev that represents a block or character device such as a terminal, disk drive, or printer. If you
know the name of a device file (for example, disk0s2 or mt0) your application can use POSIX functions such
as open, read, write, and close to access and control the associated device.

The I/O Kit dynamically creates the device files in /dev as it discovers devices. Consequently, the set of device
files is constantly changing; different devices might be attached to the device files in /dev at any one time,
and the same devices might have different device-file names at different times. Because of this, your application
cannot hard-code device file names. For a particular device, you must obtain from the I/O Kit the path to its
device file through a procedure involving device matching. Once you have the path, you can use POSIX APIs
to access the device.

Note that you can access networking services from user space using the BSD socket APIs. However, you
should generally use sockets only if the higher-level networking APIs in the Carbon and Cocoa environments
do not provide you with the features you require.

Controlling Devices From Outside the Kernel 35
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

36 Controlling Devices From Outside the Kernel
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Architectural Overview

The I/O Registry is a dynamic database that describes a collection of “live” objects (nubs or drivers) and tracks
the provider-client relationships between them. When hardware is added or removed from the system, the
Registry is immediately updated to reflect the new configuration of devices. A dynamic part of the I/O Kit,
the Registry is not stored on disk or archived between boots. Instead, it is built at each system boot and
resides in memory.

The I/O Registry is made accessible from user space by APIs in the I/O Kit framework. These APIs include
powerful search mechanisms that allow you to search the Registry for an object with particular characteristics.
You can also view the current state of the Registry on your computer using applications provided with the
developer version of Mac OS X.

This chapter describes the I/O Registry architecture and the planes the Registry uses to represent relationships
between objects. It also provides an overview of device matching and introduces applications that allow you
to browse the Registry.

I/O Registry Architecture and Construction

It is most useful to think of the I/O Registry as a tree: Each object is a node that descends from a parent node
and has zero or more child nodes. The Registry follows the definition of a tree in nearly all respects, with the
exception of a small minority of nodes that have more than one parent. The primary example of this situation
is a RAID disk controller where several disks are harnessed together to appear as a single volume. Exceptional
cases aside, however, viewing the Registry as a tree will help you visualize how it is constructed and updated.

At boot time, the I/O Kit registers a nub for the Platform Expert, a driver object for a particular motherboard
that knows the type of platform the system is running on. This nub serves as the root of the I/O Registry tree.
The Platform Expert nub then loads the correct driver for that platform, which becomes the child node of
the root. The Platform driver discovers the buses that are on the system and it registers a nub for each one.
The tree continues to grow as the I/O Kit matches each nub to its appropriate bus driver, and as each bus
driver discovers the devices connected to it and matches drivers to them.

When a device is discovered, the I/O Kit requests a list of all drivers of the device’s class type from another
dynamic database, the I/O Catalog. Whereas the I/O Registry maintains the collection of objects active in the
currently running system, the I/O Catalog maintains the collection of available drivers. This is the first step
in a three-step process known as driver matching that is described in “Driver and Device Matching” (page
41)

Information such as class type is kept in the driver’s information property list, a file containing XML-structured
property information. The property list describes a driver’s contents, settings, and requirements in the form
of a dictionary of key-value pairs. When read into the system, this information is converted into OS containers
such as dictionaries, arrays, and other types. The I/O Kit uses this list in driver matching; a user application
can search the I/O Registry for objects with specific properties in a process known as device matching. You
can also view the property lists of your computer’s currently loaded drivers using I/O Registry Explorer, an
application that displays the Registry.

I/O Registry Architecture and Construction 37
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

The I/O Registry

Keeping the tree-like structure of the I/O Registry in mind, now visualize each node extending into the third
dimension like a column. The two-dimensional Registry tree, with the Platform Expert nub at its root, is now
visible on a plane that cuts perpendicularly through these columns. The I/O Kit defines a number of such
planes (you can think of them as a set of parallel planes cutting through the columns at different levels). See
Figure 3-1 (page 38) for an illustration of this structure.

Figure 3-1 Two planes in the I/O Registry

Audio

Service

There are six planes defined in the I/O Registry:

 ■ Service

 ■ Audio

 ■ Power

 ■ Device Tree

 ■ FireWire

 ■ USB

Each plane expresses a different provider-client relationship between objects in the I/O Registry by showing
only those connections that exist in that relationship. The most general is the Service plane which displays
the objects in the same hierarchy in which they are attached during Registry construction. Every object in
the Registry is a client of the services provided by its parent, so every object’s connection to its ancestor in
the Registry tree is visible on the Service plane.

The other planes show more specific relationships:

 ■ The Audio plane provides a representation of the audio signal chain that Core Audio framework and its
plug-ins use to discover information about the audio signal paths between the system’s audio devices.

 ■ The Power plane shows the power interdependencies between I/O Registry objects, allowing you to
trace the flow of power from provider to client and discover which objects might be affected if a particular
device is powered down.

 ■ The Device Tree plane represents the Open Firmware device hierarchy.

 ■ The FireWire and USB planes each represent the internal hierarchies defined by those standards.

It is important to remember the following points about planes in the I/O Registry:

38 I/O Registry Architecture and Construction
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

The I/O Registry

 ■ All I/O Registry objects exist on all planes, but on any individual plane, only those objects connected by
the relationship defined by that plane are visible.

 ■ A driver does not get attached to the Registry on any one particular plane. Instead it may participate in
a plane’s connections if its provider-client relationships with other objects fit that plane’s definition.

The I/O Registry Explorer

The developer version of Mac OS X provides an application called the I/O Registry Explorer that you can use
to examine the configuration of devices on your computer. I/O Registry Explorer provides a graphical
representation of the I/O Registry tree. By default, it displays the Service plane, but you can choose to examine
any plane. The command-line equivalent, ioreg, displays the tree in a Terminal window. This tool has the
advantage of allowing you to cut and paste sections of the tree if, for example, you want to send that
information in an email message. You can get a complete description of the usage of ioreg by typing man
ioreg at the shell prompt in the Terminal application.

When you open I/O Registry Explorer, a divided window appears with I/O Registry objects in the upper right,
the six planes in the upper left, and the property list of the selected object in the lower half of the window.
An object followed by a disclosure triangle indicates that it is a parent node. You can traverse the I/O Registry
tree by clicking a parent node and dragging the scroller to the right to display its children. Figure 3-2 (page
40) shows an example of a property list in the I/O Registry Explorer window.

Commands in the Tools menu help you search the I/O Registry and examine its contents:

 ■ Dump Registry Dictionary to Output places the I/O Registry contents into the console log (viewable
through the Console application in /Applications/Utilities) if the I/O Registry Explorer was opened
from the Finder.

 ■ Inspector displays the property list of the currently selected object in ASCII form. Selecting a particular
property in the main window causes its value to be displayed in the Inspector window.

 ■ Force Registry Update updates I/O Registry Explorer’s picture of the I/O Registry to reflect any changes
that may have occurred since you first opened the application.

 ■ Find performs a case insensitive search on your input string and, if successful, displays the path to the
occurrence of the string with object names separated by colons.

The I/O Registry Explorer 39
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

The I/O Registry

Figure 3-2 A sample I/O Registry Explorer window

40 The I/O Registry Explorer
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

The I/O Registry

Before a device—or any service provider—can be used, a driver for it must be found and loaded into the
kernel. The I/O Kit defines a flexible, three-phase matching process that narrows a pool of candidate drivers
down to one or more drivers. The final candidate (or, if multiple candidates, the most eligible one) is then
loaded and given the first opportunity to manage the device or service provider.

The matching process makes use of the matching dictionaries defined as XML key-value pairs in a driver's
information property list. Each matching dictionary specifies a personality of the driver, which declares its
suitability for a device or service of a particular type.

This chapter discusses driver personalities and the matching language that describes them. It then describes
the matching process, which uses the information in the driver personalities to identify the most appropriate
driver for a detected device. The chapter also briefly discusses the device-matching procedure that applications
use for loading device interfaces. See Accessing Hardware From Applications for the complete details.

Driver Personalities and Matching Languages

Each device driver, considered as a loadable kernel extension (KEXT), must define one or more personalities
that specify the kinds of devices it can support. This information is stored in XML matching dictionaries
defined in the information property list (Info.plist) in the driver’s KEXT bundle. A dictionary in this sense
is a collection of key-value pairs where the XML tags <key> and </key> enclose the key. Immediately
following the key are the tags enclosing the value; these tags indicate the data type of the value; for example,

<integer>74562</integer>

would define an integer value.

Each matching dictionary is itself contained within the information property list’s IOKitPersonalities
dictionary.

The dictionary values of a personality specify whether a driver is a candidate for a particular device. All values
in the personality must match for the driver to be selected for the device; in other words, a logical AND is
performed on the values. Some of the keys may take a list of space-delimited values, which are generally
examined in an OR fashion. Thus you might have a “model” key for a certain PCI card driver personality that
takes a list of model numbers, each identifying a supported model from a specific card vendor.

The specific keys that are required depend on the family. A driver for a PCI card, for example, can define a
value that is checked against the PCI vendor and device ID registers. Some families, such as the PCI family,
provide fairly elaborate matching strategies. For instance, consider this key-value pair:

<key>IOPCIMatch</key>
<string>0x00789004&0x00ffffff 0x78009004&0xff00ffff</string>

Driver Personalities and Matching Languages 41
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

This expression, which is used to match various Adaptec SCSI cards, consists of two compound values, each
of which can be a valid match. To evaluate these values, the driver family reads the 32-bit vendor and device
ID from the PCI card and masks it with the value to the right of each ampersand. The result of that operation
is then compared with the value to the left of the ampersand to determine if there is a match.

Listing 4-1 (page 42) shows a partial listing of a driver personality from the XML file for an Ethernet controller
driver.

Listing 4-1 A partial listing of an XML personality for an Ethernet controller

 <key>IOKitPersonalities</key>
 <dict>
 <dict>
 <!-- Each personality has a different name. -->
 <key>Name</key> <string>PCI Matching</string>

 <!-- ... some keys not shown ... -->

 <!-- The name of the class IOKit will instantiate when probing. -->
 <key>IOClass</key> <string>ExampleIntel82558</string>

 <!-- IOKit matching properties
 -- All drivers must include the IOProviderClass key, giving
 -- the name of the nub class that they attach to. The provider
 -- class then determines the remaining match keys. A personality
 -- matches if all match keys do; it is possible for a driver
 -- with multiple personalities to be instantiated more than once
 -- if several personalities match.
 -->
 <key>IOProviderClass</key>
 <string>IOPCIDevice</string>

 <!-- IOPCIDevice matching uses any of four possible PCI match
 -- criteria. This personality just uses IOPCIMatch to check the
 -- device/vendor ID.
 -->
 <key>IOPCIMatch</key>
 <string>0x12298086</string>

 <!-- The initial match score for this personality.-->
 <key>IOProbeScore</key> <integer>400</integer>
 </dict>

 <dict>
 <!-- Can have additional personalities. -->
 <!-- ... (not shown) -->
 </dict>
 </dict>

As mentioned in Listing 4-1 every driver must include the IOProviderClass key with a value that identifies
the nub to which the driver attaches. In very rare cases, a driver might declare IOResources as the value of
its IOProviderClass key. IOResouces is a special nub attached to the root of the I/O Registry that makes
resources, such as the BSD kernel, available throughout the system. Traditionally, drivers of virtual devices
match on IOResources because virtual devices do not publish nubs of their own. Another example of such
a driver is the HelloIOKit KEXT (described in Hello I/O Kit: Creating a Device Driver With Xcode) which matches
on IOResources because it does not control any hardware.

42 Driver Personalities and Matching Languages
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

Important: Any driver that declares IOResources as the value of its IOProviderClass key must also
include in its personality the IOMatchCategory key and a private match category value. This prevents the
driver from matching exclusively on the IOResources nub and thereby preventing other drivers from
matching on it. It also prevents the driver from having to compete with all other drivers that need to match
on IOResources. The value of the IOMatchCategory property should be identical to the value of the
driver's IOClass property, which is the driver’s class name in reverse-DNS notation with underbars instead
of dots, such as com_MyCompany_driver_MyDriver.

Because a driver can contain multiple matching dictionaries, each one defining a different personality for
the driver, the same driver code can be loaded for different devices. For purposes of competition, the I/O Kit
treats each personality as if it were a driver. If, in any single personality, all of the properties required by the
family match, the driver’s code is loaded and given a chance to run for that device.

Your driver can have more than one personality for a variety of reasons. It could be that the driver (as packaged
in the KEXT) supports more than one type of device, or more commonly, multiple versions of the same type
of device. Another reason might be that the driver supports similar devices, each of which is attached to the
system on different buses; for example, Zip drives can be attached to USB, FireWire, SCSI, ATAPI, and other
buses. Because each of these attaches to a different nub class, it has different matching values. The personalities
of a driver can also range from device-generic to device-specific. The personalities of the AppleUSBAudio
driver (Listing 4-2 (page 43)) illustrate this.

Listing 4-2 Driver personalities for the AppleUSBAudio driver

 <key>IOKitPersonalities</key>
 <dict>
 <key>AppleUSBAudioControl</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.driver.AppleUSBAudio</string>
 <key>IOClass</key>
 <string>AppleUSBAudioDevice</string>
 <key>IOProviderClass</key>
 <string>IOUSBInterface</string>
 <key>bInterfaceClass</key>
 <integer>1</integer>
 <key>bInterfaceSubClass</key>
 <integer>1</integer>
 </dict>
 <key>AppleUSBAudioStream</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.driver.AppleUSBAudio</string>
 <key>IOClass</key>
 <string>AppleUSBAudioDMAEngine</string>
 <key>IOProviderClass</key>
 <string>IOUSBInterface</string>
 <key>bInterfaceClass</key>
 <integer>1</integer>
 <key>bInterfaceSubClass</key>
 <integer>2</integer>
 </dict>
 <key>AppleUSBTrinityAudioControl</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.driver.AppleUSBAudio</string>

Driver Personalities and Matching Languages 43
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

 <key>IOClass</key>
 <string>AppleUSBTrinityAudioDevice</string>
 <key>IOProviderClass</key>
 <string>IOUSBInterface</string>
 <key>bConfigurationValue</key>
 <integer>1</integer>
 <key>bInterfaceNumber</key>
 <integer>0</integer>
 <key>idProduct</key>
 <integer>4353</integer>
 <key>idVendor</key>
 <integer>1452</integer>
 </dict>
 </dict>

This matching dictionary defines three personalities: AppleUSBAudioControl, AppleUSBAudioStream,
and AppleUSBTrinityAudioControl. In matching for a detected USB Trinity audio-control device, the
AppleUSBTrinityAudioControl would be chosen; for any other audio-control device, the generic
personality (AppleUSBAudioControl) would match.

One common property of personalities is the probe score. A probe score is an integer that reflects how
well-suited a driver is to drive a particular device. A driver may have an initial probe-score value in its
personality and it may implement a probe function that allows it to modify this default value, based on its
suitability to drive a device. As with other matching values, probe scores are specific to each family. That’s
because once matching proceeds past the class-matching stage, only personalities from the same family
compete. For more information on probe scores and what a driver does in the probe function, see “Device
Probing” (page 45)

Driver Matching and Loading

At boot time and at any time devices are added or removed, the process of driver matching occurs for each
detected device (or other service provider). The process dynamically locates the most suitable driver in
/System/Library/Extensions for the device or service.

As described in “Driver Matching” (page 29) in the chapter “Architectural Overview” (page 23) the matching
process is triggered when a bus controller driver scans its bus and detects a new device attached to it. For
each detected device the controller driver creates a nub. The I/O Kit then initiates the matching process and
obtains the values from the device to use in matching (for example, examining the PCI registers). Once a
suitable driver is found for the nub, the driver is registered and loaded. That driver, in turn, may create its
own nub (possibly through behavior inherited from its family), which initiates the matching process to find
a suitable driver.

Driver Matching

When a nub detects a device, the I/O Kit finds and loads a driver for the nub in three distinct phases, using
a subtractive process. In each phase, drivers that are not considered to be likely candidates for a match are
subtracted from the total pool of possible candidates until a successful candidate is found.

The matching process proceeds as follows:

44 Driver Matching and Loading
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

1. In the class matching step, the I/O Kit narrows the list of potential drivers by eliminating any drivers of
the wrong class for the provider service (that is, the nub). For example, all driver objects that descend
from a SCSI class can be ruled out when the search is for a USB driver.

2. In the passive matching step, the driver’s personality (specified in a driver’s XML information property
list) is examined for properties specific to the provider’s family. For example, the personality might specify
a particular vendor name.

3. In the active matching step, the driver’s probe function is called with reference to the nub it is being
matched against. This function allows the driver to communicate with the device and verify that it can
in fact drive it. The driver returns a probe score that reflects its ability to drive the device. See “Device
Probing” (page 45) for more information. During active matching, the I/O Kit loads and probes all
candidate drivers, then sorts them in order of highest to lowest probe score.

The I/O Kit then chooses the remaining driver with the highest probe score and starts it. If the driver successfully
starts, it is added to the I/O Registry and any remaining driver candidates are discarded. If it does not start
successfully, the driver with the next highest probe score is started, and so on. If more than one driver is in
the pool of possible candidates, the more generic driver typically loses out to the more specific driver if both
claim to be able to drive the device.

Device Probing

During the active matching phase, the I/O Kit requests each driver in the pool of remaining candidates to
probe the device to determine if they can drive it. The I/O Kit calls a series of member functions defined in
the IOService class and overridden in some cases by the driver’s class. These functions, and the order in which
they are called, are

init()
attach()
probe()
detach()
free() /* if probe fails */

These functions comprise the first part of a driver’s life cycle (see “Driver Object Life Cycle” (page 58) in the
chapter “The Base Classes” (page 49) for the full story). Note that four of these functions form complementary
pairs, one nested inside the other: init and free are one pair, and attach and detach are the other.

During active matching, the code of a candidate driver is loaded and an instance of the principal class listed
in the personality is created. The first function invoked is init, which is the libkern equivalent of the
constructor function for the class. For I/O Kit drivers, this function takes as its sole argument an OSDictionary
object containing the matching properties from the selected driver personality. The driver can use this to
identify what specific personality it’s been loaded for, determine what level of diagnostic output to produce,
or otherwise establish basic operating parameters. I/O Kit drivers typically don’t override the init function,
performing their initialization in later stages.

However, if you do override the init function—or almost any other function of the driver life cycle—you
must take care to do two things. The first is to invoke your superclass’s implementation of the function. When
you do this depends on the function; for example, in implementing init you should invoke the superclass’s
implementation as the first thing, and in free you should invoke it as the last statement of the function. The
second general rule is that you should undo in the second function of a pair what you’ve done in the first
function; thus, if you allocate memory for any reason in init, you should free that memory in free.

Driver Matching and Loading 45
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

Next, the attach function (which is bracketed with the detach function) is called. The default implementation
of attach attaches the driver to the nub through registration in the I/O Registry; the default implementation
of detach detaches the driver from the nub. A driver can override the default implementations, but rarely
needs to do so.

After attach the probe function is invoked. The I/O Kit always calls a driver’s probe function if the driver’s
matching dictionary passively matches the provider (the nub). A driver may choose not to implement probe,
in which case IOService’s default implementation is invoked, which simply returns this.

The probe function takes as arguments the driver’s provider and a pointer to a probe score. The probe score
is a signed 32-bit integer initialized to a value specified in the driver’s personality (or to zero if not explicitly
initialized). The driver with the highest initial probe score is given the first chance to start operating the
device. The purpose of the probe function is to offer drivers an opportunity to check the hardware and to
modify their default probe scores as assigned in their personalities. A driver can check device-specific registers
or attempt certain operations, adjusting its probe score up or down based on how well suited it is for the
device it is examining. Whatever it finds, each driver must leave the hardware in the same state it was in
when probe was invoked so the next driver can probe the hardware in its original state.

A driver, in its probe function, returns a driver object (IOService *) if the probe was successful and returns
zero otherwise. The returned object is usually the driver itself, but the driver can return another driver that
is more suited to the provider. The probe score is an in-out parameter, which probe can modify based on
what it discovers about the device.

Driver Loading

After all drivers have probed the device, the one with the highest probe score is attached and its
startfunction, which must be implemented by all drivers, is invoked. The start function initializes the
device hardware and prepares it for operation. If the driver succeeds in starting, it returns true; the remaining
candidate driver instances are discarded and the driver that started successfully continues operating. If the
driver cannot initialize the hardware it must leave the hardware in the state it was in when startwas invoked
and return false. The failing driver is then detached and discarded, and the candidate driver with the next
highest probe score is given a chance to start.

Some time after this occurs, all loaded drivers that are not currently in use are unloaded.

Device Matching

A user application that requires access to a device must first search for that device and then acquire the
appropriate device interface to communicate with it. This process is known as device matching. Unlike driver
matching, device matching searches the I/O Registry for a driver that is already loaded.

To perform device matching, follow these basic steps:

1. Establish a connection with the I/O Kit by obtaining a Mach port.

2. Define a dictionary that specifies the type of device to search for in the I/O Registry. The search can be
refined by setting additional values in the dictionary. For example, a search for IOMedia objects can be
narrowed down to find all ejectable media. You can find the values to match in the device header files
(such as IOSCSIDevice.h or IOATADevice.h), by referring to the family-specific documentation, or
by looking at the information property lists displayed in output from the I/O Registry Explorer application.

46 Device Matching
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

3. Obtain a list of all objects in the Registry that match your dictionary and choose the appropriate device.

4. Access the device you have chosen by obtaining a device interface for it. This step is explained more
fully in “Controlling Devices From Outside the Kernel” (page 33)

See the document Accessing Hardware From Applications for a full description of device matching.

Device Matching 47
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

48 Device Matching
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Driver and Device Matching

The I/O Kit is an object-oriented framework consisting primarily of dozens, if not hundreds, of C++ classes.
These classes can be organized by virtue of their inheritance relationships in a class hierarchy. As with all
class hierarchies, the I/O Kit’s can be depicted as an inverted tree, with childless nodes—classes without any
subclasses—as the leaves of the tree. Carrying the analogy further, the classes at the trunk and, especially,
the root of the tree are those that most classes of the hierarchy inherit from. These are the base classes.

Figure 5-1 (page 49) shows the general outline of the I/O Kit’s class hierarchy and the positions of the base
classes within this hierarchy.

Figure 5-1 The base classes of the I/O Kit class hierarchy

OSObject

OSMetaClassOS data
containers

IORegistryEntry

IOService

IO Kit
family

superclasses

I/O Kit
helper classes

OS classes
(general)

I/O Kit classes
(general)

Family classes
(specific)

As the diagram illustrates, the base classes specific to the I/O Kit are IOService and IORegistryEntry; also
included as base classes—through inheritance—are the libkern library’s OSObject and (in a special sense)
OSMetaClass.

Given the centrality of these classes, it is apparent how important it is to understand them. They provide not
just the behavior and data structures that all other classes of the I/O Kit inherit. They define the structure of
behavior for kernel and driver objects: how objects are created and disposed of, how metaclass information

49
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

is captured and revealed, how driver objects should behave within a dynamic runtime environment, and
how the client/provider relationships among driver objects are dynamically established. If you’re writing
device drivers using the I/O Kit, you’re going to have to deal with the base classes in your code early on and
frequently thereafter, so it’s a good idea to become familiar with them.

This chapter also gives an overview of some generally useful functions and data types. Even though these
functions and types do not properly belong in a discussion of base classes (since they are not affiliated with
any class), their utility in a variety of circumstances makes them almost as central as any of the base classes.

The libkern Base Classes

The I/O Kit is built on top of the libkern C++ library, which is written in a subset of C++ suitable for use in
loadable kernel modules. Specifically, the libkern C++ environment does not support multiple inheritance,
templates, the C++ exception-handling facility, and runtime type information (RTTI). The C++ RTTI facility is
omitted because it doesn’t support dynamic allocation of classes by name, a feature required for loading
kernel extensions. RTTI also makes considerable use of exceptions. However, the libkern C++ environment
defines its own runtime typing system, which does support dynamic loading.

Exceptions are forbidden in the kernel for reasons of both cost and stability. They increase the size of the
code, thereby consuming precious kernel memory, and introduce unpredictable latencies. Further, because
I/O Kit code may be invoked by many client threads, there’s no way to guarantee that an exception will be
caught. Using try, throw, or catch in any kernel extension is not supported and will result in a compilation
error. Although you can’t use exceptions in an I/O Kit driver, your driver should always check return codes
where appropriate.

Apple highly recommends that you base all kernel C++ code, including that for device drivers, on the libkern
base classes, OSObject and OSMetaClass, and observe the conventions prescribed by those classes (see “Type
Casting, Object Introspection, and Class Information” (page 53)). Classes that are completely private to your
driver need not be based on OSObject and need not follow these conventions. Such classes, however, will
be limited in their interaction with libkern classes. For example, all libkern collection classes store objects
that inherit from OSObject. Custom classes that don’t inherit from OSObject can’t be stored in libkern
collections such as OSDictionary or OSArray objects.

Important: At present, the loader does not allow the use of any OSObject subclass that requires qualification,
such as a nested class or a class declared within a namespace (for an example of a namespace declaration,
see “Language Choice” (page 17)). For example, the following nested class declaration in an I/O Kit driver
would prevent the driver from loading:

class com.mycompany.driver.myClass {
 class myNestedClass : public IOService {}; // This is not allowed.
};

Object Creation and Disposal (OSObject)

OSObject is at the root of the extended I/O Kit hierarchy. It inherits from no (public) superclass, and all other
libkern and I/O Kit classes (except for OSMetaClass) inherit from it. OSObject implements the dynamic typing
and allocation features needed to support loadable kernel modules. Its virtual functions and overridden
operators define how objects are created, retained, and disposed of in the kernel. OSObject is an abstract
base class, and therefore cannot itself be instantiated or copied.

50 The libkern Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

Object Construction

The standard C++ constructors cannot be used in libkern because these constructors use exceptions to report
failures; as you may recall, the restricted form of C++ chosen for libkern excludes exceptions. So the main
purpose of the OSObject class (and also of the OSMetaClass class) is to reimplement object construction.

For constructing objects, OSObject defines the initfunction and overrides the new operator. The new operator
allocates memory for an object and sets the object’s reference count to one. After it uses the new operator,
the client must call the init function on the new object to perform all initializations required to make it a
usable object. If the init call fails, then the client must immediately release the object.

In support of OSObject’s init and new, the OSMetaClass class implements macros related to object
construction. These macros bind a class into the kernel’s runtime typing facility and automatically define
functions that act as the constructor and destructor for the class. See “Runtime Type Information
(OSMetaClass)” (page 52) for more information on these macros and OSMetaClass’s implementation of RTTI.

Subclasses of OSObject do not explicitly implement their constructors and destructors since these are
essentially created through the OSMetaClass macros. Moreover, you typically invoke neither constructor and
destructor functions, nor the C++ new and deleteoperators. These functions and operators are reserved for
use by the dynamic typing and allocation facilities, which implicitly define them for a class. In their place,
OSObject defines a convention for creating and initializing objects. Subclasses do, however, typically override
the init function to perform initializations specific to the class.

Most libkern and I/O Kit classes define one or more static functions for creating instances. The naming
convention varies from class to class, but the name is usually either the base name of the class itself (with a
lowercase first letter), or some form of with... where the name describes the initialization arguments. For
example, OSArray defines the static creation functions withCapacity, withObjects, and withArray;
IOTimerEventSource defines timerEventSource; and IOMemoryCursor defines withSpecification. If a
class doesn’t have static creation functions, you must use new and then invoke the initialization method that
takes the place of the C++ constructor, as shown in Listing 5-2 (page 55)

For an overview of the boilerplate code you need to specify your class’s constructor and destructor functions,
see “Type Casting, Object Introspection, and Class Information” (page 53)

Object Retention and Disposal

OSObject defines a reference-counting and automatic-deallocation mechanism to support the safe unloading
of kernel extensions. For this mechanism it uses three virtual member functions—retain, release, and
free—and overrides the deleteoperator. Of these, the only functions you should call in your code are
retain and release, and you should follow certain conventions that dictate when to call them.

Newly created objects and copied objects have a reference count of one. If you have created or copied a
libkern object and have no need to keep it beyond the current context, you should call release on it. This
decrements the object’s reference count. If that count is zero, the object is deallocated; specifically, the
release method invokes the alternative destructor, named free, and finally invokes the delete operator.
If you don’t own an object—that is, you did not create or copy it—and you want to keep it past the current
context, call retain on it to increment its reference count. If you did not create, copy, or call retain on an
object, you should never call release on it.

In addition, some functions that return objects pass ownership to the caller, meaning the caller must release
the object when it is finished with it, while others don’t. See the reference documentation for a given function
to find out if your code needs to retain or release an object it receives.

The libkern Base Classes 51
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

Never invoke the delete operator explicitly to free an object. Also, never call free directly to free an object;
however, you may (and should, in most circumstances) override the free function to deallocate memory
allocated in your init function.

Runtime Type Information (OSMetaClass)

Although libkern’s restricted form of C++ excludes the native runtime type information (RTTI) facility,
OSMetaClass implements an alternative runtime typing facility that does support dynamic allocation of classes
by name. OSMetaClass is not a base class in the true sense; no public libkern or I/O Kit class inherits from it.
However, OSMetaClass provides APIs and functionality that are essential for object construction and
destruction. OSMetaClass itself is an abstract class and cannot be directly constructed.

The functionality that OSMetaClass offers all libkern-based code includes the following:

 ■ A mechanism for tracking the class hierarchy dynamically

 ■ Safe loading and unloading of kernel modules

The runtime typing facility enables the system to track how many instances of each libkern (and I/O Kit)
class are currently extant and to assign each of these instances to a kernel module (KMOD).

 ■ Automatic construction and deconstruction of class instances

 ■ Macros and functions for dynamic type casting, type discovery, membership evaluation, and similar
introspective behavior

 ■ Dynamic allocation of libkern class instances based on some indication of their class type, including
C-string names

In libkern’s runtime typing facility, one static metaclass instance (derivative of OSMetaClass) is created for
every class in a kernel module (KMOD) loaded into the kernel. The instance encapsulates information on the
class’s name, size, superclass, kernel module, and the current count of instances of that class. The process of
loading a kernel module takes place in two phases, the first initiated by the preModLoad member function
and the second by the postModLoad function. During the preModLoad phase, OSMetaClass statically
constructs, within the context of a single, lock-protected thread, a metaclass instance for each class in the
module. In the postModLoad phase, OSMetaClass links together the inheritance hierarchy of constructed
metaclass objects, inserts the metaclass instances into the global register of classes, and records for each
instance the kernel module it derived from. See the OSMetaClass reference documentation for more on
preModLoad, postModLoad, and related functions.

The created store of metaclass information forms the basis for the capabilities of OSMetaClass listed above.
The following sections explore the more important of these capabilities in some detail.

Object Construction and Dynamic Allocation

One of the features of OSMetaClass is its ability to allocate libkern objects based upon some indication of
class type. Subclasses of OSMetaClass can do this dynamically by implementing the allocfunction; the class
type is supplied by the OSMetaClass subclass itself. You can also allocate an instance of any libkern class by
calling one of the allocClassWithNamefunctions, supplying an appropriate identification of class type
(OSSymbol, OSString, or C string).

Freshly allocated objects have a retain count of 1 as their sole instance variable and are otherwise uninitialized.
After allocation, the client should immediately invoke the object’s initialization function (which is init or
some variant of init).

52 The libkern Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

OSMetaClass defines a number of runtime type-declaration macros and object-construction macros based
on the alloc function. Based on the type of class (virtual or otherwise), you must insert one of these macros
as the first statement in class declarations and implementations:

OSDeclareDefaultStructors
Declares the data and interfaces of a class, which are needed as runtime type information. By
convention this macro should immediately follow the opening brace in a class declaration.

OSDeclareAbstractStructors
Declares the data and interfaces of a virtual class, which are needed as runtime type information. By
convention this macro should immediately follow the opening brace in a class declaration. Use this
macro when the class has one or more pure virtual methods.

OSDefineMetaClassAndStructors
Defines an OSMetaClass subclass and the primary constructors and destructors for a non-abstract
subclass of OSObject. This macro should appear at the top of the implementation file just before the
first function is implemented for a particular class.

OSDefineMetaClassAndAbstractStructors
Defines an OSMetaClass subclass and the primary constructors and destructors for a subclass of
OSObject that is an abstract class. This macro should appear at the top of the implementation file just
before the first function is implemented for a particular class.

OSDefineMetaClassAndStructorsWithInit
Defines an OSMetaClass subclass and the primary constructors and destructors for a non-abstract
subclass of OSObject. This macro should appear at the top of the implementation file just before the
first function is implemented for a particular class. The specified initialization routine is called once
the OSMetaClass instance has been constructed at load time.

OSDefineMetaClassAndAbstractStructorsWithInit
Defines an OSMetaClass subclass and the primary constructors and destructors for a subclass of
OSObject that is an abstract class. This macro should appear at the top of the implementation file just
before the first function is implemented for a particular class. The specified initialization routine is
called once the OSMetaClass instance has been constructed at load time.

See “Type Casting, Object Introspection, and Class Information” (page 53) for more information on using
these macros, including examples of usage.

Type Casting, Object Introspection, and Class Information

OSMetaClass defines many macros and functions that you can use in almost any situation. They help you
safely cast from one type to another, discover an arbitrary object’s class, determine if an object inherits from
a given superclass, find out how many instances of a given class are still allocated, and yield other useful
information. Table 5-1 (page 53) summarizes these macros and functions.

Table 5-1 OSMetaClass type-casting and introspection APIs

DescriptionFunction or macro

This macro returns the type ID of a class based on its name.OSTypeID

This macro returns the type ID of the class a given instance is constructed from.OSTypeIDInst

This macro checks if one instance is of the same class type as another instance.OSCheckTypeInst

The libkern Base Classes 53
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

DescriptionFunction or macro

This macro dynamically casts the class type of an instance to a suitable class. It is
basically equivalent to RTTI’s dynamic_cast.

OSDynamicCast

This function verifies if the invoking OSMetaClass instance (which represents a class)
is the same as another OSMetaClass instance. The default implementation performs
a shallow pointer comparison.

isEqualTo

This set of functions determines if an OSMetaClass instance (which represents a
class) is, or inherits from, a given class type. The type can be specified as OSMetaClass,
OSSymbol, OSString, or a C string.

metaCast (multiple)

Returns whether a kernel module has any outstanding instances. This function is
usually called to determine if a module can be unloaded.

modHasInstance

This function returns the number of instances of the class represented by the receiver.getInstanceCount

This function returns the receiver’s superclass.getSuperClass

This function returns the name (as a C string) of the receiver.getClassName

This function returns the size (in bytes) of the class represented by the receiver.getClassSize

Defining C++ Classes in libkern

When implementing a C++ class based on OSObject, you invoke a pair of macros based upon the OSMetaClass
class. These macros tie your class into the libkern runtime typing facility by defining a metaclass and by
defining the constructor and destructor for your class that perform RTTI bookkeeping tasks through the
metaclass.

The first macro, OSDeclareDefaultStructors declares the C++ constructors; by convention you insert
this macro as the first element of the class declaration in the header file. For example:

class MyDriver : public IOEthernetController
{
 OSDeclareDefaultStructors(MyDriver);
 /* ... */
};

Your class implementation then uses the companion macro, OSDefineMetaClassAndStructors, to define
the constructor and destructor, as well as the metaclass that provides the runtime typing information.
OSDefineMetaClassAndStructors takes as arguments the name of your driver and the name of its
superclass. It uses these to generate code that allows your driver class to be loaded and instantiated while
the kernel is running. For example, MyDriver.cpp might begin like this:

#include "MyDriver.h"

// This convention makes it easy to invoke superclass methods.
#define super IOEthernetController

// You cannot use the "super" macro here, however, with the
// OSDefineMetaClassAndStructors macro.
OSDefineMetaClassAndStructors(MyDriver, IOEthernetController);

54 The libkern Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

The definition of the supermacro allows convenient access to superclass methods without having to type
the whole name of the superclass every time. This is a common idiom of libkern and I/O Kit class
implementations.

In place of the C++ constructor and destructor, your class implements an initialization method and a
freemethod. For non–I/O Kit classes, the initialization method takes whatever arguments are needed, can
have any name (although it usually begins with init), and returns a C++ bool value. The free method
always takes no arguments and returns void.

The initialization method for your driver class should invoke the appropriate superclass initialization method
before doing anything else, as shown in Listing 5-1 (page 55) If the superclass returns false, your class’s
initialization method should abort, release any allocated resources, and return false. Otherwise your class
can perform its initialization and return true. When the libkern C++ runtime system creates an instance of
a class, it zero-fills all of the member variables, so you don’t need to explicitly initialize anything to zero, false,
or null values.

Listing 5-1 Implementing an init method

bool MyDriver::init(IOPhysicalAddress * paddr)
{
 if (!super::init()) {
 // Perform any required clean-up, then return.
 return false;
 }
 physAddress = paddr; // Set an instance variable.
 return true;
}

To create an instance using the initialization method, you write code such as this:

Listing 5-2 Creating an instance and calling its init method

MyDriver * pDrv = new MyDriver; // This invokes the predefined constructor
 // of MyDriver itself

if (!pDrv) {
 // Deal with error.
}

if (!pDrv->init(memAddress)) {
 // Deal with error.
 pDrv->release(); // Dispose of the driver object.
}

Because this makes creating instances more cumbersome, you may want to write a convenience method in
the manner of many of the kernel C++ classes, as for example:

MyDriver * MyDriver::withAddress(IOPhysicalAddress *paddr)
{
 MyDriver * pDrv = new MyDriver;

 if (pDrv && !pDrv->init(paddr)) {
 pDrv->release();
 return 0;
 }
 return pDrv;

The libkern Base Classes 55
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

}

Using this convenience method, you can create an instance of your driver with code like the following:

MyDriver * pDrv = MyDriver::withAddress(paddr);

if (!pDrv) {
 // Deal with error of not being able to create driver object.
}
else {
 // Go on after successful creation of driver object.
}

A class’s free method should release any resources held by the instance and then invoke the superclass’s
free method, as in Listing 5-3 (page 56):

Listing 5-3 Implementing the free function

void MyDriver::free(void)
{
 deviceRegisterMap->release();
 super::free();
 return;
}

Again, note that your code should never invoke free or the delete operator directly with objects based
on the OSObject class. Always call release on such objects to dispose of them.

The I/O Kit Base Classes

All driver objects based on the I/O Kit inherit from the two base classes IORegistryEntry and IOService. The
second of these classes, IOService, directly inherits from IORegistryEntry and all driver objects ultimately
inherit from IOService. The IORegistryEntry class defines a driver object as a node in the I/O Registry, and
IOService defines the life cycle of a driver object as well as implementing other behavior common to drivers.

The close inheritance relationship between IORegistryEntry and IOService might invite speculation as to why
these classes weren’t designed as one class. The reason is performance. Having IORegistryEntry as a superclass
of IOService is an optimization because, in terms of memory footprint, the IORegistryEntry object is much
more lightweight.

Dynamic Driver Registration (IORegistryEntry)

An IORegistryEntry object defines a node (or entry) in the I/O Registry. As the chapter “The I/O Registry” (page
37) explains in detail, the I/O Registry is a dynamic database that captures the current graph of “live” driver
objects, tracking the client/provider relationships among these objects and recording the properties that
describe their personalities. The I/O Registry plays an essential role in the dynamic features of Mac OS X;
when users add or remove hardware, the system uses the Registry in the driver-matching process and
immediately updates it to reflect the new configuration of devices.

56 The I/O Kit Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

Each IORegistryEntry object has two dictionaries (that is, instances of OSDictionary) associated with it. One
is the property table for the object, which is typically also a driver object. This property table is the matching
dictionary that specifies one of the driver’s personalities. (See “Driver Personalities and Matching
Languages” (page 41) for information on personalities.) The other dictionary of an IORegistryEntry object is
the plane dictionary, which specifies how the object is connected to other objects in the registry.

In addition to reflecting all client/provider relationships among driver objects, the I/O Registry identifies
subsets of these relationships. Both the totality of the Registry tree and the subsets of it are called planes.
Each plane expresses a different provider/client relationship between objects in the I/O Registry by showing
only those connections that exist in that relationship. Often the plane relationship is one of a dependency
chain. The most general plane is the Service plane which displays the total hierarchy of registry entries. Every
object in the Registry is a client of the services provided by its parent, so every object’s connection to its
ancestor in the Registry tree is visible on the Service plane. In addition to the Service plane, there are the
Power, Audio, Device, FireWire, and USB planes. For more information on planes, see “I/O Registry Architecture
and Construction” (page 37)

It is possible to have an IORegistryEntry object that is not also an IOService object. Such an object could be
used purely for holding information associated with that node in the Registry. However, there is little actual
need for such objects.

The IORegistryEntry class includes many member functions that driver objects might find useful; these
functions fall into several categories:

 ■ Property-table functions allow you to set, get, and remove properties of an IORegistryEntry object’s
property table as well as serializing property tables. Some getPropertyfunctions perform a synchronized,
recursive search through the Registry for the property of a given key.

 ■ Positional functions let an IORegistryEntry object manipulate its position in the Registry tree. It can locate,
identify, and attach to or detach from another IORegistryEntry object.

 ■ Iteration functions enable your code to traverse the entire Registry tree, or a portion or it, and optionally
invoke an “applier” callback function on IORegistryEntry objects encountered.

See the reference documentation for IORegistryEntry for details.

Basic Driver Behavior (IOService)

Every driver object in the I/O Kit is an instance of a class that ultimately inherits from the IOService class.
IOService most importantly defines, through complementary pairs of virtual functions, a driver’s life cycle
within a dynamic runtime environment. It manages the matching and probing process, implements default
matching behavior, and registers drivers and other services. But the IOService class also provides a wealth
of functionality for many other purposes, including:

 ■ Accessing a driver’s provider, clients, state, and work loop

 ■ Posting notifications and sending messages to other driver objects or services

 ■ Managing power in devices

 ■ Implementing user clients (device interfaces)

 ■ Accessing device memory

 ■ Registering and controlling interrupt handlers

The I/O Kit Base Classes 57
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

This section first describes the life cycle of a driver object and IOService’s role in that life cycle. Then it
summarizes each of the other major IOService APIs.

Driver Object Life Cycle

An I/O Kit driver can be loaded and unloaded, or activated and deactivated, at any time. Every driver’s life
cycle follows the same pattern, as laid out in a set of functions defined by the standard driver superclass,
IOService. Some of these functions must be implemented by the driver; others are implemented by IOService,
but can be overridden by the driver for additional flexibility.

Figure 5-2 Driver object life-cycle functions

Property matching
init()
attach()
probe()
detach()
attach()
start()
open()
 - - Driver in use -
close()
message()
stop()
detach()
free()

on failure

on failure

Figure 5-2 (page 58) shows the sequence of functions that gets invoked during the life of a driver object.
The bracketing lines show how these functions are grouped into complementary pairs. A driver object class
can override any of these functions, but must be sure to invoke the superclass’s implementation of that same
function at the appropriate point in its own implementation. For example, when you override the opening
function of a complementary pair, such as init or start, your version must invoke the corresponding
function of its superclass before doing its own initialization, as shown in Listing 5-1 (page 55) When you
override a closing function, such as free or stop, you should perform your own cleanup before invoking
the corresponding function in the superclass, as shown in Listing 5-3 (page 56)

Driver Matching and Loading

The first group of functions—init, attach, probe, and detach—is invoked during the process of driver
matching and loading. This process occurs at boot time and at any time devices are added or removed. The
following paragraphs summarize the matching process, paying special attention to the functions involved;
see “Driver Matching and Loading” (page 44) for an extended discussion of the process.

The matching process is kicked off when a service provider detects a device. Usually this provider is the
controller driver for a bus (such as a PCI bus), which detects the device by scanning its bus. The provider
(usually through its family) then creates and registers any required nubs by calling the IOService function,
registerService; this call, in turn, triggers the matching process.

As orchestrated by IOService, the I/O Kit finds and loads a driver for a nub in three distinct phases, using a
subtractive process. In each phase, drivers that are not considered to be likely candidates for a match are
subtracted from the total pool of possible candidates until a successful candidate is found. The phases are:

58 The I/O Kit Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

1. Class matching—the I/O Kit eliminates any drivers of the wrong provider (nub) class.

2. Passive matching—the I/O Kit examines the remaining drivers’ personalities for family-specific properties.

3. Active matching—IOService calls each of the remaining drivers’ probe functions with reference to the
object the driver is being matched against. This function allows the driver to communicate with the
device and verify that it can in fact drive that device. A probe score is returned that reflects how well
suited the driver is to drive the device.

When a matching driver is found, its code is loaded and an instance of the principal class listed in the
personality is created.

In the first two phases, none of the driver’s life-cycle functions is called. It is only during the third stage of
active matching, when the driver is asked to probe a device for suitability, that the first group of functions
is invoked.

Whether a driver is loaded to drive a device or is merely asked to probe it, the first life-cycle function invoked
is init, which is the libkern equivalent of the constructor function for the class. For I/O Kit drivers, this
function takes as its sole argument an OSDictionary containing the matching properties from the personality
in the XML file. The driver can use this to determine what specific personality it’s been loaded for, determine
the level of diagnostic output to produce, or otherwise establish basic operating parameters. However, I/O
Kit drivers typically don’t override the init function, performing their initialization in later stages, as described
below. For more on init, and the related free function, see “Object Creation and Disposal (OSObject)” (page
50)

Before a driver object can either probe or start, it must be attached into the I/O Registry. To do this, the nub
invokes the driver’s attach function, which attaches the driver to the nub through the I/O Registry. The
complementary function detach removes the driver from its nub. IOService gives both of these functions
default implementations. A driver can override them, but rarely needs to do so.

If active matching is occurring, the nub next invokes the driver object's probe function. The probe function
returns an IOService. This is usually the driver object itself, but the driver can return an instance of a different
class, such as a specialized subclass included in the driver's kernel extension bundle. IOService's default
implementation of probe simply returns the this pointer without altering the probe score. Overriding probe
is optional; most drivers get enough information from property matching and don't need to override it. If
you do override probe, however, you must make sure that the probe is not destructive, leaving the device
in the state it found it. Hardware specifications generally define how to conduct non-destructive probes.

A driver’s startfunction, just as with implementations of probe, should perform only the minimum necessary
allocation of system resources to verify that it can operate the hardware. This conservative approach delays
consumption of kernel resources until they’re actually needed.

Each family, such as PCI, USB, or storage, defines a pair of activation and deactivation functions to indicate
that the driver should prepare to service I/O requests and that the driver’s services are no longer needed.
These two functions are typically named open and close. Most drivers implement these functions to allocate
and deallocate all of the necessary buffers and other structures in preparation for I/O processing.

Some families define additional levels of activation and deactivation. A networking driver, for example, does
very little in open and close, instead performing setup and teardown in the enable and disable functions.
Whatever the specific activation and deactivation functions, they can be invoked many times during a driver’s
life span; a driver should be able to function no matter how many times it gets activated or deactivated.

The I/O Kit Base Classes 59
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

Driver Status Change

Another function that can be invoked many times during a driver’s life span is the messagefunction. This
function informs the driver of important system status changes, such as when a disk is forcibly removed,
when a power management change (sleep, wake-up) is occurring, or when the driver is being shut down.
IOService’s implementation of this function does nothing and returns an “unsupported” result code. For more
on the notification and messaging functionality provided by IOService, see “Notification and Messaging” (page
60)

Driver Shutdown

When a driver is going to be permanently shut down, its message function is invoked with a terminate
message (kIOMessageServiceIsTerminated). If the driver accepts the termination, its stop function is
then invoked. The driver should implement its stopfunction to close, release, or free any resources it opened
or created in its start function, and to leave the hardware in the state the driver originally found it. Assuming
the driver implements the activation and deactivation functions, there is usually little to do in the stop
function. The final stage of driver shutdown is invocation of free, which occurs when the driver object’s
reference count reaches zero. In this function the driver can dispose of any resources it created in its init
function.

Provider Matching

If you are implementing a provider driver object (that is, a subclass that is a member of an I/O Kit family) you
may want to override IOService’s matchPropertyTable member function. When IOService performs
matching for a driver object, it calls this method so the provider class can implement its own specific matching
criteria in addition to the generic ones provided by IOService. The provider should examine the matching
dictionary passed to see if it contains properties the family understands for matching and use them to match
with the specific driver object if it does understand them.

Notification and Messaging

IOService provides two mechanisms for driver objects to communicate with each other and with the I/O Kit:
notifications and messaging. Notifications are delivered to interested clients when a certain event occurs
with an active service or driver that has properties matching a given dictionary. Messages are more targeted
and flow in one direction, from provider to client. Any provider can send a message to any of its clients to
notify it of some change in the runtime environment.

As discussed earlier in “Driver Object Life Cycle” (page 58) driver clients implement the messagefunction to
receive and respond to messages from their providers. This function allows them to adapt to changes in the
runtime environment. The messages can inform them of changes in system status, such as changes in power
state, suspension of service, or impending service terminations. Providers implement the messageClient(or
messageClients) functions to send messages by invoking their client’s message methods. The I/O Kit
defines some messages while others may be defined by families. See the header file
Kernel.framework/Headers/IOKit/IOMessage.h for the generic messages that the messageClient
and messageClients functions can deliver to a driver.

The broadcasting of notifications is a bit more complicated. Any driver object can install a notification handler
through the addNotification or installNotification functions. The notification handler is set up to
be invoked when a specific driver object (identified by a dictionary of matching properties) experiences a
specific type of state change, such as when a driver is first published, matched at any time, or is terminated.
Each notification handler is also given a priority number in case multiple notifications of the same type and
for the same object are triggered at the same time.

60 The I/O Kit Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

The notification handler (of type IOServiceNotificationHandler) is invoked if any driver object whose
personality matches the supplied matching dictionary changes to the specified state. For example, when a
service provider calls registerServices, that not only starts the registration process but it also delivers
notifications to all registered clients interested in the publication of the provider. The notification request is
identified by an instance of an IONotifier object, through which the notification can be enabled, disabled, or
removed.

Driver Accessors

IOService includes, as a convenience, a number of accessor member functions giving quick access to a driver
object’s state and the objects that are closely related to it. These functions return the following objects or
values:

 ■ The driver’s state (getState), a bitfield indicating whether the driver is inactive, registered, matched,
and so on

 ■ The work loop being used by the driver (getWorkLoop) (see “Handling Events” (page 69)) for further
information)

 ■ The driver’s primary provider (getProvider), as well as an OSIterator object for iterating over the driver’s
providers, if multiple (for example, a RAID device)

 ■ The driver’s primary client (getClient), as well as an OSIterator object for iterating over the driver’s
clients, if multiple

Other IOService Features

IOService incorporates functionality (other than that summarized above) that is useful for many categories
of device driver. Most notably, this functionality includes the following features:

 ■ User client. The newUserClientfunction creates an IOUserClient-based connection for communication
with a non-kernel client; the client invokes this function by calling the IOServiceOpenfunction of the
I/O Kit framework.

 ■ Device memory. Several IOService member functions get, map, and set the physical memory ranges
allocated to a memory-mapped device. These functions are intended for driver objects that are clients
of PCI devices.

 ■ Interrupt handling. IOService provides low-level functions for registering, unregistering, manipulating,
and accessing interrupt handlers that are called at primary-interrupt time for a device’s interrupt. The
functions provide a mechanism for installing interrupt handlers that is not based on a work loop.

The I/O Kit Base Classes 61
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

62 The I/O Kit Base Classes
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

The Base Classes

In the I/O Kit, families are collections of classes that define and implement the abstractions common to all
devices of a particular type. They provide the programmatic interfaces and generic support code for developing
drivers that are members (providers) or clients of such families.

This chapter describes a number of concepts related to I/O Kit families:

 ■ The relation of drivers to families

 ■ Families as libraries, including the versioning and loading of libraries

 ■ The programmatic structure of families and naming conventions

In addition, this chapter offers some tips for those who want to write their own I/O Kit families. For a reference
to the current set of the I/O Kit families provided by Apple, see the appendix “I/O Kit Family Reference” (page
127)

Drivers and Families

An I/O Kit family is a library that implements some bus protocol (for example, PCI or USB) or some common
set of services. But the support that a family provides is generic. A family does not include any of the details
for getting at hardware because it cannot make assumptions about the specific hardware under the general
layer it represents. It’s the driver writer’s responsibility to write code that bridges between the concrete and
the abstract—that is, between the hardware and the abstraction defined by the family. A driver must extend
a family to support specific hardware or to acquire specific features.

Take the SCSI Parallel family as an example. The SCSI Parallel family encapsulates the SCSI Parallel Interface-5
specification, which is well-defined. One of the things the specification describes is how to go about scanning
the bus and detecting devices. Because this is an expensive operation, many SCSI Parallel controllers include
firmware that can cache information about detected devices. To take advantage of this caching optimization,
you could design your controller driver—member of the SCSI Parallel family—so that it overrides the scanning
functionality to interact with the firmware.

Families commonly perform certain generic tasks, such as scanning buses, querying clients, queuing and
validating commands, recovering from errors, and matching and loading drivers. Drivers do the tasks that
impinge on hardware in some way. To continue with the example of the SCSI Parallel family, the primary job
of the SCSI Parallel controller driver, as member of the SCSI Parallel family, is to receive SCSI commands from
its family, execute each command on the hardware, and send a notification when the command completes.

Some I/O Kit families are clearly delimited by the specifications they encapsulate. Other families, such as the
Audio family, are not as easily defined because there is no single specification prescribing what the family
should include. In cases such as these, Apple carefully chose the set of abstractions to incorporate in the
family to make it flexible and comprehensive enough. All families must advertise their capabilities and it is
up to the higher levels of the driver stack to manage these capabilities.

Drivers and Families 63
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

A driver is both a provider and a client in its relationships to I/O Kit families. A driver that is a provider for a
family (through its nub) is also a member of that family; it should inherit from a particular class in the family
that describes the service it exports (however augmented). On the other hand, a driver is a client of the family
whose service it imports (through a nub of the family). For example, a SCSI disk driver would inherit from
the storage family rather than the SCSI Parallel family, to which it would be a client (see Figure 6-1 (page
64)). A USB mouse driver would inherit from the HID (Human Interface Devices) family and would be a client
of the USB family. A PCI Audio card driver would inherit from the Audio family and would be a client of the
PCI family.

Figure 6-1 A driver’s relationships with I/O Kit families

IOSCSIParallelInterfaceDevice

IOPCIBridge

-
-
-

-
-
-

IOPCIDevice

MySCSIController Driver

Provider to the
SCSI Architecture Model family

Client of the
PCI family

inherits
from

IOSCSIParallelInterfaceController

- - - - - -

Families As Libraries

Families are implemented as libraries packaged as kernel extensions (KEXTs). They specify their defining
attributes in an information property list and are installed in /System/Library/Extensions. Families are,
mechanically, little different than ordinary drivers.

Two related characteristics distinguish a family from a driver. First, a driver expresses a dependency on a
family using the OSBundleLibraries property; second, a family is loaded only as a byproduct of a driver
listing it as a library. A driver specifies the libraries on which it depends as elements of the
OSBundleLibraries dictionary. The I/O Kit guarantees that these libraries will be loaded into the kernel
before it loads the driver and links it with its families. Note that libraries themselves declare the libraries
(kernel extensions and the kernel itself) on which they depend using the OSBundleLibraries property.

You specify a library as a key-value pair in the OSBundleLibraries dictionary where the key is the bundle
identifier (CFBundleIdentifier) of the library and the value is the earliest version of the library that the
driver is compatible with. All versions are expressed in the 'vers' resource style. Listing 6-1 (page 65) gives
an example from the information property list of the AppleUSBAudio driver.

64 Families As Libraries
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

Listing 6-1 The OSBundleLibraries property

<key>OSBundleLibraries</key>
 <dict>
 <key>com.apple.iokit.IOAudioFamily</key>
 <string>1.0.0</string>
 <key>com.apple.iokit.IOUSBFamily</key>
 <string>1.8</string>
 </dict>

Although the I/O Kit loads the libraries before it loads the driver that specifies these dependencies, and loads
libraries in proper dependency order, there is no guarantee about the order in which it loads libraries that
have no interdependencies.

Generally, developers should declare dependencies for their device driver or any other kernel extension. (If
the KEXT doesn’t have an executable, dependency declaration is unnecessary.) What dependencies they
need to declare depends on which symbols need to get resolved. If you include a header file of a family or
other library, or if a header indirectly ends up including a library, you should declare that dependency. If you
unsure whether a dependency exists, declare it anyway.

Library Versioning

To be available for loading and linking into the kernel, a family or other library has to declare its compatibility
information using two properties: CFBundleVersion and OSBundleCompatibleVersion. The
CFBundleVersion property defines the forward limit of compatibility—that is, the current version. The
OSBundleCompatibleVersion property defines the backward limit of compatibility by identifying the last
CFBundleVersion-defined version of the library that broke binary compatibility with prior versions.

Every time you revise a driver or a family, you should increment your CFBundleVersion value appropriately.
You reset the OSBundleCompatibleVersion value (to the current CFBundleVersion) only when the
revision makes the binary incompatible with prior versions, as when you remove a function or other symbol,
or change a class such that the vtable layout changes. If you are writing an I/O Kit family, make sure that you
specify an OSBundleCompatibleVersion property for your library; otherwise, drivers and other kernel
extensions cannot declare a dependency on it and thus cannot link against it.

For both drivers and families (and, indeed, all kernel extensions), make sure that you also set the version in
the kernel module and that this value is equivalent to the CFBundleVersion in the information property
list. You set the version in the executable through the MODULE_VERSION setting in Xcode, in the target’s
Customized Settings list (you find this in the target’s Build view).

Library Loading

The KEXT manager functions as the kernel loader and linker. At boot time or whenever the system detects
a newly attached device, the I/O Kit kicks off the matching process to find a suitable driver for a device. When
such a driver is found, it is the KEXT manager’s job to load the driver into the kernel and link it with the
libraries on which it depends.

But before it can do this, the KEXT manager must ensure that those libraries, and all the other libraries on
which those libraries depend, are loaded first. To do this, the manager builds a dependency tree of all libraries
and other kernel modules required for the driver. It builds this tree using the contents of the
OSBundleLibraries property, first of the driver and then of each required library.

Families As Libraries 65
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

After it builds the dependency tree, the KEXT manager checks if the libraries that are the most remote from
the driver in the tree are already loaded. If any of these libraries is not loaded, the manager loads it and calls
its start routine (the routine varies according to type of KEXT). It then proceeds up the dependency tree in
similar fashion—linking, loading, and starting—until all required libraries have been linked and loaded. See
Figure 6-2 (page 66) for an illustration of this procedure.

Figure 6-2 OSBundleLibraries and the dependency tree

AppleBurgundyAudio.plist
...
OSBundleLibraries {
	 <key>AppleDBDMAudio</key> ...
	 <key>IOAudioFamily</key> ...
	 <key>iokit</key> ...
	 <key>libkern</key> ...
}
...

AppleDBDMAudio.plist
...
OSBundleLibraries {
	 <key>IOAudioFamily</key> ...
	 <key>iokit</key> ...
	 <key>libkern</key> ...
}
...

IOAudioFamily.plist
...
OSBundleLibraries {
	 <key>iokit</key> ...
	 <key>libkern</key> ...
}
...

linking
and
loading

AppleDBDMAudio

AppleBurgundyAudio

IOAudioFamily

iokit libkern

If the KEXT manager encounters a problem initializing a library, or it doesn’t find a library with a compatible
version (based on the value of OSBundleCompatibleVersion), it stops and (usually) returns a failure code.
The modules already loaded stay loaded for awhile. Generally, unloading of modules does not happen
immediately when they are not used. The I/O Kit includes a feature that tracks idle time and unloads modules
after a certain period of idleness.

Important: The only way to load a kernel extension explicitly is to use the kextload command-line utility.

The Programmatic Structure of Families

Although I/O Kit families tend to be quite different from each other, they have some structural elements in
common. First, IOService is the common superclass for all I/O Kit families; at least one important class in each
family, and possibly more, inherits from IOService (see “The I/O Kit Base Classes” (page 56) for more
information). And each family has one or more classes that present an interface to drivers.

Typical Classes

A family typically defines two classes for drivers:

66 The Programmatic Structure of Families
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

 ■ A class describing the nub interface for drivers that are clients of the family

 ■ A superclass for drivers that are members of the family, and thus providers to its nubs

In other words, I/O Kit families usually define an upward interface and a downward interface. These interfaces
are required for the layering of driver objects involved in an I/O connection. The upward interface—the nub
interface—presents to the rest of the system the hardware abstractions and rule definitions encapsulated
by the family. The downward interface provides the subclassing interface for member drivers. Together, the
interfaces define the up calls into the family and the down calls that member drivers are expected to make.

In addition to these two classes, families typically define a number of utility classes and support classes. The
appendix “I/O Kit Family Reference” (page 127) describes some of these classes.

Some families specify subclasses for particular varieties of client or member drivers. The Storage family, for
example, defines a generic block storage class for nub objects (IOBlockStorageDevice) and then also provides
specific subclasses for certain varieties: IOCDBlockStorageDevice and IODVDBlockStorageDevice. In addition,
families can include classes for device interfaces (as subclasses of IOUserClient) as well as commands specific
to the family (as subclasses of IOCommand). Families can also have various helper classes and header files
for family-specific type definitions.

Some families do not include a public nub or provider class for drivers when there is little need for such
drivers. And Apple has not provided families for all types of hardware. If you find that the I/O Kit does not
have a family or interface for your needs, you can always create a driver that inherits directly from IOService.
Such “family-less” drivers are sometimes necessary if the potential applications for the driver are few. They
must incorporate the abstractions and range of functionality found in families as well as the hardware-specific
code typical of drivers. Besides directly inheriting from IOService, family-less drivers frequently make use of
the I/O Kit helper classes such as IOWorkLoop, the event-source classes, IOMemoryCursor, and
IOMemoryDescriptor.

Naming and Coding Conventions

Generally, Apple’s position on class naming within families is that the name should indicate what the class
represents. Often, this name is dictated by the specification for the hardware. For example, the PCI family
defines the IOPCIBridge class for drivers that are providers for the family. The reason for this name is simple:
the PCI bridge (as the specification makes clear) is what the PCI controller drivers control. When there is no
clear naming precedent for a family’s classes, the I/O Kit follows a naming convention of IOFamilyNameDevice
for nub (client) classes and IOFamilyNameController for provider classes.

Important: The general guideline of naming classes for what they represent applies equally to drivers. Drivers
should be named for the device they control (but should not have the redundant suffix “Driver”).

If you are writing your own I/O Kit family, Apple recommends that you follow the same naming guidelines
for your classes. And there are a few other general naming conventions to be aware of. Each class, function,
type, and so on should have prefix that designates the vendor writing the software. Be sure not to use any
of the prefixes that Apple reserves for itself (Table 6-1 (page 67)).

Table 6-1 API prefixes reserved by Apple

MeaningPrefix

libkern or other kernel serviceOS, os

The Programmatic Structure of Families 67
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

MeaningPrefix

I/O Kit or I/O Kit familyIO, io

Mach kernelMK, mk, mach_

Apple hardware support (for example, Apple-provided
drivers)

Apple, APPLE, apple, AAPL, aapl, com_apple_

In addition, private, internal symbols should have an underscore “_” prefix, following the convention used
by Apple. Do not access these private APIs from a KEXT. As with drivers, use of reverse DNS notation
(substituting underscores for periods) is highly recommended to avoid naming conflicts.

Creating An I/O Kit Family

There might be occasions when you deem it worthwhile to write your own I/O Kit family. Usually this happens
when there is a standard or protocol for which no family exists, and you discern a need for interoperability
among drivers for devices based on this protocol or standard. An example might be the IEEE488 standard
for plotters and lab equipment.

If you decide to implement a family, here are a few guidelines to help you:

 ■ At the beginning, write the family and driver code together; don’t worry yet about the division of
functionality and interface between driver and family. Just concentrate on coming up with a good
object-oriented design, determining what objects are necessary and what relationships they should
have.

 ■ After you have a working driver and have solved the stack for a particular device, separate the family
code from the hardware-specific code. One approach that might be useful for locating family-generic
code, especially for complex families, is to write two or more drivers for different hardware and then
abstract away the common code.

 ■ Define what the family’s nub objects look like to drivers—that is, the APIs your clients will see. To do
this, look at the specification and encapsulate the important features (it’s not necessary to include rarely
or never-used features). Keep in mind that the nubs of most families do very little. Most often they
encapsulate addressing and arbitration details.

 ■ Define the superclass for drivers that will be members of your family.

 ■ Keep the layering separation of a family airtight. A family should not include headers from any other
family or driver and should not define the superclass of clients.

There can also be situations that might call for the creation of a “superfamily”: a family that extends an existing
family in a way similar to a subclass, but with a big difference; its aim is generality rather than specificity.
Third-party vendors might want to have a superfamily to contain the code common to drivers based on
different bus protocols. This would eliminate the need to load code that isn’t needed. For example, a mouse
vendor might have a driver capable of driving both USB and ADB mice. If a system requires a USB mouse,
you don’t want to have the ADB-specific code loaded as well. Thus the vendor might write a superfamily that
acts as a service library; it would separate out the layers of code specific to a bus protocol into subfamilies
and put the remaining code into the superfamily. Only the code specific to the currently used bus would be
loaded.

68 Creating An I/O Kit Family
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

I/O Kit Families

A device driver works in perhaps the most chaotic of environments within an operating system. Many devices
require a sequence of commands to perform a single I/O operation. However, multiple threads can enter the
driver’s code at any place and at any time, whether through client I/O requests, hardware interrupts, or
timeout events; on a multiprocessor system, threads can even be running concurrently. The driver must be
prepared to handle them all.

This flurry of incoming threads, each with its own event, poses some problems for a driver. The driver needs
a way to protect its data structures from access by different threads because such simultaneous access can
lead to data corruption, or worse. It needs to guarantee exclusive access to a thread for any single command
or operation that must complete in order to preserve the integrity of the driver’s data, or to prevent a deadlock
or race condition. In the I/O Kit, this protection is provided by the IOWorkLoop class and its attendant
event-source classes.

Work Loops

An IOWorkLoop object (or simply, a work loop) is primarily a gating mechanism that ensures single-threaded
access to the data structures used by hardware. For some event contexts, a work loop is also a thread. In
essence, a work loop is a mutually exclusive (mutex) lock associated with a thread. It does several things:

 ■ Its gating mechanism synchronizes the actions among event sources.

 ■ It provides a stackable environment for event handling.

 ■ It spawns a dedicated thread for the completion of indirect interrupts delivered by the interrupt controller.
This mechanism serializes interrupt handling for the work loop’s driver, preventing simultaneous access
to driver data by multiple interrupts.

To put the role of the work loop in perspective, it helps first to consider the event sources that it is designed
for. In the I/O Kit there are five broad categories of asynchronous events:

 ■ Interrupt events—indirect (secondary) interrupts originating from devices

 ■ Timer events—events delivered periodically by timers, such as timeouts

 ■ I/O commands—I/O requests issued by driver clients to their providers

 ■ Power events—typically generated through calls down the driver stack

 ■ Structural events—typically events involving the I/O Registry

The I/O Kit provides classes to handle these event sources: IOInterruptEventSource, IOTimerEventSource, and
IOCommandGate. (You handle power and structural events using the mechanism provided by IOCommandGate
objects.) Each of the event-source classes defines a mechanism specific to an event type for invoking a single
function within the protected context of the work loop. If a thread carrying an event needs access to a driver’s
critical data, it must do so through an object of one of these classes.

Work Loops 69
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

Generally, client drivers set up their work loops, event sources, and event handlers in their start function.
In order to avoid deadlocks and race conditions, all code that accesses the same data should share a single
work loop, registering their event sources with it so that a single gating mechanism is used. Work loops can
be safely shared among unrelated objects, of course, and often are shared by objects at different levels in a
single driver stack. Work loops can also be dedicated for use by a particular driver and its clients. See “Shared
and Dedicated Work Loops ” (page 71) for more information.

The I/O Kit work-loop mechanism offers functionality roughly similar to that of the Vertical Retrace Manager,
the Time Manager, and the Deferred Task Manager of Mac OS 9.

Work Loop Architecture

The I/O Kit’s work-loop mechanism mitigates the performance penalty exacted by context switching, a
by-product of the underlying event-handling model commonly used in some operating systems. To guarantee
a single-threaded context for event handling, this model completes everything on one thread. Unfortunately,
the transfer of work to the thread requires a switch in the context of the event-bearing thread. More precisely,
when this thread goes from a running context to a non-running context, its current register state must be
saved. When the secure thread completes its work, the state of the originating thread is restored and control
branches back to the function originally referenced by the thread. This switching back and forth between
thread contexts consumes cycles.

The work-loop model works quite differently for I/O commands and timer events. In these instances, the
thread of the respective event source simply grabs the mutex lock held by the work loop. No other event
from any source can be processed until the Action routine for the current event returns. Although the lock
is mutually exclusive, it doesn’t prevent reentrancy. Also, you can have multiple work loops in the same driver
stack, and this increases the possibility of deadlock. However, work loops do avoid self-deadlocks because
they are based on a recursive lock: They always check to see if they are the thread that currently own the
lock.

The way the I/O Kit manages interrupt event sources does involve context switching. The completion routines
for interrupts run on the work loop’s thread and not on the thread delivering the interrupt. Context switching
is required in this case because the interrupt controller must immediately dispatch direct (primary) interrupts
to other threads to run the completion routines for those interrupts. See “Handling Interrupts” (page 73) for
more information.

Two factors influence the order in which a work loop queries its event sources for work. The relative priority
of threads is the main determinant, with timers having the highest priority. A client thread can modify its
own priority and thereby expedite the delivery of I/O requests (it might not affect how soon they are processed,
however, because I/O requests are usually queued in FIFO order). For interrupt event sources, which also
have a relatively high priority, the order in which they are added to the work loop determines the order in
which they are queried for work. See “Handling Interrupts” (page 73) for further details.

Regardless of event source and mechanism, a work loop is primarily used for one thing: to run the completion
or Action routines specified by the event source. It guarantees that the routine handling an event is the
only one running at any given time. This aspect of work loops raises a design point. When a thread is running
code to handle an event, other events can be asynchronously delivered to their event sources, but they
cannot be processed until the handler returns. Therefore event handlers should not attempt to complete
large chunks of work or do anything that might block (that is, wait for some other process to complete), such
as allocating memory or other resources. Instead they should, if possible, queue up the work or otherwise
defer it for later processing.

70 Work Loops
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

Shared and Dedicated Work Loops

All I/O Kit services can easily share their provider’s work loop. The base of the driver Registry, representing
the logic board of the computer, always contains a work loop, so a driver is assured of having a work loop
even if it doesn’t create one itself. All a driver needs to do is call the IOService function getWorkLoop to
access its provider’s work loop.

In this way, an entire stack of driver objects, or a subset of such objects, can share one work loop. Figure
7-1 (page 71) shows how a work loop shared by multiple driver objects uses event sources to manage access
to its gating mechanism.

Figure 7-1 Driver objects sharing a work loop

IOWorkLoop

IOCommandGateClient

Client

Driver

IOCommandGate

IOTimerEventSource

IOInterruptEventSource

IOTimerEventSource

Most drivers won’t create their own work loop. If hardware doesn’t directly raise interrupts in your driver, or
if interrupts rarely occur in your driver, then you don’t need your own work loop. However, a driver that takes
direct interrupts—in other words, that interacts directly with the interrupt controller—should create its own
dedicated work loop. Examples of such drivers are PCI controller drivers (or any similar driver with a provider
class of IOPCIDevice) and RAID controller drivers. Even these work loops may be shared by the driver’s clients,
however, so it’s important to realize that in either case, the driver must not assume that it has exclusive use
of the work loop. This means that a driver should rarely enable or disable all events on its work loop, since
doing so may affect other I/O Kit services using the work loop.

If a driver handles interrupts or for some other reason needs its own work loop, it should override the IOService
function getWorkLoop to create a dedicated work loop, used by just the driver and its clients. If getWorkLoop
isn’t overridden, a driver object gets the next work loop down in its stack.

Examples of Obtaining Work Loops

To obtain a work loop for your client driver, you should usually use your provider’s work loop or, if necessary,
create your own. To obtain your provider’s work loop, all you have to do is call the IOService function
getWorkLoop and retain the returned object. Immediately after getting your work loop you should create
your event sources and add them to the work loop (making sure they are enabled).

Work Loops 71
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

To create a dedicated work loop for your driver, override the getWorkLoop function. Listing 7-1 (page 72)
illustrates a thread-safe implementation of getWorkLoop that creates the work loop lazily and safely.

Listing 7-1 Creating a dedicated work loop

protected:
 IOWorkLoop *cntrlSync;/* Controllers Synchronizing context */
// ...
IOWorkLoop * AppleDeviceDriver::getWorkLoop()
{
 // Do we have a work loop already?, if so return it NOW.
 if ((vm_address_t) cntrlSync >> 1)
 return cntrlSync;

 if (OSCompareAndSwap(0, 1, (UInt32 *) &cntrlSync)) {
 // Construct the workloop and set the cntrlSync variable
 // to whatever the result is and return
 cntrlSync = IOWorkLoop::workLoop();
 }
 else while ((IOWorkLoop *) cntrlSync == (IOWorkLoop *) 1)
 // Spin around the cntrlSync variable until the
 // initialization finishes.
 thread_block(0);

 return cntrlSync;
}

This code first checks if cntrlSync is a valid memory address; if it is, a work loop already exists, so the code
returns it. Then it tests to see if some other thread is trying to create a work loop by atomically trying to
compare and swap the controller synchronizer variable from 0 to 1 (1 cannot be a valid address for a work
loop). If no swap occurred, then some other thread is initializing the work loop and so the function waits for
the cntrlSync variable to stop being 1. If the swap occurred then no work loop exists and no other thread
is in the process of creating one. In this case, the function creates and returns the work loop, which unblocks
any other threads that might be waiting.

As you would when getting a shared work loop, invoke getWorkLoop in start to get your work-loop object
(and then retain it). After creating and initializing a work loop, you must create and add your event sources
to it. See the following section for more on event sources in the I/O Kit.

Event Sources

A work loop can have any number of event sources added to it. An event source is an object that corresponds
to a type of event that a device driver can be expected to handle; there are currently event sources for
hardware interrupts, timer events, and I/O commands. The I/O Kit defines a class for each of these event
types: IOInterruptEventSource, IOTimerEventSource, and IOCommandGate, respectively. Each of these classes
directly inherits from the abstract class IOEventSource.

An event-source object acts as a queue for events arriving from a particular event source and hands off those
events to the work-loop context when it asks them for work. When you create an event-source object, you
specify a callback function (also known as an “action” function) to be invoked to handle the event. Similar
to the Cocoa environment’s target/action mechanism, the I/O Kit stores as instance variables in an event
source the target of the event (the driver object, usually) and the action to perform. The handler’s signature
must conform to an Action prototype declared in the header file of the event-source class. As required, the

72 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

work loop asks each of its event sources in turn (by invoking their checkForWork function) for events to
process. If an event source has a queued event, the work loop runs the handler code for that event in its own
protected context. Note that when you register an event source with a work loop, the event source is provided
with the work loop's signaling semaphore, which it uses to wake the work loop. (For more information on
how the work loop sleeps and wakes, see the threadMain function in IOWorkLoop documentation.)

A client driver, in its activation phase (usually the start function), creates the event sources it needs and
adds them to its work loop. The driver must also implement an event handler for each event source, ensuring
that the function’s signature conforms to the Action function prototype defined for the event-source class.
For performance reasons, the event handler should avoid doing anything that might block (such as allocating
memory) and defer processing of large amounts of data. See “Work Loops ” (page 69) for further information
on event priority and deferring work in event handlers.

The procedure for adding event sources to a work loop is similar for each type of event source. It involves
four simple steps:

1. Obtain your work loop.

2. Create the event-source object.

3. Add the object to the work loop.

4. Enable the event source.

Disposing of an event source also has a common procedural pattern:

1. Disable the event source.

2. Remove it from the work loop.

3. Release the event source.

The following sections discuss the particulars of each event source and give examples specific to each kind.

Handling Interrupts

Interrupts are typically the most important type of event that drivers handle. They are the way that devices
attached to a computer inform the operating system that an asynchronous action has occurred and that,
consequently, they have some data. For example, when the user moves a mouse or plugs a Zip drive into a
USB port, a hardware interrupt is generated and the affected driver is notified of this event. This section
discusses interrupt handling in the I/O Kit, with particular attention to the role played by objects of
IOInterruptEventSource and its subclasses.

Interrupt Handling in the I/O Kit

The I/O Kit’s model for interrupt handling does not conform to the standard UNIX model. I/O Kit drivers nearly
always work in the indirect-interrupt context instead of dealing with direct interrupts, as does the UNIX
model. Indirect interrupts are less restrictive and permit the Mach scheduler to do its job. (Indirect interrupts
are sometimes known as secondary interrupts and direct interrupts as primary interrupts.) The difference
between the two types of interrupts has to do with the context in which the interrupt is dealt with.

Event Sources 73
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

Two types of events trigger an interrupt:

 ■ Command-based events, such as incoming networking packets and reads of storage media

 ■ Asynchronous events, such as keyboard presses

When an interrupt occurs, a specific interrupt line is set and, once the interrupted thread finishes the current
instruction, control branches to the interrupt controller registered with the Platform Expert. When the interrupt
controller receives the interrupt, its thread becomes that of the direct (primary) interrupt. There is typically
only one direct interrupt in the system at any one time, and the direct-interrupt context has the highest
priority in the system. The following list indicates the relative priorities of threads in the system:

1. Direct interrupt

2. Timers and page-out

3. Real time (multimedia)

4. Indirect interrupts (drivers)

5. Window Manager

6. User threads (including I/O requests)

Because of its extremely high priority, the direct-interrupt context has a design responsibility to hand off the
interrupt to lower-priority threads as soon as possible. The interrupt controller must decode why the interrupt
was taken, assign it to the appropriate driver object, and return.

In the direct-interrupt model, the target driver assumes the context carrying the direct interrupt. It must
handle the interrupt in this highest-priority context. The problem with direct interrupts is that they can be
neither lowered in priority nor preempted. All other interrupts are effectively disabled until the current
interrupt is handled. Direct interrupts especially don’t scale well in the Mac OS X multiprocessing environment.

With indirect interrupts, the interrupt controller dispatches the interrupt it reads off the interrupt line to the
appropriate interrupt event-source object of the target driver, effectively causing it to schedule on the driver’s
work-loop thread. The completion (or Action) routine defined by the event source is then run on the
work-loop thread to handle the interrupt. The priority of the work-loop thread, although high compared to
most client threads, is lower than the thread carrying the direct interrupt. Thus the completion routine running
in the work-loop thread can be preempted by another direct interrupt.

The I/O Kit does not prohibit access to the direct-interrupt context, and in fact provides a separate
programming interface for this purpose (see “Using Interrupt Handlers With No Work Loops” (page 77)).
However, use of direct interrupts is strongly discouraged.

A work loop can have several IOInterruptEventSource objects attached to it. The order in which these objects
are added to the work loop (through IOWorkLoop’s addEventSource function) determines the general
order in which interrupts from different sources are handled.

Figure 7-2 (page 75) illustrates some of these concepts. It shows events originating from different sources
being delivered to the corresponding event-source objects “attached” to the work loop. As with any
event-source object, each interrupt event source acts as a queue for events of that type; when there is an
event in the queue, the object signals the work loop that it has work for it. The work loop (that is, the dedicated
thread) awakes and queries each installed event source in turn. If an event source has work, the work loop
runs the completion routine for the event (in this case, an interrupt) in its own protected thread. The previous
thread—the client thread running the event-source code—is blocked until the routine finishes processing

74 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

the event. Then the work loop moves to the next interrupt event source and, if there is work, runs the
completion routine for that interrupt in its protected context. When there is no more work to do, the work
loop sleeps.

Figure 7-2 A work loop and its event sources

Indirect
interrupts

IOFilterInterruptEventSource

Indirect
interrupts

IOInterruptEventsource

IOWorkLoop

Shared work
loop

Indirect
interrupts

IOFilterInterruptEventSource

void handleInterrupt()
{
 // code that
 // handles the
 // interrupt
}

Remember that the order in which you add interrupt event sources to a work loop determines the order of
handling for specific interrupt events.

Setting Up an Interrupt Handler Attached to a Work Loop

A driver typically creates an interrupt event-source object—generally of the IOInterruptEventSource or
IOFilterInterruptEventSource class—in its start function by calling the factory creation method for the class
(for example, interruptEventSource). This method specifies the driver itself as a target and identifies an
action member function (conforming to the Action type defined for the event-source class) to be invoked
as the completion routine for the event source. The factory method also associates the driver with a provider
that deals with the hardware interrupt facility (usually a nub such as an IOPCIDevice). The driver then registers
the event source with the work loop through IOWorkLoop’s addEventSource function.

Listing 7-2 (page 75) provides an example for setting up an interrupt event source.

Listing 7-2 Adding an interrupt event source to a work loop

myWorkLoop = (IOWorkLoop *)getWorkLoop();

interruptSource = IOInterruptEventSource::interruptEventSource(this,
 (IOInterruptEventAction)&MyDriver::interruptOccurred,
 provider);

if (!interruptSource) {
 IOLog("%s: Failed to create interrupt event source!\n", getName());
 // Handle error (typically by returning a failure result).
 }

Event Sources 75
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

if (myWorkLoop->addEventSource(interruptSource) != kIOReturnSuccess) {
 IOLog("%s: Failed to add interrupt event source to work loop!\n",
 getName());
 // Handle error (typically by returning a failure result).
}

In this example, if you do not specify a provider in the interruptEventSource call, the event source
assumes that the client will call IOInterruptEventSource’s interruptOccurredmethod explicitly. Invocation
of this function causes the safe delivery of asynchronous events to the driver’s IOInterruptEventSource.

Events originating from direct interrupts are handled within the work loop’s thread, which should never block
indefinitely. This specifically means that the completion routines that handle interrupts, and any function
they invoke, must not allocate memory or create objects, as allocation can block for unbounded periods of
time.

You destroy an interrupt event source in a driver’s deactivation function (usually stop). Before you release
the IOInterruptEventSource object, you should disable it and then remove it from the work loop. Listing
7-3 (page 76) gives an example of how to do this.

Listing 7-3 Disposing of an IOInterruptEventSource

if (interruptSource) {
 interruptSource->disable();
 myWorkLoop->removeEventSource(interruptSource);
 interruptSource->release();
 interruptSource = 0;
}

Filter Interrupt Event Sources

The I/O Kit supports shared interrupts, where drivers share a single interrupt line. For this purpose it defines
the IOFilterInterruptEventSource class, a subclass of IOInterruptEventSource. Apple highly recommends that
third-party device driver writers base their interrupt event sources on the IOFilterInterruptEventSource class
instead of the IOInterruptEventSource class. The latter class does not ensure that the sharing of interrupt
lines is safe.

The IOFilterInterruptEventSource class follows the same model as its superclass except that it defines, in
addition to the Action completion routine, a special callback function. When an interrupt occurs the interrupt
invokes this function for each driver sharing the interrupt line. In this function, the driver responds by indicating
whether the interrupt is something that it should handle.

Listing 7-4 (page 76) shows how to set up and use an IOFilterInterruptEventSource.

Listing 7-4 Setting up an IOFilterInterruptEventSource

bool myDriver::start(IOService * provider)
{
 // stuff happens here

 IOWorkLoop * myWorkLoop = (IOWorkLoop *) getWorkLoop();
 if (!myWorkLoop)
 return false;

 // Create and register an interrupt event source. The provider will
 // take care of the low-level interrupt registration stuff.

76 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

 //
 interruptSrc =
 IOFilterInterruptEventSource::filterInterruptEventSource(this,
 (IOInterruptEventAction) &myDriver::interruptOccurred,
 (IOFilterInterruptAction) &myDriver::checkForInterrupt,
 provider);
 if (myWorkLoop->addEventSource(interruptSrc) != kIOReturnSuccess) {
 IOLog("%s: Failed to add FIES to work loop.\n", getName());
 }
 // and more stuff here...
}

bool myDriver::checkForInterrupt(IOFilterInterruptEventSource * src)
{
 // check if this interrupt belongs to me

 return true; // go ahead and invoke completion routine
}

void myDriver::interruptOccurred(IOInterruptEventSource * src, int cnt)
{
 // handle the interrupt
}

If your filter routine (the checkForInterrupt routine in Listing 7-4 (page 76)) returns true, the I/O Kit will
automatically start your interrupt handler routine on your work loop. The interrupt will remain disabled in
hardware until your interrupt service routine (interruptOccurred in Listing 7-4 (page 76)) completes.

Note: In some cases, such as the implementation of pseudo-DMA, this behavior may not be desirable. In
this case, you may choose to have your filter routine schedule the work on the work loop itself and then
return false. If you do this, the interrupt will not be disabled in hardware and you could receive additional
primary interrupts before your work loop–level service routine completes. Because this scheme has implications
for synchronization between your filter routine and your interrupt service routine, you should avoid doing
this unless your driver requires pseudo-DMA.

Using Interrupt Handlers With No Work Loops

The IOService class provides member functions for registering interrupt handlers that operate outside of the
work-loop mechanism. These handlers can be invoked in a direct interrupt context and must call the interrupt
management code of a provider such as an IOPCIDevice nub. Only one handler can be installed per interrupt
source. It must be prepared to create and run its own threads and do its own locking.

Few drivers need to use interrupt handlers that are created and controlled in this way. One example where
such an interrupt handler is justified is a multifunction card that needs to route direct interrupts to drivers.
If you take this course, be careful. Very few system APIs are safe to call in the direct-interrupt context.

More information on this subject is forthcoming.

Event Sources 77
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

Handling Timer Events

Device drivers occasionally need to set timers, usually to implement a timeout so the driver can determine
if an I/O request doesn’t complete within a reasonable period. The IOTimerEventSource class is designed for
that purpose.

Important: The absolute accuracy of timeouts in the I/O Kit cannot be guaranteed. The Mach scheduler can
always run a higher priority thread, which might delay the execution of the timer Action routine.

A driver creates an IOTimerEventSource with a callback Action function and a time at which to invoke that
function, and then registers it with the work loop to run on. When the timeout passes, the event source is
scheduled with the work loop. When the work loop queries it for work, the event source closes the work-loop
gate (by taking the work loop’s lock), invokes the callback function, and then releases the work-loop lock to
open the gate. Listing 7-5 (page 78) show how to create and register a timer event source.

Listing 7-5 Creating and registering a timer event source

myWorkLoop = (IOWorkLoop *)getWorkLoop();

timerSource = IOTimerEventSource::timerEventSource(this,
 (IOTimerEventSource::Action)&MyDriver::timeoutOccurred);

if (!timerSource) {
 IOLog("%s: Failed to create timer event source!\n", getName());
 // Handle error (typically by returning a failure result).
 }

if (myWorkLoop->addEventSource(timerSource) != kIOReturnSuccess) {
 IOLog("%s: Failed to add timer event source to work loop!\n", getName());
 // Handle error (typically by returning a failure result).
}

timerSource->setTimeoutMS(MYDRIVER_TIMEOUT);

Often a driver wants to set the timer and issue an I/O request at the same time. If the I/O request completes
before the timer event is triggered, the driver should cancel the timer immediately. If a timer event is triggered
first, the driver typically reissues the time-out I/O request (at which time it resets the timer).

If you want the timer event to be recurrent, you should reset the timer to the desired interval in the Action
handler. The IOTimerEventSource class does not have a mechanism for setting periodic timers. The class does
provide a few functions for setting relative and absolute timer intervals at various granularities (nanoseconds,
microseconds, and so on). The code fragment in Listing 7-5 (page 78) uses setTimeoutMS to set the timer
with a specific time-out millisecond interval.

Events originating from timers are handled by the driver’s Action routine. As with other event handlers, this
routine should never block indefinitely. This specifically means that timer handlers, and any function they
invoke, must not allocate memory or create objects, as allocation can block for unbounded periods of time.

To dispose of a timer event source, you should cancel the pending timer event before removing the event
source from the work loop and releasing it. Listing 7-6 (page 79) illustrates how you might do this in your
driver’s deactivation function.

78 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

Listing 7-6 Disposing of a timer event source

if (timerSource) {
 timerSource->cancelTimeout();
 myWorkLoop->removeEventSource(timerSource);
 timerSource->release();
 timerSource = 0;
}

I/O Requests and Command Gates

Driver clients use IOCommandGate objects to issue I/O requests to a driver. A command gate controls access
to the work-loop lock, and in this way it serializes access to the data involved in I/O requests. It does not
require a thread context switch to ensure single-threaded access. An IOCommandGate event source simply
takes the work-loop lock before it runs its Action routine; by doing so, it prevents other event sources on
the same work loop from scheduling. This makes it an efficient mechanism for I/O transfers.

Note that nub classes usually define Action functions for their own clients to use, so that driver classes don’t
have to use command gates themselves.

Up Calls and Down Calls

Calls originated by clients through a command gate are known as down calls. These always originate in a
thread other than the work loop’s context, and so they may safely block without causing a deadlock (as long
as they don’t hold the work-loop gate). All allocation should occur on the down-call side of an I/O request
before the command gate is closed.

Up calls, which are originated by an interrupt or timer event, occur within the work loop’s context and should
never block indefinitely. This specifically means that interrupt and timeout handlers, and any function they
invoke, must not allocate memory or create objects, as allocation can block and, as a potential consequence,
cause a paging deadlock.

It’s possible for an up call to result in a client notification that immediately results in another I/O request
through the command gate. A work loop can handle recursive closing of its gate by the same thread, so this
situation never results in deadlock. However, because the new request is occurring on the context of an up
call, that request cannot block; this concern belongs to the system client making the I/O request, though, so
you need never worry about this as a driver developer.

Setting Up and Using Command Gates

Prior to closing a command gate, you should adequately prepare the I/O request. An I/O request involves
three things: the command itself (which is family-specific), the memory involved in the transfer (defined as
an IOMemoryDescriptor object), and the function to call to process the request within the context of the
command gate. See “Managing Data” (page 83) for information on IOMemoryDescriptors and related objects.

Command gates should be closed for the briefest possible period, during which the least amount of work
possible is performed. The longer a command gate holds the work-loop lock, the greater the likelihood of
contention. As with all event sources, the command-gate function should not allocate memory or any other
unbounded resource because of the danger of blocking. Instead, the client should preallocate the required
resources before control is transferred to the work-loop context. For example, it could allocate a pool of
resources in its start function.

Event Sources 79
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

You create an IOCommandGate object by calling the commandGate factory method, specifying as parameters
the object “owner” of the event source (usually this) and a pointer to a function conforming to the Action
prototype. You then register the command gate with the client’s work loop using IOWorkLoop’s
addEventSource function. Listing 7-7 (page 80) gives an example of this procedure.

Listing 7-7 Creating and registering a command gate

workLoop = (IOWorkLoop *)getWorkLoop();
commandGate = IOCommandGate::commandGate(this,
 (IOCommandGate::Action)receiveMsg);
if (!commandGate ||
 (workLoop->addEventSource(commandGate) != kIOReturnSuccess)) {
 kprintf("can't create or add commandGate\n");
 return false;
}

The IOCommandGate class provides two alternatives for initiating the execution of an I/O request within the
command gate. One is the runCommandmember function and the other is the runActionmember function.
These functions work similarly. When the client wishes to invoke the Action function, rather than invoking
it directly, it invokes the command gate’s runCommand or runAction function, passing in all required
arguments. The command gate then grabs the work-loop lock (that is, it closes the command gate), invokes
the Action function, and then opens the gate.

Where the two functions differ is in their flexibility. The runCommand function makes use of the same
target/action mechanism used by the other event-source classes. In this mechanism, the created
IOCommandGate object encapsulates (a pointer to) an Action function as well as the target (or “owner”)
object that implements this function. In this model, only one Action function can be invoked for an I/O
request.

However, a driver often has to deal with multiple sources of I/O requests. If this is the case, you can use the
runAction function to issue I/O requests in multiple command gates. This function lets you define the
function to be called within the command-gate context; you must specify a pointer to this function as the
first parameter.

Important: Do not call the runAction or runCommand function from interrupt context.

Listing 7-8 (page 80) illustrates one the use of the runCommand function to issue an I/O request.

Listing 7-8 Issuing an I/O request through the command gate

void ApplePMU::enqueueCommand (PMUrequest * request)
{
 commandGate->runCommand(request);
}

void receiveMsg (OSObject * theDriver, void * newRequest, void *, void *, void
 *)
{
 ApplePMU * PMUdriver = (ApplePMU *) theDriver;
 PMUrequest * theRequest = (PMUrequest*)newRequest;

 // Inserts the request in the queue:
 theRequest->prev = PMUdriver->queueTail;
 theRequest->next = NULL;
 if (PMUdriver->queueTail != NULL) {

80 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

 PMUdriver->queueTail->next = theRequest;
 }
 else {
 PMUdriver->queueHead = theRequest;
 }
 PMUdriver->queueTail = theRequest;

 // If we can, we process the next request in the queue:
 if ((PMUdriver->PGE_ISR_state == kPMUidle) && !PMUdriver->adb_reading) {
 PMUdriver->CheckRequestQueue();
 }
}

In this example, the runCommand function is used to indirectly invoke the command gate’s Action function,
receiveMsg. One important tactic that this example shows is how to defer processing I/O requests—when
allocation of memory and other resources might be necessary—until no more events are queued at the
command gate. The receiveMsg function queues up each incoming request and, if no more requests are
pending, calls a CheckRequestQueue function to do the actual I/O work.

A typical procedure is to set a timeout (using an IOTimerEventSource object) at the same time you issue an
I/O request. If the I/O request does not complete within a reasonable period, the timer is triggered, giving
you the opportunity to correct any problem (if possible) and reissue the I/O request. If the I/O request is
successful, remember to disable the timer. See “Handling Timer Events ” (page 78) for details on using
IOTimerEventSources.

You destroy an command-gate event source in a driver’s deactivation function (usually stop). Before you
release the IOCommandGate object, you should remove it from the work loop. Listing 7-9 (page 81) gives
an example of how to do this.

Listing 7-9 Disposing of an IOCommandGate

if (commandGate) {
 myWorkLoop->removeEventSource(commandGate);
 commandGate->release();
 commandGate = 0;
}

Completion Chaining

Occasionally, the driver writer must deal with constraints imposed by hardware, such as a maximum byte
size for requests that are at odds with what the driver’s client expects. For example, the hardware may transfer
data in 64-kilobyte chunks, but the driver’s client expects to transfer data in 128-byte buffers.

For situations such as this, the driver writer can do completion chaining. In completion chaining, one I/O
request is used to trigger another I/O request asynchronously. Completion chaining is a way to break up an
original I/O request into a series of smaller requests in response to the constraints of hardware. For example,
the first requests can be to read the data, the second to modify it appropriately, and the third to write the
data in the expected size to the provider and return, as expected, to the originator of the request. Each leg
of the compound request is asynchronous; it issues the next request upon completion of the current request.

It generally works like this. A driver’s command gate initiates an I/O request. The request carries a pointer to
the new completion routine, implemented in your driver, along with an opaque context structure known
only to your driver. The original completion information from your driver’s client is also saved away inside
this context. When the request completes, your completion routine is called in place of the original one, with

Event Sources 81
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

your context passed in. Your completion routine would submit the next leg of the request, if any; otherwise,
it would invoke the original completion when the compound request completes. Completion chaining thus
permits a linked list of I/O requests that are scheduled one after another, entirely asynchronously.

For an example of completion chaining, look at the implementation of the IOBlockStorageDriver class,
especially the deblockRequestCompletion and deblockRequest methods. You can find the
implementation of this class in the IOStorageFamily project in the Darwin Open Source project.

82 Event Sources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Events

A driver’s essential work is to shuffle data in and out of the system in response to client requests as well as
events such as hardware-generated interrupts. The I/O Kit defines standard mechanisms for drivers to do
this using a handful of classes. Drivers use the IOMemoryDescriptor and IOMemoryCursor classes (and, in
Mac OS X v10.4.7 and later, the IODMACommand class) to perform pre-I/O and post-I/O processing on data
buffers, such as translating them between client formats and hardware-specific formats. This chapter discusses
these classes and various issues related to device drivers and data management.

Drivers handle client requests and other events using the IOWorkLoop and IOEventSource classes to serialize
access and thereby protect their critical data. Because of these mechanisms, drivers rarely have to worry
about such issues as protecting critical data or disabling and enabling interrupts during the normal course
of handling a request. See the chapter “Handling Events” (page 69) for information.

Handling I/O Transfers

An I/O transfer is little more than a movement of data between one or more buffers in system memory and
a device. “System memory” in this context, however, refers to actual physical memory, not the virtual memory
address space used by both user and kernel tasks in Mac OS X. Because I/O transfers at the level of device
drivers are sensitive to the limitations of hardware, and hardware can “see” only physical memory, they
require special treatment.

Input/output operations in Mac OS X occur within the context of a virtual memory system with preemptive
scheduling of tasks and threads. In this context, a data buffer with a stable virtual address can be located
anywhere in physical memory, and that physical memory location can change as virtual memory is paged
in and out. It’s possible for that data buffer to not be in physical memory at all at any given time. Even kernel
memory, which isn’t subject to relocation, is accessed by the CPU in a virtual address space.

For a write operation, where data in the system is being sent out, a data buffer must be paged in if necessary
from the virtual memory store. For a read operation, where a buffer will be filled by data brought into the
system, the existing contents of the data buffer are irrelevant, so no page-in is necessary; a new page is simply
allocated in physical memory, with the previous contents of that page being overwritten (after being paged
out, if necessary).

Yet a requirement for I/O transfers is that the data in system memory not be relocated during the duration
of the transfer. To guarantee that a device can access the data in buffers, the buffers must be resident in
physical memory and must be wired down so that they don’t get paged out or relocated. Then the physical
addresses of the buffers must be made available to the device. After the device is finished with the buffers,
they must be unwired so that they can once again be paged out by the virtual memory system.

To help you deal with these and other constraints of hardware, the I/O Kit puts several classes at your disposal.

Handling I/O Transfers 83
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Memory Descriptors and Memory Cursors

In a preemptive multitasking operating system with built-in virtual memory, I/O transfers require special
preparation and post-completion processing:

 ■ The space needed for an I/O transfer must reside in physical memory and must be wired down so it can’t
be paged out until the transfer completes.

 ■ The virtual memory addresses used by software must be converted to physical addresses, and the buffer
addresses and lengths must be collected into the scatter/gather lists that describe the data to be
transferred.

 ■ After the transfer completes, the memory must be unwired so it can be paged out.

In the I/O Kit, all of this work is performed by objects of the IOMemoryDescriptor and IOMemoryCursor classes
(see “Supporting DMA on 64-Bit System Architectures” (page 89) for information on the IODMACommand
class, which supersedes IOMemoryCursor in Mac OS X v10.4.7 and later). An I/O request typically includes an
IOMemoryDescriptor object that describes the areas of memory involved in the transfer. Initially, the description
takes the form of an array of structures, each consisting of a client task identifier (task_t), an offset into the
client’s virtual address space, and a length in bytes. A driver uses the memory descriptor to prepare the
memory pages—paging them into physical memory, if necessary, and wiring them down—by invoking the
descriptor’s prepare function.

When the memory is prepared, a driver at a lower level of the stack—typically a driver that controls a DMA
(Direct Memory Access) engine—then uses a memory-cursor object to get the memory descriptor’s buffer
segments and with them generate a scatter/gather list suitable for use with the hardware. It does this by
invoking the getPhysicalSegments function of the memory cursor and doing any necessary processing
on the segments it receives. When the I/O transfer is complete, the driver originating the I/O request invokes
the memory descriptor’s complete function to unwire the memory and update the virtual-memory state.
When all this is done, it informs the client of the completed request.

Beginning in Mac OS X v10.2, IOBufferMemoryDescriptor (a subclass of IOMemoryDescriptor) allows a buffer
to be allocated in any task for I/O or sharing through mapping. In previous versions of Mac OS X, an
IOBufferMemoryDescriptor object could only represent a buffer allocated in the kernel’s address space. In
Mac OS X v10.2 and later, however, the changes to the IOBufferMemoryDescriptor API support a better way
to handle I/O generated at the behest of a nonkernel client. Apple recommends that such I/O be sent to
buffers the kernel allocates in the client’s address space using the IOBufferMemoryDescriptor API. This gives
control of the allocation method to the kernel, ensuring that the buffer is allocated in accordance with internal
guidelines dictated by the virtual-memory system. The user task can still specify the kind of buffer to be
allocated, such as pageable or sharable. And, the user task can still access the buffer using the vm_address_t
and vm_size_t variables it receives from the user client. For software running in Mac OS X v10.2 and later,
Apple recommends that:

 ■ User tasks no longer use malloc or other user-level library functions to allocate I/O buffers in their own
address space.

 ■ User clients use IOBufferMemoryDescriptor objects to represent kernel-allocated buffers instead of the
IOMemoryDescriptor objects that represented user task–allocated buffers.

Network drivers are the exception to the use of IOMemoryDescriptor objects. The Network family instead
uses the mbuf structure defined by the BSD kernel networking stacks. BSD mbuf structures are already
optimized for handling network packets, and translating between them and memory descriptors would

84 Handling I/O Transfers
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

merely introduce unnecessary overhead. The network family defines subclasses of IOMemoryCursor for
extracting scatter/gather lists directly from mbuf structures, essentially making this aspect of I/O handling
the same for network drivers as for any other kind of driver.

IOMemoryDescriptor and IOMemoryCursor are capable of handling the management and reuse of memory
buffers for most drivers. Drivers with special requirements, such as that all buffer memory be contiguous or
located within a particular area in physical memory, must perform the extra work necessary to meet these
requirements, but still use memory descriptors and cursors for their interaction with the I/O Kit.

Memory in an I/O Request

Although the preceding section discusses how I/O Kit drivers transfer data between device and system
memory by using objects of the IOMemoryDescriptor and IOMemoryCursor classes, it does so at a fairly
general level. It’s also instructive to consider an I/O request at a more detailed level: What happens from the
moment a user process makes a call to write or read data to the instant the data is transferred to or from a
device? What are the exact roles played by IOMemoryDescriptors, IOMemoryCursors, and other I/O Kit objects
in this chain of events?

All read and write operations in user space—that is, made by applications or other non-kernel processes—are
based ultimately on I/O vectors. An I/O vector is an array of structures, each of which gives the address and
length of a contiguous chunk of memory of a particular process; this memory is expressed in the virtual
address space of the process. An I/O vector is sometimes known as a scatter/gather list.

To start with a more specific example, a process makes a call to write some data to a device. It must pass in
a minimum set of parameters: a handle to the target of the call (io_service_t), a command (“write”), the
base address of the I/O vector array, and the number of array elements. These parameters get passed down
to the kernel. But how is the kernel to make sense of them, particularly the base address of the array, which
is typed as void *. The kernel lives in its own virtual address space, and the virtual address space of a user
process, untranslated, means nothing to it.

Before going further, let’s review the memory maps maintained by the operating system. In Mac OS X there
are three different kinds of address space:

 ■ The virtual address space of individual user processes (such as applications and daemons)

 ■ The virtual address space of the kernel (which includes the I/O Kit)

 ■ Physical address space (system memory)

When a user process issues an I/O call, the call (with its parameters) percolates down to the kernel. There the
I/O Kit converts the handle parameter to an object derived from an appropriate IOUserClient subclass. The
user-client object logically sits astride the boundary separating the kernel and user space. There is one user
client per user process per device. From the perspective of the kernel, the user client is a client driver at the
top of the stack that communicates with the nub object below it (see Figure 8-1 (page 86)).

Handling I/O Transfers 85
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Figure 8-1 The role of the user client in an I/O command

User virtual
address space

User process
writev(handle, addr, len)

User client
IOMemoryDescriptor::prepare()

Kernel virtual
address space

-
-
-

Nub object

The user client also translates between the address spaces, mapping the user-process buffers into the kernel’s
virtual address space. To do this, it creates an IOMemoryDescriptor object from the other parameters specified
in the original call. The particular power of an IOMemoryDescriptor object is that it can describe a piece of
memory throughout its use in an I/O operation and in each of the system’s address spaces. It can be passed
between various drivers up and down the driver stack, giving each driver an opportunity to refine or manipulate
the command. A driver can also reuse a memory descriptor; in some circumstances, it is better—if continuous
allocation is going to involve a performance hit—to create a pool of IOMemoryDescriptors ahead of time
and recycle them.

After the user client creates (or reuses) the IOMemoryDescriptor object, it immediately invokes the memory
descriptor’s prepare member function. The prepare call first makes sure physical memory is available for
the I/O transfer. Because this is a write operation, the virtual memory system may have to page in the data
from its store. If it were a read operation, the virtual-memory (VM) pager might have to swap out some other
pages from physical memory to make room for the I/O transfer. In either case, when the VM pager is involved
in preparing physical memory, there are implications for bus controller drivers that program DMA engines
or otherwise must deal directly with the requirements of devices (see “DMA and System Memory” (page 91)).
After sufficient physical memory is secured for the I/O transfer, the prepare function wires the memory
down so it cannot be paged out.

The prepare call must be made before the I/O command crosses formally into the I/O Kit, and it should also
be made on the requesting client’s thread and before taking any locks. Never invoke prepare within the
command-gate context because prepare is a synchronous call and can block (that is, wait for some other
process to complete) indefinitely. When prepare returns, the user client (typically) initiates the call to schedule
the I/O request, passing the memory descriptor to a driver down the stack (through established interfaces,
as described in “Relaying I/O Requests” (page 90)). The memory descriptor might be passed along to other
drivers, each of which might manipulate its contents, until it eventually reaches an object that is close to the
hardware itself—typically a bus controller driver or that driver’s client nub. This object schedules the I/O
request and takes the command (see “I/O Requests and Command Gates ” (page 79) for information on
command gates). Within the command gate it usually queues up the request for processing as soon as the
hardware is free.

86 Handling I/O Transfers
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Figure 8-2 The principal I/O Kit objects in an I/O transfer

User virtual
address space

User client
IOMemoryDescriptor::prepare()

Storage driver
IOStorage::write()

Bus controller driver
IOMemoryCursor::getPhysicalSegments()

IOCommandGate::runAction()

Kernel virtual
address space

-
-
-

DMA
Engine

physical
memory-

-
-

Ultimately receiving the request at the lower levels of the driver stack is a bus controller driver (such as for
ATA or SCSI). This lower-level driver object must program the controller’s DMA engine or otherwise create a
scatter/gather list to move data directly into and out of the device. Using an IOMemoryCursor object, this
driver generates physical addresses and lengths from the memory descriptor’s buffer segments and does
any other work necessary to create a scatter/gather list with the alignment, endian format, and size factors
required by the hardware. To generate the segments, it must call the getPhysicalSegments function of
the memory cursor. This whole procedure is run in the work-loop context. At the completion of the transfer,
a hardware interrupt is typically generated to initiate an I/O transfer in the other direction.

When the I/O transfer is complete, the object that called prepare invokes the memory descriptor’s complete
function to unwire the memory and update the virtual-memory state. It’s important to balance each prepare
with a corresponding complete. When all this is done, the user client informs the originating process of the
completed request.

Issues With 64-Bit System Architectures

Beginning with Mac OS X v10.3 and later, Apple introduced some changes to allow existing device drivers
to work with the new 64-bit system architectures. The problem to be solved involved the communication
between devices on the PCI bus, which can handle 32-bit addresses, and the 64-bit main memory.

Then, in Mac OS X v10.4.7, Apple introduced the IODMACommand class to allow device drivers that perform
DMA to address 64-bit main memory in Intel-based Macintosh computers. The following sections describe
these changes.

Handling I/O Transfers 87
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Address Translation on 64-Bit System Architectures

Apple solved the problem with address translation which “maps” blocks of memory into the 32-bit address
space of a PCI device. In this scheme, the PCI device still sees a 4-gigabyte space, but that space can be made
up of noncontiguous blocks of memory. A part of the memory controller called the DART (device address
resolution table) translates between the PCI address space and the much larger main memory address space.
The DART handles this by keeping a table of translations to use when mapping between the physical addresses
the processor sees and the addresses the PCI device sees (called I/O addresses).

The address-translation process is transparent if your driver adheres to documented, Apple-provided APIs.
For example, when your driver calls the IOMemoryDescriptor method prepare, a mapping is automatically
placed in the DART. Conversely, when your driver calls IOMemoryDescriptor’s releasemethod, the mapping
is removed. Although this has always been the recommended procedure, failure to do this in a driver running
on Mac OS X v10.3 or later may result in random data corruption or panics. Be aware that the release
method does not take the place of the complete method. As always, every invocation of prepare should
be balanced with an invocation of complete.

If your driver experiences difficulty on a Mac OS X v10.3 system, you should first ensure that you are following
these guidelines:

 ■ Always call IOMemoryDescriptor::prepare to prepare the physical memory for the I/O transfer (this
also places a mapping into the DART).

 ■ Balance each IOMemoryDescriptor::preparewith an IOMemoryDescriptor::complete to unwire
the memory.

 ■ Always call IOMemoryDescriptor::release to remove the mapping from the DART.

 ■ On hardware that includes a DART, pay attention to the DMA direction for reads and writes. On a 64-bit
system, a driver that attempts to write to a memory region whose DMA direction is set up for reading
will cause a kernel panic.

One side effect of these changes in the memory subsystem is that Mac OS X is likely to return physically
contiguous page ranges in memory regions. In earlier versions of Mac OS X, the system returned multi-page
memory regions in reverse order, beginning with the last page and moving towards the first page. Because
of this, a multi-page memory region seldom contained a physically contiguous range of pages.

The greatly increased likelihood of seeing physically contiguous blocks of memory in memory regions might
expose latent bugs in drivers that did not previously have to handle physically contiguous pages. Be sure to
check for this possibility if your driver is behaving incorrectly or panicking.

Another result of the memory-subsystem changes concerns physical addresses a driver might obtain directly
from the pmap layer. Because there is not a one-to-one correspondence between physical addresses and
I/O addresses, physical addresses obtained from the pmap layer have no purpose outside the virtual memory
system itself. Drivers that use pmap calls (such as pmap_extract) to get such addresses will fail to work on
systems with a DART. To prevent the use of these calls, Mac OS X v10.3 will refuse to load a kernel extension
that uses them, even on systems without a DART.

88 Handling I/O Transfers
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Supporting DMA on 64-Bit System Architectures

As described in “Address Translation on 64-Bit System Architectures” drivers running in Mac OS X v10.3 and
later that use documented, Apple-provided APIs experience few (if any) problems when addressing physical
memory on 64-bit systems, because the address translation performed by the DART is transparent to them.
However, current Intel-based Macintosh computers do not include a DART and this has ramifications for
device drivers that need to use physical addresses, such as those that perform DMA.

Because there is no hardware-supported address translation, or remapping, performed in current Intel-based
Macintosh computers, device drivers that need to access physical memory must be able to address memory
above 4 gigabytes. In Mac OS X v10.4.7 and above, you can use the IODMACommand class to do this.

Important: A device driver running in Mac OS X v10.4.7 and later that targets Intel-based Macintosh computers
must be updated to use IODMACommand if it uses physical addresses. A device driver running in Mac OS X
v10.4.7 and later that targets PowerPC-based Macintosh computers is not required to do so, but it’s
recommended, especially if the driver uses physical addresses.

The IODMACommand class supersedes the IOMemoryCursor class: it provides all the functionality of
IOMemoryCursor and adds a way for you to specify your hardware’s addressing capability and functions to
copy memory to a bounce buffer when necessary. When you instantiate an IODMACommand object, you
can specify the following attributes:

 ■ The number of address bits your hardware can support (for example, 32, 40, or 64)

 ■ The maximum segment size

 ■ Any alignment restrictions required by your hardware

 ■ The maximum I/O transfer size

 ■ The format of the physical address segments IODMACommand returns (for example, 32-bit or 64-bit and
big-endian, little-endian, or host-endian)

In the typical case, you use an IODMACommand object in the following way:

1. Create an IODMACommand object per I/O transaction (you can create a pool of IODMACommand objects
when your driver starts).

2. When an I/O request arrives, use IODMACommand::setMemoryDescriptor to target the
IOMemoryDescriptor object representing the request.

3. Call IODMACommand::prepare (among other things, this function allocates the mapping resources that
may be required for the transfer).

4. Use IODMACommand functions to generate the appropriate physical addresses and lengths
(IODMACommand::gen64IOVMSegments returns 64-bit addresses and lengths and
IODMACommand::gen32IOVMSegments returns 32-bit addresses and lengths).

5. Start the hardware I/O.

6. When the I/O is finished, call IODMACommand::complete (to complete the processing of DMA mappings),
followed by IODMACommand::clearMemoryDescriptor (to copy data from the bounce buffer, if
necessary, and release resources).

Handling I/O Transfers 89
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Note: The IODMACommand prepare and complete functions are distinct from the IOMemoryDescriptor
prepare and complete functions. The IODMACommand prepare and complete functions bracket the
start and end of the DMA transaction, whereas the IOMemoryDescriptor prepare and complete functions
wire and unwire the memory, and must be called as usual.

If your DMA engine does complicated things, such as performing partial I/Os or synchronizing multiple
accesses to a single IOMemoryDescriptor, you should write your driver assuming that the memory will be
bounced. You don’t need to add code that checks for bouncing, because IODMACommand functions, such
as synchronize, are no-ops when they are unnecessary.

Relaying I/O Requests

Client requests are delivered to drivers through specific functions defined by the driver’s family. A storage
family driver, for example, handles read requests by implementing the function read. Similarly, a network
family driver handles requests for transmitting network packets by implementing the function outputPacket.

An I/O request always includes a buffer containing data to write or providing space for data to be read. In
the I/O Kit this buffer takes the form of an IOMemoryDescriptor object for all families except networking,
which uses the mbuf structure defined by BSD for network packets. These two buffer mechanisms provide
all drivers with optimized management of data buffers up and down the driver stacks, minimizing the copying
of data and performing all the steps required to prepare and complete buffers for I/O operations.

An I/O Kit family defines I/O and other request interfaces. You typically don’t have to worry about protection
of resources in a reentrant context for your driver, unless it specifically forgoes the protection offered by the
family or the I/O Kit generally.

More on Memory Descriptors

A memory descriptor is an object inheriting from the IOMemoryDescriptor class that describes how a stream
of data, depending on direction, should either be laid into memory or extracted from memory. It represents
a segment of memory holding the data involved in an I/O transfer and is specified as one or more physical
or virtual address ranges (a range being a starting address and a length in bytes).

An IOMemoryDescriptor object permits objects at various levels of a driver stack to refer to the same piece
of data as mapped into physical memory, the kernel’s virtual address space, or the virtual address space of
a user process. The memory descriptor provides functions that can translate between the various address
spaces. In a sense, it encapsulates the various mappings throughout the life of some piece of data involved
in an I/O transfer.

IOMemoryDescriptor is an abstract base class defining common methods for describing physical or virtual
memory. Although it is an abstract class, the I/O Kit provides a concrete general-purpose implementation of
IOMemoryDescriptor for objects that are directly instantiated from the class. The I/O Kit also provides two
specialized public subclasses of IOMemoryDescriptor: IOMultiMemoryDescriptor and IOSubMemoryDescriptor.
Table 8-1 (page 91) describes these classes.

90 Relaying I/O Requests
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

Table 8-1 Subclasses of IOMemoryDescriptor

DescriptionClass

Wraps multiple general-purpose memory descriptors into a single memory
descriptor. This is commonly done to conform to a bus protocol.

IOMultiMemoryDescriptor

Represents a memory area which comes from a specific subrange of some
other IOMemoryDescriptor.

IOSubMemoryDescriptor

The IOMemoryDescriptor base class itself defines several methods that can be usefully invoked from objects
of all subclasses. Some methods return the descriptor’s physically contiguous memory segments (for use
with an IOMemoryCursor object) and other methods map the memory into any address space with caching
and placed-mapping options.

A related and generally useful class is IOMemoryMap. When you invoke IOMemoryDescriptor’s map method
to map a memory descriptor in a particular address space, an IOMemoryMap object is returned. Objects of
the IOMemoryMap class represent a mapped range of memory as described by an IOMemoryDescriptor. The
mapping may be in the kernel or a non-kernel task, or it may be in physical memory. The mapping can have
various attributes, including processor cache mode.

More on Memory Cursors

An IOMemoryCursor lays out the buffer ranges in an IOMemoryDescriptor object in physical memory. By
properly initializing a memory cursor and then invoking that object’s getPhysicalSegments function on
an IOMemoryDescriptor, a driver can build a scatter/gather list suitable for a particular device or DMA engine.
The generation of the scatter/gather list can be made to satisfy the requirements of segment length, transfer
length, endian format, and alignment imposed by the hardware.

A controller driver for a bus such as USB, ATA, or FireWire is typically the object that uses IOMemoryCursors.
Such drivers should create an IOMemoryCursor and configure the memory cursor to the limitations of the
driver’s DMA hardware or (if PIO is being used instead) the limitations of the device itself. For instance, the
memory cursor used for the FireWire SBP-2 protocol should be configured to a maximum physical segment
size of 65535 and an unlimited transfer size.

You can configure an IOMemoryCursor in a variety of ways. The most obvious way is to supply the initialization
parameters: maximum segment size, maximum transfer length, and a pointer to a segment function. This
callback function, typed SegmentFunction, writes out a single physical segment to an element in a vector
array defining the scatter/gather list. Your driver can also perform post-processing on the extracted segments,
swapping bytes or otherwise manipulating the contents of the segments. Finally, you can create a subclass
of IOMemoryCursor or use one of the subclasses provided by Apple. See “IOMemoryCursor Subclasses” (page
93) for more on this topic.

DMA and System Memory

Writers of bus controller drivers have two basic considerations when they effect I/O transfers. They are
receiving data laid out in memory in a particular way and they must send that data to a destination that
might expect a radically different memory layout. Depending on direction, the source and destination can

More on Memory Cursors 91
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

be either a DMA engine (or a specific device) or the client memory represented by an IOMemoryDescriptor.
Additionally, memory coming from the system might be conditioned by the Unified Buffer Cache (UBC) and
this has implications for driver writers. This section discusses some of these factors.

Direct Memory Access (DMA) is a built-in capability of certain bus controllers for directly transferring data
between a device attached to the bus and system memory—that is, the physical memory on the computer’s
motherboard. DMA enhances system performance by freeing the microprocessor from having to do the
transfer of data itself. The microprocessor can work on other tasks while the DMA engine takes care of moving
data in and out of the system.

Each bus on a Mac OS X system has its own DMA engine and they all are different. The PCI bus controller on
Mac OS X uses bus master DMA, a type of DMA wherein the controller controls all I/O operations on behalf
of the microprocessor. Other bus controllers (ATA, SCSI, or USB, for example) implement different DMA
engines. Each engine can have its own alignment, endian format, and size restrictions.

An alternative to DMA is the Programmed Input/Output (PIO) interface, usually found on older or
under-designed hardware. In PIO, all data transmitted between devices and system memory goes through
the microprocessor. PIO is slower than DMA because it consumes more bus cycles to accomplish the same
transfer of data.

Mac OS X supports both bus master DMA and PIO for moving data in and out of the system. In fact, some
drivers could conceivably make use of both models for the same I/O transfer—for example, processing most
bytes using DMA and then processing the last few bytes using PIO, or using PIO to handle error conditions.

The Unified Buffer Cache (UBC) is a kernel optimization that combines the file-system cache and the
virtual-memory (VM) cache. The UBC eliminates the situation where the same page is duplicated in both
caches. Instead, there is just one image in memory and pointers to it from both the file system and the VM
system. The underlying structure of the UBC is the Universal Page List (UPL). The VM pager deals with memory
as defined by UPLs; when an I/O request is based on paged-in memory, it is called a conforming request. A
non-conforming request is one that isn’t UPL-defined. A UPL segment of memory has certain characteristics;
it:

 ■ Is page sized (4 kilobytes)

 ■ Is page aligned

 ■ Has a maximum segment size of 128 kilobytes

 ■ Is already mapped into the kernel’s virtual address space

The I/O Kit has adapted its APIs to the UPL model because it’s more efficient for I/O transfers; in addition, it
makes it easier to batch I/O requests. An IOMemoryDescriptor object might be backed—entirely or
partially—by UPL-defined memory. If the object is backed by a UPL, then there cannot be more than a
prearranged number of physical segments. The bus controller driver that extracts the segments (using an
IOMemoryCursor) must allocate sufficient resources to issue the I/O request associated with the memory
descriptor.

Dealing With Hardware Constraints

Apple’s policy on how drivers should deal with hardware constraints is generous toward clients of DMA
controller drivers and places certain expectations on the drivers themselves.

 ■ Clients of DMA controller drivers have no alignment restrictions placed on them. Generally, UPL-defined
data (page-aligned and page-sized) should be optimal, but it is not required.

92 More on Memory Cursors
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

 ■ If the memory is UPL-defined, then in order to avoid deadlocking the driver should not allocate memory.
Controller drivers must be able to process a UPL without allocating any buffers, or they must preallocate
sufficient resources prior to any particular UPL-based I/O transfer. Operations that don’t meet the pager
constraints (that is, that aren’t UPL-based) can allocate buffers.

 ■ A controller driver must do its best to honor any request that it receives. If necessary, it should even
create a buffer (or even use a static buffer), or preallocate resources and copy the data. (Remember that
allocation during an I/O request can cause a deadlock.) If the driver cannot execute the I/O request, it
should return an appropriate error result code.

In summary, driver writers must be prepared to handle a request for any alignment, size, or other restriction.
They should first attempt to process the request as conforming to UPL specifications; if the assumption of
UPL proves true, they should never allocate memory because doing so could lead to deadlock. If the request
is non-conforming, the driver should (and can) do whatever it has to do to satisfy the request, including
allocating resources.

IOMemoryCursor Subclasses

Apple provides several subclasses of IOMemoryCursor for different situations. If your DMA engine requires
a certain endian data format for its physical segments, your driver can use the subclasses that deal with
big-endian and little-endian data formats (and thus will not have to perform this translation when it builds
the scatter/gather lists for the DMA engine). Another subclass enables your driver to lay out data in the byte
orientation expected by the system’s processor. Table 8-2 (page 93) describes these subclasses.

Table 8-2 Apple-provided subclasses of IOMemoryCursor

DescriptionSubclass

Extracts and lays out a scatter/gather list of physical segments in the natural
byte order for the given CPU.

IONaturalMemoryCursor

Extracts and lays out a scatter/gather list of physical segments encoded in
big-endian byte format. Use this memory cursor when the DMA engine requires
a big-endian address and length for each segment.

IOBigMemoryCursor

Extracts and lays out a scatter/gather list of physical segments encoded in
little-endian byte format. Use this memory cursor when the DMA engine requires
a little-endian address and length for each segment.

IOLittleMemoryCursor

Of course, you can create your own subclass of the virtual IOMemoryCursor or of one of its subclasses to
have your memory cursor accomplish exactly what you need it to do. But in many cases, you may not have
to create a subclass to get the behavior you’re looking for. Using one of the provided memory-cursor classes,
you can implement your own outputSegment callback function (which must conform to the
SegmentFunction prototype). This function is called by the memory cursor to write out a physical segment
in the scatter/gather list being prepared for the DMA engine. In your implementation of this function, you
can satisfy any special layouts required by the hardware, such as alignment boundaries.

More on Memory Cursors 93
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

94 More on Memory Cursors
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Managing Data

The power-management functionality of the I/O Kit aims to minimize the power consumed by a computer
system, behavior that is especially important for portable computers where battery life is a crucial feature.
Power management also imposes an orderly sequence of actions, such as saving and restoring state, when
a system (or a part of it) sleeps or wakes.

This chapter focuses on power management for in-kernel drivers that manage hardware. Read this chapter
to learn about power management in Mac OS X and to find out what level of power-management support
you need to provide and how to implement it. Although power management is a complex technology, the
majority of in-kernel drivers need to implement only the most basic functionality to participate successfully
in Mac OS X power management.

Note: If you’re developing an application that accesses hardware, such as a user-space driver for a digital
camera, scanner, webcam, or tape drive, you probably do not need to perform any power-management
tasks. For more information on developing applications that behave as user-space drivers, including information
on how to set up your application to receive power-event notifications, see Accessing Hardware From
Applications.

The precise set of power-management responsibilities your driver must fulfill depends on factors such as
how much support your driver’s superclass provides, whether your device receives power from a system bus
(such as PCI), and to what power events your driver needs to respond.

If you’re unfamiliar with power management in Mac OS X, you should begin by reading the following three
sections:

 ■ “Power Events” (page 95) which explains what power events are and how they affect your device

 ■ “The Power Plane: A Hierarchy of Power Dependencies” (page 96) which describes how Mac OS X
monitors the power relationships among devices, drivers, and other objects

 ■ “Devices and Power States” (page 98) which defines devices and power states in power-management
terms

Then, all driver developers should read “Deciding How to Implement Power Management in Your Driver” (page
98) to find out what to do next. After you decide what type of power management you need to implement,
read “Implementing Basic Power Management” (page 100) and, if appropriate, “Implementing Advanced
Power Management” (page 102)

Power Events

Before you consider how to implement power management in your driver, you need to understand what
power events are and how they can affect your device. In Mac OS X, power events are transitions to and from
the following states:

Power Events 95
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

 ■ Sleep

 ■ Wake

 ■ Shutdown or restart

All drivers must respond to sleep events. Mac OS X defines different types of sleep, which can occur for
different reasons. For example, system sleep occurs when the user chooses Sleep from the Apple menu or
closes the lid of a laptop; idle sleep occurs when there has been no device or system activity during the
interval the user selects in the Energy Saver preferences. To your driver, however, all sleep events appear
identical. The important thing to understand about a sleep event is that your device may be powered off
when the system sleeps, so your driver must be prepared to initialize the device when it is awakened.

All drivers must respond to a system wake event by powering on. Wake can occur when the user hits a key
on the keyboard, presses the power button, or when the computer receives a network administrator wake-up
packet. On wake, drivers should perform the appropriate restoration of device state.

Device drivers do not have to respond to shutdown and restart events. A driver can choose to get notification
of an impending shutdown or restart using the technique described in “Receiving Shutdown and Restart
Notifications” (page 109) but it’s important to understand that no driver can prevent a shutdown event.

Another type of event is a device power-up request, which occurs when some object in the system requires
an idle or powered-off device to be in a usable state. A device power-up request notification uses most of
the same mechanisms as sleep and wake notifications. Although most drivers do not need to know about
device power-up requests, some drivers might need to implement them and even make such requests
themselves. For more information about this, see “Initiating a Power-State Change” (page 105)

The Power Plane: A Hierarchy of Power Dependencies

Mac OS X tracks all power-managed devices in a tree-like structure, called the power plane, that captures
the power dependencies among devices. A device, usually a leaf object in the power plane, generally receives
power from its ancestors and may provide power to its children. For example, because a PCI card depends
for power on the PCI bus to which it’s attached, the PCI card is considered to be a power child of the PCI
bus. Likewise, the PCI bus is considered to be the power parent of the devices attached to it.

The power plane is one of the planes of the I/O Registry. As described in “The I/O Registry” (page 37) the I/O
Registry is a dynamic database of device and driver objects that expresses the various provider-client
relationships among them. To view the power plane in a running system, open the I/O Registry Explorer
application (located in /Developer/Applications/Utilities) and choose IOPower from the pop-up
menu. You can also enter ioreg -p IOPower at the command line to see a representation of the current
power plane. Figure 9-1 shows the power plane in a Power Mac G5 running Mac OS X v10.5.

96 The Power Plane: A Hierarchy of Power Dependencies
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Figure 9-1 The power plane shown in I/O Registry Explorer

In Figure 9-1 you can see the root of the power plane, an object called IOPMrootDomain, and objects that
represent devices and drivers. You can ignore the many IOPowerConnection objects, which represent
power connections, because these objects are of interest only to internal power-management objects and
processes.

The Power Plane: A Hierarchy of Power Dependencies 97
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Devices and Power States

The fundamental entity in power management is the device. From a power-management perspective, a
device is a unit of hardware whose power consumption can be measured and controlled independently of
system power. A device can also have some state that needs to be saved and restored across changes in
power. In power-management terms, “device” is synonymous with the device-driver object that controls it.

A device must have at least two power states associated with it—off and on. A device may also have
intermediate states that represent some level of power between full power and no power. These states are
described in a power-state array you create in your driver. (You learn how to create this array and provide
power-state information in step 3 in “Implementing Basic Power Management” (page 100)) The
power-management functionality of the I/O Kit uses these states to ensure that all drivers in the power plane
receive the power they require. Each power state is defined by the device’s capabilities when in that state:

 ■ A device that is on uses maximum power and has complete functionality.

 ■ A device that is off uses no power and has no functionality.

 ■ A device can be in a reduced-power state in which it is still usable, but at a lower level of performance
or functionality.

 ■ A device can be in an intermediate state in which it is not usable, but retains some configuration or state.

The power-management functionality of the I/O Kit associates several attributes with each power state of a
device. A device driver must set these attributes to ensure that accurate information about the device’s
capabilities and requirements is available.

The power-state attributes provide the following information:

 ■ The capability of the device while in a given state

 ■ The device’s power requirements of its power parent

 ■ The power characteristics the device can provide to its power children

 ■ The version of the power-state structure the device uses to store its power-state information

Deciding How to Implement Power Management in Your Driver

To participate in Mac OS X power management, most in-kernel drivers need only ensure that their devices
respond appropriately to system sleep and wake events. Some in-kernel drivers might need to perform other
tasks, such as implementing an idle state or taking action at system shutdown, but these drivers are not
typical. Reflecting this distinction, Mac OS X power management defines two types of drivers:

 ■ A passive driver implements basic power management to respond to system power events; it does not
initiate any power-related actions for its device.

 ■ An active driver implements basic power management to respond to system power events, but it also
implements advanced power management to perform tasks such as deciding when the device should
become idle, changing the device’s power state, or processing prior to system shutdown.

98 Devices and Power States
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

An example of a passive driver is the AppleSmartBatteryManager driver present in most Macintosh laptop
computers. The AppleSmartBatteryManager driver provides battery-status information to the battery-status
menu bar item; when the system is about to sleep, the driver simply stops polling the battery for status
information. A good example of an active driver is the built-in audio chip driver, because it performs its own
idleness determination to allow the audio hardware to power off when it is not in use. If there is no sound
coming out of a laptop's or desktop's internal speakers, the audio hardware will drop into a low power mode
until it is needed.

As you can imagine, a passive driver is much easier than an active driver to design and implement. Essentially,
a passive driver implements one virtual method and makes between three and five calls to participate in
power management. The responsibilities of an active driver, on the other hand, begin with those of a passive
driver, but increase with each additional task the driver needs to perform.

Some I/O Kit families provide various levels of built-in power-management support to driver subclasses. For
example, the Network family (IONetworkingFamily) performs some of the power-management initialization
tasks for a subclass driver, leaving the driver to perform other device-specific power-management tasks.

Before you begin designing your driver’s power-management implementation, you should look up your I/O
Kit family in “I/O Kit Family Reference” (page 127) to find out if the family provides any power-management
support or requires subclasses to perform different or additional tasks. Be aware, however, that any I/O Kit
family that provides power-management functionality may still require you to implement some parts of it.
The following I/O Kit families provide some type of power-management functionality:

 ■ Audio family (described in “Audio” (page 129))

 ■ FireWire family (described in “FireWire” (page 131))

 ■ Network family (described in “Network” (page 136))

 ■ PC card family, which includes Express Card devices (described in “PC Card” (page 139))

 ■ PCI family (described in “PCI and AGP” (page 140))

 ■ SCSI Architecture Model family (described in “SCSI Architecture Model” (page 143))

 ■ USB family (described in “USB” (page 152))

Even if your driver is a subclass of an I/O Kit family that does not provide any power-management support,
or if your driver is a direct subclass of IOService, it can still be a passive power-management participant
as long as it only responds to system-initiated power events. If, on the other hand, your driver needs to
determine when your device is idle or perform pre-shutdown tasks, you must implement advanced power
management.

If you decide to develop a passive driver, you should read “Implementing Basic Power Management” (page
100) to learn how to participate in power management and respond to sleep and wake events. You do not
need to read any other sections in this chapter.

If your driver needs to be an active power manager, you should also read “Implementing Basic Power
Management” (page 100) Then you should read “Implementing Advanced Power Management” (page 102)
for guidance on implementing specific tasks.

Deciding How to Implement Power Management in Your Driver 99
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Implementing Basic Power Management

As defined in “Deciding How to Implement Power Management in Your Driver” (page 98) a passive driver
only responds to sleep and wake events; it does not initiate any power state–changing activity. Your passive
driver must do the following things to handle sleep and wake:

 ■ Get attached into the power plane so you receive power-change notifications and to ensure that your
device’s power dependencies are considered when it is told to sleep and wake.

Power dependencies affect the ordering of sleep and wake notifications. Specifically, your driver is told
to sleep before its power parent is told to sleep, and your driver is told to wake after its power parent is
told to wake.

Note: It’s possible for a device to have more than one power parent, but it’s important to understand
that, in this case, a specific ordering of power changes is not guaranteed. Specifically, your device is
awakened after the first power parent wakes up, not after all power parents wake up.

 ■ Save hardware state to memory before system sleep and restore state during wake.

You are responsible for writing code to do this.

 ■ Prevent all hardware accesses while your device is preparing for sleep.

You can return an error to any I/O request you receive while your device is going to sleep or you can
block all incoming threads using a gating mechanism, such as IOCommandGate, on your work loop (see
“Work Loops ” (page 69) to learn more about work loops).

To participate in power management so that you receive notifications of power events, ensure your driver
is correctly attached into the power plane, and handle power-state changes, you make a few calls and
implement one virtual method. The IOService class provides all the methods described in this section.
Follow the steps listed below to implement basic power management in your driver.

1. Initialize power management using PMinit. The PMinitmethod allocates internal power-management
data structures that allow internal processes to track your driver.

In your driver’s start routine, after the call to your superclass’s start method, make the following call:

PMinit();

2. Get attached into the power plane using joinPMtree. The joinPMtreemethod attaches the passed-in
driver object into the power plane as a child of its provider.

In your driver’s start routine, after the call to PMinit and before the call to registerPowerDriver
(shown in step 3), call joinPMtree as shown below:

provider->joinPMtree(this);

3. Provide information about your device’s power states and register your driver with power management.

a. First, declare an array of two structures to contain information about your device’s off and on states.
The first element in the array must contain the structure that describes the off state and the second
element of the array must contain the structure that describes the on state. Typically, a driver switches
its device to the off state in response to a sleep event and to the on state in response to a wake
event, as described in “Power Events” (page 95)

100 Implementing Basic Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

In your driver’s start routine, after the call to joinPMtree, fill in two IOPMPowerState structures,
as shown below:

// Declare an array of two IOPMPowerState structures (kMyNumberOfStates = 2).
static IOPMPowerState myPowerStates[kMyNumberOfStates];
// Zero-fill the structures.
bzero (myPowerStates, sizeof(myPowerStates));
// Fill in the information about your device's off state:
myPowerStates[0].version = 1;
myPowerStates[0].capabilityFlags = kIOPMPowerOff;
myPowerStates[0].outputPowerCharacter = kIOPMPowerOff;
myPowerStates[0].inputPowerRequirement = kIOPMPowerOff;
// Fill in the information about your device's on state:
myPowerStates[1].version = 1;
myPowerStates[1].capabilityFlags = kIOPMPowerOn;
myPowerStates[1].outputPowerCharacter = kIOPMPowerOn;
myPowerStates[1].inputPowerRequirement = kIOPMPowerOn;

In some drivers, you might see this step implemented in code similar to the following:

static IOPMPowerState myPowerStates[kMyNumberOfStates] = {
 {1, kIOPMPowerOff, kIOPMPowerOff, kIOPMPowerOff, 0, 0, 0, 0, 0, 0, 0, 0},
 {1, kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0}
};

b. Then, still in your driver’s start routine, register your driver with power management using
registerPowerDriver. The registerPowerDriver method tells power management that the
passed-in driver object can transition the device between the power states described in the passed-in
array. After you fill in the IOPMPowerState structures, call registerPowerDriver with your
power-state array as shown below:

registerPowerDriver (this, myPowerStates, kMyNumberOfStates);

4. Handle power-state changes using setPowerState. While your driver is running, you perform tasks
that handle sleep and wake event notifications in your implementation of the virtual IOServicemethod
setPowerState. An example of how to do this is shown below:

IOReturn MyIOServiceDriver::setPowerState (unsigned long whichState, IOService
 * whatDevice)
// Note that it is safe to ignore the whatDevice parameter.
{
 if (0 == whichState) {
 // Going to sleep. Perform state-saving tasks here.
 } else {
 // Waking up. Perform device initialization here.
 }
 if (done)
 return kIOPMAckImplied;
 else
 return (/* a number of microseconds that represents the maximum time
required to prepare for the state change */);
}

If you return kIOPMAckImplied, you signal that you’ve completed the transition to the new power
state. If you do not return kIOPMAckImplied and instead return the maximum amount of time it takes
to prepare your device for the power-state change, you must be sure to callacknowledgeSetPowerState

Implementing Basic Power Management 101
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

when you have finished the power-state transition. If you do not call acknowledgeSetPowerState
before the length of time you specify has elapsed, the system continues with its power-state change as
if you had returned kIOPMAckImplied in the first place.

Note: If you are developing a driver for Mac OS X v10.5 or later, you may perform all necessary processing
to prepare for the state change in the setPowerState method before you return kIOPMAckImplied.
In other words, you do not have to return an estimate of how long the processing will take, perform the
processing in another method, and call acknowledgeSetPowerState when the processing is finished.

5. Unregister from power management when your driver unloads using PMstop. The PMstop method
handles all the necessary cleanup, including the removal of your driver from the power plane. Because
PMstop may put your hardware into its off state, be sure to complete all hardware accesses before you
call it.

Important: This step is crucial. If you neglect to call PMstop, you will probably cause a leak and you
might cause a system panic the next time the computer wakes up.

In your driver’s stop routine, after you finish all calls that might access your hardware, call PMstop as
shown below:

PMstop();

Implementing Advanced Power Management

This section delves deeper into the power-management functionality of the I/O Kit. The vast majority of driver
developers do not need to understand the information in this section because basic power management (as
described in “Deciding How to Implement Power Management in Your Driver” (page 98)) is sufficient for
most devices. If your device can be passively power managed, read “Implementing Basic Power
Management” (page 100) instead.

You should read this section if your driver needs to perform advanced power-management tasks, such as
determining device idleness, taking action when the system is about to shutdown, or deciding to change
the device’s power state. Of course, active drivers share some tasks with passive drivers, namely the initialization
and tear-down of power management. Before you read about the tasks in this section, therefore, you should
glance at the steps in “Implementing Basic Power Management” (page 100) to learn how to initialize and
terminate power management in your driver. Even if your driver must perform advanced power-management
tasks, it still needs to call PMinit, joinPMtree, registerPowerDriver, and PMstop and implement
setPowerState, as shown in “Implementing Basic Power Management”

This section covers several tasks an active driver might need to perform. Although few active drivers will
perform all the tasks, most will perform at least one. Each task is accompanied by a code snippet to help you
implement it in your driver.

102 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Defining and Using Multiple Power States

As described in “Devices and Power States” (page 98) information about a device’s power states and
capabilities must be available to I/O Kit power management. Although most devices have only the two
required power states, off and on, some devices have additional states. As shown in step 3 of “Implementing
Basic Power Management” (page 100) you construct an array of IOPMPowerState structures, each of which
contains information about the device’s capabilities in each power state.Table 9-1 describes the fields in the
IOPMPowerState structure, which is defined in the IOPM.h header file.

Table 9-1 Fields and appropriate values in the IOPMPowerState structure

ValueDescriptionField

1Version number of this structure.version

An
IOPMPowerFlags
flag.

The capability of the device in this state.capabilityFlags

An
IOPMPowerFlags
flag.

The power supplied in this state.outputPowerCharacter

An
IOPMPowerFlags
flag.

The input power required in this state.inputPower-
Requirement

0Average power consumption (in milliwatts) of a device in
this state.

staticPower

0Additional power consumption (in milliwatts) from a
separate power supply, such as a battery.

unbudgetedPower

0The power consumed by a device (in milliwatts) in
entering this state from the next lowest state.

powerToAttain

0The time (in microseconds) required for a device to enter
this state from the next lower state; in other words, the
time required to program the hardware.

timeToAttain

0The time (in microseconds) required to allow power to
settle after entering this state from the next lower state.

settleUpTime

0The time (in microseconds) required for a device to enter
the next lower state from this state; in other words, the
time required to program the hardware.

timeToLower

0The time (in microseconds) required to allow power to
settle after entering the next lower state from this state.

settleDownTime

0The power (in milliwatts) that a power parent in this state
is electronically able to deliver to its children.

powerDomainBudget

Implementing Advanced Power Management 103
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

As shown in Table 9-1 the values of some fields may be provided by an IOPMPowerFlags flag. Table 9-2
shows the IOPMPowerFlags flags you are likely to use.

Table 9-2 Power flags that describe device capabilities

DescriptionFlag

The device is in the full-power state.kIOPMPowerOn

The clients of the device can use it in this state.kIOPMDeviceUsable

The device is capable of its highest performance in this state.kIOPMMaxPerformance

The PCI auxiliary power supply is on (used only by devices in the PCI family).kIOPMAuxPowerOn

Power management has the following requirements for the array of IOPMPowerState structures you construct
in your driver’s start method:

 ■ The IOPMPowerState structure describing your device’s off state must be the first element in the array.

 ■ The IOPMPowerState structure describing your device’s on (that is, full power) state must be the last
element in the array.

 ■ You can define any number of intermediate power states, but the IOPMPowerState structures describing
them must not be the first or last elements of the array.

After you construct the power-state array to these specifications, call registerPowerDriver, passing in a
pointer to the array and the number of power states. Listing 9-1 shows one way to do this. It also shows the
driver creating a work loop and setting up a command gate to synchronize the power state-change code,
which is described in “Changing the Power State of a Device” (page 105)

Listing 9-1 Building the power-state array and registering the driver

enum {
 kMyOffPowerState = 0,
 kMyIdlePowerState = 1,
 kMyOnPowerState = 2
};

static IOPMPowerState myPowerStates[3] = {
 {1, kMyOffPowerState, kMyOffPowerState, kMyOffPowerState, 0, 0, 0, 0, 0, 0,
 0, 0},
 {1,kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0},
 {1,kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0}
};
bool PMExampleDriver::start(IOService * provider)
{
 /*
 * Create a work loop and set up synchronization
 * using a command gate.
 */
 fWorkloop = IOWorkLoop::workLoop();
 fGate = IOCommandGate::commandGate(this);

 if (fGate && fWorkloop) {
 fWorkloop->addEventSource(fGate);

104 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

 }

 * Initialize power management, join the power plane,
 * and register with power management.
 */
 PMinit();
 provider->joinPMtree(this);
 registerPowerDriver(this, myPowerStates, 3);

}

Changing the Power State of a Device

A driver is responsible for changing the power state of its device. Most power-state change requests come
from power management when the system is about to sleep or wake. It’s also possible for an active driver
to become aware of the need to change its device’s power state and initiate the request. The following
sections describe both tasks.

Responding to a Power State–Change Request

As with a passive driver, an active driver must override the setPowerState method and change the power
state of its device when it is instructed to do so. The ordinal value passed in to setPowerState is an index
to the power-state array for the device.

If you’re developing a driver to run in versions of Mac OS X prior to v10.5, you must perform only the minimum
processing required to change the power state of your device in your setPowerStatemethod. Any additional
processing must be performed outside of the setPowerState method and followed by a call to
acknowledgeSetPowerState when it is finished. This is described in step 4 of “Implementing Basic Power
Management” (page 100)

If, on the other hand, your driver will run in Mac OS X v10.5 and later, you can perform all necessary processing
in your setPowerStatemethod before you return kIOPMAckImplied. It’s important to understand, however,
that power management calls the setPowerStatemethod from a thread-call context. In other words, power
management does not perform any automatic synchronization using your driver’s work loop. Therefore, it’s
essential that you continue to use a command gate or other locking primitive to ensure that access to your
device’s state is serialized.

As soon as your driver returns kIOPMAckImplied or calls acknowledgeSetPowerState after additional
processing, power management marks the power change as completed. Thus it’s important for all drivers,
regardless of the version of Mac OS X they target, to avoid reporting a power change as complete until the
power-state of the device has actually changed. It’s possible that other power changes depend on your
hardware having completed its power change before you call acknowledgeSetPowerState.

Initiating a Power-State Change

An active driver might become aware of the need to change its device’s power state, either through
mechanisms of its own or through some other object. The IOService class provides three methods that
assist in this task:

 ■ makeUsable

 ■ changePowerStateTo

Implementing Advanced Power Management 105
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

 ■ changePowerStateToPriv

Any object in the driver stack, including a user client (described in “The Device-Interface Mechanism ” (page
34)), can request that a dormant device be made active by calling the makeUsable method on the device’s
driver. The makeUsable method is interpreted as a request to put the device in its highest power state.

An active driver typically calls the changePowerStateTo method once in its start method, to set an initial
power state. Later, when it wants to change its device’s power state, an active driver calls the
changePowerStateToPriv method, passing in the desired power state. An active driver might do this to
shut down parts of the hardware that are not currently being used.

Important: Even though the makeUsable, changePowerStateTo, and changePowerStateToPriv
methods are asynchronous and return immediately, you must block all hardware access until you receive
the call to your setPowerState method. Before your setPowerState method is called, you cannot be
certain that your device is in a usable state. Because of this, these functions should be called in a work-loop
context.

Power management uses the states passed in to changePowerStateTo and changePowerStateToPriv
to determine the device’s new power state. Specifically, power management selects as the new power state
the highest value of the following three values:

The power state set by changePowerStateToPriv
The power state set by changePowerStateTo
The highest of all power states required by the driver’s power children

The following code snippet shows how a driver can get the device’s current power state (using the
getPowerState method introduced in Mac OS X v10.5) and then request a power-state change with
changePowerStateToPriv.

enum {
 kMyOffState = 0,
 kMyOnState = 1
};
/*
 * Make sure the hardware is in the ON state
 * before accessing it. If it's powered off, call changePowerStateToPriv
 * to put the device in the ON state.
 */
if (getPowerState() == kMyOnState)
{
 /* Device is ON. OK to access hardware. */
} else {
 changePowerStateToPriv(kMyOnState);
 /*
 * Note: If your device has been powered off for a system sleep, you cannot
 * try to adjust your power state upwards. You are locked in your OFF or
 * low-power state until system power is restored on wake.
 */

 /*
 * Although changePowerStateToPriv returns immediately,
 * it is _NOT_ safe to touch the hardware yet. You must wait until you
 * receive your setPowerState() call before you can safely modify
 * the hardware.

106 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

 */
}

Implementing Idleness Determination and Idle Power Saving

When a device is idle, it can be powered down to conserve system power, which is especially important for
laptop computers running on battery power. You should implement idle power saving in your device if:

 ■ Access to your device is intermittent, and the device is often left unused for minutes, hours, or days at
a time.

 ■ Your device consumes a significant amount of power, and putting it in a low power state when possible
results in substantial power savings.

To implement idle power saving, you must determine when your device is idle and specify how long the
period of idleness should last before your device powers off. You determine idleness by supplying device-access
information to the IOService superclass, which uses this information, in conjunction with the idleness
period you specify, to tell your device to power off at the appropriate time. The IOService class provides
two methods an active driver uses to do this:

 ■ activityTickle. On your device’s access path, you call activityTickle every time your driver or
any other client (including an application) triggers a hardware access. This allows power management
to confirm that your device is in a usable state and to track the most recent access times for your device.

 ■ setIdleTimerPeriod. You call setIdleTimerPeriod to specify the duration of a watchdog timer
that tracks how long your device can be idle at full power before it should be powered down. By setting
the duration of the idle period, you effectively start a countdown that begins after each device access.

When the idle period expires without any device activity, power management calls your implementation of
the setPowerState method to lower your device’s power state. See “Changing the Power State of a
Device” (page 105) for more information on how to implement this method.

Of course, you must respond to any device-access request you receive while your device is powered off by
first setting your device to its full-power state. Because you call activityTickle on your device’s access
path, power management is immediately alerted to the fact that some entity is requesting access to a device
that is currently powered off. When this happens, the IOService superclass automatically calls makeUsable
on your device, which ultimately results in a call to your implementation of the setPowerState method.

Important: As described in “Initiating a Power-State Change” (page 105) you must block all hardware accesses
until your setPowerState implementation is called, because you cannot be certain that your device is in a
usable state until that time. The best way to do this is to use a work loop to serialize hardware access.

The following steps outline the process of idleness determination:

1. Specify how long your device should remain in a high-power state while idle. Typically, one minute is
an appropriate interval.

Call setIdleTimerPeriod, passing in the idle interval in seconds, as shown below:

setIdleTimerPeriod (60);

2. Inform power management every time an entity (including your driver) initiates a device access.

Implementing Advanced Power Management 107
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

In your driver’s device-access path, call activityTickle, as shown below:

activityTickle (kIOPMSuperclassPolicy1, myDevicePowerOn);

As shown above, the first parameter to activityTickle is kIOPMSuperclassPolicy1, which indicates
that the IOService superclass will track device activity and take action when the idle period expires.
The second parameter specifies the power state required for this activity, typically the on state.

3. When the idle timer expires, the IOService superclass checks whether there has been any device activity
since the last idle timer expiration. The superclass determines this by checking when activityTickle
(kIOPMSuperclassPolicy1) was last called.

4. If there has been device activity since the last timer expiration, the IOService superclass restarts the
timer. If no device activity has occurred, the IOService superclass calls setPowerState on your driver
to power down the device to the next lowest state.

Optional: A driver may implement variable idle timeout behaviors by overriding the IOService method
nextIdleTimeout. To do this, your implementation of nextIdleTimeout should return how many "seconds
from now" the device should move into its next lowest power state.

For example, the Graphics family uses nextIdleTimeout to dynamically adjust the display’s idle-sleep
timeouts. If the user moves the mouse very soon after the display dims, the display driver remembers this
and increases the timeout period, effectively waiting a longer time before it initiates the next several
display-dim events.

After your device has been powered down to a lower state through this process, a new activityTickle
invocation causes power management to raise the device’s power to the level required for the activity. If the
device is already in the correct state, the superclass simply returns true from the call to activityTickle
(kIOPMSuperclassPolicy1); otherwise, the superclass returns false and proceeds to make the device
usable.

Although the return value of activityTickle indicates whether the device is in a usable power state, it’s
better to keep track of your device’s current power state in your driver than to rely on the activityTickle
return value for this information. This is because activityTickle is not called on the power management
work loop and a device’s power state might change before activityTickle returns.

Receiving Notification of Power-State Changes in Other Devices

In some cases, your driver might need to be notified when another driver changes its device’s power state.
I/O Kit power management brackets each change to the power state of a device with a pair of notifications.
These notifications are delivered through invocations of the IOService virtual methods
powerStateWillChangeTo and powerStateDidChangeTo. You can implement these methods to receive
the notifications and prepare for the changes.

Your driver can register its interest in another driver, as long as the following is true:

 ■ The driver in which your driver is interested must be attached into the power plane.

 ■ Your driver must be a C++ subclass of IOService, but it does not have to be attached into the power
plane itself.

To find out when another driver changes its device’s power state, follow these steps in your driver:

108 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

1. Call the IOService method registerInterestedDriver. This ensures that power management will
notify your driver when it sends out power-change notifications.

2. Implement the virtual IOService method powerStateWillChangeTo. This method is called by the
device’s driver when it is about to change the device’s power state.

If your driver is prepared for the change, it should return kIOPMAckImplied; if it needs more time to
prepare, it should return an upper limit on the time required (in microseconds).

If your driver returns a number representing the maximum preparation time needed, it should call the
acknowledgePowerChange method when it is prepared. If it does not do this, and the time requested
for preparation elapses, the other driver carries on as if your driver had acknowledged the change. This
behavior prevents power-state changes from stalling because of failing drivers.

Important: The powerStateWillChangeTo method is not the place to perform any tasks related to
the actual changing of the power state. Such tasks should be performed in the setPowerStatemethod,
which is described in “Responding to a Power State–Change Request” (page 105)

3. Implement the virtual IOService method powerStateDidChangeTo. This method is called by the
device’s driver after the power-state changed is complete.

After the change to power occurs and the power has settled to its new level, power management
broadcasts this fact to all interested objects via the powerStateDidChangeTo method. If a device is
going to a reduced power state, interested drivers generally don’t need to do much with this notification.
However, if the device is going to a higher power state, interested drivers would use this notification to
prepare for the change by, for example, restoring state or programming a device.

In your implementation of powerStateDidChangeTo, your driver can examine the IOPMPowerFlags
bitfield (described in Table 9-2 (page 104)) passed in to make its determination; this bitfield is derived
from the capabilityFlags field of the power-state array, which is described in Table 9-1 (page 103)
As with powerStateWillChangeTo, your driver should return kIOPMAckImplied if it has prepared
for the change. If it needs time to prepare, it should return the maximum time required (in microseconds);
when your driver is finally ready for the change, it should call the acknowledgePowerChange method.

Important: The powerStateDidChangeTo method is not the place to perform any tasks related to the
actual changing of the power state. Such tasks should be performed in the setPowerState method,
which is described in “Responding to a Power State–Change Request” (page 105)

When your driver is no longer interested in the power changes of other drivers, it should deregister itself to
stop receiving notifications. To do this, call the IOServicemethod deRegisterInterestedDriver, usually
in your driver’s stop method.

Receiving Shutdown and Restart Notifications

In a driver targeting Mac OS X v10.5 and later, you can implement the systemWillShutdown method to
receive notification of an impending shutdown or restart. It’s important to understand, however, that there
is nothing your driver can do to prevent a shutdown, regardless of the notification it receives. Your driver is
capable of delaying shutdown, but that is strongly discouraged because it can severely degrade the user’s
experience.

Implementing Advanced Power Management 109
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Do not assume that your driver should implement systemWillShutdown so that it can respond to shutdown
and restart notifications by shutting down your hardware. At shutdown time, power is about to be removed
from your device regardless of its current state. Similarly, if the system is restarting, your device will be
reinitialized shortly and, again, its current state is not important. Most built-in device drivers in Mac OS X do
not shut down their devices when the system is about to shutdown or restart and most third-party device
drivers should do the same.

Although the majority of device drivers do not need to handle shutdown or restart in any way at all, there
are two valid reasons for a driver to run at shutdown or restart time:

 ■ The architecture requires the driver to execute code at shutdown time. For example, all drivers that
perform DMA in an Intel-based Macintosh must stop active DMA before shutdown can complete.

 ■ The driver must run at shutdown or restart time to avoid negative user experience. For example, an
audio driver might need to turn off its device’s amplifiers to avoid an audible “pop” when power is
removed.

Note: There are other places that you may run code on the shutdown path. For example, if your software
has a user-space daemon that runs until shutdown, that daemon can catch SIGTERM, which the kernel sends
to all processes at shutdown. In general, try to run your shutdown code as early as possible in the shutdown
path.

The systemWillShutdown method is called on all members of the power plane, in leaf-to-root order. A
driver’s systemWillShutdown method is invoked only after all its power children have completed their
shutdown tasks. This ensures that a child object can handle its shutdown or restart tasks before its parent
powers off. Note that it is not necessary to call your driver’s freemethod when the system is about to restart
or shutdown, because all drivers are unloaded and destroyed at this time.

When a driver receives the systemWillShutdown call, it performs the necessary tasks to prepare for the
shutdown or restart and then invokes its superclass’s implementation of the method. This is essential, because
system shutdown will stall until all drivers have finished handling their systemWillShutdown notifications.
Other than postponing the call to super::systemWillShutdown until an in-flight I/O request completes,
you should do everything possible to avoid delaying shutdown. Listing 9-2 shows how to override
systemWillShutdown and receive notification of shutdown or restart.

Listing 9-2 Getting notification of system shutdown or restart

void MyExampleDriver::systemWillShutdown(IOOptionBits specifier)
{
 if (kIOMessageSystemWillPowerOff == specifier) {
 // System is shutting down; perform appropriate processing.
 } else if (kIOMessageSystemWillRestart == specifier) {
 // System is restarting; perform appropriate processing.
 }
 /*
 * You must call your superclass's implementation of systemWillShutdown as
 * soon as you're finished processing your shutdown or restart
 * because the shutdown will not proceed until you do.
 */
 super::systemWillShutdown(specifier);
}

110 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Keeping Power On for Future Device Attachment

To conserve power, a device whose children have all disappeared is usually considered idle and is told to
power off. However, your device might need to stay powered on to allow new children to attach at any time.
For example, a bus might need to remain powered on even when there are no devices attached to it, because
a new device trying to attach can cause a crash by attempting to access hardware that’s turned off.

The IOService class provides a method that allows you to keep your device’s power on, even if all its power
children have disappeared. The clampPowerOn method allows you to specify a length of time to keep the
device in its highest power state. If you need to do this in your driver, call the clampPowerOn method before
the last power child disappears, as shown below:

// timeToStayOn is a length of time in milliseconds.
clampPowerOn (timeToStayOn);

Implementing Advanced Power Management 111
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

112 Implementing Advanced Power Management
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Managing Power

Mac OS X is an operating system that includes hot-swapping as a feature. Users can plug in and remove
external devices (for example, mass-storage drives, CD-RW drives, modems, and scanners) and the system
immediately does what is necessary to make the device usable or, in the case of removal, to register the
absence of the device. No system restart or shutdown is necessary.

This chapter describes how your driver should respond to the removal of its device.

The Phases of Device Removal

When a user plugs a device into the system, the I/O Kit responds to the event using the normal process for
discovering and loading drivers. A low-level driver scans its bus, notices a new device, and kicks off the
matching process to find a suitable driver. The I/O Kit then loads the driver into the kernel and the device is
usable.

When a user removes a device, however, the situation is different. A driver stack must be torn down rather
than built up. Before the drivers in the stack can be released, they must, in a coordinated manner, stop
accepting new requests and clear out all queued and in-progress work; this requires a special programming
interface and procedure.

The I/O Kit performs an orderly tear-down of a driver stack upon device removal in three phases. The first
phase makes the driver objects in the stack inactive so they receive no new I/O requests. The second phase
clears out pending and in-progress I/O requests from driver queues. Finally, in the third phase, the I/O Kit
invokes the appropriate driver life-cycle methods on drivers to clean up allocated resources and detach the
objects from the I/O Registry before freeing them. Figure 10-1 (page 113) summarizes what happens during
the three phases, including the calling direction within the driver stack.

Figure 10-1 Phases of device removal

Leaf driver
objects

-
-
-

Bus
controller
driver

detach and free

separate thread,
provider's work loop

stop()
detach()

make inactive

caller's thread and
work loop

terminate()
message()

clear I/O queues

separate thread,
provider's work loop

willTerminate()
didTerminate()

Phase one Phase two Phase three

The Phases of Device Removal 113
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Managing Device Removal

Making Drivers Inactive

Just as a bus controller driver scans its bus to detect a newly inserted device, it also detects devices that have
just been removed. When this happens, it calls terminate on its client nub; the terminate method has
the default behavior of making the called object inactive immediately. The terminate method is also
recursively invoked on clients; it is called on each object in the stack above the bus controller until all objects
in the stack are made inactive.

As a consequence of being made inactive, each object also sends its clients (or, in rare cases, providers) a
kIOServicesIsTerminated message via the message method. When the terminate call returns to the
original caller (the bus controller driver), all objects in the stack are inactive, but the stack is still attached to
the I/O Registry.

The I/O Kit assumes that objects that have multiple providers (drivers of RAID devices, for instance) do not
want to be torn down and thus does not call terminate on them. If these objects do want to receive the
terminate message, they should implement the requestTerminate method to return true.

The terminate call is asynchronous to avoid deadlocks and, in this first phase, takes place in the thread and
work-loop context of the caller, the bus controller driver.

Clearing I/O Queues

The I/O Kit itself coordinates the second phase of the device-removal procedure. It starts with the newly
inactive client of the bus controller driver and, as in the first phase, moves up the driver stack until it reaches
the leaf objects. It calls the willTerminatemethod on each object it encounters. Drivers should implement
the willTerminatemethod to clear out any queues of I/O requests they have. To do this, they should return
an appropriate error to the requester for each request in a queue.

After willTerminate has been called on each object, I/O Kit then reverses direction, going from the leaf
object (or objects) to the root object of the driver stack, calling didTerminate on each object. Certain objects
at the top of the stack—particularly user clients—may decide to keep a count of I/O requests they have
issued and haven’t received a response for (“in-flight” I/O requests). (To ensure the validity of this count, the
object should increment and decrement the count in a work-loop context.) By this tracking mechanism, they
can determine if any I/O request hasn’t been completed. If this is the case, they can implement didTerminate
to return a deferral response of true, thereby deferring the termination until the final I/O request completes.
At this point, they can signal that termination should proceed by invoking didTerminate on themselves
and returning a deferral response of false.

If a driver attaches to a client nub and has it open, the I/O Kit assumes a deferred response (true) to
didTerminate. The termination continues to be deferred until the client driver closes its provider.

At the end of this second phase, there shouldn’t be any I/O requests queued or “in flight.” The I/O Kit completes
this phase of the device-removal procedure on its own separate thread and makes all calls to clients on the
work-loop context of the provider.

114 Making Drivers Inactive
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Managing Device Removal

Detaching and Releasing Objects

In the third phase of the procedure for device removal, the I/O Kit calls the driver life-cycle methods stop
and detach (in that order) in each driver object in the stack to be torn down, starting from the leaf object
(or objects). The driver should implement its stop function to close, release, or free any resources it opened
or created in its start function, and to leave the hardware in the state the driver originally found it. The
driver can implement detach to remove itself from its nub through its entry in the I/O Registry; however,
this behavior is the default, so a driver usually does not need to override detach. The detachmethod usually
leads immediately to the freeing of the driver object because the I/O Registry typically has the final retain
on the object.

The I/O Kit completes this phase of the device-removal procedure on its own separate thread and makes all
calls to clients on the work-loop context of the provider.

Detaching and Releasing Objects 115
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Managing Device Removal

116 Detaching and Releasing Objects
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Managing Device Removal

The following chart presents the class hierarchy of all I/O Kit classes that are not members of a specific family.
See the preceding appendix, “I/O Kit Family Reference” (page 127) for the class hierarchy charts of most
families.

IOCommandQueue *

IOInterruptEventSource

IOTimerEventSource

IOBigMemoryCursor

IODBDMAMemoryCursor

IOLittleMemoryCursor

IONaturalMemoryCursor

IODeviceMemory

IOGeneralMemoryDescriptor

IOMultiMemoryDescriptor

IOSubMemoryDescriptor
IOService

IOFilterInterruptEventSource

IOBufferMemoryDescriptor

IOInterruptController

IOUserClient

IOCommandGate

OSObject IOCommand

IOCPUInterruptController

IOSharedInterruptController

IOCommandPool

IOConditionLock

IODataQueue

IOEventSource

IOKitDiagnostics

IOMemoryCursor

IOMemoryDescriptor

IOMemoryMap
IONotifier
IORangeAllocator

IORegistryEntry
IOPMpriv *

IOPMprot *

IOSyncer *

IOWorkLoop

IORegistryIterator

I/O Kit Base and Helper classes

* Classes that are special-purpose or to be obsoleted; do not sublcass.

OSIterator

libkern

117
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Base and Helper Class Hierarchy

118
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Base and Helper Class Hierarchy

System Internals

Advanced Topics in UNIX: Processes, Files, & Systems, Ronald J. Leach, Wiley, 1996, ISBN 1-57176-159-4

The Design and Implementation of the 4.4BSD UNIX Operating System, Marshall Kirk McKusick, et al,
Addison-Wesley, 1996, ISBN 0-201-54979-4

Panic!: UNIX System Crash Dump Analysis Chris Drake, Kimberly Brown Prentice Hall, 1995, ISBN 0-13-149386-8

UNIX Internals: The New Frontiers, Uresh Vahalia, Prentice-Hall, 1995, ISBN 0-13-101908-2

Websites - Online Resources

Apple Computer’s developer website (http://developer.apple.com/index.html) is a general repository for
developer documentation. Additionally, the following sites provide more domain-specific information.

Apple’s Public Source projects and Darwin

http://developer.apple.com/darwin/projects/darwin/

CVS (Concurrent Versions System)

http://developer.apple.com/opensource/cvs.html

GDB, GNUPro Toolkit 99r1 Documentation

http://www.redhat.com/docs/manuals/gnupro/

The Internet Engineering Task Force (IETF)

http://www.ietf.org/

jam

http://www.perforce.com/jam/jam.html

The USENIX Association

http://www.usenix.org/

USENIX Proceedings

http://www.usenix.org/publications/library/

System Internals 119
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

BIBLIOGRAPHY

Bibliography

http://developer.apple.com/index.html
http://developer.apple.com/darwin/projects/darwin/
http://developer.apple.com/opensource/cvs.html
http://www.redhat.com/docs/manuals/gnupro/
http://www.ietf.org/
http://www.perforce.com/jam/jam.html
http://www.usenix.org/
http://www.usenix.org/publications/library/

120 Websites - Online Resources
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

BIBLIOGRAPHY

Bibliography

active driver A device driver that implements
advanced power management tasks, such as
determining device idleness and performing
pre-shutdown tasks. See also passive driver

base class In C++, the class from which another class
(a subclass) inherits. It can also be used to specify a
class from which all classes in a hierarchy ultimately
derive (also known as a root class).

BSD Berkeley Software Distribution. Formerly known
as the Berkeley version of UNIX, BSD is now simply
called the BSD operating system. The BSD portion of
Darwin is based on 4.4BSD Lite 2 and FreeBSD, a flavor
of 4.4BSD.

bundle A directory in the file system that typically
stores executable code and the software resources
related to that code. (A bundle can store only
resources.) Applications, plug-ins, frameworks, and
kernel extensions are types of bundles. Except for
frameworks, bundles are file packages, presented by
the Finder as a single file instead of a folder. See also
kernel extension

bus A transmission path on which signals can be
dropped off or picked up by devices attached to it.
Only devices addressed by the signals pay attention
to them; the others discard the signals. Buses both
exist within the CPU and connect it to physical
memory and peripheral devices. Examples of I/O buses
on Darwin are PCI, SCSI, USB, and FireWire.

bus master A program, usually in a separate I/O
controller, that directs traffic on the computer bus or
input/output paths. The bus master actually controls
the bus paths on which the address and control
signals flow. DMA is a simple form of bus mastering
where the bus master controls I/O transfers between
a device and system memory and then signals to the
CPU when it has done so. See also DMA

client A driver object that consumes services of some
kind supplied by its provider. In a driver stack, the
client in a provider/client relationship is farther away
from the Platform Expert. See also provider

command gate A mechanism that controls access
to the lock of a work loop, thereby serializing access
to the data involved in I/O requests. A command gate
does not require a thread context switch to ensure
single-threaded access. IOCommandGate event-source
objects represent command gates in the I/O Kit.

Darwin Another name for the Mac OS X core
operating system, or kernel environment. The Darwin
kernel environment is equivalent to the Mac OS X
kernel plus the BSD libraries and commands essential
to the BSD Commands environment. Darwin is Open
Source technology.

DMA (Direct Memory Access) A capability of some
bus architectures that enables a bus controller to
transfer data directly between a device (such as a disk
drive) and a device with physically addressable
memory, such as that on a computer's motherboard.
The microprocessor is freed from involvement with
the data transfer, thus speeding up overall computer
operation. See also bus master

device Computer hardware, typically excluding the
CPU and system memory, which can be controlled
and can send and receive data. Examples of devices
include monitors, disk drives, buses, and keyboards.

device driver A component of an operating system
that deals with getting data to and from a device, as
well as the control of that device. A driver written with
the I/O Kit is an object that implements the
appropriate I/O Kit abstractions for controlling
hardware.

121
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

Glossary

device file In BSD, a device file is a special file located
in /dev that represents a block or character device
such as a terminal, disk drive, or printer. If a program
knows the name of a device file, it can use POSIX
functions to access and control the associated device.
The program can obtain the device name (which is
not persistent across reboots or device removal) from
the I/O Kit.

device interface In the I/O Kit, a mechanism that
uses a plug-in architecture to allow a program in user
space to communicate with a nub in the kernel that
is appropriate to the type of device the program
wishes to control. Through the nub the program gains
access to I/O Kit services and to the device itself. From
the perspective of the kernel, the device interface
appears as a driver object called a user client.

device matching In the I/O Kit, a process by which
an application finds an appropriate device interface
to load. The application calls a special I/O Kit function
that uses a “matching dictionary” to search the I/O
Registry. The function returns one or more matching
driver objects that the application can then use to
load an appropriate device interface. Also referred to
as device discovery.

driver See device driver

driver matching In the I/O Kit, a process in which a
nub, after discovering a specific hardware device,
searches for the driver or drivers most suited to drive
that device. Matching requires that a driver have one
or more personalities that specify whether it is a
candidate for a particular device. Driver matching is
a subtractive process involving three phases: class
matching, passive matching, and active matching.
See also personality

driver stack In an I/O connection, the series of driver
objects (drivers and nubs) in client/provider
relationships with each other. A driver stack often
refers to the entire collection of software between a
device and its client application (or applications).

event source An I/O object that corresponds to a
type of event that a device driver can be expected to
handle; there are currently event sources for hardware
interrupts, timer events, and I/O commands. The I/O
Kit defines a class for each of these event types,
respectively IOInterruptEventSource,
IOTimerEventSource, and IOCommandGate.

family A collection of software abstractions that are
common to all devices of a particular category.
Families provide functionality and services to drivers.
Examples of families include protocol families (such
as SCSI, USB, and Firewire), storage families (disk
drives), network families, and families that describe
human interface devices (mouse and keyboard).

fault In the virtual-memory system, faults are the
mechanism for initiating page-in activity. They are
interrupts that occur when code tries to access data
at a virtual address that is not mapped to physical
memory. See also page; virtual memory

framework A type of bundle that packages a
dynamic shared library with the resources that the
library requires, including header files and reference
documentation.Note that the Kernel framework
(which contains the I/O Kit headers) contains no
dynamic shared library. All library-type linking for the
Kernel framework is done using the mach_kernel
file itself and kernel extensions. This linking is actually
static (with vtable patch-ups) in implementation

idle sleep A sleep state that occurs when there has
been no device or system activity for the period of
time the user specifies in the Energy Saver pane of
System Preferences. See also system sleep

information property list A property list that
contains essential configuration information for
bundles such as kernel extensions. A file named
Info.plist (or a platform-specific variant of that
filename) contains the information property list and
is packaged inside the bundle.

interrupt An asynchronous event that suspends the
currently scheduled process and temporarily diverts
the flow of control through an interrupt handler
routine. Interrupts can be caused by both hardware
(I/O, timer, machine check) and software (supervisor,
system call, or trap instruction).

interrupt handler A routine executed when an
interrupt occurs. Interrupt handlers typically deal with
low-level events in the hardware of a computer
system, such as a character arriving at a serial port or
a tick of a real-time clock.

I/O Catalog A dynamic database that maintains
entries for all available drivers on a Darwin system.
Driver matching searches the I/O Catalog to produce
an initial list of candidate drivers.

122
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

I/O Kit A kernel-resident, object-oriented
environment in Darwin that provides a model of
system hardware. Each type of service or device is
represented by one or more C++ classes in a family;
each available service or device is represented by an
instance (object) of that class.

I/O Kit framework The framework that includes
IOKitLib and makes the I/O Registry, user client
plug-ins, and other I/O Kit services available from user
space. It lets applications and other user processes
access common I/O Kit object types and services. See
also framework

I/O Registry A dynamic database that describes a
collection of driver objects, each of which represents
an I/O Kit entity. As hardware is added to or removed
from the system, the I/O Registry changes to
accommodate the addition or removal.

kernel The complete Mac OS X core operating-system
environment, which includes Mach, BSD, the I/O Kit,
drivers, file systems, and networking components.
The kernel resides in its own protected memory
partition. The kernel includes all code executed in the
kernel task, which consists of the file mach_kernel
(at file-system root) and all loaded kernel extensions.
Also called the kernel environment.

kernel extension (KEXT) A dynamically loaded
bundle that extends the functionality of the kernel.
A KEXT can contain zero or one kernel modules as
well as other (sub) KEXTs, each of which can contain
zero or one kernel modules. The I/O Kit, file system,
and networking components of Darwin can be
extended by KEXTs. See also kernel module

kernel module (KMOD) A binary in Mach-O format
that is packaged in a kernel extension. A KMOD is the
minimum unit of code that can be loaded into the
kernel. See also kernel extension

lock A data structure used to synchronize access to
a shared resource. The most common use for a lock
is in multithreaded programs where multiple threads
need access to global data. Only one thread can hold
the lock at a time; by convention, this thread is the
only one that can modify the data during this period.
See also mutex

Mach A central component of the kernel that
provides such basic services and abstractions as
threads, tasks, ports, interprocess communication
(IPC), scheduling, physical and virtual address space
management, virtual memory, and timers.

map To translate a range of memory in one address
space (physical or virtual) to a range in another
address space. The virtual-memory manager
accomplishes this by adjusting its VM tables for the
kernel and user processes.

matching See device matching; driver matching

memory cursor An object that lays out the buffer
ranges in a memory descriptor in physical memory,
generating a scatter/gather list suitable for a particular
device or DMA engine. The object is derived from the
IOMemoryCursor class. See also DMA; memory
descriptor

memory descriptor An object that describes how a
stream of data, depending on direction, should either
be laid into memory or extracted from memory. It
represents a segment of memory holding the data
involved in an I/O transfer and is specified as one or
more physical or virtual address ranges. The object is
derived from the IOMemoryDescriptor class. See also
DMA; memory cursor

memory protection A system of memory
management in which programs are prevented from
being able to modify or corrupt the memory partition
of another program. Although Mac OS X has memory
protection, Mac OS 8 and 9 do not.

mutex A mutual-exclusion locking object that allows
multiple threads to synchronize access to shared
resources. A mutex has two states: locked and
unlocked. Once a mutex has been locked by a thread,
other threads attempting to lock it will block. When
the locking thread unlocks (releases) the mutex, one
of the blocked threads (if any) acquires (locks) it and
uses the resource. The thread that locks the mutex
must be the one that unlocks it. The work-loop lock
(which is used by a command gate) is based on a
mutex. See also lock; work loop

notification A programmatic mechanism for alerting
interested recipients (sometimes called observers)
that an event has occurred.

123
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

nub An I/O Kit object that represents a detected,
controllable entity such as a device or logical service.
A nub may represent a bus, disk, graphics adaptor, or
any number of similar entities. A nub supports
dynamic configuration by providing a bridge between
two drivers (and, by extension, between two families).
See also device; driver

page (1) The smallest unit (in bytes) of information
that the virtual memory system can transfer between
physical memory and backing store. In Darwin, a page
is currently 4 kilobytes. (2) As a verb, page refers to
the transfer of pages between physical memory and
backing store. Refer to
Kernel.framework/Headers/mach/machine/vm_params.h
for specifics. See also fault; virtual memory

passive driver A device driver that performs only
basic power-management tasks, such as joining the
power plane and changing the device’s power state.
See also active driver

personality A set of properties specifying the kinds
of devices a driver can support. This information is
stored in an XML matching dictionary defined in the
information property list (Info.plist) file in the
driver’s KEXT bundle. A single driver may present one
or more personalities for matching; each personality
specifies a class to instantiate. Such instances are
passed a reference to the personality dictionary at
initialization.

physical memory Electronic circuitry contained in
random-access memory (RAM) chips, used to
temporarily hold information at execution time.
Addresses in a process’s virtual memory are mapped
to addresses in physical memory. See also virtual
memory

PIO (Programmed Input/Output) A way to move data
between a device and system memory in which each
byte is transferred under control of the host processor.
See also DMA

plane A subset of driver (or service) objects in the
I/O Registry that have a certain type of provider/client
relationship connecting them. The most general plane
is the Service plane, which displays the objects in the
same hierarchy in which they are attached during
Registry construction. There are also the Audio, Power,
Device Tree, FireWire, and USB planes.

Platform Expert A driver object for a particular
motherboard that knows the type of platform the
system is running on. The Platform Expert serves as
the root of the I/O Registry tree.

plug-in A module that can be dynamically added to
a running system or application. Core Foundation
Plug-in Services uses the basic code-loading facility
of Core Foundation Bundle Services to provide a
standard plug-in architecture, known as the CFPlugIn
architecture, for Mac OS X applications. A kernel
extension is a type of kernel plug-in.

port A heavily overloaded term which in Darwin has
two particular meanings: (1) In Mach, a secure
unidirectional channel for communication between
tasks running on a single system; (2) In IP transport
protocols, an integer identifier used to select a
receiver for an incoming packet or to specify the
sender of an outgoing packet.

POSIX The Portable Operating System Interface. An
operating-system interface standardization effort
supported by ISO/IEC, IEEE, and The Open Group.

power child In the power plane, a driver for a device
that relies on another object for its power. See also
power parent; plane

power parent In the power plane, an object that
provides power for a device. See also power child;
plane

preemptive multitasking A type of multitasking in
which the operating system can interrupt a currently
running program in order to run another program,
as needed.

probe A phase of active matching in which a
candidate driver communicates with a device and
verifies whether it can drive it. The driver’s probe
member function is invoked to kick off this phase.
The driver returns a probe score that reflects its ability
to drive the device. See also driver matching

process A BSD abstraction for a running program. A
process’ resources include a virtual address space,
threads, and file descriptors. In Mac OS X, a process
is based on one Mach task and one or more Mach
threads.

124
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

provider A driver object that provides services of
some kind to its client. In a driver stack, the provider
in a provider/client relationship is closer to the
Platform Expert. See also client

release Decrementing the reference count of an
object. When an object’s reference count reaches
zero, it is freed. When your code no longer needs to
reference a retained object, it should release it. Some
APIs automatically execute a release on the caller’s
behalf, particularly in cases where the object in
question is being “handed off.” Retains and releases
must be carefully balanced; too many releases can
cause panics and other unexpected failures due to
accesses of freed memory. See also retain

retain Incrementing the reference count of an object.
An object with a positive reference count is not freed.
(A newly created object has a reference count of one.)
Drivers can ensure the persistence of an object
beyond the present scope by retaining it. Many APIs
automatically execute a retain on the caller’s behalf,
particularly APIs used to create or gain access to
objects. Retains and releases must be carefully
balanced; too many retains will result in wired
memory leak. See also release

scheduler That part of Mach that determines when
each program (or program thread) runs, including
assignment of start times. The priority of a program’s
thread can affect its scheduling. See also task; thread

service A service is an I/O Kit entity, based on a
subclass of IOService, that has been published with
the registerServicemethod and provides certain
capabilities to other I/O Kit objects. In the I/O Kit’s
layered architecture, each layer is a client of the layer
below it and a provider of services to the layer above
it. A service type is identified by a matching dictionary
that describes properties of the service. A nub or
driver can provide services to other I/O Kit objects.

socket In BSD-derived systems such as Darwin, a
socket refers to different entities in user and kernel
operations. For a user process, a socket is a file
descriptor that has been allocated using socket(2).
For the kernel, a socket is the data structure that is
allocated when the kernel’s implementation of the
socket(2) call is made.

system sleep A sleep state that occurs when the user
chooses Sleep from the Apple menu or closes the lid
of a laptop computer. See also idle sleep

task A Mach abstraction consisting of a virtual
address space and a port name space. A task itself
performs no computation; rather, it is the context in
which threads run. See also process; thread

thread In Mach, the unit of CPU utilization. A thread
consists of a program counter, a set of registers, and
a stack pointer. See also task

timer A kernel resource that triggers an event at a
specified interval. The event can occur only once or
can be recurring. Timers are one of the event sources
for work loops.

user client An interface provided by an I/O Kit family,
that enables a user process (which can’t call a
kernel-resident driver or other service directly) to
access hardware. In the kernel, this interface appears
as a driver object called a user client; in user space, it
is called a device interface and is implemented as a
Core Foundation Plug-in Services (CFPlugin) object.
See also device interface

user space Virtual memory outside the protected
partition in which the kernel resides. Applications,
plug-ins, and other types of modules typically run in
user space.

virtual address A memory address that is usable by
software. Each task has its own range of virtual
addresses, which begins at address zero. The Mach
operating system makes the CPU hardware map these
addresses onto physical memory only when necessary,
using disk memory at other times.

virtual memory The use of a disk partition or a file
on disk to provide the same facilities usually provided
by RAM. The virtual-memory manager in Mac OS X
provides 32-bit (minimum) protected address space
for each task and facilitates efficient sharing of that
address space.

wired memory A range of memory that the
virtual-memory system will not page out or move.
The memory involved in an I/O transfer must be wired
down to prevent the physical relocation of data being
accessed by hardware. In the I/O Kit memory is wired
when the memory descriptor describing the memory
prepares the memory for I/O (which happens when
its prepare method is invoked).

125
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

work loop A gating mechanism that ensures
single-threaded access to the data structures and
hardware registers used by a driver. Specifically, it is
a mutex lock associated with a thread. A work loop
typically has several event sources attached to it; they
use the work loop to ensure a protected, gated
context for processing events. See also event source

126
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

This appendix describes each of the I/O Kit families in detail, paying particular attention to client/provider
relationships. For most families, it provides a class hierarchy chart. It also tells you if a family exports a device
interface, thereby allowing applications to access devices represented by the family. You should seriously
consider taking the device-interface approach before attempting to write a kernel-resident driver. For
information on using device interfaces, see the document Accessing Hardware From Applications.

Some categories of devices are not currently supported by an I/O Kit family. If your device falls into an
unsupported category, you might be able to write a “family-less” driver, use an SDK other than the I/O Kit,
or create a new family. See “Devices Without I/O Kit Families” (page 155) for details.

You may find it helpful to examine the source code for an I/O Kit family or a specific device driver. To do this,
visit Darwin Releases, select the appropriate version of Mac OS X, and click Source to view the available source
projects.

ADB

The ADB family provides support for, and access to, devices attached to the Apple Desktop Bus (ADB). It
provides an abstraction for ADB bus controller drivers (IOADBController) and another for drivers of ADB
devices (IOADBDevice).

Bundle identifier:

 ■ com.apple.iokit.IOADBFamily

Headers at:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/adb/

 ■ Device interface: IOKit.framework/Headers/adb

References and specifications:

 ■ Chapter 5 — “ADB Manager” of InsideMacintosh:Devices (http://developer.apple.com/documentation/Hard-
ware/DeviceManagers/adb/adb.html)

 ■ Technical note HW01 (http://developer.apple.com/technotes/hw/hw_01.html)

 ■ Guide to the Macintosh Family Hardware, second edition, Apple Computer.

Class hierarchy:

IOADBBus IOADBController
IOADBDevice

ADB family

OSObject IOService

ADB 127
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.opensource.apple.com/darwinsource/
http://developer.apple.com/documentation/Hardware/DeviceManagers/adb/adb.html
http://developer.apple.com/documentation/Hardware/DeviceManagers/adb/adb.html
http://developer.apple.com/technotes/hw/hw_01.html

Device Interface:

 ■ Exports an interface for reading and writing registers on ADB devices. The interface is defined in
IOADBLib.h. Only polled mode operations are supported through this library. Interrupt operations are
only supported for kernel-resident clients.

Table A-1 Clients and providers of the ADB family

Provider for the nubClient of the nub

Drives an ADB bus controllerDrives devices that plug into an ADB port.Action

A driver for an ADB mouse is a client of the ADB
family but is a member of the HID family (in the
IOHIPointing class).

Example

ADB bus controller drivers should inherit from
the IOADBController class as defined in the
header file IOADBController.h

An instance of IOADBDevice matches your driver
and loads it into the kernel. Your driver
communicates with its family through an instance
of IOADBDevice.

Classes

All current ADB bus hardware produced by
Apple is well supported by drivers that are
included with Mac OS X. Third-party
developers should not need to write drivers
for the ADB family, except for ADB-USB
adaptors.

Common client families include the HID family
(IOHIPointing and, IOHIKeyboard classes) and the
Graphics family (IODisplay class).

Notes

ATA and ATAPI

The ATA and ATAPI family provides support for ATA controllers, and access to ATA and ATAPI devices on the
ATA bus.

Important: The ATA and ATAPI family is still under development. The information in this section is subject
to change.

Bundle identifier:

 ■ com.apple.iokit.IOATAFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/ata

References and specifications:

 ■ American National Standards Institute (ANSI)—http://www.ansi.org

 ■ National Committee for Information Technology Standards (NCITS)—http://www.ncits.org

128 ATA and ATAPI
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.ansi.org
http://www.ncits.org

 ■ Technical Committee 13 (T13)—http://www.t13.org

Class hierarchy:

OSObject

IOService

IOTimerEventSource

IOATABusInfo

IOATACommand

ATATimerEventSource

IOATADevConfig IOPCIATA

IOATAController MacIOATA

IOATADevice IOATADeviceNub

IOATABusCommandIOCommand

ATA family

Device interface:

 ■ Although this family does not itself export device interfaces, the “SCSI Architecture Model” (page 143)
family does provide device-interface support for ATAPI devices.

Table A-2 Clients and providers of the ATA and ATAPI family

Provider for the nubClient of the nub

Drives an ATA bus
controller.

Drives a device that is connected to an ATA bus.Action

An ATA hard drive or an ATAPI DVD-ROM drive. The Storage family
is the most common family for clients.

Example

Clients of this family match against an instance of IOATADevice,
one of which is created and published by the controller driver for
every ATA or ATAPI device that is detected on the bus. They use
the services provided by that object to communicate with the
physical device on the bus.

Classes

Third-party developers
should never need to create
a member of the ATA/ATAPI
family.

Clients of the ATA family must issue ATA/ATAPI commands
encapsulated by an IOATACommand object. This command object
encapsulates all the information necessary to encode a single
ATA/ATAPI command as well as the results of the command’s
execution.

Notes

Audio

The Audio family provides support to enable access to devices that record or play back audio signals. It
provides a flexible abstraction for audio devices that permits an unlimited number of channels as well as
arbitrary sample rates, bit depths, and sample formats. The Audio family utilizes a high-resolution time base
that is used as the basis for timing information for the entire audio and MIDI system in Mac OS X. (The Audio
family itself does not provide any MIDI services; these are provided by the Core MIDI framework.)

Audio 129
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.t13.org

The Audio Hardware Abstraction Layer (Audio HAL) provides all audio services to applications in Mac OS X.
The Audio HAL is accessed through the Core Audio framework and has its programmatic interface defined
in AudioHardware.h in that framework. The Audio family provides the link between an audio driver and
the Audio HAL. Because the Audio HAL is a client of the Audio family, all audio device functionality is available
to clients of the Audio HAL.

Bundle identifier:

 ■ com.apple.iokit.IOAudioFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/audio/

Device interface:

 ■ Although this family does not directly export device interfaces, the Audio family does provide a device
interface that is used by the Audio Hardware Abstraction Layer (Audio HAL) to access all of the abstractions
provided by the Audio family (see description above).

Power management:

 ■ The Audio family performs most power management tasks for subclassed device drivers. An audio driver
does not have to call PMinit, joinPMtree, registerPowerDriver, or PMstop, because the Audio
family takes care of initializing power management, attaching the driver into the power plane and
registering it with power management, and terminating power management.

Although an audio driver does not have to implement the IOServicemethod setPowerState, it does
need to implement the IOAudio method performPowerStateChange to do the work of changing its
device’s power state.

 ■ The Audio family implements idleness determination by keeping track of active audio engines, so a
custom audio driver never needs to call activityTickle or determine idleness on its own.

Table A-3 Clients and providers of the Audio family

Provider for the nubClient of the nub

Either records or plays back audio signals.A kernel-resident client is not
necessary. Use the Core Audio
framework to access Audio
HAL.

Action

PCI audio cards, external USB or FireWire audio devices and any
other device that produces or consumes audio.

Example

An audio driver must contain subclasses of both IOAudioDevice
and IOAudioEngine.

Classes

An audio driver is a client of other families that provide access
to the hardware that the driver supports. For example, a driver
for a PCI audio card will be a client of the PCI family.

Notes

130 Audio
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

FireWire

The FireWire family provides support for, and access to, devices attached to the FireWire bus (FireWire is an
Apple trademark applied to the IEEE 1394 standard, also sometimes known as i.LINK™).

The FireWire family has strong affinities with the SBP2 family. A driver that uses the SBP-2 transport protocol
is the most common client of the FireWire family.

Bundle identifier:

 ■ com.apple.iokit.IOFireWireFamily

Headers in:

 ■ Kernel-resident: Kernel.framework/Headers/IOKit/firewire/

 ■ Device interface: IOKit.framework/Headers/firewire

References and specifications:

 ■ 1394 Trade Association—http://www.1394ta.org

 ■ IEEE—http://www.ieee.org/portal/site. Copies of the IEEE 1394 specification can be purchased here.

 ■ Apple Developer Connection—http://developer.apple.com/hardwaredrivers/firewire/index.html

Class hierarchy

FireWire 131
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.1394ta.org
http://www.ieee.org/portal/site
http://developer.apple.com/hardwaredrivers/firewire/index.html

IOFWAsynchCommand

IOFWAddressSpace

IOFWIsochPort
IODCLProgram

IOFWIsochChannel
IOFireWireLink

IOFireWireBus
IOFireWireNub

IOFireWireUserClientIniter

IOFWCommand

IOFWWorkLoop

IOFWQEventSource

IOFireWireUserClient

IORemoteConfigDirectory

IOLocalConfigDirectory

IOFWPhysicalAddressSpace

IOFWPseudoAddressSpace

IOFWLocalIsochPort

IOConfigDirectoryOSObject

IOService

IODCLTranslateTalk

IODCLTranslateListen

IOFWCompareAndSwapCommand

IOFWWriteQuadCommand

IOFWDelayCommand

IOFWReadQuadCommand

IOFWReadCommand

IOFWWriteCommand

IOCommand

IOWorkLoop

IOEventSource

IOUserClient

IODCLTranslator

IOFireWireController

IOFireWireDevice

IOFireWireUnit

IOFWBusCommand

IOFWUserClientPsuedoAddressSpace

Firewire family

IOFWUserClientPhysicalAddressSpace

Device interface:

 ■ Provides a device interface exporting an interface for sending and receiving packets on the FireWire bus
and for adding entries into the computer’s own FireWire config ROM.

Table A-4 Clients and providers of the FireWire family

Provider for the nubClient of the nub

Drives a FireWire bus controller.Unit drivers:Drives communication with a unit of a device
that plugs into the FireWire bus. Protocol drivers: Adds
support for a protocol enabling peer-to-peer
communication or emulation over FireWire.

Action

Unit drivers: A driver for a FireWire speakers. Protocol
drivers: A driver that provides TCP/IP over FireWire.

Example

132 FireWire
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Provider for the nubClient of the nub

Driver classes should inherit from the
IOFireWireController class as defined
in the header file IOFireWire-
Controller.h.

Unit drivers: An instance of IOFireWireUnit, representing
a unit found in a device’s configuration ROM, is matched
against the driver and it is loaded into the kernel. The
driver communicates with the FireWire family through
this instance. Protocol drivers: An instance of
IOFireWireController matches a protocol driver and loads
it into the kernel. The driver communicates with the
FireWire family through this instance.

Classes

Mac OS X ships drivers for all Open
Host Controller Interface (OHCI) bus
controllers. Third-party developers
generally should not need to write
bus-controller drivers for the FireWire
family.

The most common client family is the SBP2 family.Notes

In some cases, you can write a driver for a FireWire device instead of for a unit. An example might be a driver
for a device with a minimal config ROM (that is, with just a vendor ID). However, use of the minimal config
ROM is strongly discouraged by Apple. Also, if your driver matches against a FireWire unit, it is often possible
to do some things with the device.

Graphics

The Graphics family provides support for frame buffers and display devices (monitors).

Bundle identifier:

 ■ com.apple.iokit.IOGraphicsFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/graphics/

 ■ Device interface: IOKit.framework/Headers/graphics

Class hierarchy:

IOAccelerator

OSObject IOService

IODisplay

AppleSenseDisplay

IODisplayConnect

AppleNoSenseDisplay

IOGraphicsDevice

IOFramebuffer

Graphics family

Graphics 133
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Device interface:

 ■ The Graphics family exports several device interfaces since most access of graphics devices is from user
space. However, the Quartz layer arbitrates access to frame buffers from user space through the windowing
system or the CGDirectDisplay API. Other layers, such as Carbon Draw Sprockets, provide application
access to graphics.

 ■ Graphics acceleration is supplied by modules loaded into user address space. A CFPlugIn interface,
defined in IOGraphicsInterface.h, implements two-dimensional acceleration. Similarly, OpenGL
defines a loadable-bundle interface for three-dimensional rendering. Because there is no standard way
to implement this functionality, hardware-specific code can exist in both user-space code and in a
kernel-loaded driver.

Table A-5 Clients and providers of the Graphics family

Provider for the nubClient of the nub

Implements support for a frame buffer.Action

Example

Frame-buffer drivers must be subclasses of the
IOFramebuffer class. The IONDRVFramebuffer class supports
native Power PC Mac OS graphics drivers (known as
“ndrv"s); this support is automatic, provided the drivers
are written correctly to the specification.

Classes

Apple provides generic support for displays and so displays
should not generally require third-party drivers.

Support for kernel-resident clients
is limited. Because the Quartz layer
owns the display, the kernel
generally does not render graphics
directly.

Notes

A Note on NDRV Compatibility

NDRV graphics drivers should function in OS X if they are correctly written. If they are not correctly written,
the many differences in Mac OS X’s runtime environment could cause them to fail, be ignored, or even cause
a crash. If you are writing an NDRV driver, follow these rules:

 ■ Access the card hardware using virtual addressing. Do not assume the card is mapped into its physically
assigned address. In Mac OS 9, NDRV cards are mapped one-to-one, but in Mac OS X, this is not
guaranteed. Obtain the virtual addresses for your card's hardware via the AAPL,address property as
documented in “Designed Cards and Drivers for PCI Power Macintosh.”

 ■ Link only on the native driver libraries, which are NameRegistryLib, DriverServicesLib, and VideoServicesLib.
If your card links on InterfaceLib or any other application-level library, it probably won’t work on Mac
OS X.

 ■ Do not access low memory; doing so causes a crash (kernel panic) in Mac OS X.

 ■ Name registry calls are not supported from interrupt level in Mac OS 9 or Mac OS X. They return errors
in Mac OS X.

134 Graphics
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ Secondary interrupts are not supported in Mac OS X. There is no need to fake vertical blank interrupts
if your card does not support them—simply do not create a VBL service. Mac OS 9 continues to require
a VBL service to be installed to move the cursor on your device.

 ■ Stack size is limited to 16K on Mac OS X; any NDRV invocation should consume no more than 4K of stack.

If you want to make runtime conditional changes to your NDRV code, the property AAPL,iokit-ndrv is
set in the PCI device properties before OS X uses your driver.

Mac OS X supports 32 bits-per-pixel, alpha-blended cursors in hardware. If your device supports an
alpha-blended direct color cursor, it should call VSLPrepareCursorForHardwareCursor with these fields
set in the HardwareCursorDescriptor record:

bitDepth = 32 maskBitDepth = 0 numColors = 0colorEncodings = NULL

The hardwareCursorData buffer in the HardwareCursorInfo should point to a buffer of 32 bits per pixel,
ARGB data. The data is not premultiplied by the alpha channel.

HID

The Human Interface Device (HID) class is one of several device classes described by the USB (Universal Serial
Bus) architecture. The HID class consists primarily of devices humans use to control a computer system’s
operations. Examples of such HID class devices include:

 ■ Keyboards and pointing devices such as mice, trackballs, and joysticks

 ■ Front-panel controls such as knobs, switches, sliders, and buttons

 ■ Controls that might be found on games or simulation devices such as data gloves, throttles, and steering
wheels

Currently, Mac OS X provides the HID Manager to allow applications to access joysticks, audio devices, and
non-Apple displays. You can also use the HID Manager to get information from another type of HID class
device, a UPS (uninterruptible power supply) device. UPS devices share the same report descriptor structure
as other HID class devices and provide information such as voltage, current, and frequency. The Mac OS X
HID Manager consists of three layers:

 ■ The HID Manager client API that provides definitions and functions your application can use to work
with HID class devices

 ■ the HID family that provides the in-kernel HID infrastructure such as the base classes, the kernel-user
space memory mapping and queueing code, and the HID parser

 ■ the HID drivers provided by Apple

Bundle identifier:

 ■ com.apple.iokit.IOHIDFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/hid/ and
Kernel.framework/Headers/IOKit/hidsystem/

HID 135
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ Device interface: IOKit.framework/Headers/hid/ and IOKit.framework/Headers/hidsystem/

References and specifications:

 ■ HID Information section of USB.org—Developers website (http://www.usb.org/developers/hidpage)

 ■ HID Class Device Interface Guide

Class hierarchy:

OSObject

IOService

IOHIKeyboardMapper

IOHIDevice IOHIKeyboard

IOHIDSystem IOHITabletPointer

IOHIPointing IOHITablet

Human Interface Device family

Device interface:

 ■ The HID family exports a device interface through the HID Manager client API. The HID Manager includes
IOHIDLib.h and IOHIDKeys.h (located in
/System/Library/Frameworks/IOKit.framework/Headers/hid) which define the property keys
that describe a device, the element keys that describe a device’s elements, and the device interface
functions and data structures you use to communicate with a device. After you’ve created a device
interface for a selected HID class device, you can use the device interface functions to open and close
the device, get the most recent value of an element, or set an element value.

Table A-6 Clients and providers of the HID family

Provider for the nubClient of the nub

Drives an input device such as a multi-button mouse, trackball, or joystick.Action

Example

Classes

Support for most simple input devices is provided by the generic driver.Notes

Network

The Network family provides support for network controllers. The Network family consists of two logical
layers:

 ■ Controller layer—this layer represents the network controller.

 ■ Interface layer—this layer represents the network interface published by the network controller.

Bundle identifier:

136 Network
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.usb.org/developers/hidpage

 ■ com.apple.iokit.IONetworkingFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/network/

 ■ Device interface: IOKit.framework/Headers/network/

Class hierarchy:

IOMbufNaturalMemoryCursor

IONetworkMedium

IOOutputQueue

IOPacketQueue

IONetworkInterface

IONetworkController

IOKernelDebugger

IONetworkUserClient

IOMbufMemoryCursor

IONetworkDataOSObject

IOService

IOGatedOutputQueue

IOMbufLittleMemoryCursor

IOMbufBigMemoryCursor

IOMbufDBDMAMemoryCursor

IOUserClient

IOMemoryCursor

IOBasicOutputQueue

IOEthernetInterface

IOEthernetController

Network family

Device interface:

 ■ The device interface for this family is usually the BSD network stack. Applications use the socket interface
provided by the network stack to access indirectly the services provided by the Network family.

Power management:

The Network family performs most of the power-management set-up and tear-down tasks for subclassed
device drivers. If you’re developing a driver for a network device that can be passively power managed (which
describes most network devices), you can meet most of your basic power-management needs by overriding
the IONetworkController method registerWithPolicyMaker and calling the IOService method
registerPowerDriver.

In your implementation of registerWithPolicyMaker, create an array of IOPMPowerState structures to
define your device’s power states and pass them in to registerPowerDriver. Then, return
kIOReturnSuccess from registerWithPolicyMaker to tell the Network family that your driver can
respond to power-management calls. (The default implementation of registerPowerDriver returns
kIOReturnUnsupported.) The following code snippet shows one way to do this:

IOReturn MyEthernetDriver::registerWithPolicyMaker(IOService * policyMaker)
{
IOReturn ioreturn;
static IOPMPowerState powerStateArray[kPowerStateCount] = {
 { 1,0,0,0,0,0,0,0,0,0,0,0 },
 { 1,kIOPMDeviceUsable,kIOPMPowerOn,kIOPMPowerOn,0,0,0,0,0,0,0,0 }
};

Network 137
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

fCurrentPowerState = kPowerStateOn;
ioreturn = policyMaker->registerPowerDriver(this, powerStateArray, kPowerStateCount);
return ioreturn;
}

Most network device drivers handle power changes related to sleep and wake in their implementations of
the IONetworkController methods enable and disable. Note that the Network family enables a device
when it transitions to a power state for which the kIOPMDeviceUsable flag is set. When a currently enabled
device moves to a power state for which the kIOPMDeviceUsable flag is not set, the Network family disables
it.

If you need to perform additional tasks to handle sleep and wake, you can override the IOService method
setPowerState. Be aware, however, that the Network family will call disable before you receive a call to
your setPowerState implementation if the new power state puts the device into an unusable state.
Conversely, the Network family calls enable after you receive a setPowerState call to move the device to
a usable state.

If your network device driver performs DMA, you should override the IOService method
systemWillShutdown, which was introduced in Mac OS X v10.5. This is especially important for drivers that
run in Intel-based Macintosh computers. In your implementation of systemWillShutdown, you should
make sure that the DMA engine is shut off, which results in the necessary disabling of the port.

Important: As described in “Receiving Shutdown and Restart Notifications” (page 109) the
systemWillShutdown call is made to drivers in the power plane, in leaf-to-root order. If your driver returns
kIOReturnUnsupported from registerWithPolicyMaker, it will not be attached to the power plane
and will not receive a systemWillShutdown call.

Table A-7 Clients and providers of the Network family

Provider for the nubClient of the nub

Drives a network controller.Action

Controllers on Ethernet, Token Ring, and FDDI adapters.Example

Driver must be an instance of a subclass of a controller
class that implements generic network controller
functionality, such as IONetworkController or of a
controller class that builds upon IONetworkController to
specialize for Ethernet controller support
(IOEthernetController). See discussion on Network family
classes below for more information.

Classes

Drivers are typically not clients of
the Network family. The primary
system client of this family is the
DLIL (Data Link Interface Layer)
module in the BSD network stack.

Notes

Member drivers must also create IONetworkInterface objects that are registered with the DLIL; such registration
associates the driver with a network interface (for example, en0) in the system. You can create a Network
Kernel Extension (NKE) and insert it at various locations above the IOKit/DLIL boundary to intercept the
packets, commands, or other event traffic between an IONetworkInterface object and the upper layers.

138 Network
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Another client of this family is the KDP (Kernel Debugger Protocol) module in the kernel. A driver can create
an IOKernelDebugger object that vends debugging services and allows kernel debugging through the
network hardware managed by the driver. Only drivers that drive a built-in network controller are required
to provide this support.

Other classes of the Network family include:

IOOutputQueue—assists in queuing outbound packets.
IOPacketQueue—represents a generic mbuf packet FIFO queue.
IOMbufMemoryCursor—translates mbuf packets into a scatter-gather list of physical addresses and
length pairs.
IONetworkData—represents a container for a single group of statistics counters.
IONetworkMedium—represents a single network medium supported by the network device.

PC Card

The PC Card family supports 32-bit PC cards (CardBus), 16-bit PC cards (I/O and memory), and Zoom Video
cards. This support encompasses controllers that are compatible with ExCA (Intel 82365) and Yenta register
sets. Apple’s PC Card family’s Card Services are, for the most part, compliant with the 1997 PC Card™ standard.

CardBus cards are essentially PCI devices in a different form factor. If you are writing a driver for a CardBus
card, you can choose to subclass from either IOPCIDevice or IOCardBusDevice. See the reference section
“PCI and AGP” (page 140) for more information about the PCI family.

Other classes provided by the family include:

IOPCCard16Device—represents a 16-bit PC card device.
IOPCCard16Enabler—allows you to override the card configuration process for 16-bit cards. It is used
mainly for cards with broken or missing CIS entries.
IOZoomVideoDevice—represents a Zoom Video device.
IOPCCardBridge—represents a PC Card bridge; this class is a subclass of IOPCI2PCIBridge which is a
subclass of IOPCIBridge.

Bundle identifier:

 ■ com.apple.iokit.IOPCCardFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/pccard/

References and specifications:

 ■ Documentation for Card Services can be found in the doc directory of the PC Card family source (available
via Darwin CVS). You can also find in the same location a sample 16-bit driver.

 ■ Apple Developer Connection—http://developer.apple.com/hardwaredrivers/pci/

Class hierarchy:

PC Card 139
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://developer.apple.com/hardwaredrivers/pci/

OSObject

IOService

IOPCCard16Enabler

IOPCCardInterruptController

IOPCCard16Device

IOPCI2PCIBridge IOPCCardBridge

IOPCIDevice IOCardBusDevice

IOInterruptController
PCI/AGP family

PC Card family

Device interface:

 ■ None.

Power management:

 ■ Classes IOPCCardBridge, IOPCCard16Device, IOPCCard16Enabler, and IOCardBusDeviceprovide
some power-management support.

PCI and AGP

The PCI and AGP family provides support for, and access to, devices attached to PCI and AGP buses and PCI
bridges.

Bundle identifier:

 ■ com.apple.iokit.IOPCIFamily

Headers in:

 ■ Kernel.framework/Headers/IOKit/pci/

References and specifications:

 ■ This family supports all major features of the PCI Localbus 2.1 specification.

 ■ PCI Special Interest Group—http://www.pcisig.com

 ■ Apple Developer Connection—http://developer.apple.com/hardwaredrivers/pci/

Class hierarchy:

IOPCIDevice IOAGPDevice
IOPCI2PCIBridgeIOPCIBridge

PCI family

IOServiceOSObject

Device interface:

140 PCI and AGP
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.pcisig.com
http://developer.apple.com/hardwaredrivers/pci/

 ■ None. Applications are not permitted direct access to PCI bus hardware for security reasons. Instead,
applications should interact with higher-level services, such as those provided by device interfaces of
the USB or other families.

Matching properties:

 ■ The PCI/AGP family permits matching based on Open Firmware or on PCI registers. See the description
of the IOPCIDevice class in the reference documentation for details.

Check the Darwin Open Source project for example PCI drivers.

Table A-8 Clients and providers of the PCI and AGP family

Provider for the nubClient of the nub

Drives a PCI bus controller or a PCI bridge.Drives a device that plugs into a PCI bus.Action

A driver for a PCI SCSI controller card is a client
of the PCI family but is a member of the SCSI
Parallel family.

Example

PCI family member drivers should inherit from
the IOPCIBridge class.

The driver communicates with its family via an
instance of IOPCIDevice or IOAGPDevice. An
instance of one of these classes matches your
driver and loads it into the kernel.

Classes

Mac OS X supports most PCI bus hardware with
a set of generic drivers. In general, third-party
developers do not need to write drivers for the
PCI and AGP family unless they are building a
PCI expansion chassis or developing drivers for
a PCI bridge with special characteristics not
addressed by the generic drivers.

The most common client families are the USB,
Network, SCSI, Graphics, and Audio families.

Notes

SBP-2

The SBP2 family (Serial Bus Protocol 2) provides support for, and access to, devices attached to the FireWire
bus that use the SBP-2 transport protocol. The SBP2 family is a client of the FireWire family. SBP-2 devices
require FireWire to run.

Bundle identifier:

 ■ com.apple.iokit.IOFireWireSBP2

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/sbp2/

 ■ Device interface: IOKit.framework/Headers/sbp2

References and specifications:

SBP-2 141
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ T10 Technical Committee —http://www.t10.org

 ■ SBP-2 standard: ftp://ftp.t10.org/t10/drafts/sbp2/

Class hierarchy:

IOFireWireSBP2UserClient

IOFireWireSBP2LSIWorkaroundDescriptor

IOFireWireSBP2ORB

IOFireWireSerialBusProtocolTransport

IOFireWireSBP2LoginOSObject

IOUserClient
IOGeneralMemoryDescriptor

IOFWCommand

IOSCSIProtocolServices

IOFireWireSBP2Target

IOFireWireSBP2LUN
IOService

SBP2 family

FireWire family

SCSI Architecture Model family

Device interface:

 ■ The SBP2 family provides a device interface that exports an interface for sending SBP-2 ORBs to a device.

Table A-9 Clients and providers of the SBP2 family

Provider for the nubClient of the nub

Provides SBP-2 transport
services

Drives a device that uses the SBP-2 transport protocol.Action

A driver for a typical FireWire hard disk drive is a client of the
SBP2 family but is a member of the mass storage family.

Example

SBP2 family-member drivers
should inherit from the
IOFireWireSBP2Target class.

A client driver communicates with the SBP2 family through an
instance of IOFireWireSBP2LUN. An instance of this class is
created for each LUN (Logical Unit Number) found in a
configuration ROM unit directory; this instance matches your
driver and loads it into the kernel.

Classes

The most common client family is the Storage family.Notes

SCSI Parallel

The SCSI Parallel family provides support for, and access to, devices attached to a parallel SCSI bus. This family
supports all major features of the SCSI Parallel Interface-5 (SPI-5) specification for parallel buses.

Bundle identifier:

 ■ com.apple.iokit.IOSCSIParallelFamily

Headers in:

142 SCSI Parallel
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.t10.org
ftp://ftp.t10.org/t10/drafts/sbp2/

 ■ Kernel resident: Kernel.framework/Headers/IOKit/scsi/spi. The header file
IOSCSIParallelInterfaceController.h supports the development of a driver for a SCSI card.

References and specifications:

 ■ T10 Technical Committee —http://www.t10.org

 ■ SCSI Technical Library of Information—http://www.scsilibrary.com/

Class hierarchy:

IOSCSIParallelInterfaceController

IOSCSIParallelInterfaceDeviceIOSCSIDeviceIOCDBDevice

SCSI Parallel family

IOSCSIParallelCommandIOSCSICommandIOCDBCommand

IOService
OSObject

IOCommand

Device interface:

 ■ Device interface support for parallel SCSI devices is provided by the SCSI Architecture Model family. See
“SCSI Architecture Model” (page 143)

Table A-10 Clients and providers of the SCSI Parallel family

Provider for the nubClient of the nub

Drives a SCSI host adapter or controller chip.Drives a device that plugs into a SCSI bus.Action

A driver for a SCSI disk drive is a client of the
SCSI Parallel family but a member of the Storage
family.

Example

Because the SCSI Parallel family presently
supports parallel buses, member drivers use
the IOSCSIParallelInterfaceController class.

A client driver communicates with the SCSI
Parallel family through an instance of
IOSCSIDevice. Your driver would match on this
instance and be loaded into the kernel. Another
class of interest is IOSCSICommand.

Classes

Mac OS X includes generic drivers for most
built-in SCSI hardware. In general, third-party
developers do not need to write drivers that
are members of the SCSI Parallel family unless
they are developing drivers for an expansion
card.

Common client families include the Transport
Drivers for storage devices.

Notes

SCSI Architecture Model

The SCSI Architecture Model family provides common client support for SCSI, USB (Storage), FireWire SBP-2
and ATAPI devices. Many of the classes of this family belong to the Transport Driver layer, which is summarized
in Table A-11 (page 144)

SCSI Architecture Model 143
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.t10.org
http://www.scsilibrary.com/

Table A-11 SCSI Architecture Model family—Transport Driver layer

CommentsClassesType

Linkage objects that understand the APIs
from the Device Services layer (Storage family)
and export APIs that the Logical Unit drivers
(in the Transport Driver layer) understand.

IOBlockStorageServices
IOReducedBlockServices
IOCompactDiscServices IODVDServices

Device Services
Linkage

Drive mass storage devices that have file
systems or are bootable.

IOSCSIPeripheralDeviceType00
IOSCSIPeripheralDeviceType05
IOSCSIPeripheralDeviceType07
IOSCSIPeripheralDeviceType0E

Logical Unit
drivers

Not really an I/O Kit nub, but an object that
queries the device and determines which
Logical Unit driver is needed.

IOSCSIPerpheralDeviceNubPeripheral Device
Type Nub

Classes for bus-specific drivers. Although
these classes belong to other families, they
are part of the SCSI Architecture Model
layering.

IOUSBMassStorageClass
IOATAPIProtocolTransport
IOFireWireSerialBusProtocol- Transport
IOSCSIParallelInterface-
ProtocolTransport

SCSI Protocol
drivers

The Logical Unit drivers and the Peripheral Device Type Nub are in the SCSI Application layer, which inherits
(ultimately) from IOSCSIPrimaryCommandsDevice. The SCSI Protocol drivers are in the SCSI Protocol layer,
which inherits from IOSCSIProtocolServices.

The SCSI Architecture Model family supports multimedia command set devices, such as CD-RW drives.

Bundle identifier:

 ■ com.apple.iokit.IOSCSIArchitectureModelFamily

Headers in:

 ■ Kernel-resident: Kernel.framework/Headers/IOKit/scsi-commands/

 ■ Device interface: IOKit.framework/Headers/scsi-commands

Class hierarchy:

144 SCSI Architecture Model
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

IODVDBlockStorageDevice

IOSCSIProtocolInterface

IOBlockStorageDevice

IOUserClient

SCSITask

SCSIBlockCommands

SCSIMultimediaCommands

SCSIReducedBlockCommands

IOSCSIProtocolServices

IOSCSIPrimaryCommandsDevice

SCSIPrimaryCommandsOSObject

IOService

IOSCSIPeripheralDeviceNub

IOSCSIMultimediaCommandsDevice

IOSCSIBlockCommandsDevice

IOCommand

IOBlockStorageServices

IOReducedBlockServices

IOCDBlockStorageDevice

SCSITaskUserClient

IOSCSIReducedBlockCommandsDevice

IOCompactDiscService

IODVDServices

SCSI Architecture Model family

Storage family

Storage family

Storage family

IOSCSIPeripheralDeviceType05

IOSCSIPeripheralDeviceType00
IOSCSIPeripheralDeviceType07

IOSCSIPeripheralDeviceType0E

Device interface:

 ■ The library for the SCSI Architecture Model family is called SCSITaskLib. It includes three interfaces:
MMCDeviceInterface, SCSITaskDeviceInterface, and SCSITaskInterface. The user-client class is
SCSITaskUserClient. If you need to access a SCSI Parallel device and your application must run in versions
of Mac OS X prior to v10.2, see Accessing SCSI Parallel Devices for information on how to do this.
Otherwise, you should use the device interfaces in the SCSITaskLib to access your device (see Accessing
SCSI Architecture Model Devices for information on how to do this).

Power management:

The SCSI Architecture Model family performs most of the power-management set-up and tear-down tasks
for both protocol services drivers and logical unit drivers. In general, a protocol services driver, such as
IOATAPIProtocolTransport, must be able to transition the physical interconnect device between the off and
on states. On the other hand a logical unit driver, such as IOSCSIPeripheralDeviceType05, must be able to
manage a multimedia device that supports all the power states defined by the SCSI multimedia commands
specification. In addition, a logical unit driver might need to determine if a power-state change is needed,
block incoming I/O when the device is not in an appropriate power state, and specify the power state a
device should enter at boot time.

SCSI Architecture Model 145
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Note: The SCSI Architecture Model family defines the system sleep power state, which is in addition to the
power states defined by the command-set specifications. System sleep corresponds to the sleep that occurs
when the user chooses Sleep in the Apple menu or closes the lid of a laptop. The sleep state defined in the
command-set specifications corresponds to the sleep that occurs when the device is idle. Because power
can be removed from devices in system sleep, the SCSI Architecture Model family handles it differently than
sleep.

As shown in the class hierarchy diagram above, the SCSI Architecture Model family defines a common
superclass for both types of drivers: IOSCSIProtocolInterface. The IOSCSIProtocolInterface class
defines a number of power-management methods that subclass drivers can call or, less frequently, override.

 ■ If you’re developing a custom protocol services driver, you do not need to perform the steps outlined
in “Implementing Basic Power Management” (page 100) Instead, you must call the
IOSCSIProtocolInterface method InitializePowerManagement in your driver’s start routine.
Then, if there is device-specific work to do to handle power-state changes, you can implement the
methods HandlePowerOn and HandlePowerOff.

 ■ Similarly, if you’re developing a custom logical unit driver, you do not need to perform the steps outlined
in “Implementing Basic Power Management” (page 100) If your device complies with the appropriate
command-set specification, you do not need to override any methods in your driver unless you want to
implement custom power-management functionality. For example, you might want your device to
transition from the active state directly to the sleep state, instead of through the intermediate states
between active and sleep.

In the IOSCSIProtocolInterface class, the SCSI Architecture Model family provides the following
methods a logical unit driver subclass can implement:

 ❏ InitializePowerManagement. The superclass implementation of this method performs
power-management setup tasks. A subclass driver can override this method to provide information
about the power states the device supports.

 ❏ TicklePowerManager. The superclass implementation of TicklePowerManager calls the
activityTickle method, which results in a request to change your device to its active power
state. A subclass driver can override this method to specify a state different from the active one.

 ❏ GetInitialPowerState. This method is used to specify the default state (usually active) a device
should be in when the system boots. If a device should enter a different state when the system
boots, the subclass driver can override this method and specify that state.

 ❏ GetNumberOfPowerStateTransitions. A subclass driver can override this method to report the
number of transitions between the lowest and highest specification-defined power states the device
supports. Note that system sleep is not counted in the transitions because it is not a power state
the device enters voluntarily.

 ❏ HandlePowerChange. A subclass driver overrides this method to perform the work of changing
the device’s power state.

Serial

The Serial family provides support for serial byte character streams.

Bundle identifier:

146 Serial
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ com.apple.iokit.IOSerialFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/serial/

 ■ Device interface: IOKit.framework/Headers/serial/

References and specifications:

 ■ See termios(4). Also see the related header file Kernel.framework/Headers/sys/termios.h

Class hierarchy:

IOSerialDriverSync

IOModemSerialStreamSync

IORS232SerialStreamSync

IOSerialStreamSync

Serial family

IOServiceOSObject

Device interface:

 ■ Applications can access the Serial family through the BSD device nodes, the most common client of this
family. An application can read and write data using the BSD device nodes in /dev. Data is also routed
through to PPP via these device nodes. You can find keys and other properties for use in device access
in IOKit.framework/Headers/serial/IOSerialKeys.h.

Table A-12 Clients and providers of the Serial family

Provider for the nubClient of the nub

Provides a single-banded streaming service; in other words,
it cannot be packet-based. although it may be bi-directional.
The driver may also implement flow control. The driver must
describe the services it is capable of providing.

Requires a single-banded data
streaming service with elementary
flow control.

Action

Serial port writers should subclass IOSerialDriverSync for their
drivers, then publish as nubs objects of the
IOModemSerialStreamSync or IORS232SerialStreamSync
classes, or (if neither of these suffices) a concrete subclass of
IOSerialStreamSync. The I/O Kit uses these objects to create
the appropriate user-client interface for user-space access
via BSD.

Classes

Developers should use the BSD
device file mechanism
documented inAccessingHardware
From Applications.

Notes

Serial 147
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Storage

The Storage family provides high-level support for random-access mass storage devices. It is separate from
the underlying technology that transports the data to and from the represented storage space. The interface
to the underlying transport technology is declared in the abstract class IOBlockStorageDevice. Storage driver
objects communicate all mass-storage requests across this interface, without having to have knowledge of,
or involvement with, the commands and mechanisms used to communicate with the device or bus.

The scope of the Storage Family encompasses the IOBlockStorageDevice interface, at one end (provider
direction), and the BSD interface at the other end (client direction), with various driver and media layers in
the between. Figure A-1 (page 148) illustrates this stack.

Figure A-1 Storage family driver stack

IOMedia objects

IOBlockStorageDriver

-
-
-

-
-
-

-
-
-

-
-
-

IOMedia

IOBlockStorageDevice

IOApplePartitionScheme

Layer

Layer

transport

Each layer consists of a set of two objects—a driver object and the child media object (or objects) it publishes.
The IOStorage class is the common base class for both driver and media objects. It is an abstract class that
declares the basic open, close, read, and write interfaces that subclasses are to implement. It establishes the
protocol with which media objects can talk to driver objects without needing to be subclassed for each
driver. The read and write interfaces provide byte-level access to the storage space.

The IOBlockStorageDriver class is the common base class for generic block storage drivers. It matches and
communicates via an IOBlockStorageDevice interface, and connects to the remainder of the storage framework
via the IOStorage protocol. It extends the IOStorage protocol by implementing the appropriate open and
close semantics, deblocking for unaligned transfers, polling for ejectable media, implementing locking and
ejection policies, creating and tearing down media object, and gathering and reporting statistics. The Storage
family supports other basic types of drives, such as CD drives and DVD drives, through subclasses of the

148 Storage
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

IOBlockStorageDriver. You rarely, if ever, need to subclass the generic block storage driver to handle device
idiosyncrasies; rather, you should change the underlying transport drivers to correct any non-conforming
behavior.

The IOMedia class is an abstraction of a random-access disk device. It is equivalent to the “device object” or
“interface object” in other I/O Kit families.

 ■ It represents the presence of a device, or a piece thereof.

 ■ It presents an programmatic interface to that device.

 ■ It is backed by a separate driver that implements the required functionality.

IOMedia provides a consistent interface for both real and virtual disk devices, for subdivisions of disks such
as partitions, for supersets of disks such as RAID volumes, and so on. It extends the IOStorage class by
implementing the appropriate open, close, read, write, and matching semantics for media objects. Its properties
reflect the properties of real disk devices, including natural block size and writability.

The other driver and media layers in the Storage Family are known as filter schemes. These optional layers
separate media objects, providing some kind of data manipulation or offset manipulation between media
objects. These layers may stack arbitrarily on top one another, as they are both a client and a provider of
media objects. Most third-parties will develop drivers for the filter scheme layer, if not for the underlying
transport technology. Refer to “IOMedia Filter Schemes” (page 150) for more information on developing filter
scheme drivers.

For more information on developing drivers for the underlying transport technology, refer to SCSI Architecture
Model Family documentation. The SCSI Architecture Model Family is the common underlying transport
technology for ATAPI, FireWire, SCSI, and USB. It provides a consistent CDB-based access model for application
writers and driver writers, and a simple infrastructure for correcting device idiosyncrasies.

Bundle identifier:

 ■ com.apple.iokit.IOStorageFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/storage/

 ■ Device interface: IOKit.framework/Headers/storage

Class hierarchy:

Storage 149
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

OSObject

IOService

IOBlockStorageDevice

IOMediaBSDClient

IOCDBlockStorageDevice

IOStorage
IOCDMediaBSDClient

IODVDBlockStorageDevice

IODVDMediaBSDClient

IODVDMedia

IOCDMedia

IOCDBlockStorageDriver

IODVDBlockStorageDriver

IOCDPartitionScheme

IOFDiskPartitionScheme

IOApplePartitionScheme

IOPartitionScheme

IOMedia

IOBlockStorageDriver

IONeXTPartitionScheme

Storage family

Device interface:

 ■ See “Accessing IOMedia From Applications” (page 152)

IOMedia Filter Schemes

A filter scheme is a driver for IOMedia objects. It acts as both as a client and a provider of media objects. The
filter-scheme driver receives mass storage requests through its abstract read and write member-function
interfaces, in which it can perform the data manipulation or offset manipulation before passing the request
on to its provider IOMedia object (or objects). There are several different kinds of media filter schemes:

 ■ One-to-one—A block-level compression or encryption scheme, for example, would match against one
IOMedia object and produce one child IOMedia object representing the uncompressed or unencrypted
content.

 ■ One-to-many—A partition scheme, for example, would match against one IOMedia object and produce
multiple child IOMedia objects representing the content of each distinct partition (see “Partition
Schemes” (page 150) for more information).

 ■ Many-to-one—A RAID scheme, for example, would match against multiple IOMedia objects and produce
one child IOMedia object representing the RAIDed content.

 ■ Many-to-many—A many-to-many scheme would match against multiple IOMedia objects and produce
multiple child IOMedia objects.

A filter-scheme driver inherits from the IOStorage class and necessarily participates in the IOStorage match
category (IOMatchCategory’s value in personality).

Partition Schemes

Mac OS X includes two standard partition schemes:

 ■ IOApplePartitionScheme, the standard Apple partition scheme driver

150 Storage
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ IOFDiskPartitionScheme, the standard PC partition scheme driver

A partition-scheme driver inherits from the IOPartitionScheme class (which inherits from IOStorage), matches
against a single IOMedia parent, and produces one or more IOMedia child objects for each partition it must
represent. It participates in the IOStorage match category, as with all filter scheme drivers.

A partition scheme need not be subclassed in order to make use of developer-defined content within a
partition. A partition’s contents is represented by a distinct IOMedia object, published as a child of the
partition-scheme driver. Each child media object has properties that further identify information known about
the partition, such the content hint, size, and natural block size. The content hint field is a string formed
similarly to the well-known "Apple_Driver" and "Apple_HFS" strings, or by definition, in the form
"MyCompany_MyContent". It permits partitions with developer-defined contents to be identified uniquely
(when the partition is created), and permits filter-scheme drivers to match against such content automatically
without ever probing a disk.

IOMedia Properties

Table A-13 (page 151) lists the standard set of properties for all IOMedia objects. These properties can be
used as matching properties in I/O Kit’s search and notification APIs, as well as for filter scheme driver matching
purposes.

Table A-13 Storage family (IOMedia) properties

DescriptionTypeKey

Is the media ejectable?BooleankIOMediaEjectableKey

Is the media a leaf in the media tree? This is false whenever a client
filter-scheme driver has matched against the media object.

BooleankIOMediaLeafKey

The media’s natural block size in bytes.NumberkIOMediaPreferred-
BlockSizeKey

The media’s entire size in bytes.NumberkIOMediaSizeKey

Is the media at the root of the media tree? This is true for the physical
media representation, a RAID media representation, and similar
representations.

BooleankIOMediaWholeKey

Is the media writable?BooleankIOMediaWritableKey

The media’s content description, as forced upon by the client
filter-scheme driver. (This content description is copied automatically
from the client filter-scheme driver’s kIOMediaContentMaskKey
property.) The string’s format follows the "MyCompany_MyContent"
convention, and defaults to the Content Hint string should no client
filter scheme have matched against the object. Used for
informational purposes in user disk utilities.

StringkIOMediaContentKey

The media’s content description, as hinted at the time of the object’s
creation. The string’s format follows the “MyCompany_MyContent”
convention. Used for matching purposes in filter scheme drivers.

StringkIOMediaContent-
HintKey

Storage 151
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

DescriptionTypeKey

The media’s BSD device node name. The name is dynamically
assigned at the time of the object’s creation. Used for read and write
access to the media’s contents (see “Accessing IOMedia From
Applications” (page 152)).

StringkIOBSDNameKey

A media object also has a unique I/O Kit path, which can be obtained via standard I/O Kit APIs.

Accessing IOMedia From Applications

The standard user-space mechanism for accessing data on a piece of media is the BSD device interface. The
BSD device interface is abstracted at the file-system layer through distinct read and write APIs, while general
user application access is provided via the read and write system calls (see the corresponding man pages
for more documentation). The properties and structure of a physical disk are represented in the I/O Kit Registry
object hierarchy and in each media object’s properties, including the BSD device interface name assigned
to the media object.

A specific media object can be found via the standard I/O Kit search and notification APIs. The dictionary
used to describe the IOMedia might refer to specific property values, to a specific service path or device tree
path, or to a specific subclass of media. A CD, for example, appears as an IOCDMedia subclass, with properties
appropriate to a CD, such as kIOCDMediaTOCKey. Such properties can be combined to describe a media
object uniquely in the system, or generalized to identify a certain kind of media with multiple possible matches
(returned in an iterator).

The Carbon APIs and Cocoa APIs provide mechanisms for sending notifications of file system mount and
unmount events, as well as for file access within the file system. An application can obtain the associated
BSD device interface name for a given file system through GetVolParms (vMDeviceID) in Carbon and
through getmntinfo in BSD. The associated IOMedia object can be obtained for a given BSD device interface
name through I/O Kit APIs using the kIOBSDNameKey property.

USB

The USB family provides support for, and access to, devices attached to a Universal Serial Bus (USB).

Two basic types of drivers are clients of this family: kernel-mode drivers and user-mode drivers. Kernel-mode
drivers are required when the clients of the driver also reside in the kernel (such as HID devices, mass storage
devices, or networking devices). User-mode drivers are preferred when only one process has access to the
device (for example printers and scanners).

Bundle identifier:

 ■ com.apple.iokit.IOUSBFamily

Headers in:

 ■ Kernel resident: Kernel.framework/Headers/IOKit/usb/

 ■ Device interface: IOKit.framework/Headers/usb

152 USB
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

References and specifications:

 ■ USB.org—http://www.usb.org; see especially USB Common Class Specification, revision 1.0, available
for download at http://www.usb.org/developers/devclass_docs/usbccs10.pdf

 ■ Apple Developer Connection—http://developer.apple.com/hardwaredrivers/usb/index.html

Class hierarchy:

IOUSBMassStorageClass

OSObject

IOService

IOSCSIProtocolServices

IOUSBPipe

IOUSBLog

IOUSBBus IOUSBController

IOUSBNub IOUSBDevice

IOUSBHub IOUSBInterface

IOUSBMassStorageUFISubclass
SCSI Architecture Model family

USB family

Device interface:

 ■ User mode clients use an API which is part of the I/O Kit framework; this API is defined in
IOKit/usb/IOUSBLib.h. Clients use user mode abstractions of the IOUSBDevice and IOUSBInterface
classes found in the kernel in order to communicate with the USB device or USB interface.

Kernel-resident drivers:

 ■ Kernel drivers for physical USB devices can be written for either USB devices or for USB interfaces. A
physical USB device consists of a device descriptor that can describe any number of interfaces. When
writing a kernel-resident driver, you need to decide if the driver is to control the whole USB device or if
it is to control only an interface of a USB device.

The USB family for kernel-resident drivers consists of three main classes:

 ■ IOUSBDevice: The IOUSBDevice class is an abstraction of a physical USB device. There is one IOUSBDevice
class instantiated for every USB device connected to the bus. The provider for an IOUSBDevice object is
an IOUSBController object (which is an abstraction of a USB controller).

 ■ IOUSBInterface: The IOUSBInterface class is an abstraction of one of the interfaces of a USB device. There
is one of these classes instantiated for every interface in a device. When it is created, the IOUSBInterface
creates IOUSBPipe objects for each endpoint described in the interface descriptor of the interface. The
provider for an IOUSBInterface object is an IOUSBDevice object.

 ■ IOUSBPipe: The IOUSBPipe class contains the methods that are used for communicating with a USB
device or a USB interface. There is one IOUSBPipe object created for the default control endpoint and
an additional one for each endpoint described in the interface descriptor. The provider for an IOUSBPipe
object is an IOUSBInterface object.

Kernel-resident USB drivers are clients of the family that provides the transport services and are members of
the family from which they get their class inheritance. For example, a driver for a USB keyboard is a client of
the IOUSBInterface object (that is, the IOUSBInterface object is the provider for the driver) but the keyboard

USB 153
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

http://www.usb.org
http://www.usb.org/developers/devclass_docs/usbccs10.pdf
http://developer.apple.com/hardwaredrivers/usb/index.html

driver is a member of the IOHIDFamily. The USB family provides the mechanism for getting at the key presses
in the keyboard. The keyboard driver supports methods from the HID family for sending those key presses
to the event system.

As mentioned above, you can write a driver to match against a USB device or a USB interface. The IOUSBDevice
or IOUSBInterface classes are the providers for the drivers. The drivers themselves can be members of a
separate family (such as the IOHIDFamily or IOAudioFamily) or can be members of the IOService family.

Power management:

All in-kernel USB device drivers should implement at least basic power management to increase power saving
in the system. In Mac OS X v10.5, the USB family introduced the IOUSBHubPolicyMaker object, which is an
abstraction of a USB hub that includes power-management capabilities. When you develop a USB device
driver to run in Mac OS X v10.5 and later and you call joinPMtree, your driver is attached into the power
plane as a power child of an IOUSBHubPolicyMaker object. (In earlier versions of Mac OS X, the power
parent of a USB device driver was an IOUSBController object representing the controller to which the
device was attached.)

Your USB device driver can communicate with its IOUSBHubPolicyMaker object to determine the power
state of its hub. This can be useful if, for example, you need to handle an imminent shutdown differently
from a restart. The IOUSBHubPolicyMaker object supports the following five power states for a hub:

 ■ On. The hub is fully functional and at least one of its ports is active (that is, not suspended).

 ■ Sleep. If the hub supports sleep, its ports are inactive and it is not supplying power to any attached
devices; if not, the sleep state is identical to the off state.

 ■ Doze. This is an idle power-saving state a hub can enter when all its ports are suspended or disconnected
and all attached devices are in either the off or doze state. Not all hubs support the doze state.

 ■ Off. The hub enters this state when the system is about to shut down.

 ■ Restart. This state is identical to the off state, except that a hub enters it when the system is about to
restart.

USB devices seldom support more than the first four of these power states, and many support only on, sleep,
and off. If you’re developing a driver for a USB device that supports doze, you should call SuspendDevice
when you switch the device’s power state to doze, so the hub can suspend the port to which the device is
attached. If the drivers for all the devices attached to a hub do this, the hub can enter the doze state, which
can result in significant power saving for the system. However, if your driver calls SuspendDevice without
also changing the device’s power state to doze, you prevent the hub from entering the doze state and saving
power.

If the hub to which your device is attached does not support sleep, the device must go to its off state when
the system goes to sleep. Of course, if your device does not support sleep, it must also go to its off state
when the system goes to sleep, even if its hub does support sleep.

During a power-state change, note that a USB hub's power state is not updated until the hub receives a
powerChangeDone call, which does not happen until after all downstream hubs and devices have received
their powerChangeDone calls. This means that if you use the getPowerState call introduced in Mac OS X
v10.5 to get an upstream hub’s current power state, you might receive stale power-state information. However,
if your device is changing to its on state, you can assume that the upstream hubs are actually on, even if
their power-state values haven’t yet been updated.

154 USB
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

Table A-14 Clients and providers of the USB family

Provider for the nubClient of the nub

Drives a USB bus controller.Drives a device that plugs into a USB port.Action

A keyboard driver is an interface driver; its provider is the
driver for the USB device. The keyboard driver inherits from
the IOHIKeyboard class—it’s a member of the HID family.

Example

USB family-member drivers should
inherit from the IOUSBController
class.

IOUSBDevice drivers can only communicate with the USB
device through the default control pipe. IOUSBInterface
drivers have IOUSBPipe objects created for all the
endpoints that are described in the interface descriptor
for the current configuration. The driver uses these objects
to communicate with the device.

Classes

Mac OS X includes generic drivers
that support all Open Host
Controller Interface (OHCI) bus
controllers. In general, third-party
developers do not need to write
drivers for the USB family.

Common client families include the HID family
(IOHIPointing and IOHIKeyboard classes) and the Transport
Drivers for Storage family devices. Most kernel-mode clients
of the USB family are interface drivers, and only
occasionally device drivers.

Notes

Driver matching: The USB family uses the USB Common Class Specification, revision 1.0 to match devices
and interfaces to drivers (for a link to this specification, see the section above titled “References and
specifications”). The driver should use the keys defined in this specification to create a matching dictionary
that defines a particular driver personality. There are two tables of keys in the specification. The first table
contains keys for finding devices and the second table contains keys for finding interfaces. Both tables present
the keys in order of specificity: the first key in each table defines the most specific search and the last key
defines the broadest search. Each key consists of the combination of elements listed in the left column of
the table.

For a successful match, you must add the elements of exactly one key to your personality. If your personality
contains a combination of elements not defined by any key, the matching process will not find your driver.
For example, if you’re attempting to match a device and you add values representing that device’s vendor,
product, and protocol to your matching dictionary, the matching process is unsuccessful even if a device
with those same values in its device descriptor is currently represented by an IOUSBDevice nub in the I/O
Registry. This is because there is no key that combines the elements of vendor number, product number,
and protocol.

Devices Without I/O Kit Families

Some categories of devices do not have family support from I/O Kit. In general, there are three reasons why
a particular device may not be supported by an I/O Kit family.

 ■ Support for certain devices is provided by other frameworks. The I/O Kit is not the most appropriate
place for the abstractions that represent these devices. Examples of such devices include printers,
scanners, digital cameras, and other imaging devices. If you are developing a driver for this category of
device, you should use the appropriate imaging SDK.

Devices Without I/O Kit Families 155
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

 ■ For some devices, it is not possible to provide a set of useful, common abstractions. Such devices might
include USB security dongles, data acquisition cards, and other vendor-specific devices. These devices
do not share a sufficiently large number of characteristics to make creation of I/O Kit families worthwhile.
For example, although security dongles all connect via USB, there is no easily defined set of abstractions
common to all such devices. An I/O Kit family would not provide substantial assistance to developers. It
should not be assumed, however, that a family is required to write a new driver. In many cases, the
IOService class provides everything a driver requires to write a “family-less” driver.

 ■ For many devices, it is possible to define a set of useful abstractions; however, Apple has not chosen to
create a family for one or more reasons. These devices may be part of a technology that is not a common
Macintosh market. Or, Apple’s engineers may not have sufficient in-house expertise with certain devices
to create the best family definition. In these cases, an opportunity exists for third-party developers to
extend the I/O Kit model by developing families of their own. In addition, families developed under the
Apple Public Source License can be sent back to Apple for possible inclusion in future releases of Mac
OS X.

Imaging Devices

There is no I/O Kit family for imaging devices (cameras, printers, and scanners). Instead, support for particular
imaging device characteristics is handled by user-space code (see “Controlling Devices From Outside the
Kernel” (page 33) for further discussion). Developers who need to support imaging devices should employ
the appropriate imaging SDK.

Digital Video

To add digital video capabilities to your software, use the QuickTime APIs.

Sequential Access Devices (Tape Drives)

There is, at present, no I/O Kit family specifically designed for sequential access devices, such as tape drives.
However, third-party developers can use the SAM device interface to create plug-in components for such
devices.

Telephony Devices

There is, at present, no I/O Kit family for telephony devices. Apple is evaluating plans for a Telephony family
for the future.

Vendor-Specific Devices

For some devices, it is not possible to provide a set of useful, common abstractions. Because families define
the set of abstractions shared by all devices within the family, it is not feasible to create a family for these
devices.

156 Devices Without I/O Kit Families
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

In most cases, however, a family is not necessary in order to write a driver for these devices. Developers
should start by inheriting functionality from IOService, then use the GetProperty and SetProperty
calls to communicate with their driver. In many cases, this should suffice. In some cases, however, such as
data acquisition cards requiring high bandwidth, the developer should create their own user client (for a
device-interface plug-in). Such objects can provide shared memory and procedure-call interfaces to a
user-space library (see IOUserClient.h). You can find several good examples in IOKitExamples on the
Darwin Open Source site.

Devices Without I/O Kit Families 157
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

158 Devices Without I/O Kit Families
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

I/O Kit Family Reference

This table describes the changes to I/O Kit Fundamentals.

NotesDate

Updated and clarified the "Managing Power" chapter.2007-05-17

Added information about using IODMACommand.2006-11-07

Made minor corrections.2006-10-03

Added caveat regarding in-function static constructors.2006-05-23

Added information on the use of namespaces and a caveat about nested classes.2006-02-07

Made minor corrections.2005-12-06

Fixed minor typos.2005-11-09

Fixed links, typos. Added note that Objective-C does not supply I/O Kit interfaces.2005-04-08

Removed information about deprecated SCSI family; added information about
new SCSI Parallel family.

2004-10-05

Added information about handling interrupts when implementing pseudo-DMA.2004-08-31

Changed outdated links.2004-05-27

Updated documentation references, added information on Xcode.2004-04-22

Fixed minor errors.2004-02-13

Added information about the use of IOBufferMemoryDescriptor objects to
represent kernel-allocated buffers in user-space tasks.

2003-10-10

Updated for Mac OS X v10.3. Added information about changes in memory
subsystem to support 64-bit architectures.

2003-09-18

159
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

160
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Numerals

16-bit PC cards 139
64-bit architectures, issues with 87–90

A

accessor functions, IOService class 61
acknowledgePowerChange method 109
Action function 70, 73, 78
active matching 29, 45, 59
activityTickle method 108
ADB family 127
addEventSource function 74, 80
AGP family (PCI and AGP family) 141
alloc function 52
allocClassWithName function 52
Apple Developer Connection 13
applications

accessing hardware from 33
controlling imaging devices from 17
for I/O Kit development 20–21

arbitration 25
architecture of I/O Kit 23–35
ATA and ATAPI family 128
attach function 45–46, 58, 59
Audio family 129
Audio HAL 130
Audio Hardware Abstraction Layer. See Audio HAL
Audio plane 38
authentication 34

B

base classes
in I/O Kit 56, 61
in libkern 50, 56

big-endian format 27

block devices 35
BSD device interface 147, 152
BSD network stack 137
BSD sockets 35
BSD

and custom device interfaces 35
and kernel-resident code 28
as design principle of I/O Kit 16
device files in 35

bus controller drivers 44, 91, 92
byte swapping 27

C

C++ 17
and I/O Kit implementation 15
subset of used by libkern 50

callback functions. See Action functions
Carbon Draw Sprockets 134
Carbon environment, using BSD sockets in 35
CardBus cards 139
CFPlugIn 34, 134
character devices 35
checkForWork function 73
class hierarchy in I/O Kit 30, 49–50
class information functions 53
class matching 29, 45, 59
client configuration 24
close function 59
Cocoa environment, using BSD sockets in 35
command gates 79–82

creating 80
disposing of 81
issuing I/O requests through 80
registering 80

command-based events 74
command-line tools 20–21
commandGate method 80
commands, as event sources 32
completion chaining 81–82
completion routines 70

161
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

Index

See also Action functions
Component Object Model (COM) 34
constructors 51, 54
context switching 70
controller drivers 44, 91, 92
Core Audio framework 38, 130
Core Foundation Plug-in Services. See CFPlugIn
Core MIDI framework 129

D

DART (device address resolution table) 88
Darwin Open Source 21
data containers 31
data management 83–93
deadlocks

and hardware constraints 93
and multiple work loops 70
avoiding 70, 79
paging 79

dedicated work loops 71
delete operator 51
design principles 16–17
destructors

defining 54
of OSObject class 51

detach function 45–46, 58, 59
detach method 115
developer resources 12–13
development applications 20
device drivers 20, 21
device interfaces 16, 22, 33, 34–35
device matching 35, 46–47
device memory 32, 61
device probing 45–46, 57, 59
device removal 113, 115
Device Tree plane 38
devices

determining idleness of 107–108
imaging 17
network 22
power state of 98
removal of 113–115
serial 22
storage 22
unsupported 17

dictionaries. See matching dictionaries
didTerminate method 114
digital cameras 17
digital video 156
direct interrupts 71, 74
direct memory access. See DMA

display devices 133
DLIL (Data Link Interface Layer) 138
DMA

and controller drivers 91–92
engines 84, 92, 93

down calls 79
driver development 20–21
driver layering 23–26
driver loading 46, 58–59
driver matching 44
driver matching 41–45

and I/O Catalog 37
as service of IOService 57, 58, 59
overview of 29

driver object life cycles 45
driver personalities 29, 41–44
driver shutdown 60
drivers

and families 24, 63, 64
and nubs 24
life cycle of 27, 32
loading 24

dynamic allocation of objects 52
dynamic type casting 53

E

Ethernet controller 25
event handling 69–82

and work loops 69, 72
deferring work 73
device removal 113
of timer events 78

event sources 27, 32, 72–82
adding to work loops 73
and interrupt handling 73–77
categories of 69
classes for 69, 72
disposing of 73
timer events 78

exceptions, as disallowed feature of C++ 18, 50

F

families, I/O Kit 63–68
and drivers 63–64
as libraries 64–66
creating 68
defined 24
devices with no families 155

162
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

list of 32
loading 24
naming conventions for 67
reference for 127–155
structure of 66–68
typical classes in 66
unsupported 33

features of I/O Kit 15–16
file system, extensions to 22
filter interrupt event sources 76–77
filter scheme drivers 149, 150
FireWire config ROM 132
FireWire family 131
FireWire plane 38
frame buffers 133
frameworks 19
free function 45, 51, 55, 60
function call stacks 28

G

gating mechanism 27
gcc command-line tool 21
gdb command-line tool 21
getClassName function 54
getClassSize function 54
getInstanceCount function 54
getPhysicalSegments function 84
getProperty function 57
getSuperClass function 54
getWorkLoop function 71
graphics acceleration 15, 134
Graphics family 133

H

hardware constraints on bus controller drivers 92
hardware modeling 23
hardware, support for 17
header files 19
HID family 135
HID Manager 135
hot-swapping 113, 115
Human Interface Device family. See HID family

I

i.LINK standard 131
I/O addresses 88

I/O Catalog 16, 29, 37
I/O commands 69
I/O Kit families. See families, I/O Kit
I/O Kit framework 19, 37
I/O queues, clearing 114
I/O Registry 37–39

and storage devices 152
application for 20
architecture 37
device matching and 46
driver matching and 45
examining 39
introduced 28–29
planes defined in 38

I/O Registry Explorer application 20, 23, 39
I/O requests 24, 79–82

buffers for 90
memory in 85, 87
relaying 90

I/O transfers 83–87
I/O vectors. See scatter/gather lists
idleness of devices 107
IEEE 1394 standard 131
imaging devices 17, 156
in-function static constructors 18
indirect interrupts 69, 73, 74
information property lists 29, 37
init function 45, 46, 51, 55, 58
initialization methods 55
interrupt controllers

and direct interrupts 70, 74
and indirect interrupts 74

interrupt event sources
disposing of 76
ordering of 74–75
setting up 75

interrupt events 69, 74
interrupt handlers 75, 77
interrupt handling 61, 73, 77
interrupts 32
introspection, of objects 53
IOADBController class 127, 128
IOADBDevice 127, 128
IOAGPDevice class 141
ioalloccount command-line tool 20
IOApplePartitionScheme 150
IOATACommand class 129
IOATADevice 129
IOATAPIProtocolTransport class 144
IOAudioDevice class 130
IOAudioEngine class 130
IOBigMemoryCursor class 93
IOBlockStorageDevice class 148

163
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

IOBlockStorageDriver class 148
IOBlockStorageServices class 144
IOBufferMemoryDescriptor class 84
IOCardBusDevice class 139
IOCDMedia class 152
ioclasscount command-line tool 20
IOCommandGate class 69, 72, 79
IOCompactDiscServices class 144
IODisplay class 128
IODMACommand class 89
IODVDServices class 144
IOEventSource class 72
IOFDiskPartitionScheme 151
IOFilterInterruptEventSource class 76
IOFireWireController class 133
IOFireWireSBP2LUN class 142
IOFireWireSBP2Target class 142
IOFireWireSerialBusProtocolTransport class 144
IOFireWireUnit class 133
IOFramebuffer class 134
IOHIKeyboard class 128, 155
IOHIPointing class 128, 155
IOInterruptEventSource class 69, 72, 74, 76
IOKitPersonalities dictionary 41
IOLittleMemoryCursor class 93
IOMatchCategory 43
IOMbufMemoryCursor class 139
IOMedia class 149
IOMedia filter schemes 150
IOMedia properties 151
IOMemoryCursor class 84, 93
IOMemoryDescriptor class 84, 86, 90
IOMemoryMap 91
IOModemSerialStreamSync class 147
IOMultiMemoryDescriptor class 91
IONaturalMemoryCursor class 93
IONDRVFramebuffer class 134
IONetworkController class 138
IONetworkData class 139
IONetworkMedium class 139
IOOutputQueue class 139
IOPacketQueue class 139
IOPartitionScheme class 151
IOPCCard16Device class 139
IOPCCard16Enabler class 139
IOPCCardBridge class 139
IOPCI2PCIBridge class 139
IOPCIBridge class 139, 141
IOPCIDevice class 71, 139, 141
IOPMPowerState structure 104
IOPower plane. See Power plane
IOReducedBlockServices class 144
ioreg command-line tool 20, 23, 29, 39

IORegistryEntry class 56–57
in class hierarchy 32, 49, 56
member functions in 57

IOResources 42
IORS232SerialStreamSync class 147
IOSCSICommand class 143
IOSCSIDevice class 143
IOSCSIParallelInterfaceController class 143
IOSCSIParallelInterfaceProtocolTransport class 144
IOSCSIPeripheralDeviceType classes 144
IOSCSIPerpheralDeviceNub class 144
IOSCSIPrimaryCommandsDevice class 144
IOSCSIProtocolServices class 144
IOSerialDriverSync class 147
IOSerialStreamSync class 147
IOService class 31, 45, 56, 57–61

accessor functions of 61
in class hierarchy 49

IOServiceNotificationHandler type 61
IOServiceOpen function 61
iostat command-line tool 20
IOStorage class 148, 150
IOSubMemoryDescriptor class 91
IOTimerEventSource class 69, 72, 78
IOUSBController class 153, 155
IOUSBDevice class 153, 154
IOUSBInterface class 153, 154
IOUSBMassStorageClass class 144
IOUSBPipe class 153
IOWorkLoop class 69
IOZoomVideoDevice class 139
isEqualTo function 54
iteration functions, IORegistryEntry class 57

K

KDP (Kernel Debugger Protocol) 139
kernel development kit (KDK) 17
kernel environment

alternatives to programming in 22
and memory protection 21
caveats for programming in 21, 28

kernel extensions 22, 31, 41, 64
kernel modules

and I/O Kit classes 30
loading and unloading 50, 52
OSObject class and 31
setting version in 65

KEXT manager 65
kextload command-line tool 20
KEXTs. See kernel extensions
kextstat command-line tool 20

164
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

kextunload command-line tool 20
kIOMessageServiceIsTerminated message 60
KMODs. See kernel modules

L

language used in I/O Kit 17
layered architecture 23–26
libkern library

base classes in 50–56
in class hierarchy 30, 49
overview in I/O Kit 19
services provided by 27

libraries 19, 64–66
library versioning 65
life cycle, driver object 58–60

device probing 45
functions of 58
managed by IOService class 57
of device drivers 27, 32
overriding functions 58

limitations of I/O Kit 17
little-endian format 27

M

Mac OS 9 16
Mach 28
Mach IPC 35
Mach scheduler 73, 78
Mach shared memory 35
macros of OSMetaClass class

object construction 53
object introspection 53
runtime type declaration 53, 54
type casting 53

matching dictionaries 41, 57
matchPropertyTable function 60
mbuf structure 84
memory cursors 84, 85, 91, 93
memory descriptors 84–85, 90–91
memory protection 28
memory

virtual. See virtual memory
and I/O transfer interfaces 91
in I/O transfers 85–87
paging and 21
protection 16, 21
wiring down 27

message function 60

messageClient function 60
messaging 32, 60
metaCast functions 54
MIDI 129
mkextcache command-line tool 20
MMCDeviceInterface 145
modHasInstance function 54
multimedia support 15
multiple inheritance, as disallowed feature of C++ 18, 50
multiprocessing 16

N

namespaces 18
naming conventions for I/O Kit families 67
NDRV graphics drivers compatibility 134
negotiation 34
nested class 50
network devices 22
network drivers 84, 90
Network family 136
Network Kernel Extension (NKE) 138
networking services 35
new operator 51
newUserClient function 61
notification handler 61
notifications 32, 57, 60
nubs

driver matching and 44
overview of 24–25
registering 58

O

object allocation 52
object construction 51, 52
object disposal 51
object introspection 53
object retention 51
Open Firmware 141
open function 59
Open Host Controller Interface (OHCI) 133, 155
Open Transport 22
OpenGL 134
OSCheckTypeInst macro 53
OSDeclareAbstractStructors macro 53
OSDeclareDefaultStructors macro 53, 54
OSDefineMetaClassAndAbstractStructors macro

53

165
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

OSDefineMetaClassAndAbstractStructorsWithInit
macro 53

OSDefineMetaClassAndStructors macro 53, 54
OSDefineMetaClassAndStructorsWithInit macro

53
OSDictionary 32
OSDynamicCast macro 54
OSIterator objects 61
OSMetaClass class 31

and runtime typing 52
in class hierarchy 49
macros in 53, 54
object construction and 51
type-casting macros of 53

OSObject class 31, 49, 50–52
OSTypeID macro 53
OSTypeIDInst macro 53
outputPacket function 90

P

Package Maker application 20
page-out threads 74
paging

and deadlocks 79
and kernel code 21

partition schemes 150
passive matching 29, 45, 59
PC Card family 139
PCI and AGP family 26, 140
PCI Localbus 2.1 specification 140
personalities. See driver personalities
physical memory

and I/O transfers 84, 85
kernel code restrictions 28
paging virtual memory into 27

planes 38–39, 57
Platform Expert 37
plug-and-play feature 15
plug-in interfaces 34
policy makers

determining idleness 107–108
positional functions, IORegistryEntry class 57
POSIX

device files 35
device nodes 33

power events 69
power management 95
See also notifications of power events
support for 15

Power plane 38, 96
power states

changing 105–107
defined 98

PPP (Point-to-Point Protocol) 147
preemptive multitasking support 16
prepare function 84, 86
prerequisites for driver development 15
primary interrupts. See direct interrupts
principal class of a personality 45
printers 17
probe function 45, 46, 58, 59
probe scores 44, 45
probing, devices 45, 46, 57, 59
Programmed Input/Output (PIO) interface 92
programming language 17
property tables. See driver personalities
protected memory 21
provider matching 60
provider-client relationships, tracking 28
providers 44, 46

Q

Quartz Compositor 22
Quartz graphics system 134
QuickTime, for video support 156

R

read function 90
reentrancy 27
reference counting 51
registerPowerDriver method 104
registerService function 58
release function 51
resources for developers 12, 13
responding to device removal 113–115
retain function 51
runAction function 80
runCommand function 80
runtime environment of I/O Kit 26–28
runtime type information (RTTI), as disallowed feature of

C++ 18, 31, 50, 52
runtime typing facility 50, 52, 54

S

SBP-2 transport protocol 141
SBP2 family 131, 141
scanners 17

166
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

scatter/gather lists 27, 84
SCSI Architecture Model family 129, 143, 156
SCSI disk drivers 26
SCSI Parallel family 26, 142
SCSI Parallel Interface-5 (SPI-5) specification 142
SCSITaskDeviceInterface 145
SCSITaskInterface 145
SCSITaskLib 145
SCSITaskUserClient 145
secondary interrupts. See indirect interrupts
sequential access devices 156
serial devices 22
Serial family 146
Service plane 38
setPowerState method 108
shared interrupts 76
shared work loops 70, 71
sockets, BSD 35
software development kit (SDK) 17
SPI-5. See SCSI Parallel Interface-5 specification
start function 46, 59, 70
static constructors, in-function 18
stop function 60
storage devices 22
storage drivers 148
Storage family 26, 148
structural events 69
super macro 55
symmetric multiprocessing support 16

T

telephony devices 156
templates, as disallowed feature of C++ 18, 50
terminate method 114
termios command 147
threads, and work loops 69
timeouts 78
timer event sources 72, 78
timer events 69, 78
timers 32
tools for development 20, 21
Transport Driver layer 143
type casting 53

U

Unified Buffer Cache (UBC) 92
Universal Page List (UPL) 92
up calls 79

UPS (uninterruptible power supply) devices 135
USB Common Class Specification 155
USB family 152
USB plane 38
user client 61, 86
user client 34
user thread interrupts 74

V

virtual memory
and I/O transfers 84, 85, 90
cache 92
in I/O Kit 17
kernel code restrictions 28
paging into physical memory 27

virtual-memory (VM) pager 86, 92

W

willTerminate method 114
Window Manager interrupts 74
work loops 69–72

adding and removing event sources 73
architecture of 70
dedicated 71
obtaining, examples of 71–72
querying of event sources 70, 74
shared 71

X

Xcode application 20

Z

Zoom Video cards 139

167
2007-05-17 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

	I/O Kit Fundamentals
	Contents
	Figures, Tables, and Listings
	Introduction
	What Is the I/O Kit?
	Before You Begin
	I/O Kit Features
	Design Principles of the I/O Kit
	Limitations of the I/O Kit
	Language Choice
	Using Namespaces in an I/O Kit Driver
	Using Static Constructors in an I/O Kit Driver

	The Parts of the I/O Kit
	Frameworks and Libraries
	Applications and Tools
	Other I/O Kit Resources

	Should You Program in the Kernel?
	When Code Should Reside in the Kernel
	Alternatives to Kernel-Resident Code

	Architectural Overview
	Driver Layering
	Families and Drivers
	Drivers and Nubs
	The Anatomy of an I/O Connection

	The Runtime Environment of Device Drivers
	Runtime Features
	Kernel Programming Constraints

	The I/O Registry and the I/O Catalog
	Driver Matching
	The I/O Kit Class Hierarchy
	The OS Classes
	The General I/O Kit Classes
	The I/O Kit Family Classes

	Controlling Devices From Outside the Kernel
	The Device-Interface Mechanism
	POSIX Device Files

	The I/O Registry
	I/O Registry Architecture and Construction
	The I/O Registry Explorer

	Driver and Device Matching
	Driver Personalities and Matching Languages
	Driver Matching and Loading
	Driver Matching
	Device Probing
	Driver Loading

	Device Matching

	The Base Classes
	The libkern Base Classes
	Object Creation and Disposal (OSObject)
	Object Construction
	Object Retention and Disposal

	Runtime Type Information (OSMetaClass)
	Object Construction and Dynamic Allocation
	Type Casting, Object Introspection, and Class Information

	Defining C++ Classes in libkern

	The I/O Kit Base Classes
	Dynamic Driver Registration (IORegistryEntry)
	Basic Driver Behavior (IOService)
	Driver Object Life Cycle
	Driver Matching and Loading
	Driver Status Change
	Driver Shutdown

	Provider Matching
	Notification and Messaging
	Driver Accessors
	Other IOService Features

	I/O Kit Families
	Drivers and Families
	Families As Libraries
	Library Versioning
	Library Loading

	The Programmatic Structure of Families
	Typical Classes
	Naming and Coding Conventions

	Creating An I/O Kit Family

	Handling Events
	Work Loops
	Work Loop Architecture
	Shared and Dedicated Work Loops
	Examples of Obtaining Work Loops

	Event Sources
	Handling Interrupts
	Interrupt Handling in the I/O Kit
	Setting Up an Interrupt Handler Attached to a Work Loop
	Filter Interrupt Event Sources
	Using Interrupt Handlers With No Work Loops

	Handling Timer Events
	I/O Requests and Command Gates
	Up Calls and Down Calls
	Setting Up and Using Command Gates
	Completion Chaining

	Managing Data
	Handling I/O Transfers
	Memory Descriptors and Memory Cursors
	Memory in an I/O Request
	Issues With 64-Bit System Architectures
	Address Translation on 64-Bit System Architectures
	Supporting DMA on 64-Bit System Architectures

	Relaying I/O Requests
	More on Memory Descriptors
	More on Memory Cursors
	DMA and System Memory
	Dealing With Hardware Constraints
	IOMemoryCursor Subclasses

	Managing Power
	Power Events
	The Power Plane: A Hierarchy of Power Dependencies
	Devices and Power States
	Deciding How to Implement Power Management in Your Driver
	Implementing Basic Power Management
	Implementing Advanced Power Management
	Defining and Using Multiple Power States
	Changing the Power State of a Device
	Responding to a Power State–Change Request
	Initiating a Power-State Change

	Implementing Idleness Determination and Idle Power Saving
	Receiving Notification of Power-State Changes in Other Devices
	Receiving Shutdown and Restart Notifications
	Keeping Power On for Future Device Attachment

	Managing Device Removal
	The Phases of Device Removal
	Making Drivers Inactive
	Clearing I/O Queues
	Detaching and Releasing Objects

	Base and Helper Class Hierarchy
	The following chart presents the class hierarchy of all I/O Kit classes that are not members of a specific family. See the preceding appendix, “I/O Kit Family Reference” for the class hierarchy charts of most families.

	Bibliography
	System Internals
	Websites - Online Resources

	Glossary
	Appendix A: I/O Kit Family Reference
	ADB
	ATA and ATAPI
	Audio
	FireWire
	Graphics
	A Note on NDRV Compatibility

	HID
	Network
	PC Card
	PCI and AGP
	SBP-2
	SCSI Parallel
	SCSI Architecture Model
	Serial
	Storage
	IOMedia Filter Schemes
	Partition Schemes

	IOMedia Properties
	Accessing IOMedia From Applications

	USB
	Devices Without I/O Kit Families
	Imaging Devices
	Digital Video
	Sequential Access Devices (Tape Drives)
	Telephony Devices
	Vendor-Specific Devices

	Revision History
	Index
	Numerals
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

