
IBDocument Class Reference
Tools & Languages: IDEs

2009-03-24

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

IBDocument Class Reference 5

Overview 5
Top-Level Objects 5
First Class Objects 6

Tasks 6
Getting the Document Object 6
Getting the Objects in a Document 6
Getting the Object’s Attributes 7
Creating Connections 7

Class Methods 7
documentForObject: 7

Instance Methods 7
addObject:toParent: 7
childrenOfObject: 8
connectAction:ofSourceObject:toDestinationObject: 8
connectBinding:ofSourceObject:toDestinationObject:keyPath:options: 9
connectOutlet:ofSourceObject:toDestinationObject: 9
documentImageNamed: 10
metadataForKey:ofObject: 10
moveObject:toParent: 10
nameForDocumentImage: 11
objects 11
parentOfObject: 11
removeObject: 12
setMetadata:forKey:ofObject: 12
topLevelObjects 13

Document Revision History 15

3
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

4
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSDocument : NSObject

Conforms to NSObject (NSObject)

Framework /Developer/Library/Frameworks/InterfaceBuilderKit.framework

Declared in InterfaceBuilderKit/IBDocument.h

Companion guide Interface Builder Plug-In Programming Guide

Overview

An IBDocument object provides the in-memory representation of a nib file and is one of the core classes in
Interface Builder. It manages all of the objects in a nib file, observes them for undo support, and facilitates
the general exchange of information with other objects. You use this object as is and do not subclass it.

A document object owns all of the objects in a nib file, including the windows, views, controls, controller
objects, and custom objects in that nib file. You can use the methods of IBDocument to access these objects,
add and remove objects, or change the inter-object relationships.

Most Interface Builder plug-ins should never need to access the current IBDocument object. The only times
you might use this object are when you need to make additional changes to the object hierarchy beyond
those provided automatically by Interface Builder. For example, you could use the document object to
associate additional objects with a view as part of its design-time configuration.

Top-Level Objects

Each document contains a distinct set of top-level objects (also known as the “root objects”). These are the
objects that appear at the top level of the document window and often consist of windows, menus, and
custom controller objects. Placeholder objects such as File’s Owner, First Responder, and Application are also
top-level objects. (Placeholder objects are programmatic entities provided by Interface Builder.)

The user can add other top-level objects to a nib file by dragging items from the library window to the
document window. You can add top-level objects programmatically using the methods of this class and
specifying a parent object of nil.

Overview 5
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

First Class Objects

Interface Builder documents distinguish between objects that can be edited and selected and those that
cannot. If an object can be edited and selected, it is considered to be a “first-class” object and is exposed to
the user through Interface Builder’s outline view. All other objects are “second-class”, are controlled by an
owning first-class object, and cannot be manipulated directly by the user in Interface Builder. Your plug-in
can modify the second-class objects for which it is responsible. You should not attempt to modify second-class
objects managed by other plug-ins, however.

All objects in a document, regardless of whether they are first class or second class, are stored in the same
nib file. The distinction between first and second-class objects only affects access to the object in the Interface
Builder windows and user interface.

Scroll views provide a perfect example of how first and second-class objects may be related in a nib file. A
scroll view exposes its document view and scroller objects as first-class objects but does not expose its clip
view. The clip view is considered to be an integral part of the scroll view and is therefore a second-class object
to be hidden from the user. When the nib file is loaded, however, the clip view is instantiated along with the
scroll view, document view, and scrollers.

Tasks

Getting the Document Object

+ documentForObject: (page 7)
Returns the document object that currently owns the specified object.

Getting the Objects in a Document

– objects (page 11)
Returns all of the first-class objects in the receiver.

– topLevelObjects (page 13)
Returns the top-level objects in the receiver.

– childrenOfObject: (page 8)
Returns an array containing the first-class children of the specified object.

– parentOfObject: (page 11)
Returns the first-class parent of the specified object.

– removeObject: (page 12)
Removes the specified object and its children from the document.

– addObject:toParent: (page 7)
Adds the specified object to the document as a first-class object.

– moveObject:toParent: (page 10)
Changes the parent of the specified object.

6 Tasks
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

Getting the Object’s Attributes

– documentImageNamed: (page 10)
Returns the image resource with the specified name.

– nameForDocumentImage: (page 11)
Returns the name of a specified image resource.

– setMetadata:forKey:ofObject: (page 12)
Associates a custom value with the specified key of an object.

– metadataForKey:ofObject: (page 10)
Returns the value associated with the specified key and object.

Creating Connections

– connectOutlet:ofSourceObject:toDestinationObject: (page 9)
Creates an outlet connection between two objects.

– connectAction:ofSourceObject:toDestinationObject: (page 8)
Creates an action connection between two objects.

– connectBinding:ofSourceObject:toDestinationObject:keyPath:options: (page 9)
Creates a binding between two objects.

Class Methods

documentForObject:
Returns the document object that currently owns the specified object.

+ (id)documentForObject:(id)object

Parameters
object

The object whose document you want.

Return Value
The document object that owns the specified object, or nil if the object has no owner. Objects that are in
transition (such as on the pasteboard) are not owned by a document.

Instance Methods

addObject:toParent:
Adds the specified object to the document as a first-class object.

- (void)addObject:(id)object toParent:(id)parent

Class Methods 7
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

Parameters
object

The object to add to the document.

parent
The parent of object, or nil if object should be added to the document as a top-level object. The
parent object must be a first-class object of the document.

Discussion
This method adds the object to the document’s internal data structures as a child of parent. This method
does not create any object-specific associations between object and parent. For example, if both parent
and object are views, this method does not configure parent as the superview of object. You must create
any supplemental connections yourself.

See Also
– removeObject: (page 12)

childrenOfObject:
Returns an array containing the first-class children of the specified object.

- (NSArray *)childrenOfObject:(id)object

Parameters
object

The parent object whose children you want.

Return Value
An array of objects, each of which is a first-class object of object. If object has no children, this method
returns an empty array object.

See Also
– parentOfObject: (page 11)

connectAction:ofSourceObject:toDestinationObject:
Creates an action connection between two objects.

- (void)connectAction:(NSString
*)actionofSourceObject:(id)sourcetoDestinationObject:(id)destination

Parameters
action

The name of the action message. This string must correspond to a selector in the destination object
and the selector name must end with a trailing colon character.

source
The object that receives the specified action message, otherwise known as the target of the action.
This object should contain a selector whose signature matches the string in action.

destination
The object that triggers the action and sends the action message. This is typically a control, such as
a button.

8 Instance Methods
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

Discussion
Although the behavior of the source and destination parameters might seem reversed, they are not. The
parameter names correspond to the order in which the action connection is established inside the plug-in,
rather than the order in which action messages flow. In Interface Builder, action connections can be created
starting at either end of the connection. For plug-ins, it is often more convenient to start at the object
containing the action method and connect that method to the object that sends the action message.

connectBinding:ofSourceObject:toDestinationObject:keyPath:options:
Creates a binding between two objects.

- (void)connectBinding:(NSString
*)bindingNameofSourceObject:(id)sourcetoDestinationObject:(id)destinationkeyPath:(NSString
 *)keyPathoptions:(NSDictionary *)options

Parameters
bindingName

The key path that identifies a property of the source object. The specified property must be bindable.

source
The source object that owns the property identified by the bindingName parameter.

destination
The object that provides data for the specified binding.

keyPath
The key path in the destination object that points to the data being bound.

options
A dictionary containing options for the binding, such as placeholder objects or an
NSValueTransformer identifier. This value is optional—pass nil to specify no options. For
information about the keys you can place in the dictionary, see the binding options constants in
NSKeyValueBindingCreation Protocol Reference.

Discussion
For information about how to make your own custom objects bindable, see Cocoa Bindings Programming
Topics.

connectOutlet:ofSourceObject:toDestinationObject:
Creates an outlet connection between two objects.

- (void)connectOutlet:(NSString
*)outletofSourceObject:(id)sourcetoDestinationObject:(id)destination

Parameters
outlet

The name of the outlet.

source
The source object that contains the specified outlet. The specified outlet must exist and have the
specified name.

destination
The object to assign to the specified outlet.

Instance Methods 9
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

documentImageNamed:
Returns the image resource with the specified name.

- (NSImage *)documentImageNamed:(NSString *)name

Parameters
name

The name of the desired image. The image must be a resource in the receiving document. This
parameter must not be nil.

Return Value
The image resource with the specified name, or a default “missing image” resource if an image with the
specified name could not be found. If name contains an empty string, this method returns nil.

See Also
– nameForDocumentImage: (page 11)

metadataForKey:ofObject:
Returns the value associated with the specified key and object.

- (id)metadataForKey:(NSString *)keyofObject:(id)object

Parameters
key

The key used to identify the metadata value.

object
The first-class object containing the metadata value.

Return Value
The current value associated with the specified key.

See Also
– setMetadata:forKey:ofObject: (page 12)

moveObject:toParent:
Changes the parent of the specified object.

- (void)moveObject:(id)objecttoParent:(id)parent

Parameters
object

The object whose parent you want to change. This object must be a first-class object.

parent
The new parent for object. This object must be a first-class object. Specify nil to make object a
top-level object of the document.

10 Instance Methods
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

Discussion
This method changes the parentage of the object in the document’s internal data structures. This method
does not make assumptions about the type of object and therefore does change any other associations
between it and its new or former parent. For example, if object is a view, this method does not change the
superview of object to parent. You must make such a change yourself.

nameForDocumentImage:
Returns the name of a specified image resource.

- (NSString *)nameForDocumentImage:(NSImage *)image

Parameters
image

The image resource whose name you want to obtain. This parameter must not be nil.

Return Value
The name of the specified image, or nil if the image is unnamed or is not a resource in the receiving
document.

Discussion
This method returns the name of an image resource obtained through Interface Builder's synchronization
mechanism. The name is suitable for exposing to the user in an IBInspector subclass.

See Also
– documentImageNamed: (page 10)

objects
Returns all of the first-class objects in the receiver.

- (NSArray *)objects

Return Value
An array containing all of the nib file’s first-class objects.

Discussion
For information about what comprises a first-class object, see “First Class Objects” (page 6).

See Also
– topLevelObjects (page 13)

parentOfObject:
Returns the first-class parent of the specified object.

- (id)parentOfObject:(id)object

Parameters
object

The object whose parent you want. This object must be a first-class object of the document.

Instance Methods 11
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

Return Value
The closest parent to object that is also a first-class object, or nil if object is a root object.

See Also
– childrenOfObject: (page 8)

removeObject:
Removes the specified object and its children from the document.

- (void)removeObject:(id)object

Parameters
object

The object to remove.

Discussion
During the removal process, this method makes no assumptions about the type of each removed object. As
a result, this method removes the object only from the document’s own internal data structures. This includes
breaking any outlet, action, or binding connections between object and any other objects in the document.
It does not include breaking relationships that are part of the object’s own behavior. For example, this method
does not disassociate a view from its superview. You must break any object-specific relationships yourself
either before or after removing the object from the document.

See Also
– addObject:toParent: (page 7)

setMetadata:forKey:ofObject:
Associates a custom value with the specified key of an object.

- (void)setMetadata:(id)valueforKey:(NSString *)keyofObject:(id)object

Parameters
value

The value you want to set, or nil if you want to clear the current value. The value should be of a type
supported by property lists, such as NSString, NSNumber, NSArray, NSDictionary, NSData, and
so on. For more information, see Property List Programming Guide.

key
The key used to identify the value.

object
The first-class object on which to set the value.

Discussion
You can associate custom metadata values with the first-class objects of a document. The values you add
are saved with the object in the nib file and persist across undo and pasteboard operations. Setting a metadata
value on an object is not an undoable action itself, however.

If a metadata entry with the same key already exists in object, this method replaces the old value with the
value in the property parameter.

12 Instance Methods
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

See Also
– metadataForKey:ofObject: (page 10)

topLevelObjects
Returns the top-level objects in the receiver.

- (NSArray *)topLevelObjects

Return Value
An array of the nib file’s top-level objects.

Discussion
This method returns all of the top-level objects in a document, including user-created objects (such as
windows and menus) that have no parent object of their own, and placeholder objects such as File’s Owner,
First Responder, and Application. For more information, see “Top-Level Objects” (page 5).

See Also
– objects (page 11)

Instance Methods 13
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

14 Instance Methods
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

IBDocument Class Reference

This table describes the changes to IBDocument Class Reference.

NotesDate

Updated for Xcode 3.2.2009-03-24

Made minor technical corrections.2009-01-06

New document describing the methods for manipulating an Interface Builder
document.

2007-04-02

15
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

16
2009-03-24 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	IBDocument Class Reference
	Contents
	IBDocument Class Reference
	Overview
	Top-Level Objects
	First Class Objects

	Tasks
	Getting the Document Object
	Getting the Objects in a Document
	Getting the Object’s Attributes
	Creating Connections

	Class Methods
	documentForObject:

	Instance Methods
	addObject:toParent:
	childrenOfObject:
	connectAction:ofSourceObject:toDestinationObject:
	connectBinding:ofSourceObject:toDestinationObject:keyPath:options:
	connectOutlet:ofSourceObject:toDestinationObject:
	documentImageNamed:
	metadataForKey:ofObject:
	moveObject:toParent:
	nameForDocumentImage:
	objects
	parentOfObject:
	removeObject:
	setMetadata:forKey:ofObject:
	topLevelObjects

	Revision History

