
SDK Compatibility Guide
General

2010-02-16



Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Cocoa, eMac, iPhone,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 7

Organization of This Document 7

Chapter 1 Overview of SDK-Based Development 9

Behavior Selection in Frameworks 9

Chapter 2 Configuring a Project for SDK-Based Development 11

SDK Header Files and Stub Libraries 11
SDK Settings 11
Configuring a Makefile-Based Project 13
Setting the Prefix File 13

Chapter 3 Using SDK-Based Development 15

Determining the Version of a Framework 15
Checking for Undefined Method and Function Calls 16
Conditionally Compiling for Different SDKs 17
Finding Deprecated APIs 18

Document Revision History 19

3
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.



4
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CONTENTS



Figures and Listings

Chapter 2 Configuring a Project for SDK-Based Development 11

Figure 2-1 SDK development timeline 12

Chapter 3 Using SDK-Based Development 15

Listing 3-1 Checking for an undefined method 16
Listing 3-2 Checking for a null function pointer 17

5
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.



6
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS



Note:  This document was previously titled Cross-Development Programming Guide.

Xcode Developer Tools includes software development kits (SDKs) that enable you to develop software that
can be deployed on specified versions of Mac OS X or iOS, including versions different from the one you are
developing on. This technology enables your application to be compatible with previous versions of the
operating system, taking advantage of new features when they are available while gracefully degrading
when running on older systems. Some Apple frameworks automatically modify their behavior based on the
SDK an application was built against for improved compatibility.

Note:  This document does not explain how to develop code that runs on both the Mac OS X and iOS
platforms. Although Xcode enables you to switch platforms by simply choosing a different SDK, there are
fundamental design differences between Mac OS X and iOS programs. See “Migrating from Cocoa" for more
information.

You should read this document if your application needs to target a specific version or multiple versions of
Mac OS X or iOS.

Organization of This Document

This document contains the following chapters:

 ■ “Overview of SDK-Based Development” (page 9) describes how SDK-based development works.

 ■ “Configuring a Project for SDK-Based Development” (page 11) describes how to set up your project to
use an SDK.

 ■ “Using SDK-Based Development” (page 15) explains how to check for framework versions, deal with
undefined methods and functions, and find deprecated APIs.

Organization of This Document 7
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction



8 Organization of This Document
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction



Apple makes SDKs available for specific versions of Mac OS X and iOS. Using these SDKs allows you to build
against the headers and libraries of an operating system version other than the one you're running on. For
example, you can build for Mac OS X version 10.4 while running on Mac OS X version 10.6. This chapter
describes how SDK-based development works.

The Mac OS X SDKs are installed as part of the Xcode Essentials install package with Xcode 3.2 and later.
Xcode release notes list the SDKs supported by each release. When developing for iOS, you always use an
SDK downloaded from the iPhone Dev Center website.

You can take advantage of SDK-based development in these ways:

 ■ You can build a target that is optimized for one version of the operating system and is forward-compatible
with later versions but doesn’t take specific advantage of their features.

 ■ You can build a target for a range of operating system versions, so that it can still launch in older versions
but can take advantage of features in newer ones. This allows you to deliver software that provides new
value to customers who have upgraded to a new system version, but still runs for those who haven't.

To develop software that can be deployed on, and take advantage of features from, different versions of Mac
OS X or iOS, you specify which version (or SDK) of Mac OS X or iOS headers and libraries to build with. You
can also specify the earliest Mac OS X or iOS system version on which the software will run. These concepts
are described in “SDK Settings” (page 11).

Behavior Selection in Frameworks

As frameworks evolve through various releases, APIs are introduced or deprecated, and behaviors of existing
APIs may occasionally change. Apple makes every effort to minimize changes that may cause incompatibilities,
in some cases providing alternate behaviors based on the framework version. In other cases your code may
need to determine the framework version and adjust accordingly.

As a backward-compatibility mechanism, Apple frameworks sometimes check for the version of the SDK an
application was built against, and, if it is an older SDK, modify the behavior to be more compatible. This is
done in cases where incompatibility problems are predicted or discovered.

Note:  Most version-related behavior changes are listed in the framework release notes, but they are not
necessarily described in the reference documentation. To understand the differences from one release to
another, you must carefully review the release notes.

Typically, frameworks detect how an application was built by looking at the version of the system frameworks
the application was linked against. Thus, as a result of relinking your application on a newer version or its
SDK, you might notice different behaviors, some of which might cause incompatibilities. In these cases,
because the application is being rebuilt, you should address these issues at the same time as well. For this

Behavior Selection in Frameworks 9
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of SDK-Based Development



reason, if you are doing a small incremental update of your application to address a few bugs, for example,
it's usually best to continue building on the same build environment and libraries used originally, that is,
against the original SDK.

In some cases, frameworks provide defaults (preferences) settings which can be used to get the old or new
behavior, independent of what system an application was built against. Often these preferences are provided
for debugging purposes only; in some cases the preferences can be used globally to modify the behavior of
an application by registering the values (do it somewhere very early, with the NSUserDefaults method
registerDefaults:).

10 Behavior Selection in Frameworks
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of SDK-Based Development



This chapter describes the configuration of installed SDKs and explains how to set up your Xcode project to
use an SDK.

SDK Header Files and Stub Libraries

When you install the SDKs, the installer creates a /Developer/SDKs directory. This directory contains several
subdirectories, each of which provides the complete set of header files and stub libraries that shipped for a
particular version of Mac OS X. The Mac OS X SDKs are named by major version, such as 10.4 and 10.5, but
they include the latest minor version as well.

iOS Note:  The iPhone SDKs are installed in the /Developer/Platforms directory, within which is a directory
for each platform, such as iOS.platform. The platform directories, in turn, contain Developer/SDKs
directories that contain the SDKs for that platform. The iOS SDK names include minor versions of OS releases.

Using SDKs allows you to use new APIs introduced in a system update. When new functionality is added as
part of a system update, the system update itself does not typically contain updated header files reflecting
the change. The SDKs, however, do contain updated header files.

Each SDK resembles the directory hierarchy of the operating system release it represents: it has usr, System,
Library, and Developer directories at its top level. Each of these directories is in turn populated with
directories containing the headers and libraries that would be present in that version of the operating system
with Xcode Developer Tools installed.

The libraries in an SDK are stub libraries for linking only; they do not contain executable code but just the
exported symbols. SDK support only works with native build targets.

SDK Settings

To use an SDK for an Xcode project, you make two selections among your project’s build settings:

 ■ Choose a Base SDK to build your project. Your software can use features available in OS versions up
to and including the one corresponding to the SDK you choose. If you don’t select an SDK, the default
is to build for the current operating system.

The Xcode build setting name for this parameter is SDKROOT (Base SDK).

 ■ Choose a Deployment OS version. This identifies the earliest system version on which the software can
run. By default, this is set to the version of the OS corresponding to the Base SDK version and later.

The Xcode build setting names for this parameter are MACOSX_DEPLOYMENT_TARGET (Mac OS X
Deployment Target) and IPHONEOS_DEPLOYMENT_TARGET (iOS Deployment Target).

SDK Header Files and Stub Libraries 11
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Configuring a Project for SDK-Based
Development



For possible values and more information about build settings in Xcode, see Xcode Build Setting Reference
and “Running Applications” in iOS Development Guide.

Xcode uses information from these settings when building and linking your software. You can unconditionally
use features from OS versions up to and including the system version that you have specified as your
Deployment OS version. You can use features from system versions later than the Deployment OS—up to
and including the system version you've selected as your Base SDK—but you must check for the availability
of the feature, as described in “Checking for Undefined Method and Function Calls” (page 16).

When you build your application, your Deployment OS version selection is reflected in the MinimumOSVersion
entry in the application’s Info.plist file. For iOS applications, the App Store indicates the iOS release
requirement for your application based on its MinimumOSVersion entry.

Figure 2-1 shows a timeline for a project with a Base SDK of Mac OS X version 10.6, with a Deployment OS
version set to Mac OS X version 10.4. (The version numbers in the figure represent all releases of that version,
including system updates.)

Figure 2-1 SDK development timeline

Unconditionally use these APIs Conditionally use these APIs Do not use these APIs 

Deployment OS version Base SDK

10.0                through 10.4 10.5 10.6 ?

In this example, the software can freely use any features from Mac OS X versions 10.0 through 10.4. It can
also take advantage of features from Mac OS X versions 10.5 and 10.6, but it must first check that the feature
is available.

The effect of these settings at compile time and run time is a follows:

 ■ If your code uses a symbol that is not defined in the selected Base SDK, you get a compile-time error.

 ■ If your code uses a symbol that is defined in the selected Base SDK but is marked as deprecated, you get
a compile-time warning.

 ■ If your code uses a symbol that is defined in the selected Base SDK and in the selected Deployment OS
version, your code builds and links normally. At run time:

 ❏ On systems earlier than the Deployment OS version, your code may fail to load if you use symbols
unavailable in that version.

 ❏ On systems equal to or later than the Deployment OS version, your code will have null function
pointers for symbols not supported in that version; it is up to your code to be prepared for this—for
an example see “Checking for Undefined Method and Function Calls” (page 16).

12 SDK Settings
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Configuring a Project for SDK-Based Development



iOS Note:  Mac OS X v10.6 does not support using iPhone Simulator SDKs prior to version 3.0. In addition,
when building with the simulator SDKs, the binary runs only on the same OS version as the SDK, not on
earlier or later versions.

Of course, you should also check to see if you are using deprecated APIs; though still available, these APIs
are not guaranteed to be supported in the future. The compiler can warn you about the presence of deprecated
APIs, as described in “Finding Deprecated APIs” (page 18).

When you change the Base SDK setting, in addition to changing the headers and libraries your code builds
against, Xcode adjusts the behavior of other features appropriately. For example, symbol lookup, code
completion, and header file opening are based on the headers in the Base SDK, rather than those of the
currently running system. Similarly, the Xcode Quick Help affinity mechanism ensures that documentation
lookup uses the doc set corresponding to the Base SDK.

You can also set the Base SDK and Deployment OS version for any individual target in the project. Any value
explicitly assigned to an individual target inspector overrides, for that target, the value assigned to that
setting in the project inspector. (However, some Xcode features that attempt to correlate with the Base SDK
setting, such as symbol definition and documentation lookup, may work differently.)

Configuring a Makefile-Based Project

If you have a makefile-based project, you can also take advantage of SDK-based development, by adding
the appropriate options to your compile and link commands. Using SDKs in makefile-based projects requires
GCC 4.0 or later. To choose an SDK, you use the -isysroot option with the compiler and the -syslibroot
option with the linker. Both options require that you specify the full path to the desired SDK directory. To
set the Deployment OS version in a makefile, use a makefile variable of the form: ENVP=
MACOSX_DEPLOYMENT_TARGET=10.4. To use this variable in your makefile, include it in front of your compile
and link commands.

Setting the Prefix File

Xcode supports prefix files, header files that are included implicitly by each of your source files when they're
built. Many Xcode project templates generate prefix files automatically, including umbrella frameworks
appropriate to the selected type of application. For efficiency, prefix files are precompiled and cached, so
Xcode does not need to recompile many lines of identical code each time you build your project. You can
add directives to import the particular frameworks on which your application depends.

If you are using SDK-based development, you must ensure that your prefix file that takes into account the
selected SDK. That is, don’t set the prefix file to an umbrella header file using an absolute path, such as
/System/Library/Frameworks/Cocoa.framework/Versions/A/Headers/Cocoa.h. This absolute
path does not work because the specified header is from the current system, rather than the chosen SDK.

To include umbrella framework headers, add the appropriate #import <Framework/Framework.h>
directives to your prefix file. With this technique, the compiler always chooses the headers from the appropriate
SDK directory. For example, if your project is named TestSDK and it has a prefix file TestSDK_Prefix.pch,
add the following line to that file:

Configuring a Makefile-Based Project 13
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Configuring a Project for SDK-Based Development



#import <Cocoa/Cocoa.h>

If you are using Objective-C, it’s preferable to use the #import directive rather than #include (which you
must use in procedural C programs) because #import guarantees that the same header file is never included
more than once.

14 Setting the Prefix File
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Configuring a Project for SDK-Based Development



This chapter describes SDK-based development techniques to use in your projects, explaining how your code
can tell what version of a framework it is using at run time, check for undefined method and functions,
compile conditionally for different SDKs, and find deprecated APIs.

Determining the Version of a Framework

There are several ways to check at run time for availability of certain features in the versions of the frameworks
your application is linked against. You can dynamically look for a given class or method (for example, by
using the instancesRespondToSelector: method, as described in “Checking for Undefined Method and
Function Calls” (page 16)) and, if it isn’t there, follow a different code path. Another way is to use global
framework-version constants, if they are provided by the framework.

For example, the Application Kit (in NSApplication.h) declares the NSAppKitVersionNumber constant,
which you can use to detect different versions of the Application Kit framework:

APPKIT_EXTERN double NSAppKitVersionNumber;
#define NSAppKitVersionNumber10_0 577
#define NSAppKitVersionNumber10_1 620
#define NSAppKitVersionNumber10_2 663
#define NSAppKitVersionNumber10_2_3 663.6
#define NSAppKitVersionNumber10_3 743
#define NSAppKitVersionNumber10_3_2 743.14
#define NSAppKitVersionNumber10_3_3 743.2
#define NSAppKitVersionNumber10_3_5 743.24
#define NSAppKitVersionNumber10_3_7 743.33
#define NSAppKitVersionNumber10_3_9 743.36
#define NSAppKitVersionNumber10_4 824
#define NSAppKitVersionNumber10_4_1 824.1
#define NSAppKitVersionNumber10_4_3 824.23
#define NSAppKitVersionNumber10_4_4 824.33
#define NSAppKitVersionNumber10_4_7 824.41
#define NSAppKitVersionNumber10_5 949
#define NSAppKitVersionNumber10_5_2 949.27
#define NSAppKitVersionNumber10_5_3 949.33

You can compare against this value to determine which version of the Application Kit your code is running
against. One typical approach is to floor the value of the global constant and check the result against the
constants declared in NSApplication.h. For example:

if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_0) {
  /* On a 10.0.x or earlier system */
} else if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_1) {
  /* On a 10.1 - 10.1.x system */
} else if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_2) {
  /* On a 10.2 - 10.2.x system */
} else if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_3) {

Determining the Version of a Framework 15
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using SDK-Based Development



  /* On 10.3 - 10.3.x system */
} else if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_4) {
  /* On a 10.4 - 10.4.x system */
} else if (floor(NSAppKitVersionNumber) <= NSAppKitVersionNumber10_5) {
  /* On a 10.5 - 10.5.x system */
} else {
  /* 10.6 or later system */
}

Similarly, Foundation (in NSObjCRuntime.h) declares the NSFoundationVersionNumber global constant
and specific values for each version.

Some individual headers for other objects and components may also declare the version numbers for
NSAppKitVersionNumber where some bug fix or functionality is available in a given update.

Checking for Undefined Method and Function Calls

To run successfully, your code must avoid calling methods and functions in system versions that do not
support them. It can do this either by checking the system version at run time and globally taking a different
code path based on the version, or by checking for the existence of each Objective-C method or C function
before calling it.

For example, suppose you build your application to use features in Mac OS X version 10.5 (by setting the
Base SDK to that version) but still run on Mac OS X version 10.4 (by setting the Deployment OS version to
that version). In Objective-C, you use the instancesRespondToSelector: method to see if the method
selector in question is available. For example, to use the setDisplaysToolTips: method, first available
in version 10.5, you could use code like the following:

Listing 3-1 Checking for an undefined method

if ([NSTextView instancesRespondToSelector:@selector(setDisplaysLinkToolTips:)])
    {
        [myTextView setDisplaysLinkToolTips:NO];
    }
    else
    {
        // Code to disable link tooltips with earlier technology
    }

When your code runs on Mac OS X version 10.5, it calls setDisplaysLinkToolTips: to disable display of
help tags when the mouse hovers over links. When it runs on version 10.4, it must disable display of link help
tags using code you wrote for that version.

If you were to build this code with different settings, you would see the following results:

 ■ If you select a Base SDK setting of Mac OS X 10.4:

The build would fail because setDisplaysLinkToolTips: is not defined in that system version.

 ■ With a Base SDK setting of Mac OS X 10.5, if you set the Deployment OS version to:

 ❏ Mac OS X 10.5: The software would run only on v10.5 or later and fail to launch on earlier systems.

 ❏ Mac OS X 10.4: The software would run on v10.5 and v10.4 but fail to launch on earlier systems.

16 Checking for Undefined Method and Function Calls
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using SDK-Based Development



You can check for the existence of Objective-C properties by passing the getter method name (which is the
same as the property name) to instancesRespondToSelector:.

In C, instead of using theinstancesRespondToSelector: method, you compare the function pointer to
NULL. For example, to use the CGColorCreateGenericCMYK function, first available in version 10.5, you
could use code like the following:

Listing 3-2 Checking for a null function pointer

    if (CGColorCreateGenericCMYK != NULL)
    {
        CGColorCreateGenericCMYK(0.1,0.5.0.0,1.0,0.1);
    }
    else
    {
        // Code to create a color object with earlier technology
    }

Important:  When checking for the existence of a symbol, you must explicitly compare it to NULL or nil in
your code. You cannot use the negation operator ( ! ) to negate the address of the symbol.

Conditionally Compiling for Different SDKs

If you build the same source code using different SDKs, you might need to compile code conditionally based
on the SDK in use. You can do this by using preprocessor directives with the macros defined in
Availability.h.

Note:  Availability.h is for iOS and Mac OS X v10.6 and later development. AvailabilityMacros.h
is the earlier version introduced in Mac OS X 10.2. These header files reside in the /usr/include directory.

For example, suppose the code shown in Listing 3-2 must be compiled against the Mac OS X 10.4 SDK.
Because the code refers to the CGColorCreateGenericCMYK function (which was introduced in Mac OS X
v10.5) that portion of the code must be excluded when compiling against the earlier SDK. This is because
even referring to the CGColorCreateGenericCMYK function in such a case causes a compiler error. The
use of the __MAC_OS_X_VERSION_MAX_ALLOWED macro removes the code during preprocessing unless it
is being compiled against the 10.5 headers. Note the use of the value 1050 instead of symbol __MAC_10_5
in the #if comparison clause: if the code is loaded on a system that does not include the symbol definition,
the comparison still works.

#ifdef __MAC_OS_X_VERSION_MAX_ALLOWED
    // code only compiled when targeting Mac OS X and not iPhone
    // note use of 1050 instead of __MAC_10_5
    #if __MAC_OS_X_VERSION_MAX_ALLOWED >= 1050
        if(CGColorCreateGenericCMYK != NULL)
        {
            CGColorCreateGenericCMYK(0.1,0.5.0.0,1.0,0.1);
        }
        else
        {
    #endif
            // code to create a color object with earlier technology

Conditionally Compiling for Different SDKs 17
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using SDK-Based Development



    #if __MAC_OS_X_VERSION_MAX_ALLOWED >= 1050
        }
    #endif
#endif
}

In addition to using preprocessor macros, the preceding code also assumes that the code could be compiled
using a newer SDK but deployed on a computer running Mac OS X v10.4 and earlier. Specifically, it checks
for the existence of the CGColorCreateGenericCMYK symbol before attempting to call it. This prevents
the code from generating a runtime error, which can occur if you build the code against a newer SDK but
deploy it on an older system. For more information about instituting runtime checks to determine the presence
of symbols, see “Checking for Undefined Method and Function Calls” (page 16).

Finding Deprecated APIs

As Mac OS X and iOS evolve, the APIs and technologies they encompass are sometimes changed to meet
the needs of developers. As part of this evolution, less efficient interfaces are deprecated in favor of newer
ones. The availability macros help you find deprecated interfaces.

Note:  Deprecation does not mean the immediate deletion of an interface from a framework or library. It is
simply a way to flag interfaces for which better alternatives exists. For example, an older interface may be
discouraged in favor of a newer, more efficient interface. You may still use deprecated interfaces in your
code; however, Apple recommends that you migrate to newer interfaces as soon as possible because
deprecated APIs may be deleted from a future version of the OS. Check the header files or documentation
of the deprecated interface for information about any recommended replacement interfaces.

Each deprecated interface is tagged with a macro that identifies the version of Mac OS X in which it was
marked as deprecated. If you compiled your project with a Deployment OS version of Mac OS X 10.5 and
used an interface tagged in this way, you would get a warning that the interface is now deprecated. The
warning includes the name of the deprecated interface and where in your code it was referenced. For example,
if the HPurge function were deprecated, you would get an error similar to the following:

'HPurge' is deprecated (declared at /Users/steve/MyProject/main.c:51)

To locate references to deprecated interfaces, you can look for warnings of this type. If your project has a lot
of warnings, you can use the search field in Xcode to filter the list based on the “deprecated” keyword.

18 Finding Deprecated APIs
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using SDK-Based Development



This table describes the changes to SDK Compatibility Guide.

NotesDate

Corrected an example that shows how to use conditional compilation macros.2010-02-16

Clarified build setting information.2009-09-09

Changed the title from Cross-Development Programming Guide. Added
information about iOS SDK-based development. Revised text significantly and
removed obsolete information.

2009-05-12

Added details on cross-development and universal binaries.2006-11-07

Added chapter “Determining the Version of a Framework” (page 15). Noted
requirement to build with GCC 3.3 when targeting Mac OS X versions prior to
Mac OS X v10.3.0. Corrected Mac OS X version requirements for code compiled
with GCC 4.0. Added links to further information on building universal binaries
from the command line. Changed deployment target in example.

Corrected a build-setting specification and added per-architecture-build-setting
availability details.

2006-05-23

Corrected specification for LDFLAGS build setting in “Configuring a
Makefile-Based Project”. Added availability details for the per-architecture build
settings feature.

Added a link to Technical Note TN2163, which describes how to develop a
universal I/O Kit driver.

2006-03-08

Made minor corrections.2006-02-07

Added information on building universal binary versions of kernel extensions.

Clarified use of LDFLAGS.

Added a section on using cross-development to create universal binaries. Added
information on identifying deprecated API. Corrected errors.

2005-11-09

Added “Cross-Development and Universal Binaries” chapter. Added “Finding
Deprecated APIs” (page 18). Reorganized content to create separate sections
for configuring cross-development settings in Xcode and in makefile-based
projects. Corrected sample code listing in “Conditionally Compiling for Different
SDKs” (page 17).

Fixed a bug in code that checks for the existence of a symbol. Updated steps
for setting a deployment target to reflect Xcode 2.1.

2005-08-11

19
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



NotesDate

Updated information about checking for undefined functions. Added information
about how to support SDKs from command-line programs.

2005-06-04

Made a number of changes throughout this document to reflect the final status
of cross-development support as it shipped in Mac OS X version 10.3.

2003-09-16

First general release of document.2003-08-21

20
2010-02-16   |   © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	SDK Compatibility Guide
	Contents
	Figures and Listings
	Introduction
	Overview of SDK-Based Development
	Behavior Selection in Frameworks

	Configuring a Project for SDK-Based Development
	SDK Header Files and Stub Libraries
	SDK Settings
	Configuring a Makefile-Based Project
	Setting the Prefix File

	Using SDK-Based Development
	Determining the Version of a Framework
	Checking for Undefined Method and Function Calls
	Conditionally Compiling for Different SDKs
	Finding Deprecated APIs

	Revision History


