
Xcode Source Management Guide
Tools & Languages: IDEs

2009-10-19

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Finder, iPhone, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Source Management Overview 9

Source Control Essentials 9
Snapshots 10
Managing Source in Xcode 10

Chapter 2 Source Control 11

Connecting to Repositories 11
Repository Configurations 11
Creating Repository Configurations 15
Browsing and Modifying Repositories 16
Excluding the build Directory from Source Control Operations 18

Managing Files Under Source Control 18
File Management Essentials 18
File Status 19
Adding Files 22
Updating Files 22
Removing Files 24
Renaming Files 25
Working Offline 27

Managing Revisions 27
Committing Your Work 27
Viewing Revisions 28
Comparing Revisions 29
Resolving Conflicts 31

Chapter 3 Snapshots 33

The Snapshots Window 33
Making Snapshots 34
Comparing Snapshots 35
Restoring Snapshots 35
Deleting Snapshots 35

3
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

Chapter 4 Using Source Control and Snapshots 37

Document Revision History 39

Index 41

4
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 2 Source Control 11

Figure 2-1 The Repositories pane of SCM preferences 12
Figure 2-2 The Options pane of SCM preferences 13
Figure 2-3 The SSH pane of SCM Preferences 14
Figure 2-4 The Repositories window 15
Figure 2-5 The SCM group in the Groups & Files list 20
Figure 2-6 The SCM column in the detail view 21
Figure 2-7 The SCM results window 21
Figure 2-8 The SCM group in an Xcode project whose project package needs to be updated

23
Figure 2-9 The Project Package Update dialog 24
Figure 2-10 The Remove From SCM Repository dialog 25
Figure 2-11 The SCM Rename dialog 26
Figure 2-12 A renamed file in the project window 26
Figure 2-13 The SCM pane in the Project Info window 28
Figure 2-14 Comparing two revisions of a file using FileMerge 29
Figure 2-15 Identifying differences between two revisions of a file 30

Chapter 3 Snapshots 33

Figure 3-1 The Snapshots window 34

5
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

6
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

FIGURES

A source control system (also known as a source control management system or an SCM system), provides
a repository for source files and a high-level interface to the changes made to them over time. In general
terms, a source control system stores every change made to a file since it became part of the system. Source
control systems can be used by individuals, but they are generally used by teams of developers who work
on the same projects. A source control system allows several developers to keep track of the changes the
team has made to the files that it stores.

Source control systems provide a command-line interface through which you can perform all the source
control operations they support. However, Xcode provides an easy-to-use interface for the most popular
source control systems. Through Xcode, you can browse repositories, check out projects, and track changes
made to source files.

This document provides an overview of source control and describes how to work on projects managed
under source control through the Xcode user interface.

To get the most out of this document, you should be familiar with the Xcode user interface and the structure
of Xcode projects.

Consult Xcode Workspace Guide first if you’re not familiar with the Xcode user interface.

Software requirements: This document is written for Xcode 3.0 and later.

Organization of This Document

This document contains the following chapters:

 ■ "Source Management Overview" (page 9) provides a gentle introduction to source management in
Xcode, which includes source control and snapshots.

 ■ "Source Control" (page 11) describes how to connect to source control repositories and work with
managed files and projects.

 ■ "Snapshots" (page 33) shows how to use locally stored snapshots to manage changes to multiple files.

 ■ "Using Source Control and Snapshots" (page 37) provides tips and caveats about using source control
and snapshots on a project concurrently.

See Also

To learn more about source control systems, consult these books:

Organization of This Document 7
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ Version Control with Subversion (O’Reilly, 2004)

 ■ Essential CVS, 2nd Edition (O’Reilly, 2006)

 ■ Subversion Version Control: Using The Subversion Version Control System in Development Projects (Prentice
Hall, 2005)

8 See Also
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

This chapter provides an introduction to Xcode source management, which includes Xcode SCM and Xcode
snapshots, a multifile undo/redo mechanism. It describes source control concepts you need to know in order
to perform source control operations using Xcode. This chapter also compares SCM with snapshots.

Source Control Essentials

Source control, which is also known as source control management (SCM) or version control, is a set of tools
and procedures you use to safeguard and manage files and changes made to them over time. By freeing you
from these repetitive and error-prone tasks, source control systems allow you to concentrate solely on writing
and testing code.

A source control system has three major parts: a repository, a client and a server. The repository is a directory
tree or database that contains the files managed by a source control system. The files stored in the repository
are called managed files. Repositories can reside anywhere but are usually placed in a computer overseen
by a system administrator who grants access to the repository and safeguards its contents through regular
backups.

The client is the program you use to interact with the repository. The server is the process that actually
modifies the repository. When you issue a command to the client, the client talks to the server process to
carry it out.

Everyone authorized to access the repository can copy files from the repository into a directory known as
the working copy. This is where you make changes to the project. Team members normally don’t have access
to each other’s working copies. This feature provides privacy and security because one person is unaware of
what others are doing until they commit (publish) their changes to the repository.

When you submit changes to a file in the repository, the source control system increments its revision number
(also known as version number). Under this scheme, the history of each file is recorded as a set of revisions,
which you can retrieve and compare individually.

Source control provides several benefits:

 ■ Centralized location of files. When more than one person works on a project concurrently, source
control ensures that the project’s latest manifestation of its source files are kept in a central location. As
a result, the project’s products can be built at any time without having to get the latest files from multiple
locations.

 ■ Complete history of every file. Because all the changes made to each managed file are maintained in
the repository, you can review the evolution of each file or an entire project since its inception. This
information can be valuable when investigating the causes of software bugs.

 ■ Change management infrastructure. Source control systems don’t allow you to submit changes to the
repository without describing the purpose of the change, which forces you to document your work. This
requirement saves time in the long run because it allows everybody to determine the reason for a
particular change without having to consult with the person who made the change.

Source Control Essentials 9
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Source Management Overview

Snapshots

Snapshots provide you with the ability to undo (and redo) change sets across several files. A snapshot is a
view of the state of the files in a directory. You can compare snapshots to find out the differences between
them, such as which files have changed and the changes made to them. You can also restore your working
files to a snapshot, taking their project back to the state it was when the snapshot was taken. Snapshots is
not a source control system and does not interface with one. Instead, it’s a facility you can use to safeguard
your work. Under standard access policies, your snapshots are not visible to others.

Managing Source in Xcode

Xcode provides a common interface for various source control systems, including the open-source products
Subversion and CVS (Concurrent Versions System), and Perforce. Xcode makes it easy to perform most source
control tasks as you work on a project. It also tells you whether the managed files in your copy of the project
differ from their representation in the repository.

You should consider using source control when you’re working with other developers on one project. Even
when you’re the only one working on a project, you may benefit from the structure that source control adds
to the development process, such as revisions and change management. As an alternative to source control,
Xcode Snapshots may be more appropriate if you are the sole developer of a project or if you need to
complement your repository-backed projects with a local large-scale undo mechanism.

10 Snapshots
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Source Management Overview

You can perform the most common source control operations from Xcode instead of your source control
client’s command-line interface.

Note: Features of particular SCM clients (such as the Subversion global-ignores feature) are not accessible
through Xcode. You need to use your client’s user interface to take advantage of these features.

The following sections describe how to connect to source control repositories, how to work with managed
files and projects, and how to view, compare, and restore change sets stored in repositories.

Connecting to Repositories

Xcode provides an easy-to-use user interface for your source control system. You can perform most source
control tasks as you perform normal development tasks, including checking out projects, publishing your
changes, and comparing revisions.

Important: To take advantage of all of your SCM system’s capabilities, you should be familiar with its operation
using its client tool.

This section explains how to create repository configurations, how to use the Repositories window to navigate
and modify repositories, and how to configure comparison and differencing operations.

Repository Configurations

A repository configuration is a set of data that tells Xcode how to use a particular source control client tool
to access a specific repository.

This section describes how to create repository configurations and how to browse and modify repositories.

SCM Preferences

The SCM pane of Xcode preferences is where you create repository configurations that tell Xcode how to
access the repositories that store the projects you work on.

Repository List

The Repositories pane (Figure 2-1) contains the list of repository configurations you have created. Each
repository configuration points to a particular path within a repository. Therefore, you may have more than
one repository configuration that references the same repository.

Connecting to Repositories 11
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-1 The Repositories pane of SCM preferences

To the right of the repository list are the settings that apply to the repository selected in the list. Figure 2-1
shows the settings used for a Subversion repository.

To learn how to create repository configurations, see "Creating Repository Configurations" (page 15).

Comparison and Differencing Options

The Options pane (Figure 2-2) contains settings that let you specify how Xcode performs source control and
file comparison operations.

12 Connecting to Repositories
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-2 The Options pane of SCM preferences

 ■ Comparison Handling. Specifies how Xcode compares files using the Compare command, described in
"The Compare Command" (page 29). The options are:

 ❏ View comparisons using. Specifies the application used to compare files.

 ❏ Display local files on. Specifies the side of the window on which you want the local version of the
file to appear when comparing file revisions.

 ■ Save files before SCM operations. Specifies whether Xcode automatically saves changed files before
performing any source control operations.

 ■ Differencing. These options specify how Xcode performs file comparisons using the diff command:

 ❏ Format. Specifies the format in which the output from the diff command is displayed. For a list
of the possible formats, see "Comparison and Differencing Options" (page 12).

 ❏ Lines displayed. Specifies the number of lines of context displayed around each difference.

 ❏ Ignore blank lines. Specifies whether blank lines are skipped when differencing files.

 ❏ Ignore whitespace. Specifies whether to ignore whitespace when differencing files.

Connecting to Repositories 13
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

 ■ Configure SCM automatically. Specifies whether Xcode chooses an appropriate SCM repository for a
project after checking it out using the Repositories window. See "Checking Out Directories" (page 16)
for more information.

SSH Keys

The SSH pane contains the list of SSH keys stored in your keychain.

Figure 2-3 The SSH pane of SCM Preferences

The Status column indicates whether Xcode is able to access a particular SSH key.

To have Xcode ask you for a passphrase when it needs to use a particular SSH key, enter the passphrase in
the Passphrase text field.

The Repositories Window

After you’ve added at least one repository configuration in SCM preferences, you can browse the contents
of repositories in the Repositories window (Figure 2-4). To open the Repositories window, choose SCM >
Repositories.

14 Connecting to Repositories
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-4 The Repositories window

The Repositories window contains three parts:

 ■ Repository list. Lists the repository configurations you’ve created.

 ■ Repository browser. Allows you to navigate the structure of the repository selected in the repository
list.

 ■ Operation log. Lists the source control operations Xcode performs as you navigate or modify a repository.

Creating Repository Configurations

To create a repository configuration:

1. Open SCM preferences.

2. Click the plus (+) button below the repositories list.

3. In the dialog that appears, enter a name for the repository configuration and choose the source control
system you want to use.

4. In the repository settings pane, enter the appropriate information for the source control system you
selected. (Consult your SCM system’s documentation to find out the appropriate values for the pane’s
fields.)

Connecting to Repositories 15
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

If you’re using Subversion, you can enter the repository URL entirely in the URL field or piece by piece
in the fields below it (except the Password field).

5. Enter the password (if required) in the Password field.

When accessing a repository using SSH, Xcode offers to store your SSH key in your keychain. With your
SSH keys stored in the keychain, Xcode doesn’t prompt you to authenticate every time it talks to your
source control system. See "SSH Keys" (page 14) for more information.

Browsing and Modifying Repositories

The Repositories window, described in "The Repositories Window" (page 14), allows you to navigate the
repositories that your repository configurations reference. You can also perform repository management
operations, such as importing and exporting projects, creating and deleting directories, and copying, renaming,
and moving directories. (Because not all of the supported source control systems provide programming
interfaces for each of these operations, some of them may not be executable through the Xcode user interface.)

Importing Directories

To import a directory into a repository:

1. If you’re importing a project directory, ensure that the project is not open and that the directory doesn’t
contain a build directory. For more information, see "Excluding the build Directory from Source Control
Operations" (page 18).

2. Open the Repositories window.

3. Select the repository into which you want to import the directory, navigate to the location within the
repository at which you want to place the directory, and click Import.

4. Select the directory to import.

5. Enter a comment about the operation, and click Import.

Checking Out Directories

To check out a directory from a repository, do one of the following:

 ■ Drag the directory from the Repositories window to a Finder window.

 ■ Perform these steps:

1. Open the Repositories window.

2. Select the repository from which you want to export the directory, navigate to the directory you
want to check out, and click Checkout.

3. Select a location in your file system into which to place the working copy of the directory, and click
Checkout.

16 Connecting to Repositories
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

If checked out a project directory and selected “Configure SCM automatically” in SCM preferences, after
checking out the project directory Xcode configures the project package so that you can perform SCM
operations immediately.

Creating Directories

To create a directory in a repository:

1. Open the Repositories window, and select the repository in which you want to create the directory.

2. Navigate to the location in which you want to create the directory, and click Create Directory.

3. In the dialog, enter the directory name and a comment for the operation, and click Create Directory.

Copying Directories

To copy a directory:

1. Open the Repositories window, and select the repository in which you want to create the copy.

2. Select the directory you want to copy, and click Copy.

3. In the dialog:

a. Enter the name of the copy.

b. Select the copy’s location.

c. Enter a comment for the operation, and click Copy.

Moving or Renaming Directories

To move or rename a directory:

1. Open the Repositories window, and select the repository on which you want to operate.

2. Select the directory you want to move or rename, and click Move.

3. In the dialog:

a. Enter the new name for the directory.

b. Select the new location for the directory.

c. Enter a comment for the operation, and click Move.

Connecting to Repositories 17
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Excluding the build Directory from Source Control Operations

A project’s build directory contains many files generated by the Xcode build system. These files should not
go into a source control repository because of their volatility and because they have little need to be tracked
by such a system.

In managed projects, you should move the projects’ build directory to a location outside the realm of source
control operations—that is, outside the project’s project root.

You can specify a custom location for the build directory, in Building preferences.

Managing Files Under Source Control

Version control allows you to maintain a history of a project’s development and lets you share projects with
other developers. Xcode, in conjunction with your version control system, allows you to stay up to date with
your team’s progress. Through the Xcode user interface, you can perform most of the version control tasks
needed to work on a software project successfully.

This section introduces common version control tasks and explains how to accomplish them in Xcode. It also
provides the recommended workflow you should follow when working on managed Xcode projects.

File Management Essentials

There are a few essential concepts you need to understand to fully take advantage of source control in Xcode.
A project contains two files that are particularly important, the project file and the user file. They are both in
the project package (.xcodeproj) in the project directory. These two files keep the project package in sync
with the rest of the files in the project, and maintain personal project settings in the repository.

 ■ The project file. The project file, which Xcode maintains in the project package with the name
project.xcodeproj, stores project-related information, such as the files that are part of the project,
the groups in the Groups & Files list, build settings, target definitions. Xcode constantly writes out this
file; therefore, most of the time its status is M (for details on file status codes, see “Viewing File
Status” (page $@)).

If you make structural changes to the project, such as adding or removing files, you must commit this
file along with the other changes (for example, when you commit a file you added to your working copy,
you must also commit the project package). Otherwise, the project file may become out of sync with
the rest of the project’s files (source code files, resource files, and so on).

 ■ The user file. The user file stores user-related information, such as bookmarks, the active build
configuration, and the name of a repository configuration. Xcode maintains this file inside the project
package as <username>.pbxuser. So, for the user name clare, the corresponding user file is called
clare.pbxuser.

Xcode adds your user file to a project package when you open the project if there isn’t already a user
file for you inside the package. You should include your user file in your commits and updates if you
want to safeguard your personal settings for the project in the repository or if you work on the project
on more than one computer and want to use the same settings on all of them.

18 Managing Files Under Source Control
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

A project can have one or more project roots. A project root is a directory at which source control operations
are rooted. By default, a project has only one project root, the project directory. In a software effort that
involves only one project, the default project root is usually adequate. However, if you work on an endeavor
that comprises more than one project, multiple project roots let you associate independent directories (each
containing a component of the endeavor, or a subproject) with the project. These project roots don’t have
to be located under the same parent directory. And each project root has its own SCM configuration; this
allows different teams in a project to use their preferred SCM systems for their particular components, but
still work on the entire endeavor as a group. See "Managing Project Information" in Xcode ProjectManagement
Guide to learn how to set a project’s project root.

Xcode provides commands that operate on the entire project. These commands operate on the files in a
project root directory (and its subdirectories), even if they’re not referenced in the project file.

Multiple project-root availability: Multiple project roots are supported in Xcode 3.2 and later.

File Status

As you work on a project, the version control status of its files in relation to the repository change. Xcode
tells you which files you have changed in your local copy of the project, which files need to be updated to
the latest version in the repository, and so forth.

Xcode uses a one-letter code to represent the status of each file. Here’s what each code means:

 ■ Blank. The file is up to date with the latest version in the repository. You haven’t changed your local
copy of it.

 ■ ? (unknown). The file is not in the repository. See “Adding Files” (page $@).

 ■ ! (unmanaged). The file is not in the repository.

 ■ - (dash). The file is in a directory that’s not in the repository, or this is a directory that’s not in the
repository. To add a directory to the repository, you must use your client tool. After that, add the files in
the directory using Xcode. If you don’t use Xcode to add the files, Xcode does not add the files to the
project file. In turn, when you commit your changes, Xcode does not notify other developers that files
have been added to the project.

 ■ U (update). The latest version of the file in the repository is newer than your version. To check for conflicts
between your version and the latest revision and then get the latest revision if there are no conflicts,
select the file in the detail view and choose SCM > Update To > Latest.

 ■ C (conflict). Your changes may conflict with the changes in the latest version. To see conflicts, select the
file in the detail view and choose SCM > Compare With > Latest.

 ■ M (modified). The next time you commit your changes to the file, either by selecting it and choosing
SCM > Commit Changes or by choosing SCM > Commit Entire Project, the modified version of this file
is added to the repository.

 ■ A (added). The next time you commit your changes, this file is added to the repository.

 ■ R (removed). The next time you commit your changes, this file is removed from the repository.

You can view the source control status of files in several places: the SCM smart group, the detail view, and
the SCM results window.

Managing Files Under Source Control 19
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Note: You can refresh the status of the files in your project anytime by choosing SCM > Refresh Entire Project.

SCM Smart Group

The SCM group in the Groups & Files list in the project window shows the status of all the files that differ
from the latest version in the repository or for which you’ve specified a version control operation to be
performed later, such as adding a new file to the repository. “The SCM group in the Groups & Files list” shows
the SCM group.

Figure 2-5 The SCM group in the Groups & Files list

You can also use the SCM column in the Groups & Files list to see the status of your project's files in the
outline view.

Note: The SCM group displays all files under source control in the project roots, even files that are not part
of the project.

The Detail View

The detail view lists all the files in a project. When using version control, you can add the SCM column to the
detail view by using the shortcut menu of the detail view header. The SCM column shows the status of each
file in the project. “The SCM column in Xcode’s detail view” shows the SCM column (the rightmost column)
in the detail view.

20 Managing Files Under Source Control
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-6 The SCM column in the detail view

The SCM Results Window

The SCM results window provides the same information the SCM group does, plus a log of SCM operations.
The window appears when you double-click the SCM group or when you choose SCM > SCM Results.

“The SCM Results and editor panes in the SCM Results window” shows the SCM Results window.

Figure 2-7 The SCM results window

File list

Clear log

SCM log

Toggle SCM log

File List Filter menu

These are the window’s controls:

Managing Files Under Source Control 21
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

 ■ Files list. List of files in the project. You can filter this list using the File List Filter pop-up menu.

 ■ File List Filter menu. Specifies which files are displayed in the file list. The options are:

 ❏ All. No filter.

 ❏ Interesting. Hierarchical list of files with nonblank source control status.

 ❏ Flat. Flat list of files with nonblank source control status.

 ■ Toggle SCM log. Shows/hides the SCM log.

 ■ SCM log. Lists the SCM operations Xcode performs.

 ■ Clear log. Clears the SCM log.

Adding Files

After you add a file to your local copy of a managed directory, its status is ? (unknown). This means that the
file is not part of the repository. If you want to add the file to the repository the next time you commit your
changes, select the file in the project window or the SCM Results window and choose SCM > Add to Repository.

The status of the file changes from ? to A.

When you commit file additions, you must commit the project file (project.xcodeproj) at the same time.
This lets other developers know there’s a new file in the project as soon as you commit the addition. If you
don’t commit the project file when you commit the file addition (that is, if you select a file with a status of
A, and commit its changes to the repository without also selecting the project file), other developers will not
be able to get the added file into their local copies of the project, because Xcode wouldn’t know that a file
was added to the project.

Updating Files

When a file in your local copy of a project becomes outdated, Xcode assigns it a status of U. This means that
another developer has submitted changes to that file to the repository and your working copy doesn’t include
them.

To update your local copy of a file that needs updating select the file in the project window and choose SCM
> Update To > Latest.

To update your local copy all the files in the project root that need updating, choose SCM > Update Entire
Project.

When the project package (project.xcodeproj) has a status of U, you need to update the project package
and reopen the project in Xcode. “The SCM group in an Xcode project whose project package needs to be
updated” shows the SCM group of an Xcode project whose project package needs to be updated.

22 Managing Files Under Source Control
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-8 The SCM group in an Xcode project whose project package needs to be updated

To update the project package, select project.xcodeproj in the SCM group and choose SCM > Update
To > Latest.

Alternatively, you can choose SCM > Update Entire Project.

After the update operation is completed, you may get a dialog (Figure 2-9) that tells you that the project
package was changed in the file system and asks you whether to keep using the version in memory or reload
the project from the file system. To work with the latest version of the project package in the repository,
choose to reload the project.

Managing Files Under Source Control 23
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-9 The Project Package Update dialog

If you updated only the project package, when you reopen the project, the SCM group may display files with
a status of U using red text. These files were added to the project after your last update. To get the new files
into your working copy, perform the Update To Latest command on them. To refresh the status of the files
in your working copy after the update operation is complete, choose SCM > Refresh Entire Project.

Removing Files

To remove a file from your local copy of a project and from the repository when you commit the operation,
remove the file as you normally would; that is, select the file in the project window and choose Edit > Delete.

If you choose to delete the file, the Remove From SCM Repository dialog, shown in “The Remove From SCM
Repository dialog,” appears.

24 Managing Files Under Source Control
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-10 The Remove From SCM Repository dialog

To tell Xcode you want the file removed from the repository, click Remove. The file’s status changes to R and
the filename appears in gray in the Groups & Files list and the detail view.

When you commit the file-removal operation, you must commit the project file (project.xcodeproj) at
the same time. Other developers can then keep their project files in sync with the project directory by updating
their local copies. If you don’t commit the project file when you commit the file-removal operation (for
example, if you select a file with a status of R, and commit it without also selecting the project file), Xcode
notifies other developers that the file you removed needs to be updated. When they update their local copy
with the repository, the file is removed from their local copy, but their copy of the project file still references
the nonpresent file, and the file appears in red in the detail view. This may confuse others, who then have
to find out why a file that’s supposed to be in their project directories is missing.

Renaming Files

Renaming a file produces two version control operations: the removal of the file under the old name and
the addition of the file with the new name. Therefore, Xcode shows the R status next to the old name and
the A status next to the new name.

Warning: When you rename a managed file, the change information for the file under the old name is
unavailable under the new name.

Rename a file in the Groups & Files list. Select the file in the project window and choose File > Rename.

The Rename dialog appears, as shown in “Renaming a managed file.”

Managing Files Under Source Control 25
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Figure 2-11 The SCM Rename dialog

To proceed with the renaming, click Rename. The SCM group in the Groups & Files list, as well as the detail
view, show that the file under the old name will be removed and the file with the new name will be added,
as shown in “Uncommitted rename operation.”

Figure 2-12 A renamed file in the project window

26 Managing Files Under Source Control
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Working Offline

You can control access to the version control system you are using with the Go Online and Go Offline
commands in the SCM menu. These commands allow you to temporarily turn off or reenable access to the
version control system if you move to a different network or lose your network connection. For example, if
you are going to be somewhere without network access, you can take your project offline to prevent Xcode
from attempting to access the version control system.

If version control goes offline due to a network disruption, access automatically goes back online when the
network is reconnected.

Subversion offline operations: Xcode supports Subversion’s offline operation capability. When using
Subversion offline, you can perform several source-control operations that would not be possible with other
SCM systems.

Managing Revisions

The four main source-control tasks are:

 ■ Committing your work to the repository. After you have finished making changes in your project to
implement a feature or fix a bug, you copy your work to your SCM repository to safeguard it and share
it with the rest of the team.

 ■ Viewing and comparing revisions. As you investigate bugs in your code, you may need to compare
your working-copy files with current version of the files or with prior versions to find out the change
that introduced the bug.

 ■ Resolving conflicts. There are times when two or more people change the same section of a file. SCM
systems report this as conflicts when you try to commit your work to the repository. You must resolve
the conflicts before you can commit your changes to the affected files.

This section shows how to perform these tasks.

Committing Your Work

When you’re done making changes to a file and you want to submit your modifications to the repository,
you can tell Xcode to commit the file in one of two ways:

 ■ Select the file in the project window and choose SCM > Commit Changes.

 ■ Choose SCM > Commit Entire Project.

This command commits pending changes in the project root. Files with pending changes that are part
of the project are listed in the Groups & Files list with status A, M, or R.

Both actions bring up a dialog with a text field in which you enter a message describing your changes. To
execute the command, click Commit.

Managing Revisions 27
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Viewing Revisions

You can view the revisions for an entire project or the revisions that pertain to a particular file using the
Project Info window or the File Info window, respectively. “Info window displaying the revisions of a file”
shows the SCM pane of the file-info editor.

Figure 2-13 The SCM pane in the Project Info window

Revision list

Revision detail

The SCM pane has these controls:

 ■ Revision list. Lists the revisions for the project/file. You can use the search field to narrow the items
shown. The information displayed in the list includes the revision number, the author, and a message
about the changes made.

 ■ Revision detail. Shows detailed information about the revision selected in the revision list.

 ■ Update button. Updates your copy of the project or file to the selected revision.

 ■ Compare button. Compares either a selected revision and the project or file or two selected revisions
against each other.

 ■ Diff button. Differences either a selected revision and the project or file or two selected revisions against
each other.

 ■ Annotate button. Lets you add an annotation to the project package (in the Project Info window) or
the selected file (in the File Info window).

28 Managing Revisions
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Feature availability: The Annotation feature is available only in Subversion.

 ■ Search field. Filters the revisions shown in the revision list.

Comparing Revisions

You can compare different versions of a file in a project to see changes made to a file from version to version.
For example, you can compare your locally modified version of a file with the latest revision submitted by
another member of your team. Or you can compare the two most recent revisions in the repository to see
what has changed.

To compare your version of a file or project with a version in the repository, use the Compare With or the
Diff With command in the SCM menu. The Compare With command lets you compare files using a visual
tool, such as FileMerge. With the Diff With command you can have Xcode perform the comparison using the
differencing facility of your client.

You can also select any two revisions of a file in its File Info window and compare them using the Compare
and Diff buttons.

You can specify several comparison and differencing options. See "Comparison and Differencing Options" (page
12) for details.

The Compare Command

The Compare With command allows you to compare files using a visual tool. “Comparing two revisions of a
file using FileMerge” shows the result of comparing two revisions of a file.

Figure 2-14 Comparing two revisions of a file using FileMerge

Managing Revisions 29
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

To compare your version of a file with a revision in the repository:

1. Select the file in the project window.

2. Choose SCM > Compare With, and select the revision to compare against:

 ■ Latest. Choose this option to compare a file with the latest version in the repository.

 ■ Base. Choose this option to compare a file with the version you checked out of the repository.

 ■ Revision. Choose this option to get the revision list for the selected file. This option is useful if you’re
not sure of the revision you want to compare against.

 ■ Specific Revision. When you know the revision you want to compare against, choose this option
and enter the revision number in the dialog that appears.

 ■ File. Choose this option to compare a file in your project with any file in the file system. Choose the
other file from the dialog that appears.

You can also compare any two revisions of a file in its File Info window by selecting the revisions you want
to compare in the revision list and clicking Compare.

The Diff Command

Another way to compare revisions using Xcode is to identify the differences between them by using the
differencing facility of your client tool. Xcode displays the output of the diff command in a separate editor
window. “Identifying differences between two revisions of a file” compares two revisions of a file using svn
diff.

Figure 2-15 Identifying differences between two revisions of a file

You can specify the format used in the comparison in the SCM pane in Xcode preferences. See "Comparison
and Differencing Options" (page 12) for details.

30 Managing Revisions
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

To identify the differences between your copy of a file with a revision in the repository, select the file in the
project window, choose SCM > Diff With.

and choose a version to compare against. The options you can choose from are:

 ■ Latest. Choose this option to compare a file with the latest revision in the repository.

 ■ Base. Choose this option to compare a file with the revision you checked out of the repository.

 ■ Revision. Choose this option to get the revision list for the selected file. This option is useful if you’re
not sure which revision you want to compare against.

 ■ Specific Revision. When you know the revision you want to compare against, choose this option and
enter the revision number in the dialog that appears.

You can also identify the differences between any two revisions of a file in its File Info window by selecting
the revisions you want to compare in the revision list and clicking Diff.

Resolving Conflicts

A file with a status of C contains changes that clash with the latest revision in the repository. For example,
you may have removed a method from a class definition that another developer published changes to before
you committed your own changes. To view how your version of a file in conflict differs from the latest revision,
use the Compare or Diff commands. See "Comparing Revisions" (page 29) for details.

Version control systems cannot resolve conflicts. They can only make you aware of the presence of conflicts.
In some cases, you may be able to resolve the conflict yourself. However, in the majority of cases (if you work
in a team), you need to communicate with the person who published the changes that conflict with your
own before determining the best way to resolve the conflict.

There are two ways of resolving a conflict between your version of a file and the latest revision in the repository:

 ■ Merge the changes published to the repository with your local changes and edit the resulting file as
necessary:

1. In the project window, select the file with the conflict.

2. Choose SCM > Update To > Latest.

3. Edit the file to resolve the conflicts.

4. Save the file. If you’re using Subversion, you must also choose SCM > Resolved.

 ■ Discard your copy of the file in favor of the latest revision in the repository. Select the file in the project
window and choose SCM > Discard Changes.

Conflicts in the project package (project.xcodeproj) occur when developers add, remove, or rename files
from their local copies and commit those files without committing the project file at the same time. You
cannot resolve conflicts in the project package. If your copy of the project package gets a status of C, choose
SCM > Update Entire Project, or select the project file in the project window and choose SCM > Update To
> Latest.

If Xcode displays a dialog asking whether to discard your changes, discard them. You may need to reopen
or reread the project (see "Updating Files" (page 22) for more information).

Managing Revisions 31
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

If Xcode is unable to open your project because the project package is corrupt, you must use your client tool
to update the project file to the latest version in the repository. See your tool’s documentation for details.

32 Managing Revisions
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Source Control

Snapshots allow you to save project state at particular points in time, which you can restore entirely or
partially at a later point. Snapshots provide a multifile undo/redo mechanism that lets you experiment freely
with your source files. A snapshot stores the state of a directory tree at the time it was taken. The changes
you make can be easily reverted by restoring your project to a snapshot you made before the experiment.

At any particular time, a project can access only one snapshot store. A snapshot store is the set of snapshots
taken from one or more projects with the same project root. (See “General Project Attributes” in Xcode Project
Management Guide to learn how to set a project’s project root.)

Xcode stores snapshots in your home directory:

~/Library/Application Support/Developer/Shared/SnapshotRepository.sparseimage

This chapter shows how to use locally stored snapshots to manage changes to multiple files.

The Snapshots Window

The Snapshots window (Figure 3-1) is where you view your project’s snapshots.

The Snapshots Window 33
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Snapshots

Figure 3-1 The Snapshots window

Snapshot list

Changes pane

Changed file list

The Snapshots window contains the following items:

 ■ Snapshot list. Lists the snapshots accessible to the project, which is determined by the project root (see
"Managing Source in Xcode" (page 10) for details about the project root).

 ■ Name. The name of the snapshot. Xcode automatically names snapshots based on where you perform
the Make Snapshot command.

 ■ Date. The date the snapshot was taken.

 ■ Archive. The filename of the snapshot.

 ■ Comments. Comments you add to the snapshot.

 ■ Changes pane. The differences between a file in the selected snapshot and the file in the project or
another snapshot.

Making Snapshots

To make a snapshot, choose File > Make Snapshot.

You may want to change the snapshot name to reflect special circumstances.

To change the name of a snapshot, select the snapshot in the Snapshots list, and enter the new name in the
Name field.

34 Making Snapshots
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Snapshots

Comparing Snapshots

When you select a snapshot in the Snapshot window, the changed file list shows the differences between
the snapshot and the current state of the project. That is, Xcode compares the snapshot against the project.

Sometimes you may need to know what changed between two snapshots. You can view the differences
between two snapshots by selecting them in the Snapshot list.

Restoring Snapshots

To restore the project to the state represented by a particular snapshot, select the snapshot in the Snapshot
list, and click Restore.

To restore a single file in a snapshot:

1. In the Snapshot list, select the desired snapshot.

2. In the file list, select the file to restore, and click Restore.

3. Click the Restore button.

To restore a single change instead of an entire file:

1. In the Snapshot list, select the desired snapshot.

2. In the file list, select the desired file.

3. In the changes pane, copy the text to restore.

4. Open the file into which you want to restore the copied text.

5. Paste the text in the appropriate location, and save the file.

Deleting Snapshots

From time to time, you may want to prune a snapshot store. You can do this by deleting individual snapshots
or deleting the snapshot store.

To delete a snapshot, In the Snapshots window, select the snapshot you want to delete, and click Delete in
the toolbar.

To delete a snapshot store, first Quit Xcode. Then in the Finder, navigate to the directory that contains the
snapshot store (see "Snapshots" (page 33) for details), and delete the SnapshotRepository.sparseimage
file.

Comparing Snapshots 35
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Snapshots

36 Deleting Snapshots
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Snapshots

Source control and snapshots let you keep track of changes you make to your source files. However, they
are not made to work together. Snapshots provide an undo/redo mechanism with local change stores. Source
control provides the benefits of snapshots but with a more robust back end and support for multiple
developers.

You may want to use source control to work on a project in which other developers also work. That way, you
can stay up to date with the changes your colleagues make. But you may also want to undo/redo changes
you make locally. If you choose to do so, you should keep the following in mind:

 ■ When your source control system places metadata in your project root (through .svn or CVS directories,
for example), restoring an entire snapshot restores these metadata, as well, which may result in potentially
serious synchronization problems with the repository.

Therefore, if you’re using source control and snapshots in the same project, you should never restore
entire snapshots. Instead, you should restore individual files or changes.

 ■ If you restore a snapshot made before a commit operation, you revert the affected files to a state prior
to the commit.

Therefore, after performing a commit that would cause such reversion, you should take measures to
ensure that the next commit operation involving those files does not revert changes published by other
developers.

37
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Source Control and Snapshots

38
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using Source Control and Snapshots

This table describes the changes to Xcode Source Management Guide.

NotesDate

Added information about multiple project roots.2009-10-19

Updated "File Management Essentials" (page 18) with information about multiple
project roots.

Added index.

Made minor changes.2009-01-06

Added information about automatic–SCM configuration in "Comparison and
Differencing Options" (page 12).

Made minor changes.2008-10-15

Documented snapshot store location.

Added details about SCM smart group and project root.

Added details about the project root.2008-07-11

New document that describes how to manage source changes using source
control and snapshots.

2008-02-08

39
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

! file status 19
- (dash) file status 19
? file status 19

A

A file status 19

C

C file status 19
Compare With command (SCM menu) 29
conflicts between revisions, resolving 31

D

Diff With command (SCM menu) 30

F

files
comparing 12, 29
status of in repository 19

I

Info windows
Project. See Project Info window

M

M file status 19

P

project file 18
Project Info window

SCM pane 28
project roots 19

R

R file status 19
repositories window 15
repositories

browsing and modifying 16
connecting to 11
creating configurations for 15
defined 9

repository configurations 11, 15

S

SCM preferences 11
SCM results window 21
SCM smart group 20
smart groups

SCM 20
snapshots 10

comparing 35
creating 34
defined 33
deleting 35
restoring 35
source control and 37

Snapshots window 33

41
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

Index

source code
using repositories to manage 10

source control
adding files 22
benefits of 9
committing changes 27
comparing revisions 29
defined 9
file status 19
logging operations 21
managing files 18
removing files 24
renaming files 25
resolving conflicts 31
snapshots and 37
updating files 22
viewing revisions 28
working offline 27

SSH keys 14

U

U file status 19
user file 18

V

version control. See source control. 9

W

working copy directory 9

X

Xcode preferences
SCM 11

42
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

INDEX

	Xcode Source Management Guide
	Contents
	Figures
	Introduction
	Source Management Overview
	Source Control Essentials
	Snapshots
	Managing Source in Xcode

	Source Control
	Connecting to Repositories
	Repository Configurations
	SCM Preferences
	Repository List
	Comparison and Differencing Options
	SSH Keys

	The Repositories Window

	Creating Repository Configurations
	Browsing and Modifying Repositories
	Importing Directories
	Checking Out Directories
	Creating Directories
	Copying Directories
	Moving or Renaming Directories

	Excluding the build Directory from Source Control Operations

	Managing Files Under Source Control
	File Management Essentials
	File Status
	SCM Smart Group
	The Detail View
	The SCM Results Window

	Adding Files
	Updating Files
	Removing Files
	Renaming Files
	Working Offline

	Managing Revisions
	Committing Your Work
	Viewing Revisions
	Comparing Revisions
	The Compare Command
	The Diff Command

	Resolving Conflicts

	Snapshots
	The Snapshots Window
	Making Snapshots
	Comparing Snapshots
	Restoring Snapshots
	Deleting Snapshots

	Using Source Control and Snapshots
	Revision History
	Index
	Symbols
	A
	C
	D
	F
	I
	M
	P
	R
	S
	U
	V
	W
	X

