
Xcode Unit Testing Guide
Tools & Languages: IDEs

2009-10-19

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, iPhone,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Organization of This Document 7

Adding Unit Tests to Your Projects 9

Configuring Your Xcode Project 9
Dependent Versus Independent Targets 9
Creating Your Test Target 10
Adding Test Cases to Your Target 14
Running Your Tests 14

Creating Test Cases for Objective-C 14
Creating Your Test Case Class 15
Writing Your Test Cases 15
Managing Common Objective-C Structures 16
Commonly Used Macros 16

Creating Test Cases for C++ 17
Creating Your Test Case Class 17
Writing Your Test Cases 18
Managing Common C++ Structures 18
Registering Your Tests 19

Unit Test Guidelines 21

Document Revision History 23

Index 25

3
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

4
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Tables and Listings

Adding Unit Tests to Your Projects 9

Table 1 Pros and cons of target configurations 9
Listing 1 Interface for RunTestsInTimer.h 12
Listing 2 Installing the timer 12
Listing 3 Running the tests 13
Listing 4 Macro examples in Objective-C 16

5
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

6
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

It is a familiar scenario to many developers. Major development is complete. The application has been tested.
The team is fairly confident about the stability of the code. Then someone introduces that one last feature
that breaks several seemingly unrelated features. Somehow, the new code has changed a fundamental
assumption about the behavior of a code module and that change has now broken other modules. How do
you validate your code in a way that will prevent this scenario from happening again? One way is through
unit testing.

By adding appropriate unit tests to your projects, each engineer can verify that newly introduced code does
not break any existing behavior. A unit test is simply a piece of code that exercises some part of your
application. The unit test provides a specific input and expects your code to return a specific output. If your
code returns an unexpected value, the unit test reports the discrepancy.

Third-party unit testing modules have been available for Xcode for some time. In addition, Xcode 2.1 now
integrates some modules directly into the project environment. These modules provide the basic testing
harness needed to build automated and repeatable test suites. This document shows you how to incorporate
unit tests into your Xcode projects and also offers tips and guidance on how to get the most out of your
tests in Mac OS X.

Organization of This Document

This document includes the following article:

 ■ “Adding Unit Tests to Your Projects” (page 9) shows you how to add unit testing capabilities to your
Xcode projects.

 ■ “Unit Test Guidelines” (page 21) provides some guidance on how to write unit tests effectively.

Organization of This Document 7
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Introduction

8 Organization of This Document
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Introduction

Beginning with version 2.1, Xcode includes support for several open-source unit test modules. These add-on
modules are shipped with the Xcode Tools and are installed automatically with Xcode. You can use these
modules to add automated unit testing into your build process.

iPhone OS Unit Testing: To learn about unit testing iPhone applications, see iOS Development Guide.

The following sections show you how to write unit tests and how to modify your projects to execute those
tests.

Configuring Your Xcode Project

The first step in adding unit tests to your project is to create a new target in your project for building and
running those tests. In Xcode, you create a build target of type “Unit Test Bundle”. When built, this target
compiles your test code and executes a shell script to run your tests. Upon completion of your tests, the
Xcode console reports all failed tests as errors.

When you configure your test target, you need to decide how you want that target to behave. The unit test
bundles that come with Xcode can be integrated with your executable in one of two ways. One technique
is to configure your test target as a separate entity that you build and run independent of your main executable.
The other is to add dependencies to your target that automatically build your executable and run the tests
each time you build.

Dependent Versus Independent Targets

When setting up your test code, you need to decide whether you want your test targets to be dependent
or independent of your main executable. There are advantages and disadvantages to both techniques, which
are listed in Table 1.

Table 1 Pros and cons of target configurations

ConsProsTarget type

Must be run manually, which can lead to
infrequent use.

Easier to set up. Run only when wanted.Independent

Require some additional steps to set up.Easier to run tests automatically. Still allows
option to build main executable separately.

Dependent

Configuring Your Xcode Project 9
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

If you are writing an Objective-C program, the extra steps required to configure a dependent target are
minimal. If you are writing a C or C++ program though, configuring a dependent target is a little more
involved but still relatively straightforward.

The important decision to make is how often you want to run your test suite. If engineers are running the
tests regularly, they are going to get a report of any errors with each build. If they build regularly, it can be
easier to track down the changes that caused the problem.

Another decision to make is which tests you want to run during each build cycle. If you have several thousand
tests, you might want to run them only at specific checkpoints, such as immediately before committing the
changes to a repository, and not for every build. To specify which tests you want to run, you specify the name
of the test suite in a command-line argument to the custom executable. For more information, see “Running
Your Tests” (page 14).

Creating Your Test Target

Regardless of whether you are configuring for dependent or independent targets, the initial set up process
is identical:

1. Open your Xcode project.

2. Select Project > New Target to display the New Target assistant.

3. Select the desired target type:

 ■ If you are writing an Objective-C program, select the Cocoa > Unit Test Bundle target.

 ■ If you are writing a C/C++ program, select the Carbon > Unit Test Bundle target. You do not have
to use the Carbon libraries to use this target.

4. Specify a name for your target and click Finish.

When you create the target, it is initially configured to be an independent target. If that is what you wanted,
you can add your source code and test cases to the target and begin building. If you want to make it a
dependent target, you must instead do the following:

 ■ You must make your target dependent on the target for your main executable. (See “Making Your Target
Dependent on the Main Executable” (page 10).)

 ■ If your program is written in C or C++, you must add code to initialize your tests from within your
application. (See “Executing Dependent Tests in C and C++” (page 11).) You do not need to do this for
Objective-C based tests.

Making Your Target Dependent on the Main Executable

To make your target dependent on your main executable, you must establish the dependency in your Xcode
project:

1. Select your Unit Test Bundle target.

2. Open an inspector for the target.

10 Configuring Your Xcode Project
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

3. Select the General tab.

4. Click the + button at the bottom of the window.

5. From the dialog that appears, select the target representing your main executable and click Add Target.

If you are building an application, you must also specify the path to your application’s executable file in both
the Bundle Loader and Test Host build settings. For example, to set the path to the executable of MyApp.app,
you would do the following:

1. Select your Unit Test Bundle target.

2. Open an inspector for the target.

3. Select the Build tab.

4. Select the Linking collection.

5. Assign the value$(CONFIGURATION_BUILD_DIR)/MyApp.app/Contents/MacOS/MyApp to the Bundle
Loader setting.

6. Select the Unit Testing collection.

7. Assign the value $(CONFIGURATION_BUILD_DIR)/MyApp.app/Contents/MacOS/MyApp to the Test
Host setting. Because they use the same value, you can also set the value of this setting to
$(BUNDLE_LOADER).

Note: If you are testing a framework or shared library, you would not specify a value for the Test Host setting.

By default, the Bundle Loader and Test Host settings have no values assigned to them. Setting the value for
Bundle Loader tells the linker to treat the specified executable as an additional framework at link time.
(Treating it this way helps prevent unresolved references to application classes when you build your test
target.) Setting the value for Test Host tells the RunUnitTests script (executed during the final build phase)
to launch the specified application and inject your test bundle into it.

After configuring your test target, you should make it the active target and add your test case source files to
it. The next time you build, Xcode will examine the dependencies of your test target and build your main
executable first, followed by your test target, and then run your tests. This process ensures that your main
code is built and the corresponding tests are run.

Note: For dependent test targets, add only your test case source files to the target. Do not add any source
files from your main executable to the test target. When the tests are run, the test target bundle is injected
into the main executable, where it accesses any source code required for the tests.

Executing Dependent Tests in C and C++

If you are using a dependent test target for C++ projects, there is some extra code you must add to your test
project to run your tests. Because of the dynamic nature of Objective-C, the bundle for a dependent test
target can be injected into an executable automatically. In C++, however, this is not possible. Instead, you
must explicitly tell the CPlusTest framework when it is safe to run your test code. One way to do this in Carbon
applications is to set up a timer whose handler initiates your test suite as soon as the application finishes

Configuring Your Xcode Project 11
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

launching and is capable of handling events. When the timer fires, the corresponding handler can then run
the suite of tests that have already been registered, logging any output from the tests. (For information on
how to register test cases, see “Creating Test Cases for C++” (page 17).)

Listing 1 shows the definition of a class you can use to initiate a timer in a Carbon application. An instance
of this class is constructed at initialization time (see Listing 2 (page 12)) with the express purpose of installing
a timer. When the timer eventually fires, the firedTimerBridge and firedTimer methods are used to
run the actual tests.

Listing 1 Interface for RunTestsInTimer.h

#include <Carbon/Carbon.h>

class RunTestsInTimer {
protected:
 EventLoopTimerUPP timerUPP;
 EventLoopTimerRef timerRef;

 static void firedTimerBridge(EventLoopTimerRef inTimer, void *inUserData);
 void firedTimer(EventLoopTimerRef inTimer);

public:
 RunTestsInTimer();
 virtual ~RunTestsInTimer();
};

Listing 2 shows part of the implementation file for this class. At the top of the implementation file is code
for creating a global instance of the class. Because it is not a pointer, the actual class instance is constructed
at initialization time. During that time, the constructor installs a timer on the application’s main event loop.
The fire delay and interval of the timer are set to 0 so that the timer is fired as soon as possible after the event
loop is running and ready to process events.

Listing 2 Installing the timer

#include <CPlusTest/CPlusTest.h>
#include "RunTestsInTimer.h"

// Create a local instance of the class at init time.
RunTestsInTimer installTimer;

RunTestsInTimer::RunTestsInTimer() : timerUPP(NULL), timerRef(NULL)
{
 // Get the UPP for the static bridge method.
 timerUPP = NewEventLoopTimerUPP(RunTestsInTimer::firedTimerBridge);

 (void) InstallEventLoopTimer(GetMainEventLoop(), 0, 0, timerUPP, this,
&timerRef);
}

// Clean up the timer structures.
RunTestsInTimer::~RunTestsInTimer()
{
 if (timerRef != NULL)
 {
 RemoveEventLoopTimer(timerRef);
 timerRef = NULL;
 }

12 Configuring Your Xcode Project
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

 if (timerUPP != NULL)
 {
 DisposeEventLoopTimerUPP(timerUPP);
 timerUPP = NULL;
 }
}

Listing 3 shows the code that is executed when the timer eventually fires. This is the code that runs the actual
test suites. Test cases are usually registered automatically when they are created, so you do not have to
register them with the TestSuite object directly. As a result, the following code simply retrieves the tests
that have been registered and runs them.

Listing 3 Running the tests

// Static method to bridge the call to the local instance.
void RunTestsInTimer::firedTimerBridge(EventLoopTimerRef inTimer, void
*inUserData)
{
 RunTestsInTimer *self = (RunTestsInTimer *)inUserData;

 self->firedTimer(inTimer);
}

void RunTestsInTimer::firedTimer(EventLoopTimerRef inTimer)
{
 if (inTimer == timerRef)
 {
 TestRun run;

 // Create a log for writing out test results
 TestLog log(std::cerr);
 run.addObserver(&log);

 // Get all registered tests and run them.
 TestSuite& allTests = TestSuite::allTests();
 allTests.run(run);

 // Log a final message.
 std::cerr << "Ran " << run.runCount() << " tests, " << run.failureCount()
 << " failed." << std::endl;

 // Clean up.
 RemoveEventLoopTimer(timerRef);
 timerRef = NULL;

 QuitApplicationEventLoop();
 }
}

Configuring Your Xcode Project 13
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

Adding Test Cases to Your Target

Once you have configured your new test target, you can begin adding test cases to that target. Test cases
are small pieces of code that exercise pieces of code in your main executable and report the results. After
executing the code, the test case analyzes the results returned by that code. If the results are what was
expected, the test case succeeds; otherwise, it fails.

Note: If your test target is independent of your main executable, you must also add the source code you
want to test to your test target. To do this, drag the source files being tested to the compile sources build
phase of your test target. You do not need to do this for dependent test targets.

For information on creating test files for Objective-C code, see “Creating Test Cases for Objective-C” (page
14). For information on creating test files for C or C++ code, see “Creating Test Cases for C++” (page 17).

Running Your Tests

As long as your target is configured appropriately, all you need to do to run your tests is build your test
target. Regardless of whether your target is dependent or independent of your main executable, the final
build phase of the test target runs a shell script to execute your tests. The shell script performs the required
set up, runs the tests, and reports any errors back to Xcode.

If you want to run only a subset of your tests when you build your target, you must rewrite the build script
that is executed by your test target. Test targets execute the RunUnitTests script by default. This script
handles the execution of targets built against either the SenTestingKit or CPlusTest frameworks. To run a
subset of tests, you must create your own custom script (based on the information in RunUnitTests) that
calls the appropriate testing rig with the options you want.

For C++ test bundles, custom scripts must call the CPlusTestRig tool, located in the /Developer/Tools
directory. The -test option for this tool lets you specify a specific test case or test suite. For more information
on using this tool, see the man page for CPlusTestRig.

For Objective-C test bundles, your custom script must call the otest tool, located in the /Developer/Tools
directory. The -SenTest option for this tool lets you specify a test suite (class), a specific test method, or all
tests. For more information on using this tool, see the man page for otest.

Note: Creating custom execution scripts is beyond the scope of this document. See the RunUnitTests
script and the man pages for the test rig you are using for information on their use.

Creating Test Cases for Objective-C

Support for Objective-C test cases is provided by the SenTestingKit framework. To create Objective-C tests,
you create one or more test case classes and fill them with individual test methods. Each test method
implements a simple test case you want to execute. Test methods can also implement more complex test
cases or call other test methods to execute suites of tests. The following sections show you how to create
test cases for Objective-C.

14 Creating Test Cases for Objective-C
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

Creating Your Test Case Class

For Objective-C, your test case class is a subclass of SenTestCase. To create a new instance of this class in
your Xcode project, do the following:

1. Select File > New File.

2. In the file type dialog, select Cocoa > Objective-C test case class and click Next.

3. Give your class a name and be sure to create the matching header file.

4. Add the class to your test target. Do not add it to the target for your main executable.

5. Click Finish.

When you’re done, the header file for your new class should look similar to the following:

#import <SenTestingKit/SenTestingKit.h>

@interface MyTests : SenTestCase
{
}
@end

Your source file should simply contain the currently empty implementation for your class. You can now begin
to add test cases to the implementation file.

Writing Your Test Cases

The SenTestCase class provides a harness for calling the methods of your subclass automatically. As long as
you follow some standard naming conventions for your test case methods, the only thing you have to do is
write your tests. Your test case methods must follow these conventions:

 ■ The name of the method must begin with the word test. For example, you could have methods called
testCase1, testMyBoundsChecking, testMyAlgorithm.

 ■ The method must take no parameters.

 ■ The method must have a return type of void.

Thus, using the preceding criteria, the method implementation for the testCase1 method would look like
the following:

- (void) testCase1
{
 ...
}

Methods defined in this way are discovered dynamically and called automatically by the supporting test
harness. You do not have to do anything to register your tests or call them explicitly.

Creating Test Cases for Objective-C 15
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

In the body of your test case methods, you must construct any data structures you need to execute the test,
run the test, and then release the data structures you created. If a test succeeds, the corresponding test case
method should exit normally. If a test fails, you should report the failure using one of the macros defined by
the SenTestingKit framework. For a list of basic macros, see “Commonly Used Macros” (page 16).

Managing Common Objective-C Structures

If you have multiple test case methods that operate on the same basic data structures, there is no need to
repeat the code for creating and destroying those data structures in each test case method. The SenTestCase
class defines the setUp and tearDown methods for creating and destroying common data structures before
and after each test case method is run. You can override these methods in your subclass and use them to
create whatever data structures are used by your test methods. The basic implementation of these methods
is as follows:

- (void) setUp
{
 // Create data structures here.
}

- (void) tearDown
{
 // Release data structures here.
}

At runtime, the setUp method is called immediately before each test case method. Similarly, the tearDown
method is called immediately after to clean up the data structures. In your tearDown method, it is a good
idea to reset the values of your data structures to a known initial state. For example, you might want to reset
any object pointers to nil for safety.

Commonly Used Macros

The SenTestingKit framework defines a number of assertion macros that you can use to determine the success
or failure of a given test. These macros are defined in the SenTestCase.h header file of the framework.
Some of the more commonly used macros are listed below:

STAssertNotNil(a1, description, ...)
STAssertTrue(expression, description, ...)
STAssertFalse(expression, description, ...)
STAssertEqualObjects(a1, a2, description, ...)
STAssertEquals(a1, a2, description, ...)
STAssertThrows(expression, description, ...)
STAssertNoThrow(expression, description, ...)
STFail(description, ...)

The description parameter of each macro lets you specify a human-readable string to be printed when
the assertion fails. The string supports the same printf-style value substitution used by NSString, which you
might use to print out the actual and expected values for the test. Listing 4 shows some examples of how
to use some of these macros in your code.

Listing 4 Macro examples in Objective-C

- (void) testObjectCreation

16 Creating Test Cases for Objective-C
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

{
 MyObject* theObj = [[MyObject alloc] init];

 STAssertNotNil(theObj, @"Could not create instance of MyObject.");
}

- (void) testObjectsAreEqual
{
 NSNumber* theObj = [NSNumber numberWithInt:1];
 NSNumber* theObj2 = [NSNumber numberWithInt:1];

 STAssertEqualObjects(theObj, theObj2, @"Objects were not equal. Value 1: %d
 Value 2: %d", [theObj intValue], [theObj2 intValue]);
}

For more information about these macros, see the documentation that comes with the SenTestingKit
framework, which is located in the framework’s Resources directory.

Creating Test Cases for C++

Support for C and C++ test cases is provided by the CPlusTest framework. You can use this framework to test
C or C++ code for everything from BSD to Carbon applications. To create a test case, you have to do the
following:

1. Create a new subclass of TestCase.

2. Define the methods that comprise your tests.

3. In your implementation file, register your tests by creating a local instance of your class for each test.
See “Registering Your Tests” (page 19).

The following sections show you how to create test cases for your C and C++ code.

Note: Although you can test C code, the tests themselves must still be written in C++ and use the CPlusTest
framework infrastructure.

Creating Your Test Case Class

For C/C++, your test case class is a subclass of TestCase. To create a new instance of this class in your Xcode
project, do the following:

1. Select File > New File.

2. In the file type dialog, select Carbon > C++ Test Case and click Next.

3. Give your class a name and be sure to create the matching header file.

4. Add the class to your test target. Do not add it to the target for your main executable.

5. Click Finish.

Creating Test Cases for C++ 17
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

When you’re done, the header file for your new class should look similar to the following:

#include <CPlusTest/CPlusTest.h>

class MyTests : public TestCase
{
public:
 MyTests(TestInvocation* invocation);
 virtual ~MyTests();
};

Your source file should contain default implementations for your constructor and destructor. You should not
need to modify these implementations and should definitely not use them to create and destroy common
data structures. Common data structures must be created using the setUp and tearDown methods; see
“Managing Common C++ Structures” (page 18).

Writing Your Test Cases

The TestCase class does not impose any naming conventions on your test case methods, although they must
follow some calling conventions:

 ■ The method must take no parameters.

 ■ The method must have a return type of void.

Thus, using the preceding criteria, the method implementation for the testCase1 method would look like
the following:

void MyTests::testCase1()
{
 ...
}

In the body of your test case methods, you can construct any data structures you need to execute the test,
run the test, and then release the data structures you created. If a test succeeds, the corresponding test case
method should exit normally. If a test fails, you should report the failure using the CPTAssert macro.

Managing Common C++ Structures

If you have multiple test case methods that operate on the same basic data structures, there is no need to
repeat the code for creating and destroying those data structures in each test case method. The TestCase
class defines the setUp and tearDown methods for creating and destroying common data structures before
and after each test case method is run. You can override these methods in your subclass and use them to
create whatever data structures are used by your test methods. The basic implementation of these methods
is as follows:

void MyTests::setUp()
{
 // Create data structures here.
}

void MyTests::tearDown()
{

18 Creating Test Cases for C++
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

 // Release data structures here.
}

At runtime, the setUp method is called immediately before each test case method. Similarly, the tearDown
method is called immediately after to clean up the data structures. In your tearDown method, it is a good
idea to reset the values of your data structures to a known initial state. For example, you might want to reset
any object pointers to NULL for safety.

Registering Your Tests

Unlike Objective-C tests, which are discovered dynamically, C++ tests must be registered explicitly if you
want them to run. To register your tests with the CPlusTest framework, you must create a new instance of
your test class for every test case you want to run. You create these instances in the global scope, that is,
defined outside of the scope of any methods.

When you create a new instance of you test case class, you must pass an object parameter of type
TestInvocation. This object contains the details of the test you want to run, including the class name and
method. To create this object, you can use the TEST_INVOCATION macro, which takes the target class and
method names as parameters. The following example creates two tests for the same test case class. The first
test case executes the MyFirstTest method of the MyTests class while the second executes the
MySecondTest method.

MyTests test1(TEST_INVOCATION(MyTests, MyFirstTest));
MyTests test2(TEST_INVOCATION(MyTests, MySecondTest));

Creating the objects actually executes code to register the specified invocation information with the CPlusTest
framework. Because you create these objects in the global scope, they are created during the initialization
phase of the test executable and are thus available later when the framework wants to run your tests.

Creating Test Cases for C++ 19
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

20 Creating Test Cases for C++
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Adding Unit Tests to Your Projects

Xcode’s integrated support for unit testing makes it possible for you to build test suites to support your
development efforts in any way you want. You can use it to detect potential regressions in your code or
validate the behavior of your application. These capabilities can add tremendous value to your projects. In
particular, they can improve the stability of your code greatly by ensuring individual pieces of code behave
in expected ways.

Of course, the amount of stability you receive from unit testing is highly dependent on the quality of the test
cases you write. The following are some guidelines to think about when writing test cases:

 ■ One test is infinitely better than no tests at all. One test ensures that your code compiles, links and can
run.

 ■ Whenever a bug is fixed, write one or more test cases to verify that the behavior remains fixed.

 ■ Use dependent targets to make it easier to run tests regularly. Running tests regularly can help identify
problems before they are committed to your source code repository.

 ■ Check boundary conditions heavily. If the parameter of a method expects values in a specific range, your
tests should pass in values that lie across that range. For example, if an integer parameter can have
values between 0 and 100 inclusive, three variants of your test might pass in the values 0, 50, and 100
respectively.

 ■ Use negative tests to be sure your code responds to error conditions appropriately. Verify that your code
behaves appropriately when it receives invalid or unexpected input values. Verify that it returns errors
or throws exceptions when it should. You might be surprised to find that a test you expected to fail
actually succeeds. For example, if an integer parameter to a method can accept values in the range 0 to
100 inclusive, you might create tests that pass in the values -1 and 101.

 ■ Write tests that combine different code modules to implement some of the more complex behaviors of
your application. While simple, isolated tests do provide value, stacked tests that exercise complex
behaviors tend to catch many more problems. These kinds of tests simulate the behavior of your code
under more realistic conditions, which leads to the discovery of more realistic problems. For example,
in addition to just adding objects to an array, you could create the array, add several objects to it, remove
a few of those objects using several different methods, and then make sure the number of remaining
objects is correct.

 ■ Don’t stress about unit tests. They are intended as a tool for ensuring good test coverage and memory
management. Use them in that way to aid your development process.

21
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Unit Test Guidelines

22
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Unit Test Guidelines

This table describes the changes to Xcode Unit Testing Guide.

NotesDate

Made technical corrections.2009-10-19

Replaced BUILT_PRODUCTS_DIR with CONFIGURATION_BUILD_DIR in "Making
Your Target Dependent on the Main Executable" (page 10).

Updated for Xcode 3.0.2008-05-02

Changed title from Unit Testing Guide.

New document that explains how to incorporate unit tests into your
development process using Xcode.

2005-06-06

23
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Document Revision History

24
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Document Revision History

C

CPlusTest framework 17

S

SenTestingKit framework 14
commonly used macros 16

T

targets
creating a test 10
dependent compared with independent 9
unit test bundle 9

U

unit tests
adding test cases 14
adding to a project 9
guidelines 21
registering C++ tests 19
running 14
using the CPlusTest framework 17
using the SenTestingKit framework 14

25
2009-10-19 | © 2005, 2009 Apple Inc. All Rights Reserved.

Index

	Xcode Unit Testing Guide
	Contents
	Tables and Listings
	Introduction
	Adding Unit Tests to Your Projects
	Configuring Your Xcode Project
	Dependent Versus Independent Targets
	Creating Your Test Target
	Making Your Target Dependent on the Main Executable
	Executing Dependent Tests in C and C++

	Adding Test Cases to Your Target
	Running Your Tests

	Creating Test Cases for Objective-C
	Creating Your Test Case Class
	Writing Your Test Cases
	Managing Common Objective-C Structures
	Commonly Used Macros

	Creating Test Cases for C++
	Creating Your Test Case Class
	Writing Your Test Cases
	Managing Common C++ Structures
	Registering Your Tests

	Unit Test Guidelines
	Revision History
	Index
	C
	S
	T
	U

