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Introduction

Mac OS X supports a number of application environments, each with its own runtime rules, conventions,
and file formats. In Mac OS X, kernel extensions, command-line tools, applications, frameworks, and libraries
(shared and static) are implemented using Mach-O (Mach object) files.

The Mac OS X runtime architecture dictates how object files are laid out in the filesystem and how programs
communicate with the kernel. The object file format used in Mac OS X is Mach-O .

A Mach-O file has the following regions of data (the complete format is described in Mac OS X ABI Mach-O
File Format Reference):

m Header: Specifies the target architecture of the file, such as PPC, PPC64, I1A-32, or x86-64.
= Load commands: Specify the logical structure of the file and the layout of the file in virtual memory.

= Raw segment data: Contains raw data for the segments defined in the load commands.

The following list describes other runtime environments supported in Mac OS X:

m Classic is a Mac OS X application that runs Mac OS 9 within its address space and provides bridging
services that allow Mac OS X to interact with Mac OS 9 applications. Both classic 68K applications and
PowerPC Code Fragment Manager (CFM) applications can run under Mac OS 9 in Classic. (Mac OS 9 does
not support the 68K variant of Code Fragment Manager, so you cannot run CFM-68K applications in Mac
0OS X.)

= LaunchCFMApp is a command-line tool that runs programs created for the PowerPC Code Fragment
Manager. The file format used by such programs is called Preferred Executable Format (PEF). Carbon
provides bridging for Code Fragment Manager applications that allows them to link to Mach-O-based
code, but—for ease of debugging if for no other reason—it’s generally a good idea to use Mach-O for
Carbon applications.

m The HotSpot Java virtual machine is a Mac OS X application that executes Java bytecode applications
and applets.

= The Mac OS X kernel supports kernel extensions (KEXTs), which are static Mach-O executable files that
are loaded directly into the address space of the kernel. Because errant code can write directly to memory
used by the kernel, kernel extensions have the potential to crash the operating system. You should
generally avoid implementing functionality as kernel extensions if possible.

The Code Fragment Manager is documented in Mac OS Runtime Architectures, available from the Apple
Developer Connection website.

This document discusses how you use the Mach-O file format. It describes what types of programs you can
build, how programs are loaded and executed, how you can change the way programs are loaded and
executed, how to load code at runtime, and how to load and link code at runtime. If you create or load
bundles, shared libraries, or frameworks, you'll probably want to read and understand everything in this
document.

2009-02-04 | © 2003, 2009 Apple Inc. All Rights Reserved.



Introduction

Who Should Read This Document

If you write development tools for Mac OS X, you need to understand the information presented in this
document.

This document is also useful for developers of shared libraries and frameworks, and for developers of
applications that need to load code at runtime.

Organization of This Document

This document contains the following articles:

“Building Mach-O Files” (page 11) describes how Mac OS X programs are built and describes the types
of programs you can develop.

“Executing Mach-O Files” (page 17) provides an overview of the Mac OS X dynamic loading process.

“Loading Code at Runtime” (page 25) describes how to use shared libraries and frameworks and how
to load plug-ins at runtime.

“Indirect Addressing” (page 31) explains how a Mach-O file refers to symbols defined in another Mach-O
file.

“Position-Independent Code” (page 37) discusses the method by which the dynamic linker loads a region
of code at a nonfixed virtual memory address.

“x86-64 Code Model” (page 43) describes differences in the Mac OS X x86-64 user-space code model
from the System V x86-64 code model.

This document also contains a revision history and an index.

See Also

You can access full reference documentation for the standard command-line development tools using the
man tool on the command line, or by choosing Open Man Page from the Xcode Help menu.

This document provides information on the Mach-O runtime architecture. It does not address the following:

Descriptions of the data structures that make up a Mach-O file. You can find this information in Mac OS
X ABI Mach-O File Format Reference.

If you are loading code at runtime but cannot or do not wish to use the CFBund1e opaque type or the
NSBund1e class, you should refer to Mac OS X ABI Dynamic Loader Reference.

The GCC C++ application binary interface—the specification of C++ class member layout, function/method
name mangling, and related C++ issues. This information is documented for GCC 3.0 and later at
http://www.codesourcery.com/cxx-abi/abi.html.

The GCC Objective-C data structures and dynamic runtime functions. For this information, see The
Objective-C Programming Language.

8 Who Should Read This Document
2009-02-04 | © 2003, 2009 Apple Inc. All Rights Reserved.


http://www.codesourcery.com/cxx-abi/abi.html

Introduction

= The runtime environment of the Mac OS X kernel, Darwin. See Mac OS X Technology Overview for more
information.

Source code from the Darwin project can be downloaded from http://developer.apple.com/darwin/.
You might also find the following books useful in conjunction with this document:

m  Mac OS Runtime Architectures, Apple Computer, Inc. Available at http://developer.apple.com/tools/mpw-
tools/books.html. Documents the classic 68K segment loader architecture, as well as the Code Fragment
Manager Preferred Executable executable format used with classic PowerPC applications and with many
Carbon applications.

= Linkers and Loaders, John R. Levine, Morgan Kaufmann, 2000, ISBN 1-55860-496-0. Describes the workings
and operation of standard linkers from the earliest program loaders to the present dynamic link editors.
Among the contents of this book are discussions of the classic BSD a.out format, the Executable and
Linking Format (ELF) preferred by many current operating systems, the IBM System/360 linker output
format, and the Microsoft Portable Executable (PE) format.

= System V Application Binary Interface AMD64 Architecture Processor Supplement. Found at http://www.x86-
64.org/documentation, this document describes the System V x86-64 environment, on which the Mac
OS X x86-64 environment is based.

See Also 9
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Building Mach-O Files

To create programs, developers convert source code to object files. The object files are then packaged into
executable code or static libraries. Mac OS X includes tools to transform source code into a running application
or a shared library that can be used by one or more applications.

This article loosely describes how Mac OS X programs are built, and discusses, in depth, the types of programs
you can build. It describes the tools involved in the Mach-O file build process, explains the types of Mach-O
files you can build, and talks about modules, which are the smallest linkable unit of code and data in the Mac
OS X runtime environment. It also describes static archive libraries, which are files that package a set of
modules.

The Tools—Building and Running Mach-O Files

To perform the work of actually loading and binding a program at runtime, the kernel uses the dynamic
linker (a specially marked dynamic shared library located at /usr/11b/dy1d). The kernel loads the program
and the dynamic linker into a new process and executes them.

Throughout this document, the following tools are discussed abstractly:

= A compiler is a tool that translates from source code written in a high-level language into intermediate
object files that contain machine binary code and data. Unless otherwise specified, this book considers
a machine-language assembler to be a compiler.

m A static linker is a tool that combines intermediate object files into final products (see “The
Products—Types of Mach-O Files You Can Build” (page 12)).

The Xcode Tools CD contains several command-line tools (which this document refers to collectively as the
standard tools) for building and analyzing your application, including compilers and 1d, the standard static
linker. Whether you use the Xcode application, the standard command-line tools, or a third-party tool set to
develop your application, understanding the role of each of the following tools can enhance your
understanding of the Mach-O runtime architecture and facilitate communication about these topics with
other Mac OS X developers. The standard tools include the following:

m  The compiler driver, /usr/bin/gcc, contains support for compiling, assembling, and linking modules
of source code from the C, C++, and Objective-C languages. The compiler driver calls several other tools
that implement the actual compiling, assembling, and static linking functionality. The actual compiler
tools for each language dialect are normally hidden from view by the compiler driver; their role is to
transform input source code into assembly language for input to the assembler.

m  The C++ compiler driver, /usr/bin/c++,is like /usr/bin/cc but automatically links C++ runtime
functions into the output file (to support exceptions, runtime type information and other advanced
language features).

m  The assembler, /usr/bin/as, creates intermediate object files from assembly language code. It is
primarily used by the compiler driver, which feeds it the assembly language source generated by the
actual compiler.

The Tools—Building and Running Mach-O Files n
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Building Mach-O Files

The static linker, /usr/bin/1d, is used by the compiler driver (and as a standalone tool) to combine
Mach-O executable files. You can use the static linker to bind programs either statically or dynamically.
Statically bound programs are complete systems in and of themselves; they cannot make calls, other
than system calls, to frameworks or shared libraries. In Mac OS X, kernel extensions are statically bound,
while all other program types are dynamically bound, even traditional UNIX and BSD command-line
tools. All calls to the Mac OS X kernel by programs outside the kernel are made through shared libraries,
and only dynamically bound programs can access shared libraries.

The library creation tool, /usr/bin/1ibtoo], creates either static archive libraries or dynamic shared
libraries, depending on the parameters given. 1ibtoo1 supersedes an older tool called ran1ib, which
was used in conjunction with the ar tool to create static libraries. When building shared libraries, 1ibtoo1
calls the static linker (1d).

Note: There is also a GNU tool named 1ibtooT, which allows portable source code to build libraries on
various UNIX systems. Don't confuse it with Mac OS X 1ibtooT1; while they serve similar purposes, they are
not related and they do not accept the same parameters.

Tools for analyzing Mach-O files include the following:

The /usr/bin/11po tool allows you to create and analyze binaries that contain images for more than
one architecture. An example of such a binary is a universal binary. Universal binaries can be used in
PowerPC-based and Intel-based Macintosh computers. Another example is a PPC/PPC64 binary, which
can be used in 32-bit PowerPC-based and 64-bit PowerPC-based Macintosh computers.

The file-type displaying tool, /usr/bin/f1i1e, shows the type of a file. For multi-architecture files, it
shows the type of each of the images that make up the archive.

The object-file displaying tool, /usr/bin/otool, lists the contents of specific sections and segments
within a Mach-O file. It includes symbolic disassemblers for each supported architecture and it knows
how to format the contents of many common section types.

The page-analysis tool, /usr/bin/pagestuff,displays information on each logical page that compose
the image, including the names of the sections and symbols contained in each page. This tool doesn’t
work on binaries containing images for more than one architecture.

The symbol table display tool, /usr/bin/nm, allows you to view the contents of an object file’s symbol
table.

The Products—Types of Mach-O Files You Can Build

12

In Mac OS X, a typical application executes code that originates from many types of files. The main executable
file usually contains the core logic of the program, including the entry point main function. The primary
functionality of a program is usually implemented in the main executable file’s code. See Executing Mach-O
Files (page 17) for details. Other files that contain executable code include:

Intermediate object files. These files are not final products; they are the basic building blocks of larger
object files. Usually, a compiler creates one intermediate object file on output for the code and data
generated from each input source code file. You can then use the static linker to combine the object
files into dynamic linkers. Integrated development environments such as Xcode usually hide this level
of detail.

The Products—Types of Mach-O Files You Can Build
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Building Mach-O Files

= Dynamic shared libraries. These are files that contain modules of reusable executable code that your
application references dynamically and that are loaded by the dynamic linker when the application is
launched. Shared libraries are typically used to store large amounts of code that are usable by many
applications. See “Using Shared Libraries and Frameworks” (page 25) in Loading Code at Runtime (page
25) for more information.

= Frameworks. These are directories that contain shared libraries and associated resources, such as graphics
files, developer documentation, and programming interfaces. See “Using Shared Libraries and
Frameworks” (page 25) in Loading Code at Runtime (page 25) for more information.

= Umbrella frameworks. These are special types of frameworks that themselves contain more than one
subframework. For example, the Cocoa umbrella framework contains the Application Kit (user interface
classes) framework, and the Foundation (non-user-interface classes) framework. See “Using Shared
Libraries and Frameworks” (page 25) in Loading Code at Runtime (page 25) for more information.

m Static archive libraries. These files contain modules of reusable code that the static linker can add to
your application at build time. Static archive libraries generally contain very small amounts of code that
are usable only to a few applications, or code that is difficult to maintain in a shared library for some
reason. See “Static Archive Libraries” (page 14) for more information.

= Bundles. These are executable files that your program can load at runtime using dynamic linking functions.
Bundles implement plug-in functionality, such as file format importers for a word processor. The term
bundle has two related meanings in Mac OS X:

[—The actual object file containing the executable code

A directory containing the object file and associated resources. For example, applications in Mac OS
X are packaged as bundles. And, because these bundles are displayed in the Finder as a single file
instead of as a directory, application bundles are also known as application packages. A bundle
need not contain an object file. For more information on bundles, see Bundle Programming Guide.

The latter usage is the more common. However, unless otherwise specified, this document refers to the
former.

See “Loading Plug-in Code With Bundles” (page 28) in Loading Code at Runtime (page 25) for more
information.

= Kernel extensions are statically bound Mach-O files that are packaged similarly to bundles. Kernel
extensions are loaded into the kernel address space and must therefore be built differently than other
Mach-O file types; see the kernel documentation for more information. The kernel’s runtime environment
is very different from the userspace runtime, so it is not covered in this document.

To function properly in Mac OS X, all object files except kernel extensions must be dynamically bound —that
is, built with code that allows dynamic references to shared libraries.

By default, the static linker searches for frameworks and umbrella frameworks in
/System/Library/Frameworks and for shared libraries and static archive libraries in /usr/11ib. Bundles
are usually located in the Resources directory of an application package. However, you can specify the
pathname for a different location at link time (and, for development purposes, at runtime as well).

The Products—Types of Mach-O Files You Can Build 13
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Building Mach-O Files

Modules—The Smallest Unit of Code

At the highest level, you can view a Mac OS X shared library as a collection of modules. A module is the
smallest unit of machine code and data that can be linked independently of other units of code. Usually, a
module is an object file generated by compiling a single C source file. For example, given the source files
main.c, thing.c,and foo.c, the compiler might generate the object filesmain.o, thing.o,and foo.o.
Each of these output object files is one module. When the static linker is used to combine all three files into
a dynamic shared library, each of the object files is retained as an individual unit of code and data. When
linking applications and bundles, the static linker always combines all the object files into one module.

The static linker can also reduce several input modules into a single module. When building most dynamic
shared libraries, it's usually a good idea to do this before creating the final shared library because function
calls between modules are subject to a small amount of additional overhead. With 1d, you can perform this
optimization by using the command line as follows:

1d -r -o things.o thingl.o thing2.0 thing3.o0

Xcode performs this optimization by default.

Static Archive Libraries

14

To group a set of modules, you can use a static archive library, which is an archive file with a table of contents
entry. The format is that used by the ar command. You can use the 1ibtool command to build a static
archive library, and you can use the ar command to manipulate individual modules in the library.

Note: MacOS X Tibtool isnotGNU 1ibtool, see “The Tools—Building and Running Mach-O Files” (page
11) for details.

In addition to Mach-O files, the static linker and other development tools accept static archive libraries as
input. You might use a static archive library to distribute a set of modules that you do not want to include
in a shared library but that you want to make available to multiple programs.

Although an ar archive can contain any type of file, the typical purpose is to group several object files together
with a table of contents, forming a static archive library. The static linker can link the object files stored in a
static archive library into a Mach-O executable or dynamic library. Note that you must use the 1ibtoo]

command to create the static library table of contents before an archive can be used as a static archive library.

Note: For historical reasons, the tar file format is different from the ar file format. The two formats are not
interchangeable.

The ar archive file format is described in Mac OS X ABI Mach-O File Format Reference.

With the standard tools, you can pass the -static optionto 1ibtool to create a static archive library. The
following command creates a static archive library named 1ibthing.a from a set of intermediate object
files, thingl.oand thing2.o:

libtool -static thingl.o thing2 -o libthing.a

Modules—The Smallest Unit of Code
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Building Mach-O Files

Note that if you pass neither -staticnor -dynamic, 1ibtool assumes -static.Itis, however, considered
good style to explicitly pass - static when creating static archive libraries.

For more information, see the 1ibtool and ar man pages.

Static Archive Libraries 15
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Executing Mach-O Files

To perform their objectives, programs must execute processes and link to dynamic shared libraries. To work
with other libraries or modules, your application must define references to symbols in those modules; those
references are resolved at runtime. At runtime the symbol names of all the modules your application uses
live in a shared namespace, similar to a directory. To allow for future enhancements to applications as well
as the libraries they use, application and library developers must ensure the names they choose for their
functions and data do not conflict with the names used in other modules.

The two-level namespace feature of Mac OS X v10.1 and later adds the module name as part of the symbol
name of the symbols defined within it. This approach ensures a module’s symbol names don't conflict with
the names used in other modules. To perform special tasks or to provide an enhanced user experience, your
application may need to launch other applications or create processes to run command-line tools. To maintain
a high degree of interoperability and provide a consistent user experience, your applications should use
specific system functions and frameworks to execute processes and launch applications.

This article provides an overview of the Mac OS X dynamic loading process. The process of loading and linking
a program in Mac OS X mainly involves two entities: the Mac OS X kernel and the dynamic linker. When you
execute a program, the kernel creates a process for the program, and loads the program and the dynamic
linker shared library, usually /usr/1ib/dy1d, in the program’s address space. The kernel then executes code
in the dynamic linker that loads the libraries the program references. This article also describes the visibility
symbols in a module get depending on how they are defined and the process of resolving symbol references
at runtime.

Launching an Application

When you launch an application from the Finder or the Dock, or when you run a program in a shell, the
system ultimately calls two functions on your behalf, fork and execve. The fork function creates a process;
the execve function loads and executes the program. There are several variant exec functions, such as exec1,
execv, and exect, each providing a slightly different way of passing arguments and environment variables
to the program. In Mac OS X, each of these other exec routines eventually calls the kernel routine execve.

When writing a Mac OS X application, you should use the Launch Services framework to launch other
applications. Launch Services understands application packages, and you can use it to open both applications
and documents. The Finder and the Dock use Launch Services to maintain the database of mappings from
document types to the applications that can open them. Cocoa applications can use the class NSWorkspace
to launch applications and documents; NSWorkspace itself uses Launch Services. Launch Services ultimately
calls fork and execve to do the actual work of creating and executing the new process. For more information
on Launch Services, see Launch Services Programming Guide.

Launching an Application 17
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Executing Mach-O Files

Forking and Executing the Process

To create a process using BSD system calls, your process must call the fork system call. The fork call creates
a logical copy of your process, then returns the ID of the new process to your process. Both the original
process and the new process continue executing from the call to fork; the only difference is that fork
returns the ID of the new process to the original process and zero to the new process. (The fork function
returns -1 to the original process and sets errno to a specific error value if the new process could not be
created.)

To run a different executable, your process must call the execve system call with a pathname specifying the
location of the alternate executable. The execve call replaces the program currently in memory with a
different executable file.

A Mach-O executable file contains a header consisting of a set of load commands. For programs that use
shared libraries or frameworks, one of these commands specifies the location of the linker to be used to load
the program. If you use Xcode, this is always /usr/1ib/dy1d, the standard Mac OS X dynamic linker.

When you call the execve routine, the kernel first loads the specified program file and examines the
mach_header structure at the start of the file. The kernel verifies that the file appear to be a valid Mach-O
file and interprets the load commands stored in the header. The kernel then loads the dynamic linker specified
by the load commands into memory and executes the dynamic linker on the program file.

The dynamic linker loads all the shared libraries that the main program links against (the dependent libraries)
and binds enough of the symbols to start the program. It then calls the entry point function. At build time,
the static linker adds the standard entry point function to the main executable file from the object file
/usr/1ib/crtl.o.This function sets up the runtime environment state for the kernel and calls static
initializers for C++ objects, initializes the Objective-C runtime, and then calls the program’s main function.

Finding Imported Symbols

18

When the dynamic linker loads a Mach-O file (which, for the purposes of this section, is called the client
program), it connects the file's imported symbols to their definitions in a shared library or framework. This
section describes the process of binding the imported symbols in one Mach-O file to their definitions in other
Mach-O files. It also explains the process of finding a symbol. See also “Loading Plug-in Code With

Bundles” (page 28) in Loading Code at Runtime (page 25) for information on finding symbols in plug-ins.

Binding Symbols

Binding is the process of resolving a module’s references to functions and data in other modules (the
undefined external symbols, sometimes called imported symbols). The modules may be in the same Mach-O
file or in different Mach-O files; the semantics are identical in either case. When the application is first loaded,
the dynamic linker loads the imported shared libraries into the address space of the program. When binding
is performed, the linker replaces each of the program’s imported references with the address of the actual
definition from one of the shared libraries.

The dynamic linker can bind a program at several stages during loading and execution, depending on the
options you specify at build time:

Forking and Executing the Process
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Executing Mach-O Files

= With just-in-time binding (also called lazy binding), the dynamic linker binds a reference (and all the
other references in the same module) when the program first uses the reference. The dynamic linker
loads the shared libraries the client program depends on when the program is loaded. However, the
dynamic linker doesn't bind the program’s references to symbols within the shared libraries until the
symbols are used.

= With load-time binding, the dynamic linker binds all the imported references immediately upon loading
the program, or, for bundles, upon loading the bundle. To use load-time binding with the standard tools,
specify the -bind_at_load option to 1d to indicate that the dynamic linker must immediately bind
all external references when the file is loaded. Without this option, 1d sets up the output file for just-in-time
binding.

= With prebinding, a form of load-time binding, the shared libraries referenced by the program are each
prebound at a specified address. The static linker sets the address of each undefined reference in the
program to default to these addresses. At runtime, the dynamic linker needs only to verify that none of
the addresses have changed since the program was built (or since the prebinding was recomputed). If
the addresses have changed, the dynamic linker must undo the prebinding by clearing the prebound
addresses for all the undefined references and then proceed as if the program had been just-in-time
bound. Otherwise, it does not need to perform any action to bind the program.

Prebinding requires that each framework specify its desired base virtual memory address and that none
of the prebound addresses of the loaded frameworks overlap. To prebind a file with the standard tools,
specify the -prebind option to 1d.

= Weak references, a feature introduced in Mac OS X v10.2, is useful for selectively implementing features
that may be available on some systems, but not on others. This mode of binding allows a program to
optionally bind to specified shared libraries. If the dynamic linker cannot find definitions for weak
references, it sets them to NULL and continues to load the program. The program can check at runtime
to find out whether or not a reference is null and, if so, avoid using the reference. You can specify both
libraries and individual symbols to be weakly referenced.

Note: The Mac OS X weak linking design is derived from the classic Mac OS Code Fragment Manager
implementation of weak linking. If you are familiar with the ELF executable format, you may be used to a
different meaning for the terms weak symbol or weak linking, where a weak symbol may be overridden by a
nonweak symbol. The equivalent Mac OS X feature is the weak definition—see “Scope and Treatment of
Symbol Definitions” (page 21) for more information

If no other type of binding is specified for a given library, the static linker sets up the program’s undefined
references to that library to use just-in-time binding.

Searching for Symbols

A symbol is a generic representation of the location of a function, data variable, or constant in an executable
file. References to functions and data in a program are references to symbols. To refer to a symbol when
using the dynamic linking routines, you usually pass the name of the symbol, although some functions also
accept a number representing the ordering of the symbol in the executable file. The name of a symbol
representing a function that conforms to standard C calling conventions is the name of the function with an
underscore prefix. Thus, the name of the symbol representing the function main would be _main.
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Programs created by the Mac OS X v10.0 development tools add all symbols from all loaded shared libraries
into a single global list. Any symbol that your program references can be located in any shared library, as
long as that shared library is one of the program’s dependent libraries (or one of the dependent libraries of
the dependent libraries).

Mac OS X v10.1 introduced the two-level symbol namespace feature. The first level of the two-level namespace
is the name of the library that contains the symbol, and the second is the name of the symbol. With the
two-level namespace feature enabled, when the static linker records references to imported symbols, it
records a reference to the name of the library that contains the symbol and the name of the symbol. Linking
your programs with the two level namespace feature offers two benefits over the flat namespace:

= Enhanced performance when searching for symbols. With the two-level namespace, the dynamic
linker knows exactly where to start looking for the implementation of a symbol. With a flat namespace,
the dynamic linker must search all the loaded libraries for the one that contains the symbol.

= Enhanced forward compatibility. In the flat namespace, two or more libraries cannot contain symbols
with different implementations that share the same name because the dynamic linker cannot know
which library contains the preferred implementation. This is not initially a problem, because the static
linker catches any such problems when you first build the application. However, if the vendor of one of
your dependent shared libraries later releases a new version of the library that contains a symbol with
the same name as one in your program or in another dependent shared library, your program will fail
to run.

Your application must link directly to the shared library that contains the symbol (or, if the library is part of
an umbrella framework, to the umbrella framework that contains it).

When obtaining symbols in a program built with the two-level namespace feature enabled, you must specify
a reference to the shared library that contains the symbols.

By default, the static linker in Mac OS X v10.1 and later uses a two-level namespace for all Mach-O files.

Note: The Mac OS X two-level namespace feature is loosely based on the design of the Code Fragment
Manager’s namespace. A two-level namespace is approximately equivalent to the namespace used to look
up symbols in code fragments. Because Code Fragment Manager always requires an explicit reference to the
library in which a symbol should be found, there is no Code Fragment Manager equivalent to a flat namespace
search.

For programs that do not have a two-level namespace, you can tell the linker to define references to undefined
symbols even if the linker cannot find the library that contains them. When you build an executable with
such undefined symbols, you are making the assumption that one of the other files loaded as part of the
executable file at runtime contains those symbols. Bundles and shared libraries sometimes use this option
to reference symbols defined in the main executable. However, this causes you to lose the performance and
compatibility benefits of two-level namespaces. It's usually better to explicitly link against an executable that
defines the references. However, if you must link with undefined references, you can do it by enabling the
flat namespace feature and suppressing undefined reference warnings, using the options - f1at_namespace
and -undefined suppress asin the following command line:

1d -0 my_tool -flat_namespace -undefined suppress peace.o love.o

When building executables with a two-level namespace, you can allow the remaining undefined symbols to
be looked up by the dynamic linker if the program is targeted for Mac OS X v10.3 and later (the
MACOSX_DEPLOYMENT_TARGET environment variable is set to 10. 3 or higher). To take advantage of this
feature, use the -undefined dynamic_lookup option.
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To build executables with a two-level namespace, the static linker must be able to find the source library for
each symbol. This can present difficulties for authors of bundles and dynamic shared libraries that assume a
flat, global symbol namespace. To build successfully with the two-level namespace, keep the following points
in mind:

= Bundles that need to reference symbols defined in the program’s main executable must use the
-bundle_loader static linker option. The static linker can then search the main executable for the
undefined symbols.

= Shared libraries that need to reference symbols defined in the program’s main executable must load the
symbol dynamically using a function that does not require a library reference, such as d1sym or
NSLookupSymbolInImage (Mac OS X ABI Dynamic Loader Reference).

Note: A two-level symbol namespace can be searched using functions for doing flat symbol searches.

and Treatment of Symbol Definitions

Symbols in an object file may exist at several levels of scope. This section describes each of the possible
scopes that a symbol may be defined at, and provides samples of C code used to create each symbol type.
These samples work with the standard developer tools; a third party tool set may have different conventions.

A defined external symbol is any symbol defined in the current object file, including functions and data.
The following C code defines external symbols:

int x = 0;
double y = 99 _ attribute_ ((visibility("default"))); // GCC 4.0 only

An undefined external symbol is any symbol defined in a file outside of the current file. The following C
code defines two external symbols, a variable and a function:

extern int x;
extern void SomeFunction(void);

A common symbol is a symbol that may appear in multiple intermediate object files. The static linker permits
multiple common symbol definitions with the same name in input files, and copies the one with the largest
size to the final product. If there is another symbol with the same name as a common symbol, the static linker
ignores the common symbol instead.

The standard C compiler generates a common symbol when it sees a tentative definition—a global variable
that has no initializer and is not marked extern. The following line is an example of a tentative definition:

int x;

A multi-module shared library, which 1d builds by default, cannot have common symbols. However, you can
build a shared library as a single module with the -single_module flag. To eliminate common symbols in
an existing shared library, you must either explicitly define the symbol (with an initialized value, for example)
in one of the modules in the shared library, or pass the - fno-common flag to the compiler.

A private defined symbol is a symbol that is not visible to other modules. The following C code defines a
private symbol:

static int x;
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A private external symbol is a defined external symbol that is visible only to other modules within the same
object file as the module that contains it. The standard static linker changes private external symbols into
private defined symbols unless you specify otherwise (using the -keep_private_externs flag).

You can mark a symbol as private external by using the __private_extern__ keyword (which works only
inC)orthevisibility("hidden") attribute (which works both in C and C++ with GCC 4.0), as in this
example:

__private_extern__ int x = 0; // C only
int y = 99 __attribute__((visibility("hidden"))); // C and C++, GCC 4.0 only

A coalesced symbol is a symbol that may be defined in multiple object files but that the static linker generates
only one copy of in the output file. This can save a lot of memory with certain C++ language features that
the compiler must generate for each individual object file, such as virtual function tables, runtime type
information (RTTI), and C++ template instantiations. The compiler determines which constructs should be
coalesced; no work on your part is required.

A weak reference is an undefined external symbol that need not be found in order for the client program
to successfully link. If the symbol does not exist, the dynamic linker sets the address of the symbol to zero.
Files with weak references can be used only in Mac OS X v10.2 and later. The following C code demonstrates
conditionalizing an API call using a weak reference:

/* Only call this API if it exists */
if ( SomeNewFunction != NULL )
SomeNewFunction();

To specify that a function should be treated as a weak reference, use the weak_import attribute on a function
prototype, as demonstrated by the following code:

void SomeNewFunction(void) __attribute__((weak_import));

A coalesced weak reference is an undefined external reference to a symbol defined in multiple object files.
In Mac OS X v10.4 and later (with GCC 4.0 and later), you can specify that a symbol be made into a coalesced
weak reference by adding the weak attribute to the symbol’s declaration. For example:

void SomeNewFunction(void) __attribute__((weak));

Note: Programmers who use other operating systems may be familiar with the concept of symbols that are
marked with a COMDAT flag; a coalesced symbol is the Mac OS X equivalent feature.

A weak definition is a symbol that is ignored by the linker if an otherwise identical but nonweak definition
exists. This is used by the standard C++ compiler to support C++ template instantiations. The compiler marks
implicit—and not explicit—template instantiations as weak definitions. The static linker then prefers any
explicit template instantiation to an implicit one for the same symbol, which provides correct C++ linking
semantics. As with coalesced symbols, the compiler determines the constructs that require the weak definitions
feature; no work on your part is required.
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Note: Files with weak definitions can be used only in Mac OS X v10.2 and later. The static linker changes any
weak definitions into nonweak definitions, so this is only a concern for intermediate object files and static
libraries that you wish to deploy on earlier versions of Mac OS X.

A debugging symbol is a symbol generated by the compiler that allows the debugger to map from addresses
in machine code to locations in source code. The standard compilers generate debugging symbols using
either the Stabs format or the DWARF format (supported in Xcode 2.4 and later). When using the Stabs format,
debugging symbols, like other symbols, are stored in the symbol table (see Mac OS X ABI Mach-O File Format
Reference). But with the DWARF format, debugging symbols are stored in a specialized segment: the __ DWARF
segment. With DWARF you also have the option of storing debugging symbols in a separate debug-information
file, which reduces the size of the binary files while permitting a full debugging experience when the
corresponding debug-information files are available.
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You may need to use dynamic shared libraries, which store reusable code, in your applications to take
advantage of functionality used by more than one application. For example, when you develop Cocoa
applications, at a minimum your application links against the Foundation and Application Kit frameworks.
Through this practice, your program can automatically take advantage of improvements in those frameworks
as your application’s users update the system software in their computers. See “The Products—Types of
Mach-O Files You Can Build” (page 12) for more information on dynamic shared libraries.

If you develop shared libraries and distribute them as framework bundles to be used by other developers in
their applications, you should ensure changes you make to the libraries (to implement new features, for
example) don't break current versions of the applications that use them. You maintain compatibility by
exposing the same programming interface to client applications between upgrades of the shared libraries.

When a change to your framework’s APl is required to implement a feature, you should make available in
the same framework bundle the last version of the framework that exposes the API current client applications
expect, in addition to the version of the framework that exposes the new, incompatible APL. If you follow
this guideline, developers of client applications don’t have to revise them every time your framework’s API
changes. And developers that choose to update their applications can take advantage of the features you
added to the framework. To ensure that earlier versions of your framework's client applications don't break
when the framework is updated, you must package the shared libraries and their resources within the
framework bundle in a way that allows earlier versions of client applications to continue using the versions
of the framework that they understand.

This article describes how you can load code at runtime. It shows the benefits of using shared libraries and

explains how they are packaged inside frameworks to maintain client-application compatibility across updates
to the frameworks. It also describes how the Mac OS X runtime environment takes advantage of bundles to
allow you to load plug-in code at runtime.

Using Shared Libraries and Frameworks

Programmers often refer to dynamic shared libraries using different names, such as dynamically linked shared
libraries, dynamic libraries, DLLs, dylibs, or just shared libraries. In Mac OS X, all these names refer to the same
thing: a library of code dynamically loaded into a process at runtime.

Dynamic shared libraries allow the operating system as a whole to use memory efficiently. Each process in
Mac OS X has its own virtual address space. The Mac OS X kernel allows regions of logical memory to be
mapped into multiple processes at different addresses. The dynamic linker takes advantage of this feature
by mapping the same read-only copy of the shared library code into the address space of each process. The
result is that only one physical copy of a shared library is in memory at any time, even though many processes
may use it at the same time. Data, such as variables and constants, contained by a shared library is mapped
into each client process using the kernel’s copy-on-write optimization capability. With copy-on-write, the
data is shared among processes until one of the processes attempts to change the data. At that point, the
kernel creates a writable copy of the data private to that process. The other processes continue to use the
read-only shared copy. Thus, additional memory for data is allocated only when absolutely necessary.
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Dynamic shared libraries also provide a way for programs to seamlessly benefit from system upgrades. When
the system is upgraded, the shared libraries are updated, but the programs need not be. Since they are
dynamically bound to the shared libraries, the programs can continue to call the same functions and the
updated implementation of the shared libraries is executed. For more information on dynamic-library
development and usage, see Dynamic Library Programming Topics.

Maintaining Client Application Compatibility

This is an overview of various parameters that affect compatibility with client applications. You can set these
parameters at build time. For a more detailed discussion of this topic, see Dynamic Library Design Guidelines
in Dynamic Library Programming Topics.

Shared libraries have two version numbers, which allow you to create versions of a shared library that are
binary compatible (that is, they do not require client programs to be recompiled) with the functions exported
by the earlier versions of a library:

= The current version of the library specifies the current version number of the library’s implementation.
A client program can examine this version number to find out the exact version of the library, which can
be useful for checking for bug fixes and feature additions. The shared library can also examine the version
number that the client program originally linked against, which can be useful for maintaining backwards
compatibility.

= The compatibility version of the library specifies the version of the library’s API that the shared library
claims to be backward-compatible with. If the compatibility version of the shared library is more recent
than the version recorded with the client program, the program fails to link and an error occurs.

The install name is the pathname used by the dynamic linker to find a shared library at runtime. The install
name is defined by the shared library and recorded into the client program by the static linker.

Packaging a Shared Library as a Framework

A framework is a shared library packaged with associated resources, such as headers, localized strings, and
documentation, installed in a standard folder hierarchy, usually in a standard location in the file system. The
folders usually contain related header files, documentation in any format, and resource files. A framework
may contain multiple versions of itself, and each version may have its own set of resources, documentation,
and header files.

From a tools perspective, a framework is a shared library whose install name ends in the form
frameworkName.framework/Versions/versionName/ frameworkName or the form
frameworkName.framework/ frameworkName.

You create a framework by building a normal dynamic shared library into a folder with the same name and
the . framework extension. For example, to create a framework named Chaos, place a dynamic shared library
named Chaos in a folder called Chaos . framework. You can create other folders inside this folder to store

related resources, such as header files, documentation, and images (the standard folder names for these are
called, respectively, Headers, Documentation, and Resources).

You can locate private frameworks and shared libraries in an application package using a relative-path install
name beginning with @executable_path, such as
@executable_path/../Frameworks/MyFramework.framework. This is useful for sharing functionality
with plug-ins (bundles).
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Apple follows a standard framework versioning convention, different from the shared library version numbering
system. By versioning your framework, you can ship older versions of your framework alongside newer
versions, to allow older clients to continue functioning, while still allowing you to advance the design of the
framework in ways not compatible with older clients.

To version your framework, create a parent folder inside the framework called Versions, create a subfolder
in Versions using a naming scheme of your choice, and build the framework shared library and other folders
in this subfolder. Then create symbolic links in the framework’s root folder to point to the shared library and
folders. When you need to create a version of your framework that is not compatible with the previous
version, build it into a new directory in the versions directory and update the symlinks to point to the new
version. When a client links to a versioned framework, the install name recorded in the client executable
includes the full path to the shared library executable, and the dynamic linker, thus, loads only that version.

For example, a client links to a framework called Peace . framework, and the symlinksin Peace . framework
point to the latest version, which is named B.The install name of the framework ends with
Peace.framework/Versions/B/Peace. The static linker records this install name in the client. When the
clientis loaded, the dynamic linker attempts to load the shared library with this install name. Note that, while
frameworks that ship with the system usually name successive versions with consecutive letters of the English
alphabet (A through Z), you can use any name you want.

A framework developer can build a simple, versioned framework in four steps:

1. Create the framework version directory.

2. Compile the framework executable into the framework version directory.

3. Create a symbolic link named Current that points to the framework version directory.

4. Create a symbolic link to the framework executable in the parent framework directory.

The shell commands in Listing 1 builds a framework named B11ss from the C source files Peace.c and
Love.c. The resulting framework has the install name B1iss. framework/Versions/A/Bliss.

Listing 1 Building a framework

gcc -c -0 Peace.o Peace.c

gcc -c -0 Love.o Love.c

mkdir -p Bliss.framework/Versions/A

gcc -dynamiclib -o Bliss.framework/Versions/A/Bliss Peace.o Love.o
cd ./Bliss.framework/Versions && In -sf A Current

cd ./Bliss.framework && Tn -sf Versions/Current/Bliss Bliss

Listing 2 demonstrates how to create a private framework—that is, a framework located in an application
package. Specify the install name explicitly during the linking phase and prefix it with @executable_path.
The install name of the resulting framework is
@executable_path/../Frameworks/Bliss.framework/Versions/A/Bliss.

Listing 2 Building a private framework

mkdir -p Bliss.framework/Versions/A

gcc -c Peace.c Love.c

libtool -dynamic
-install_name @executable_path/../Frameworks/Bliss.framework/Versions/A/Bliss
-0 Bliss.framework/Versions/A/Bliss Peace.o Love.o
-framework System
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For detailed information about designing and using frameworks, see Framework Programming Guide.

Packaging Frameworks and Libraries Under an Umbrella Framework

An umbrella framework is a framework that serves as the “parent” of a group of frameworks and shared
libraries that implement related functionality. Umbrella frameworks help manage extremely large development
projects with complex interdependencies, such as subsystems of Mac OS X itself. For all other projects, a
single framework should suffice (and is better for load-time performance).

To create an umbrella framework, you can take a normal framework and designate a subset of its imported
frameworks as subframeworks. The subframeworks themselves need not be aware that they are part of the
umbrella. With 1d, you can use the -sub_umbrel1a option to designate a subframework.

When your program links against an umbrella framework, it also implicitly links against all the subframeworks.
Symbols located in subframeworks of umbrella frameworks are recorded in the client program as if they were
implemented directly in the umbrella framework. This feature allows the contents of the umbrella framework
to change over time while preserving compatibility with older client programs.

To ensure that clients link to the “parent” umbrella framework and not one of the subframeworks, the
subframework can be built with a special load command to prevent unauthorized linking. When a client tries
to link directly to such a subframework, the static linker produces an error. However, the subframework can
authorize specific clients to link against it, and all subframeworks of an umbrella framework are implicitly
authorized to link against each other. (Load commands are explained in Mac OS X ABI Mach-O File Format
Reference. The particular load commands referenced here are documented as sub_framework_command
and sub_client_command; 1d generates them if given the - sub_framework <parent_umbrella_name>
and -sub_client <client_name> options.) Note that these conventions are enforced at build time by
the static linker but ignored by the dynamic linker at runtime.

You can also include libraries in umbrella frameworks. For example the Foundation framework includes both
the Objective-C runtime library (1ibobjc) as a sublibrary and the Core Foundation framework as a
subframework. You may build Foundation using a variation on the commands listed in Listing 3.

Listing 3 Building a simple umbrella framework

mkdir Foundation.framework
gcc -dynamiclib -o Foundation.framework/Foundation -sub_umbrella CoreFoundation
-sub_Tlibrary 1ibobjc -framework CoreFoundation -lobjc Foundation.o

By convention, subframeworks of an umbrella framework live within the Frameworks directory in the root
directory of the umbrella framework, although this is obviously not a technical requirement. For example,
the Cocoa framework is an umbrella framework that includes the AppKit framework; the AppKit framework
is itself an umbrella framework that includes Foundation and Application Services as subframeworks.

Loading Plug-in Code With Bundles

28

Bundles provide the Mac OS X mechanism for loading extension (or plug-in) code into an application at
runtime. Typically, a bundle links against the application binary to gain access to the application’s exported
API. Bundles can be—but are not required to be—packaged with resources, using the same folder hierarchy
as that of an application package. In some cases (depending on the code in the bundle), bundles can also
be unloaded.

Loading Plug-in Code With Bundles
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Mac OS X supports several schemes that allow third-party developers to extend the capabilities of your
application by writing plug-in code that your program can load at runtime. Although you can use any one
of these plug-in schemes in any type of application, some are more suited to particular situations than others.
For example:

= To load Objective-C classes at runtime, use the Foundation framework class NSBund1e. NSBundle
provides general services for referring to a packaged program, whether the program is an application
or a plug-in.

= To load C functions at runtime, use the Core Foundation framework object CFBund1e, which, like the
NSBundTe class, provides general services for referring to a packaged program, whether the program
is an application or a plug-in.

= The Core Foundation framework object CFP1ugin implements a small subset of the Microsoft Component
Object Model (COM) standard. COM allows you to instantiate C functions and data in an object-oriented
manner at runtime.

= Carbon developers can also use Code Fragment Manager (CFM) to load code fragments updated for
Carbon from PEF files. For more information, see the Code Fragment Manager documentation.

= In general, for applications or libraries targeted for Mac OS X v10.4 or later, use the dynamic loader
compatibility functions, defined in /usr/include/d1fcn. h, to load and link bundle files. These functions
are the preferred way to load code at runtime. They are particularly helpful when porting UNIX tools
that support plug-ins to Mac OS X. See “Dynamic Loader Compatibility Functions” in Mac OS X ABI Dynamic
Loader Reference for more information.

Note: The dynamic linker in Mac OS X v10.0 causes your program to crash if you ask it to load programs that
are built with a two-level namespace hint table. By default, the static linker in Mach OS X v10.0 creates bundles
that do not include the two-level namespace hint table. If you want your program to run in Mac OS X 10.0
and are developing in Mac OS X v10.1 or later, use the - f1at_namespace flag to ask the static linker to
create the program using a flat namespace.

The CFBundle and CFPTugin objects can both be used from Carbon applications running in both Mac OS
9 and Mac OS X. Both the NSBund1e class and the CFP1ugin object allow you to package plug-in code with
the resources associated with the plug-in (such as graphics files and documentation), similar to the packaging
for an application. To load COM objects in Mac OS 9, CFP1ugin uses Code Fragment Manager, and in Mac
OS X, CFPTugin uses the object file image dy1d library functions.

For more information on loading resources using the NSBund1e class, see Resource Programming Guide. For
more information on Code Fragment Manager, see Mac OS Runtime Architectures. For more information on
CFPTugin and COM, see Plug-ins.
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Indirect addressing is the name of the code generation technique that allows symbols defined in one file
to be referenced from another file, without requiring the referencing file to have explicit knowledge of the
layout of the file that defines the symbol. Therefore, the defining file can be modified independently of the
referencing file. Indirect addressing minimizes the number of locations that must be modified by the dynamic
linker, which facilitates code sharing and improves performance.

When a file uses data that is defined in another file, it creates symbol references. A symbol reference identifies
the file from which a symbol is imported and the referenced symbol. There are two types of symbol references:
nonlazy and lazy.

= Nonlazy symbol references are resolved (bound to their definitions) by the dynamic linker when a
module is loaded.

A nonlazy symbol reference is essentially a symbol pointer—a pointer-sized piece of data. The compiler
generates nonlazy symbol references for data symbols or function addresses.

= Lazy symbol references are resolved by the dynamic linker the first time they are used (not at load time).
Subsequent calls to the referenced symbol jump directly to the symbol’s definition.

Lazy symbol references are made up of a symbol pointer and a symbol stub, a small amount of code
that directly dereferences and jumps through the symbol pointer. The compiler generates lazy symbol
references when it encounters a call to a function defined in another file.

The following sections describe how symbol references are implemented for the PowerPC and |A-32
architectures. For detailed information on the PowerPC and IA-32 symbol stubs, see Mac OS X Assembler
Reference.

PowerPC Symbol References

In the PowerPC architecture, when generating calls to functions that are defined in other files, the compiler
creates a symbol stub and a lazy symbol pointer. The lazy symbol pointer is an address that is initially set
to glue code that calls the linker glue function dy1d_stub_binding_helper. This glue function calls the
dynamic linker function that performs the actual work of binding the stub. On return from
dyld_stub_binding_helper, the lazy pointer points to the actual address of the external function.

The simple code example in Listing 1 might produce two different types of symbol stubs, depending on
whether it is compiled with position-independent code generation. Listing 2 shows indirect addressing
without position-independent code, and Listing 3 (page 32) shows both indirect addressing and
position-independent code.

Listing 1 C code example for indirect function calls

extern void bar(void);
void foo(void)
{
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bar();
}
Listing 2 Example of an indirect function call
.text
; The function foo
.align 2
.globl _foo
_foo:
mflr ro ; move the link register into r0
stw r0,8(rl) ; save the Tink register value on the stack
stwu rl,-64(rl) ; set up the frame on the stack
b1 L_bar$stub ; branch and Tink to the symbol stub for _bar
Twz r0,72(rl) ; load the link register value from the stack
addi rl,rl,64 ; removed the frame from the stack
mtir r0 ; restore the link register
blr ; branch to the Tink register to return
.symbol_stub ; the standard symbol stub section
L_bar$stub:
.indirect_symbol _bar ; identify this symbol stub for the
;. symbol _bar
1is rll,hal6(L_bar$lazy_ptr) ; load rl1l with the high 16 bits of the
; address of bar’s lazy pointer
Twz r12,7016(L_bar$lazy_ptr)(rll) ; load the value of bar’s lazy pointer
; into rl2
mtctr rl2 ; move rl2 to the count register
addi rl1l,rl1l,l1016(L_bar$lazy_ptr) ; load rll with the address of bars lazy
; pointer
bctr ; jump to the value in bar’s lazy pointer
.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:
.indirect_symbol _bar ; identify this lazy pointer for symbol
bar
.long dyld_stub_binding_helper ; initialize the lazy pointer to the stub
; binding helper address
Listing 3 Example of a position-independent, indirect function call
.text
; The function foo
.align 2
.globl _foo
_foo:
mflr r0 ; move the link register into r0
stw r0,8(rl) ; save the link register value on the stack
stwu rl1,-80(rl) ; set up the frame on the stack
bl L_bar$stub ; branch and Tink to the symbol stub for _bar
Twz r0,88(rl) ; load the link register value from the stack
addi rl,rl1,80 ; removed the frame from the stack
mtir r0 ; restore the link register
blr ; branch to the link register to return
.picsymbol_stub ; the standard pic symbol stub section
L_bar$stub:
.indirect_symbol _bar ; identify this symbol stub for the symbol _bar
32 PowerPC Symbol References
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mflr r0 ; save the link register (LR)
bcl 20,31,L0%_bar ; Use the branch-always instruction that does not
; affect the 1ink register stack to get the
address of LO$_bar into the LR.
LO$_bar:
mflr rll ; then move LR to rll
; bar’s lazy pointer is located at
; LO$_bar + distance
addis rll,rll,hal6(L_bar$lazy_ptr-L0$_bar); LO$_bar plus high 16 bits of

distance
mtir roO ; restore the previous LR
Twz r12,7o0l6(L_bar$lazy_ptr-L0$_bar)(rll); ...plus Tow 16 of distance
mtctr rl2 ; move rl2 to the count register

addi rll,rll,lo0l6(L_bar$lazy_ptr-LO0$_bar); load rll with the address of bar’s
lazy pointer

bctr ; jump to the value in bar’s lazy
;  pointer
.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:
.indirect_symbol _bar ; identify this lazy pointer for symbol bar

.long dyld_stub_binding_helper ; initialize the Tazy pointer to the stub
; binding helper address.

As you can see, the __picsymbol_stub code in Listing 3 (page 32) resembles the position-independent
code generated for Listing 2 (page 38). For any position-independent Mach-O file, symbol stubs must
obviously be position independent, too.

The static linker performs two optimizations when writing output files:

= |t removes symbol stubs for references to symbols that are defined in the same module, modifying
branch instructions that were calling through stubs to branch directly to the call.

= It removes duplicates of the same symbol stub, updating branch instructions as necessary.

Note that a routine that branches indirectly to another routine must store the target of the call in GPR11 or
GPR12. Standardizing the registers used by the compiler to store the target address makes it possible to
optimize dynamic code generation. Because the target address needs to be stored in a register in any event,
this convention standardizes what register to use. Routines that may have been called directly should not
depend on the value of GR12 because, in the case of a direct call, its value is not defined.

|A-32 Symbol References

In the IA-32 architecture, symbol references are implemented as a symbol stub and a lazy symbol pointer
combined into one JMP instruction. Initially, such instructions point to the dynamic linker. When the dynamic
linker encounters such an instruction, it locates the referenced symbol and modifies the JMP instruction to
point directly to this symbol. Therefore, subsequent executions of the JMP instruction, jump directly to the
referenced symbol.

Listing 4 and Listing 5 show a simple C program and the IA-32 assembly generated highlighting the symbol
stub and nonlazy pointer for an imported symbol.

IA-32 Symbol References 33
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Listing 4 C program using an imported symbol

#include <stdio.h>
main( int arc, char *argv[])
{
fprintf(stdout, "hello, world!\n")
}

Listing 5 IA-32 symbol reference in assembly
.cstring
LCO:
.ascii "hello, world!\12\0"
.text
.globl _main
_main:
pushl %ebp
mov 1 %esp, %ebp
subl $24, %hesp
mov 1 L sF$non_lazy_ptr, %eax
add] $88, %eax
mov 1 heax, 12(%esp)
mov 1 $14, 8(%esp)
mov 1 $1, 4(%esp)
mov 1 $LCO, (%esp)
call L_fwrite$stub
leave
ret
.section
__ IMPORT,

L_fwrite$stub:
.indirect_symbol _fwrite
h1t ; h1t ; hlt ; h1t ; hlt
.section __IMPORT,

L _sF$non_Tlazy_ptr:
.indirect_symbol __ sF
.Tong 0
.subsections_via_symbols

x86-64 Symbol References
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; call to imported symbol

jump_table,symbol_stubs,self_modifying_code+tpure_instructions,b

; symbol stub

pointers,non_lazy_symbol_pointers

; nonlazy pointer

This section describes deviations from the System V x85-64 environment in the area of symbol references.

Note: The Mac OS X x86-64 environment uses Mach-O (not ELF) as its executable file format.

The static linker is responsible for generating all stub functions, stub helper functions, lazy and nonlazy
pointers, as well as the indirect symbol table needed by the dynamic loader (dy1d).

For reference, Listing 6 shows how a a stub, helper, and lazy pointer are generated.

Listing 6 Generating a stub, helper and lazy pointer

_foo$stub: Jmp

x86-64 Symbol References
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_foo$stub_helper: leaq _foo$lazy_pointer(%rip),%srll
Jmp dyld_stub_binding_helper
_foo$lazy_pointer: .quad _foo$stub_helper

x86-64 Symbol References
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Position-independent code, or PIC, is the name of the code generation technique used in the PowerPC
environments that allows the dynamic linker to load a region of code at a nonfixed virtual memory address.
Without some form of position-independent code generation, the operating system would need to place all
code you wanted to be shared at fixed addresses in virtual memory, which would make maintenance of the
operating system remarkably difficult. For example, it would be nearly impossible to support shared libraries
and frameworks because each one would need to be preassigned an address that could never change.

Mach-O position-independent code design is based on the observation that the _ DATA segment is always
located at a constant offset from the __ TEXT segment. That is, the dynamic loader, when loading any Mach-O
file, never moves a file's __TEXT segment relative to its __DATA segment. Therefore, a function can use its

own current address plus a fixed offset to determine the location of the data it wishes to access. All segments
of a Mach-Ofile, notonly the __ TEXT and __DATA segments, are at fixed offsets relative to the other segments.

Note: If you are familiar with the Executable and Linking Format (ELF), you may note that Mach-O
position-independent code is similar to the GOT (global offset table) scheme. The primary difference is that
Mach-O code references data using a direct offset, while ELF indirects all data access through the global
offset table.

Eliminating Position-Independent Code References

Position-independent code is typically required for shared libraries and bundles to allow the dynamic loader
to relocate them to different addresses at load time. However, it is not required for applications that typically
reside at the same address in virtual memory. GCC 3.1 introduces a new option, called -mdynamic-no-pic.
This option both reduces the code size of application executables and improves their performance by
eliminating position-independent code references, while preserving indirect calls to shared libraries and
indirection to undefined symbols. If you use Xcode to create your application, this option is enabled by
default. For an example of dynamic code generated without PIC, see Listing 2 (page 32).

Listing 2 shows an example of the position-independent code generated for the C code in Listing 1.

Listing 1 C source code example for position-independent code

struct s { int memberl; int member2; };
struct s bar = {1,2};

int foo(void)
{

return bar.member?;
}
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0x0
0x4

0x8
Oxc

0x10
0x14

0x18
Oxlc
.data

0x20
0x24

_foo: mflr r0

_bar: .long 1

Position-Independent Code

Listing 2 Position-independent code generated from the C example (with addresses in the left column)

.text

; The function foo
.align 2

.globl _foo

bcl 20,31,L1%pb

L1$pb: mflr rl0
mtir roO
addis r9,r10,hal6(_bar-L1$pb);
Ta r9,1016(_bar-L1$pb)(r9)

; save the Tink register (LR)
; Use the branch always instruction

that does not affect the link
register stack to get the address
of L1$pb into the LR.

; then move LR to rl0

restore the previous LR
bar is located at L1$pc + distance
L1$pb plus high 16 bits of distance

; plus low 16 of distance

; => r9 now contains address of bar

Twz r3,4(r9)
blr

return bar.member?

; The initialized structure bar

.align 2
.globl _bar

.long 2

To calculate the address of _bar, the generated code adds the address of the L1$pb symbol (0x8) to the
distance to bar. The distance to bar from the address of L1$pb is the value of the expression _bar - L1$pb,

which is 0x18 (0x20 - 0x8).

; memberl’s initialized value
; member2’s initialized value

Relocating Position-Independent Code
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To support relocation of code in intermediate object files, Mach-O supports a section difference relocation

entry format. Relocation entries are described in Mac OS X ABI Mach-O File Format Reference.

Each of the add-immediate instructions is represented by two relocation entries. For the addi s instruction
(at address 0x10 in the example) the following tables list the two relocation entries. The fields of the first

relocation entry (of type scattered_relocation_info) are:

r_scattered | 1—true

r_pcrel 0—false
r_length 2 —indicating 4 bytes
r_type PPC_RELOC_HA16_SECTDIFF

r_address 0x10—the address of the addi s instruction

r_value 0x20—the address of the symbol _bar

The values of the second relocation entry are:

Relocating Position-Independent Code
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r_scattered | 1—true

r_pcrel 0—false
r_length 2 —indicating 4 bytes
r_type PPC_RELOC_PAIR

r_address 0x18—the low 16 bits of the expression (_bar - L1$pb)

r_value 0x8—the address of the symbol L1$pb

The first relocation entry for the 1a instruction (at address 0x14 in the example) is:

r_scattered | 1—true

r_pcrel 0—false
r_length 2—indicating 4 bytes
r_type PPC_RELOC_LO16_SECTDIFF

r_address 0x14—the address of the addi instruction

r_value 0x20—the address of the symbol _bar

The values of the second relocation entry are:

r_scattered | 1—true

r_pcrel 0—false
r_length 2 —indicating 4 bytes
r_type PPC_RELOC_PAIR

r_address 0x0—the high 16 bits of the expression (_bar - L1$pb)

r_value 0x8—the address of the symbol L1$pb

Relocations in the x86-64 Environment

Relocations in the Mac OS X x86-64 environment are different than relocations in other Mac OS X environments
and System V x86-64 (http://www.x86-64.org/documentation). The main differences are:.

m  Scattered relocations are not used
m  Compiler-generated code uses mostly external relocations

= Mach Object (Mach-0), not Executable and Linkable Format (ELF), is used as the executable file format

Relocations in the x86-64 Environment 39
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This section describes how relocations are implemented in the Mac OS X x86-64 environment.

When the assembler generates relocations, if the target label is a local label (it begins with L), the previous
nonlocal label in the same section is used as the target of the external relocation. An addend (that is, the 4
in _foo + 4)is used with the distance from that nonlocal label to the target label. The assembler uses an
internal relocation only when there is no previous nonlocal label in the section.

The addend is encoded in the instruction (Mach-O does not have RE LA relocations). For PC-relative relocations,
the addend is stored in the instruction. This practice is different than in other Mac OS X environments, which
encode the addend minus the current section offset. The x86-64 relocation types are described in Mac OS X
ABI Mach-O File Format Reference.

Listing 3 shows assembly instructions and the relocation and section content that they generate.

Listing 3 Example assembly instructions and their corresponding relocations

call _foo
r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
E8 00 00 00 00

call _foo+4
r_type=Xx86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
E8 04 00 00 00

movq _foo@GOTPCREL(%rip), %rax
r_type=X86_64_RELOC_GOT_LOAD, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
48 8B 05 00 00 00 00

pushg _foo@GOTPCREL(%rip)
r_type=X86_64_RELOC_GOT, r_Tlength=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
FF 35 00 00 00 00

movl _foo(%rip), %eax
r_type=x86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
8B 05 00 00 00 00

movl _foo+4(%rip), %eax
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
8B 05 04 00 00 00

movb $0x12, _foo(%rip)
r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
C6 05 FF FF FF FF 12

movl $0x12345678, _foo(%rip)
r_type=x86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
C7 05 FC FF FF FF 78 56 34 12

.quad _foo
r_type=X86_64_RELOC_UNSIGNED,r_length=3, r_extern=1,r_pcrel=0, r_symbolnum=_foo
00 00 00 00 00 00 00 OO

.quad _foo+4
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
04 00 00 00 00 00 00 00

.quad _foo - _bar

Relocations in the x86-64 Environment
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r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1, r_pcrel=0,r_symbolnum=_bar
r_type=x86_64_RELOC_UNSIGNED,r_length=3,r_extern=1, r_pcrel=0,r_symbolnum=_foo
00 00 00 00 00 00 00 00

.quad _foo - _bar + 4

r_type=X86_64_RELOC_SUBTRACTOR,r_length=3, r_extern=1,r_pcrel=0,r_symbolnum=_bar
r_type=Xx86_64_RELOC_UNSIGNED,r_length=3, r_extern=1,r_pcrel=0,r_symbolnum=_foo
04 00 00 00 00 00 00 00

.long _foo - _bar
r_type=X86_64_RELOC_SUBTRACTOR,r_Tength=2,r_extern=1,r_pcrel=0,r_symbolnum=_bar
r_type=X86_64_RELOC_UNSIGNED,r_length=2,r_extern=1,r_pcrel=0,r_symbolnum=_foo
00 00 00 00

lea L1(%rip), %rax

r_type=X86_64_RELOC_SIGNED, r_Tlength=2, r_extern=1, r_pcrel=1, r_symbolnum=_prev
48 8d 05 12 00 00 00

// Assumes that _prev is the first nonlocal label 0x12 bytes before LI1.

lea LO(%rip), %rax

r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3
48 8d 05 56 00 00 00

// Assumes that LO is in third section, and has an address of 0x00000056

// in .o file, and no previous nonlocal Tabel.

.quad L1

r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0, r_symbolnum= _prev
12 00 00 00 00 00 00 00

// Assumes that _prev is the first nonlocal label 0x12 bytes before LI.

.quad LO

r_type=x86_64_RELOC_UNSIGNED,r_length=3, r_extern=0, r_pcrel=0, r_symbolnum= 3
56 00 00 00 00 00 00 OO

// Assumes that LO is in third section, and has address of 0x00000056

// in .o file, and no previous nonlocal Tabel.

.quad _foo -
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_prev
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
EE FF FF FF FF FF FF FF

// Assumes that _prev is the first nonlocal label 0x12 bytes

// before this .quad

.quad _foo - LI
r_type=X86_64_RELOC_SUBTRACTOR,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_prev
r_type=X86_64_RELOC_UNSIGNED,r_length=3,r_extern=1,r_pcrel=0,r_symbolnum=_foo
EE FF FF FF FF FF FF FF

// Assumes that _prev is the first nonlocal label 0x12 bytes before L1.

.quad L1 - _prev

// No relocations. This is an assembly time constant.

12 00 00 00 00 00 00 00

// Assumes that _prev is the first nonlocal label 0x12 bytes before L

Relocations in the x86-64 Environment 1
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This article describes differences in the Mac OS X x86-64 user-space code model from the code model
described in System V Application Binary Interface AMD64 Architecture Processor Supplement, at http://www.x86-
64.org/documentation.

The x86-64 environment in Mac OS X has only one code model for user-space code. It's most similar to the
small PIC model defined by the x86-64 System V ABI. Under Mach-O, all static initialized storage (both code
and data) must fit within a 4GB Mach-O file. Uninitialized (zero-fill) data may be any size, although there is a
practical limit imposed by Mac OS X.

All' local and small data is accessed directly using addressing that’s relative to the instruction pointer
(RIP-relative addressing). All large or possibly nonlocal data is accessed indirectly through a global offset
table (GOT) entry. The GOT entry is accessed directly using RIP-relative addressing.

Listing 1 shows sample C code and corresponding assemble code.

Listing 1 C code and the corresponding assembly code

extern int srcl[];
extern int dstl];
extern int* ptr;

static int 1src[500];
static int 1dst[500];
static int bsrc[5000007;
static int bdst[500000];
static int* Iptr;

dstl[0] = srcl0]; movqg _src@GOTPCREL(%rip), %rax
movl (%rax), %edx
movqg _dst@GOTPCREL(%rip), %rax
mov1 %edx, (%rax)

ptr = dst; movq _dst@GOTPCREL(%rip), %rdx
movq _ptr@GOTPCREL(%rip), %rax
movq %rdx, (%rax)
ret

*ptr = srcl[0]; movq _ptr@GOTPCREL(%rip), %rax
mov(q (%rax), %rdx
movq  _Src@GOTPCREL(%rip), %rax
mov 1 (%rax), %eax
mov 1 heax, (%rdx)
ret

1dst[0] = Tsrc[0]; movl _lsrc(%rip), %eax
movl %eax, _ldst(%rip)

Iptr = ldst; lea _1dst(%rip), %rax
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movqg %rax, _lptr(%rip)

*Tptr = 1src[0]; movl _lsrc(%rip), %edx
movqg _lptr(%rip), %rax
movl %edx, (%rax)

bdst[0] = bsrcl[0]; movq _bsrc@GOTPCREL(%rip), %rax
movl (%rax), %edx
movq _bdst@GOTPCREL(%rip), %rax
mov1l %edx, (%rax)

Iptr = bdst; movq _bdst@GOTPCREL(%rip), %rax
movqg %rax, _lptr(%rip)

*Tptr = bsrcl[0]; movq _bsrc@GOTPCREL(%rip), %rdx
movqg _lptr(%rip), %rax
movl (%rdx), %edx

The Mac OS X x86-64 code-generation model accesses large local data through the GOT, which is different
from the way the small PIC model works in the System V x86-64 environment. Indirection through the GOT
obviates the need for a medium code model. This behavior stems from the fact that, when the linker lays
out data, it places data that is accessed directly (small local data and the GOT itself) within 2 GB of the code.
Other data can be placed farther away because these data are accessed only through the GOT. This behavior
enables large (greater than 4 GB) and small executables to be built using the same code model.

Note: It is acceptable for the compiler to access static data through a GOT entry. The linker preserves the
static semantics of the symbol.

The code model for function calls is very simple, as shown in Listing 2.

Listing 2 The code model for function calls

extern int foo();
static int bar();

foo(); call _foo
bar(); call _bar
All direct function calls are made using the CALL re132 instruction.

The linker is responsible for creating GOT entries (also known as nonlazy pointers) as well as stub functions
and lazy pointers (also known as program load table entries, or PLT entries) for calls to another linkage unit.
Since the linker must create these entries, it can also choose not to create them when it sees the opportunity.
The linker has a complicated set of rules that dictate which symbols must be accessed indirectly (depending
on flat versus two-level namespace, weak versus nonweak definitions, symbol visibility, distance from code,
and so on). But ultimately there are many symbols that can be accessed directly (not through GOT or PLT
entries). For these symbols the linker makes the following optimization:

1. A CALL or JMP instruction performs a direct, PC-relative branch to the target.

2. Aload instruction performed on a GOT entry (for example, movq _foo@GOTPCREL(%rip), %rxx)is
transformed into a LEA calculation (for example, Teaq _foo(%rip), %rxx).Thistransformation removes
one GOT entry and saves one memory load.
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In both cases special relocations are used that allow the linker to perform this optimization.
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