Instruments User Guide

Tools & Languages: Performance Analysis Tools

¢

2010-07-09

.

[

Apple Inc.

© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
eMac, Finder, Instruments, iPhone, iPod, iPod
touch, iTunes, Mac, Mac OS, Objective-C,
QuickTime, and Xcode are trademarks of Apple
Inc,, registered in the United States and other
countries.

I0S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGlL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Instruments User Guide 9

Organization of This Document 9
Getting the Xcode Tools 10

Chapter 1 Instruments Quick Start 11

Launching Instruments 11

Creating a Trace Document 12

A Tour of the Trace Document Window 14
Example: Performing a Quick Trace 16
What's Next? 17

Chapter 2 Adding and Configuring Instruments 19

Using the Instrument Library 19
Changing the Library View Mode 20
Finding an Instrument in the Library 21
Creating Custom Instrument Groups 23

Adding and Removing Instruments 28

Configuring an Instrument 29

Chapter 3 Recording Trace Data 31

Choosing Which Process to Trace 31
Tracing All Processes 31
Attaching to an Existing Process 32
Launching an Executable from Instruments 32
Specifying a Different Target for Each Instrument 34
Collecting Data 34
Launching Instruments Using Quick Start Keys 35
Running in Mini Mode 36
Running Instruments from Xcode 36
Connecting Wirelessly to an iOS Device 37

Chapter 4 Working with a User Interface Track 39

Recording a User Interface Track 39
Rerecording a User Interface Track 40
Replaying a User Interface Track 41

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 5 Viewing and Analyzing Trace Data 43

Tools for Viewing Data 43
The Track Pane 43
The Detail Pane 47
The Extended Detail Pane 50
The Run Browser 52
Analysis Techniques 53
Analyzing Data with the Sampler Instrument 53
Analyzing Data with the ObjectAlloc Instrument 56
Looking for Memory Leaks 58
Analyzing Core Data Applications 59

Chapter 6 Saving and Importing Trace Data 61

Saving a Trace Document 61

Saving an Instruments Trace Template 61
Exporting Track Data 62

Importing Data from the Sample Tool 62
Working With DTrace Data 62

Chapter 7 Creating Custom Instruments with DTrace 63

About Custom Instruments 63

Creating a Custom Instrument 64
Adding and Deleting Probes 65
Specifying the Probe Provider 66
Adding Predicates to a Probe 67
Adding Actions to a Probe 69

Tips for Writing Custom Scripts 71
Writing BEGIN and END Scripts 71
Accessing Kernel Data from Custom Scripts 72
Scoping Variables Appropriately 72
Finding Script Errors 73

Exporting DTrace Scripts 73

Chapter 8 Built-in Instruments 75

Core Data Instruments 75

Core Data Saves 75

Core Data Fetches 76

Core Data Faults 76

Core Data Cache Misses 77
Dispatch Instruments 78

Dispatch 78
Energy Diagnostics Instruments 80

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Energy Usage 81
CPU Activity 81
Display Brightness 82
Sleep/Wake 82
Bluetooth 82
WiFi 82
GPS 82
File System Instruments 82
I/0 Activity 82
File Locks 85
File Attributes 85
File Activity 86
Directory I/0 87
Garbage Collection Instruments 87
GCTotal 88
Garbage Collection 88
Graphics Instruments 89
Core Animation 89
OpenGL Driver 90
OpenGLES 90
OpenGL ES Analyzer 91
Input/Output Instruments 92
Reads/Writes 92
Master Tracks Instruments 93
User Interface 93
Memory Instruments 93
Shared Memory 93
ObjectAlloc 94
Leaks 96
System Instruments 96
Time Profiler 96
Spin Monitor 97
Sampler 98
Process 99
Network Activity Monitor 99
Memory Monitor 100
Disk Monitor 100
CPU Monitor 100
Activity Monitor 100
Threads/Locks Instruments 101
Java Thread 101
Ul Automation 101
Automation 101
User Interface Instruments 102
Cocoa Events 103
Carbon Events 103

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 105

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Chapter 1 Instruments Quick Start 11
Figure 1-1 The Instruments window while tracing 14
Figure 1-2 The Instruments toolbar 15
Table 1-1 Instruments starting templates 12
Table 1-2 Trace document key features 15
Table 1-3 Trace document toolbar controls 15
Chapter 2 Adding and Configuring Instruments 19
Figure 2-1 The instrument library 20
Figure 2-2 Viewing an instrument group 22
Figure 2-3 Searching for an instrument 23
Figure 2-4 Creating a group 24
Figure 2-5 Editing the name of a group 25
Figure 2-6 Adding an instrument to a custom group 26
Figure 2-7 The smart group rule editor 27
Figure 2-8 Adding an instrument 28
Figure 2-9 Inspector for the ObjectAlloc instrument 29
Table 2-1 Smart group criteria 27
Chapter 3 Recording Trace Data 31
Figure 3-1 Tracing an existing process 32
Figure 3-2 Choosing an executable to launch 33
Figure 3-3 Choosing per-instrument trace targets 34
Figure 3-4 The Mini Instruments window 36
Figure 3-5 Creating a wireless connection between Instruments and an iOS device 38
Table 3-1 Options for launching an executable 33
Chapter 4 Working with a User Interface Track 39
Figure 4-1 Recording a user interface track 40
Figure 4-2 Viewing multiple runs 41
Chapter 5 Viewing and Analyzing Trace Data 43
Figure 5-1 The track pane 44
Figure 5-2 Viewing multiple runs of an instrument 45
Figure 5-3 Configuring the statistics to graph 46

Figure 5-4 Track styles 47

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 5-5 The Detail pane 48

Figure 5-6 Filtering the Detail pane 49

Figure 5-7 Inspection Range control 50

Figure 5-8 Extended Detail pane 51

Figure 5-9 The Run Browser 53

Table 5-1 Action menu options 51

Table 5-2 Configuration options for the Sampler instrument 55

Table 5-3 Analyzing data in the Detail pane 57

Table 5-4 Configuration options for the ObjectAlloc instrument 58

Table 5-5 Configuration options for the Leaks instrument 59

Table 5-6 Core Data instrument usage 60
Chapter 7 Creating Custom Instruments with DTrace 63

Figure 7-1 The instrument configuration sheet 65

Figure 7-2 Adding a predicate 67

Figure 7-3 Configuring a probe’s action 70

Figure 7-4 Returning a string pointer 70

Table 7-1 DTrace providers 66

Table 7-2 DTrace variables 68

Table 7-3 Variable scope in DTrace scripts 72

Listing 7-1 Accessing kernel variables from a DTrace script 72
8

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Instruments User Guide

Instruments is an application for dynamically tracing and profiling Mac OS X code. It is a flexible and powerful
tool that lets you track one or more processes and examine the collected data. In this way, Instruments helps
you understand the behavior of both user programs and the operating system.

With the Instruments application, you use special tools (known as "instruments”) to trace different aspects
of a process’ behavior. You can also use the application to record a sequence of user interface actions and
replay them, using one or more instruments to gather data.

The Instruments application includes the ability to:

= Examine the behavior of one or more processes

m Record a sequence of user actions and replay them, reliably reproducing those events and collecting
data over multiple runs

= Create your own custom DTrace instruments to analyze aspects of system and application behavior

= Save user interface recordings and instrument configurations as templates, accessible from Xcode

Using Instruments, you can:

= Track down difficult-to-reproduce problems in your code
= Do performance analysis on your program

= Automate testing of your code

m Stress-test parts of your application

m Perform general system-level troubleshooting

= Gain a deeper understanding of how your code works

Instruments is available with Xcode 3.0 and Mac OS X 10.5 and later.

This document describes the Instruments user interface and gives an overview of how to use the Instruments
application to trace processes and view data. It is intended for developers and system administrators who
want to use Instruments to better understand the behavior of their programs or of the system as a whole.

Organization of This Document

The following chapters describe how to use the Instruments application:

= “Instruments Quick Start” (page 11) gives a brief overview of the Instruments application and introduces
the main window.

Organization of This Document 9
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Instruments User Guide

= “Adding and Configuring Instruments” (page 19) describes how to add and configure instruments and
run them to collect data on one or more processes. This chapter also shows how to choose the program
to trace.

m “Recording Trace Data” (page 31) describes the ways you can initiate traces and gather trace data.

= “Working with a User Interface Track” (page 39) describes how to record and replay a sequence of user
actions.

= “Viewing and Analyzing Trace Data” (page 43) describes the tools you use to view the data returned by
the instruments.

= “Saving and Importing Trace Data” (page 61) describes how you save trace documents and data and
how you import data from other sources.

m “Creating Custom Instruments with DTrace” (page 63) shows how to create and configure your own
DTrace-based custom instrument.

m “Built-in Instruments” (page 75) describes the instruments that ship with Instruments.

Getting the Xcode Tools

10

Instruments is part of the Xcode Tools, a comprehensive suite of developer tools for creating Mac OS X
software. The Xcode Tools include applications to help you design, create, debug, and optimize your software.
This tools suite also includes header files, sample code, and documentation for Apple technologies. You can
download the Xcode Tools from the members area of the Apple Developer Connection (ADC) website
(http://connect.apple.com/). Registration is required but free.

Getting the Xcode Tools
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

http://connect.apple.com/

CHAPTER 1

Instruments Quick Start

Instruments is a powerful tool you can use to collect data about the performance and behavior of one or
more processes on the system and track that data over time. Unlike most other performance and debugging
tools, Instruments lets you gather widely disparate types of data and view them side by side. In this way you
can spot trends that might otherwise be hard to spot with other tools. For example, previously you had to
sample a program and analyze its memory behavior during two separate execution runs. In Instruments, you
can perform these tasks at the same time. You can then use the resulting data to spot trends between the
code being run by your program and its corresponding memory usage.

The Instruments application uses instruments to collect data about a process over time. Each instrument
collects and displays a different type of information, such as file access, memory use, and so forth. Instruments
includes a library of standard instruments, which you can use as-is to examine various aspects of your code.
You can configure instruments to gather data about the same process or about different processes on the
system. You can build new instruments using the custom instrument builder interface, which uses the DTrace
program to gather the data you want.

Note: Several Apple applications—namely iTunes, DVD Player, and Front Row, and applications that use
QuickTime—prevent the collection of data through DTrace (either temporarily or permanently) in order to
protect sensitive data. Therefore, you should not run those applications when performing systemwide data
collection.

All work in Instruments is done in a trace document. A trace document collects the data gathered by the
instruments associated with that document. Each trace document typically holds a single session’s worth of
data, which is also referred to as a single trace. You can save a trace document to preserve the trace data
you have gathered and open them again later to view that data.

Although most instruments are geared towards gathering trace data, one of the most sophisticated instruments
helps automate the collection of data. Using the User Interface instrument, you can record user events while
you gather your trace data. You can use this recording to reliably reproduce the same sequence of events
over and over again. Each time you run through this sequence, your trace document gathers a new set of
trace data from the other instruments in the document and presents that data side by side with previous
runs. This feature lets you compare trace data as you make improvements to your code and verify that the
changes you make are having the desired impact.

Launching Instruments

Instruments is available as part of the Xcode Tools installation. There are several ways to launch Instruments:

= You can launch Instruments by double-clicking its application icon in the Finder. The Instruments
application is located in <Xcode>/Applications, where <Xcode> is the root directory of your Xcode
installation. (The default root directory for an Xcode installation is the /Developer directory.)

Launching Instruments n
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Instruments Quick Start

= You can use Xcode to launch Instruments and target an executable in your project. Choose an Instruments
template from the Run > Start with Performance Tool menu in Xcode. Instruments launches with the
specified template ready to run the current executable, as configured in Xcode.

Note: When launching your program from an Instruments template in this manner, you must explicitly
stop your executable—either from the program or from Instruments—after tracing is complete. This
does not close the Instruments trace document. Instead, if you relaunch the executable, Instruments
displays the new session alongside the previous one, as shown in Figure 4-2 (page 41). This lets you
change your code in Xcode, rebuild, run, and compare the resulting trace data to the data generated
before the change.

= You can launch Instruments by double-clicking an Instruments template or trace document. See “Saving
and Importing Trace Data” (page 61) to learn how to save an instrument configuration or user interface
recording as a trace template document.

Creating a Trace Document

When you launch Instruments, the application automatically creates a new document for you. You can also
create new documents by choosing File > New.

For each new document you create, Instruments prompts you to select a starting template. These templates
define the initial set of instruments you plan to use in your trace document. Instruments provides several
different templates, listed in Table 1-1, each geared toward different goals. You can use the Blank template
if you want to add a specific set of instruments to your trace document manually. For any of the templates,
you can also remove instruments you do not want.

Table 1-1 Instruments starting templates
Template Type Description
Blank Mac OS X, iPhone, | Creates an empty trace document to which you can add your own
iPhone Simulator, | combination of instruments. To learn how to select and add
User instruments, see “Adding and Configuring Instruments” (page 19).
For descriptions of the individual built-in instruments, see “Built-in
Instruments” (page 75).

Activity Mac OS X, iPhone, | Adds the Activity Monitor instrument to your document. Use this

Monitor iPhone Simulator | template if you want to correlate the system workload with the virtual
memory size.

Core Data Mac OS X Adds the Core Data Fetches, Core Data Cache Misses, and Core Data
Saves instruments to your document. Use this template to monitor
data store interactions in a Core Data application.

CPU Sampler | Mac OS X, iPhone, | Adds the Sampler and CPU Monitor instruments to your document.

iPhone Simulator | Use this template if you want to correlate the overall system workload
with the work being done specifically by your application.
12 Creating a Trace Document

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Instruments Quick Start

Template

Type

Description

Dispatch

Mac OS X

Adds the Dispatch instrument to your document. Use this template
if you want to capture information about GCD queues created by
your application and about the block objects executing on these
gueues.

File Activity

Mac OS X, iPhone
Simulator

Adds the File Activity, Reads/Writes, File Attributes, and Directory 1/0
instruments to your document. Use this template if you want to
examine file usage patterns in the system. This combination of
instruments monitors open, close, read, and write operations on files
and also monitors changes in the file system itself, including
permission and owner changes.

GC Monitor

Mac OS X

Adds the ObjectGraph, ObjectAlloc, and Garbage Collection
instruments to your document. Use this template to measure the data
reclaimed in the scavenge phase of the garbage collector.

Leaks

Mac OS X, iPhone,
iPhone Simulator

Adds the ObjectAlloc and Leaks instruments to your document. Use
this template to monitor memory usage in your application and to
detect memory leaks. (To use this template, you must launch your
process from Instruments.)

Multicore

Mac OS X

Adds the Thread States and Dispatch instruments to your document.
Use this template to analyze multicore performance, including thread
state, dispatch queues, and block usage.

Object
Allocations

Mac OS X, iPhone,
iPhone Simulator

Adds the ObjectAlloc instrument to your document. Use this template
to monitor memory and object-allocation patterns in your program.
(To use this template, you must launch your process from Instruments.)

Sudden
Termination

Mac OS X

Adds the Sudden Termination and Activity Monitor instruments to
your document. Use this template to analyze sudden termination
support. It reports unprotected file system access the target process
should be, but is not, guarding with calls to disable sudden
termination. It also provides activity monitoring across all processes,
including sudden termination status for each.

Threads

Mac OS X, iPhone
Simulator

Adds the Thread States instrument to your document. Use this
template to analyze thread state transitions within a process, including
running and terminated threads, thread state, and associated
backtraces.

Time Profiler

Mac OS X

Adds the Time Profiler instrument to your document. Use this template
to perform low-overhead time-based sampling of one or all processes.

Ul Recorder

Mac OS X

Adds the User Interface instrument to your document. Use this
template as a starting point for recording a series of user interactions
with your application. You can use this feature to reproduce a series
of events multiple times, gathering a new set of data during each
successive run. You can then compare the sets of data knowing that
the behavior that generated them was identical. Typically, you would
start with this template and add additional instruments to your
document to gather data.

Creating a Trace Document
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

13

CHAPTER 1

Instruments Quick Start

Template Type Description
Zombies Mac OS X, iPhone | Adds the ObjectAlloc instrument to your document. Use this template
Simulator to measure general memory usage while focusing on the detection

of over-released "zombie" objects.

If you do not want Instruments to ask you for a template when you create a new document, you can enable
the Suppress template chooser option in the Instruments General preferences. For more information about
adding and configuring the instruments in a document, see “Adding and Configuring Instruments” (page

19).

A Tour of the Trace Document Window

A trace document is a self-contained space for collecting and analyzing trace data. You use the document
to organize and configure the instruments needed to collect data, and you use the document to view the
data that you've gathered at both a high and low level.

Figure 1-1 shows a typical trace document. A trace document window presents a lot of information and
therefore has to be well organized. As you work with trace documents, information generally flows from left
to right. The farther right you are in the document window, the more detailed the information becomes.

14

Table 1-2 (page 15) provides descriptions for the key areas of this window.

Figure 1-1 The Instruments window while tracing
Instruments Pane Track Pane
®Ne B Instruments
@@@ & Safariapp © oo:ge: 35@ CSHCH)
] (osomn] Runlofl oo R

Extended Detail Pane

=

Library

Mini View

Instruments

Extended Detail

File Activity

Network Activity ... (3]

. Slack epth |
b 2l

Hd « ..‘I‘ hn“‘

Net Bytes Out Per Second
Net Bytes In Per Second

Net Packets Out Per Second

¥ General
walltimestamp/1000: 18140060
probefunc: fstat
execname: Safari
FD: 30
Path: /System. _nfo.plist
Thread: Dx41de698

=5 .

¥ Stack Trace & Q
Net Packets In Per Second ftat
libSystem.B.dylib
CFURLCreateDataAndPropertiesFromR..
CoreFoundation
_CFBundleCopylnfoDictionarylnDirecto..
CoreFoundation
53] O ry | BXG 3 + | || cFBundieGetinfobictionary
File Activity : Safari — # +|C Eyj\‘gtlon fE) JPa_t‘_Ir[‘ — — ,CFBundIec:ale
WinalliEnns 1668 D C open 29 /dev/autofs_nowait H CoreFoundation
Separate by Thread 1669 [] C open 30 ...tz.framewark/Versions/A/Frameworks /ImageKit.l || ~[NSBundle _cfBundle]
Invert Call Tree 1670 [C fstat 30 ..tz.framework!\a’ersionsmlF(ameworks.’lmagex\[.Iu Foundation
Hide Missing Symbols 1671 [C close 30 ...tz.framework/Versions/A/Frameworks/ImageKit.i4|| ~[NSBundle _initinfoDictionary]
Hide System Libraries 1672 [C close 29 fdev/autofs_nowait Foundation
Show Obj-C Only 1673 [C open 29 fdevfautofs_nowait ~[NSBundie infoDictionary]
Flatten Recursion 1674 [] C open 30 ...amework/Versions/A/Frameworks/QuartzFilters.f Foundation
P Call Tree Constraints 1675 [] C fstat 30 ..amework/Versions/A/Frameworks/QuartzFilters.f || +INSBundle allFrameworks]
1676 [C close 30 ..amework/Versions/A/Frameworks/QuartzFilters.f Foundation
1677 [C close 29 fdev/autofs_nowait ~INSSeriptsuiteRegistry _loadSuitesFor...
FE!EIIE_E Foundation
-[NSSe ry init] -

(= | | File Activity

[Q~ Instrument Detai

A Tour of the Trace Document Window
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

Detail Pane

CHAPTER 1

Instruments Quick Start

Table 1-2 lists some of the key features that are called out in Figure 1-1 (page 14) and provides a more
in-depth discussion of how you use that feature.

Table 1-2 Trace document key features

Feature Description

Instruments pane | This pane holds the instruments you want to run. You can drag instruments into this
pane or delete them. You can click the inspector button in an instrument to configure
its data display and gathering parameters. To learn more about instruments, see “Adding
and Configuring Instruments” (page 19).

Track pane The track pane displays a graphical summary of the data returned by the current
instruments. Each instrument has its own “track,” which provides a chart of the data
collected by that instrument. The information in this pane is read-only. You do use this
pane to select specific data points you want to examine more closely, however. The
track pane is described in more detail in “The Track Pane” (page 43).

Detail pane The Detail pane shows the details of the data collected by each instrument. Typically,
this pane displays the explicit set of “events” that were gathered and used to create the
graphical view in the track pane. If the current instrument allows you to customize the
way detailed data is displayed, those options are also listed in this pane. For more
information about this pane, see “The Detail Pane” (page 47).

Extended Detail | The Extended Detail pane shows even more detailed information about the item
pane currently selected in the Detail pane. Most commonly, this pane displays the complete
stack trace, timestamp, and other instrument-specific data gathered for the given event.
The Extended Detail pane is described in “The Extended Detail Pane” (page 50).

The trace document’s toolbar lets you add and control instruments, open views, and configure the track
pane. Figure 1-2 identifies the different controls on the toolbar, and Table 1-3 (page 15) provides detailed
information about how you use those controls.

Figure 1-2 The Instruments toolbar
Record/Stop Time/Run Mini
Pause/Resume Loop Default Target Inspection Range View rLibrary
Q“f\ I " Il§ Instruments ’V ’;ﬁ
11)(®)(2) (@ safarianp 9 om:p2:ase | (@ o @ (@) (=D (i)
anmmo Temle T Runlafl I T Wmn leaw
Table 1-3 Trace document toolbar controls
Control Description

Pause/Resume button | Pauses the gathering of data during a recording. This button does not actually stop
recording, it simply stops Instruments from gathering data while a recording is
under way. In the track pane, pauses show up as a gap in the trace data.

Record/Stop button | Starts and stops the recording process. You use this button to begin gathering
trace data. For more information, see “Collecting Data” (page 34).

A Tour of the Trace Document Window 15
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Instruments Quick Start

Control

Description

Loop button

Sets whether the user interface recorder should loop during play back to repeat
the recorded steps continuously. Use this to gather multiple runs of a given set of
steps. For information about playing tracks, see “Replaying a User Interface
Track” (page 41).

Default Target menu

Selects the trace target for the document. The trace target is the process (or
processes) for which data is gathered. For more information on choosing a trace
target, see “Choosing Which Process to Trace” (page 31).

Time/Run control

Shows the elapsed time of the current trace. If your trace document has multiple
data runs associated with it, you can use the arrow controls to choose the run
whose data you want to display in the track pane. For information about trace runs,
see “Viewing Trace Runs” (page 44).

Inspection Range
control

Selects a time range in the track pane. When set, Instruments displays only data
collected within the specified time period. Use the buttons of this control to set
the start and end points of the inspection range and to clear the inspection range.
For more information, see “Viewing Data for a Range of Time” (page 50).

Mini button Replaces the visible Instruments trace documents with a smaller, more unobtrusive
form. Use this control in situations where you want to focus on using your
application. For more information, see “Running in Mini Mode” (page 36).

View button Displays a menu with controls for hiding or showing the Detail pane and Extended

pane. For more information, see “The Detail Pane” (page 47) and “The Extended
Detail Pane” (page 50).

Library button

Hides or shows the instrument library. For information on using the Library window,
see “Using the Instrument Library” (page 19).

Example: Performing a Quick Trace

16

To record trace data, specify the target from which you want to gather that data and press the Record button.
Most instruments allow you to target a specific process on the system and some allow you to gather
information for multiple processes.

The following steps show you how to create a new trace document, configure it, and record some data. The
Instruments application should not be running prior to performing these steps.

1. Launch Instruments. The application automatically creates a new trace document and prompts you to

select a template.

2. Select the Activity Monitor template and click the Choose button. Instruments adds the Activity Monitor
instrument to the trace document.

3. Inthe Default Target menu of the trace document, select All Processes.

4. Click the Record button.

5. Wait a few seconds so that Instruments can gather some data.

Example: Performing a Quick Trace
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Instruments Quick Start

6. Click the Stop button.

Congratulations! You have just used Instruments to gather some trace data. Instruments displays several
graphs related to the system load and virtual memory size in the track pane. The Detail pane shows the list
of processes that were running during the data-gathering period. You can select the different view modes
in the Detail pane to see the same data organized in different ways.

What's Next?

Now that you have been introduced to the basic concepts associated with Instruments, you can start exploring
the application in more detail. The remaining chapters provide more in-depth coverage of Instruments
features, including how to add and configure instruments, how to record a user interface track, how to analyze
the data that you gather, and how to save the data you gather for later use.

Remember that program analysis is both an art and a science. On the scientific side, there are some guidelines
that can be followed to find problems. For example, if your application has a large memory footprint, it is
likely that the application will experience paging at some point, which leads to poor performance. The art
comes in determining how to reduce the memory footprint because the answer for every application is
different. Is the application caching too much data? Is it loading too many libraries at launch time and then
not using them? Is it leaking memory? These are the questions you need to ask yourself, and Instruments is
the tool you can use to find the answers.

What's Next? 17
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Instruments Quick Start

18 What's Next?
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

The Instruments application uses instruments to collect data and display that data to the user. Although
there is no theoretical limit to the number of instruments you can include in a document, most documents
contain fewer than ten for performance reasons. You can even include the same instrument multiple times,
with each instrument configured to gather data from a different process on the system.

Instruments comes with a wide range of built-in instruments whose job is to gather specific data from one

or more processes. Most of these instruments require little or no configuration to use. You simply add them
to your trace document and begin gathering trace data. You can also create custom instruments, however,

which provide you with a wide range of options for gathering data.

This chapter focuses on how to add existing instruments to your trace document and configure them for
use. For information on how to create custom instruments, see “Creating Custom Instruments with
DTrace” (page 63).

Using the Instrument Library

The instrument library (shown in Figure 2-1) displays all of the instruments that you can add to your trace
document. The library includes all of the built-in instruments plus any custom instruments you have already
defined. To open this window, click the Library button in your trace document or choose Window > Library.

Using the Instrument Library 19
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

20

CHAPTER 2

Adding and Configuring Instruments

Figure 2-1 The instrument library
800 Library
Group Selector L[l Library B

i

8
o

Instrument List

Leaks - Examines a process’ heap for
leaked memory; use with ObjectAlloc
to give memory address histories.

Spin Monitor - Measures and records
samples during spins.

Sampler - Samples process at a
regular interval.

Process - Records processes being
executed by other processes.

Network Activity Monitor - Measures
and records the system's network
activity

Memory Monitor - Measures and
records the system's overall memory

[

A

e m Gy

&)

Instrument Description — ™

Action Menu ——— M %~

Sampler

Samples process at a regular interval.

Filter Control

Because the list of instruments in the Library window can get fairly long, especially if you add your own
custom-built instruments, the instrument library provides several options for organizing and finding
instruments. The following sections discuss these options and show how you use them to organize the

available instruments.

Changing the Library View Mode

The library provides different view modes to help you organize the available instruments. View modes let
you choose the amount of information you want displayed for each instrument and the amount of space
you want that instrument to occupy. Instruments supports the following view modes:

= View Icons. Displays only the icon representing each instrument.

= View Icons And Labels. Displays the icon and name of each instrument.

= View Icons and Descriptions. Displays the icon, name, and full description of each instrument.

= View Small Icons And Labels. Displays the name of the instrument and a small version of its icon.

Using the Instrument Library

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

Note: Regardless of which view mode you choose, the Library window always displays detailed information
about the selected instrument in the detail pane.

To change the library’s view mode, select the desired mode from the action menu at the bottom of the
Library window.

In addition to changing the library’s view mode, you can display the parent group of a set of instruments by
selecting Show Group Banners from the Action menu. The Library window organizes instruments into groups
for convenience and to help you narrow down the list of instruments you want. By default, this group
information is not displayed in the main pane of the Library window. Enabling the show Group Banners
option adds it, making it easier to identify the general behavior of instruments in some view modes.

Finding an Instrument in the Library

By default, the Library window shows all of the available instruments. Each instrument, however, belongs to
a larger group, which identifies the purpose of instrument and the type of data it collects. You can use the
group selection controls at the top of the Library window to select one or more groups and thereby limit
the number of instruments displayed by the Library window. When there are many instruments in the library,
this feature makes it easier to find the instruments you want.

The group selection controls have two different configurations. In one configuration, the Library window
displays a pop-up menu, from which you can select a single group. If you drag the split bar between the
pop-up menu and the instrument pane downward, however, the pop-up menu changes to an outline view.
In this configuration, you can select multiple groups by holding down the Command or Shift key and selecting
the desired groups.

Figure 2-2 shows both standard mode and outline mode in the Library window. The window on the left
shows standard mode, in which you select a single group using the pop-up menu. The window on the right
shows the outline view, in which you can select multiple groups and manage your own custom groups.

Using the Instrument Library 21
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

Figure 2-2 Viewing an instrument group

w |l Library
D Core Data

Shared Memory - Monitors the "7 File System
opening and unlinking of shared @l Garbage Collection

s M Craphics

= _ ObjectAlloc - Analyzes the memory 71 Input/Qutput
g life-cycle of process' allocated blocks;

_ Bl Master Tracks
can record reference counting events.

71 Memory I.H

™, Leaks - Examines a process’ heap for GC Total - Displays current total bytes
@ leaked memory; use with ObjectAlloc or total objects.
L to give memory address histories.

Garbage Collection - Measures the
reclaim data of the Garbage Collector's
scavenge phase.

OpenGL Driver - Samples Open GL
statistics.

1 User Interface - Records and replays
user events on the desktop.

ﬁ Shared Memory

Monitors the opening and unlinking of shared

memory. =y 8
Samples Open GL statistics.
(3~) (Q Filter B k 3~) (Q_ Filter D

Another way to filter the contents of the Library window is to use the search field at the bottom of the Library
window. Using the search field, you can quickly narrow down the contents of the Library to find the instrument
or instruments whose name, description, category, or list of keywords matches the search text. For example,
Figure 2-3 shows instruments that match the search string file.

22 Using the Instrument Library
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

Figure 2-3 Searching for an instrument
s BN) Library
| [Jll Library H

Core Data Cache Misses - Displays
information about filesystem access
during Core Data faulting.

File Locks - Observes advisory file
locking via the flock APIL

File Attributes - Observes changes to
file attributes such as owner, group,
and mode.

File Activity - Records file open, close,
and stat cperations.

B kB N

Directory 1/0 - Monitors directory
activity, such as links, directory
crealion, moves, etc..

[

("i Reads /Writes - Records reads and
L writes of bytes to files.

Displays information about filesystem access

-) (Q file)

When the pop-up menu is displayed at the top of the Library window, the search field filters the contents
based on the currently selected instrument group. If the outline view is displayed, the search field filters the
contents based on the entire library of instruments, regardless of which groups are selected.

Creating Custom Instrument Groups

In addition to using the built-in instrument groups, you can create custom groups to organize instruments
in a way that better suits your own use patterns. Instruments supports two different types of custom groups:
static groups and smart groups. Static groups are just that—static. Instruments does not change their contents
at all, leaving you free to configure the group however you want. Smart groups, on the other hand, are
dynamic groups whose contents change automatically based on the criteria you specify for the group. You
can use smart groups to show the list of recently used instruments or instruments whose name or description
contains a specific keyword.

Creating a Static Group

To create a static group, select New Group from the Library window's action menu, as shown in Figure 2-4.

Using the Instrument Library 23
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

Figure 2-4 Creating a group

anA Library
rﬁ Library

Core Data Saves - Displays

|'| information about Core Data save

activity.

Core Data Fetches - Displays

|.|' information about Core Data fetch

activity.

= &

Core Data Faults - Displays

|'| information about fault firing in Core

Data.

Core Data Cache Misses - Displays

|'| information about filesystem access

during Core Data faulting.

O View lcons file

O View Icons And Labels

0= View Icons And Descriptions

O- View 5mall Icons And Labels jges to

oup,
Show Group Banners

, close,
MNew Smart Group

Remove Group

Edit ...
Remove From Group
Remove From Library

S C—

Instruments creates a new group and adds it to the Library window. To see the new group and edit its name
and contents, drag the separator bar beneath the pop-up menu to open an upper pane showing the group
structure of the Library, as shown in Figure 2-5. Click on the group and give it a new name.

24 Using the Instrument Library
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

Figure 2-5 Editing the name of a group
e0n Library
» [Library
I e Group I

Empty Selection

(%) (QFilter

To add an instrument to a static group, click Library to display the list of instruments, select the instrument,

and drag it to the group in the upper pane as illustrated in Figure 2-6.

Using the Instrument Library
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

25

26

CHAPTER 2

Adding and Configuring Instruments

Figure 2-6 Adding an instrument to a custom group
anm Library
> LH] Library

Directory 1/O - Menitors directory
m &_ activity, such as links, directory

creation, moves, etc..

File Attributes - Observes changes to
file attributes such as owner, group,
and mode.

AR

File Activity - Records file open, close, m
and stat operations.

Directory /0 - Monitors directory
activity, such as links, directory
creation, moves, etc..

GC Total - Displays current total bytes
or total objects.

Garbage Collection - Measures the
reclaim data of the Garbage Collector's

< @ |

scavenge phase. v
Directory 1/O
| S————
R~) (Q Filter

You can create hierarchical organizations of instruments using static groups. Static groups can include other
static groups and they can also include smart groups. Smart groups cannot contain other groups, however.
To create a hierarchical set of groups, you can do one of the following:

= Drag an existing group to the parent static group.

m Select a static group and choose New Group or New Smart Group to create a new item as a child of the
selected group.

A group that contains other groups displays its own instruments plus the instruments contained in all of its
child groups. If the same instrument is present in multiple groups and the Show Group Banners option is
enabled, then the same instrument is listed under each group that contains it. If the Show Group Banners
option is disabled, however, the Library window coalesces identical copies of an instrument into a single
entry.

To remove an instrument from a static group, do the following:
1. Select the group.
2. In the group, select the instrument you want to remove.

3. Choose Remove From Group from the action menu or simply press the Delete key.

Using the Instrument Library
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

To remove a static group from the Library window, select the group and choose Remove Group from the
action menu. If you are currently viewing groups using the outline view, you can also select the group and
press the Delete key. Removing a static group removes the group and any nested groups it contains. This
operation does not, however, delete the instruments contained in the group from the library. You can always
find the instruments again by looking in the Library group.

Creating a Smart Group

To create a new smart group, choose New Smart Group from the Library window’s action menu. Instruments
displays the rule editor shown in Figure 2-7. The Label field identifies the name of the group as it appears in
the Library window. The rest of the sheet is dedicated to configuring the rules that determine which
instruments reside in the group.

Figure 2-7 The smart group rule editor

Label

ar|

_Include objects where all of the following are true

_Label ¥) | Starts With ¥)

0 matches (Cancel) E 0K ‘)
I

Every smart group must have at least one rule. You can add additional rules, as needed, using the controls
in the rule editor and configure the group to apply all or some of the rules. Table 2-1 lists the criteria you can
use to match instruments.

Table 2-1 Smart group criteria
Criteria Description
Label Matches instruments based on their title. This criterion supports the Starts With,

Ends With, and Contains comparison operators.

Used Within Matches instruments based on when they were used. You can use this criterion
to match only instruments that were used within the last few minutes, hours,
days, or weeks.

Search Criteria Matches | Matches instruments whose title, description, category, or keywords include the
specified string.

Category Matches instruments whose library group name matches the specified string.
This criterion does not match against custom groups.

To edit an existing smart group, select the group in the Library window and choose Edit <Group Name> from
the action menu, where <Group Name> is the name of your smart group. Instruments displays the rule editor
again so that you can modify the existing rules.

Using the Instrument Library 27
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

To remove a smart group from the Library window, select the group and choose Remove Group from the
action menu. If you are currently viewing groups using the outline view, you can also select the group and
press the Delete key.

Adding and Removing Instruments

There are two ways to add an instrument to a trace document:

= You can drag an instrument from the library and drop it onto your trace document.

= You can add an instrument using the action menu of a trace document.

To add an instrument from the library, find the instrument you want and drag it from the Library window to
the Instruments pane of your trace document, as shown in Figure 2-8.

Figure 2-8 Adding an instrument

(N o Ne) B Instruments 1 (=)
0o:00:00 @ =) ()

Run 0 ef O

a6 Library
rﬁ Library 5-6-‘

Core Data Cache Misses - Displays
information about filesystem access
during Core Data faulting.

File Locks - Observes advisory file (7]
locking via the flock APL

File Attributes - Observes changes to
file attributes such as owner, group,
and mede.

R & ®

w

File Activity - Records file open, close,
and stat operations.

I — el 1] Directory 1/0 - Menitors directery
ERORR m]

activity, such as links, directory I Instrument Detai
creation, moves, etc..

GC Total - Displays current total bytes
or total objects.

reclaim data of the Garbage Collector’s |
scavenge phase. v

File Activity

) (Q Filter

[—
ﬁ Garbage Collection - Measures the
=
&4
_ B

The action menu in the bottom-left corner of a trace document includes an Add Instrument submenu that
lists all of the available instruments. Selecting an instrument from this submenu adds it to your trace document.

You can add as many instruments as you like to the Instruments pane. Although some instruments can track
all system processes, many track only a single process. For those instruments, you can use multiple instances
of the instrument and assign each one to a different process if you like. In this way, you gather similar
information for multiple programs simultaneously. For example, you might do this to sample a server process
and one of its corresponding client processes and examine the overall interaction pattern.

28 Adding and Removing Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

To remove an instrument from the Instruments pane, select the instrument and press Delete.

Configuring an Instrument

Most instruments are ready to use as soon as you add them to the Instruments pane. Some instruments can
be also be configured using the instrument inspector. The content of the inspector varies from instrument
to instrument. Most instruments contain options for configuring the contents of the track pane and a few
contain additional controls for determining what type of information is gathered by the instrument itself.

To open the inspector for a given instrument, select the instrument and do one of the following:

m Click the inspector icon to the right of the instrument name.
m Choose File > Get Info.

m Press Command-I.

The inspector panel appears next to the instrument name, as shown in Figure 2-9. To dismiss the inspector,
click the Done button. (The commands you used to open the inspector can also be used to close it.)

Figure 2-9 Inspector for the ObjectAlloc instrument
anNne B Instruments 1 =
@@@ {Launch Executable... &) go:0o:00e (oo @) (@) (=) ()
Record Default Target = Run 0 of 0 = ion Range Mini View Library

Instruments |2 - Iy

E File Activity © e

Choose Target

Track Display

Style: [Line Graph

Type: [Stacked

Zoom: G 1x
Statistics to Graph

O Thread ID H e
™ Stack Depth H e
=l u
(_Done)
O] = 1] i
- | (=l | @ H| = 1 | File Activity Q- Instrurnent Detai 4

Controls related to displaying information in the track pane can be configured before, during, or after your
record data for the track. Instruments automatically gathers the data it needs for each display option regardless
of whether that option is currently displayed in the track pane.

The Zoom control found in most inspectors controls the vertical magnification of the trace data in the track
pane. Changing the zoom value changes the height of the instrument in the track pane. The View > Decrease
Deck Size and View > Increase Deck Size commands do a similar job of decreasing and increasing the track
pane magnification for the selected instrument.

For a list of instruments, including their configurable options, see “Built-in Instruments” (page 75).

Configuring an Instrument 29
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding and Configuring Instruments

30 Configuring an Instrument
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

After you decide which instruments you want to use to gather data, the next step is to choose the process
you want to trace and begin recording data. How you select a process is dependent on the instruments in
your trace document. Some instruments allow tracing of all system processes, others require you to record
data for a single process. Some instruments even expect you to launch the process from Instruments so that
they can gather data from the beginning of its execution.

Instruments provides several options for initiating a trace that make it easier to integrate Instruments into
your development cycle. In this chapter, you learn how to select a process for your trace document and begin
recording data using the available options in Instruments.

Choosing Which Process to Trace

Before you can start collecting data, you must tell Instruments which process you want to trace. You do this
by designating a target process (or processes) using the the Default Target menu in the Instruments toolbar.
This menu provides the following options:

= All Processes. Configures your document to trace all processes on the system.
= Attach to Process. Configures your document to trace an already running process.

= Launch Executable. Configures your document to launch and trace a process. (If the process is already
running, Instruments launches a new copy and traces it.)

= Instrument Specific. Select this item to assign different trace targets to individual instruments.

The following sections describe each of these options in more detail.

Tracing All Processes

Some instruments are capable of collecting data for all processes currently running on the computer. You
can use this ability to profile a type of event or activity across the entire system. For example, you can use
the Disk Activity instrument to trace all read and write operations that occur on your computer over a particular
time period. To trace all running processes, choose All Processes from the Default Target menu.

Choosing Which Process to Trace 31
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

Note: The All Processes item is available only if all instruments in the Instruments pane support it.

Attaching to an Existing Process

If the process you want to trace is already running on the computer, most instruments can attach to that
process and start collecting data. To trace an existing process, choose Attach to Process from the Default
Target menu and select the process to trace, as shown in Figure 3-1.

Figure 3-1 Tracing an existing process

ation
Safari (2749)

mdworker (2748)
& Finder (2724)
4 SystemUIServer (2723)
M Dock (2721)
@ Spotlight (2715)

Launch Executabl
HRET DXeCEanS 4 loginwindow (2700)

Instrument Specific Console

———— " 1 @ mDNSResponderHel (2753)
m{;ﬂimr = Measures and re W PubSubAgent (2750)
|B mdworker (2747)

| installdb (2741)

| SyncServer (2734)

B ATSServer (2725)

& pboard (2719)

|M UserEventAgent (2716)
/M launchd (2688)

| SecurityAgent (2645)
|H authorizationhos (2643)
|B DTraceServer (1330)
| UserEventAgent (1319)
| hdiejectd (1015)

| M XrayTSecD (1008)

& iTunesHelper (996)

| usbmuxd (993)

| check_afp (834)

& DTraceServer (806)

|M XrayActivityServ (663)
/M AppleSpell (363)

& launchd (253)

| ATSServer (133)

B Finder (132)

& SystemUIServer (131)
/& pboard (128)

| Dock (128)

| Spatlight (126)

| coreaudiod (114)

| launchd (103)
v

Launching an Executable from Instruments

If the process that you want to trace is not already running on the computer, or if you want to control the
conditions under which that process is launched, choose Launch Executable from the Default Target menu.
Instruments remembers any recently launched processes and adds them to the Launch Executable menu
for quick access. If the process you want to launch is not in that menu, select Choose Executable to display
the panel shown in Figure 3-2

32 Choosing Which Process to Trace
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

Figure 3-2 Choosing an executable to launch
e Select Executable
[«]»] [ee]= | IIEI] (2 Applications |:l (Q, search
» DEVICES \._ Address Book m

I 7'+ AppleConnect
» SHARED)
1| [AppleScript S
¥ PLACES | & Automator
[Desktop || calculator
£} steve & Chess
&-— & Dashboard :

7 Docume... .| B Dictionary i

v
L ETTIATY

Environment Variable

Value

Arguments

+ E Apply to All Instruments

[T Traverse Packages

Cancel

Open

The Choose Executable panel not only lets you select the program to launch but it also lets you specify how
to launch the selected program. Table 3-1 lists the additional controls in this panel and explains how you

use them.
Table 3-1 Options for launching an executable
Control Description

Environment Variable

Identifies environment variables you want to set before running the process. You
might use this option if your program has debugging options that are enabled
using an environment variable. Use the plus (+) and minus (-) buttons to add or
remove environment variables.

Arguments Use this field to specify any launch arguments for the application. The arguments
you specify are the same ones you would use from the command line when
launching the application there.

Apply to All Sets the specified application as the target for all instruments in the trace document.

Instruments This option is enabled by default. Disabling it lets you assign different targets to

different instruments in your trace document. You might use this feature when
you have two copies of the same instrument or when you want to trace the behavior
of two processes running side by side.

Traverse Packages

Displays bundles (such as applications and plug-ins) as a navigable directory
structure. Use this feature if the executable you want to run is inside a bundle.

Choosing Which Process to Trace 33
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

Specifying a Different Target for Each Instrument

When you choose All Processes, Attach to Process, or Launch Executable from the Default Target menu,
Instruments sets the default target for all instruments to the program you choose. There are occasions,
however, when you might want to set a different target for each instrument. You might want to sample two
different programs at the same time, for example, using the Sampler instrument. If you have some instruments
that are capable of tracing all processes, you might want them to do just that while single-process instruments
sample just one process.

To assign trace targets on a per-instrument basis, do the following:

1. In the Default Target menu, select the Instrument Specific option.
2. Select one of your instruments.

3. Open the instrument inspector by clicking its information icon.

4. Intheinspector window, use the pop-up menu in the Target section to set the target for the instrument,
as shown in Figure 3-3.

Figure 3-3 Choosing per-instrument trace targets
(ole e B Instruments
(w)(e)(@) 00:00:00 ©
Record Default Target Sl Lubebd | b on Range

Instruments [

==
é« Sampler Target

= "Choose Target v

Choose Executable...

> CPU Monitor 1] Attach to Process 3

Track Display -
Style: | Deepest Stack Trace)

Type: (Overlay

Zoom: £ 1x

(_Done)

5. Repeat steps 2 through 4 for each of your other instruments.

Collecting Data

After you've selected a process to trace, you are ready to start collecting data. Click the Record button (or
choose File > Record Trace) to begin gathering the trace data. When you click Record, Instruments launches
the specified executable or attaches to the specified processes and starts gathering data.

34 Collecting Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

Note: When you click the Record button, Instruments may display one or more authentication panels. Many
instruments require you to authenticate as an administrative user before they record any data. Instruments
is a powerful tool that enables you to see into running applications, and as such, it should be used only by

authorized users.

When recording begins, the instruments start collecting data. Instruments displays the collected data in the
track and Detail panes immediately. The Time control in the Instruments toolbar also shows you how much
time has elapsed since you began recording. To stop collecting data, click the Stop button or choose File >
Stop Trace.

During recording, if you want your program to continue running, but do not want Instruments to gather
data, press the Pause button in your trace document. Instruments stops gathering data temporarily but does
not stop the current recording run. Pressing the Resume button causes Instruments to continue gathering
data at the current recording time. Thus, pausing and resuming leaves a data gap in the Track pane.

Launching Instruments Using Quick Start Keys

Quick Start keys are global key combinations that let you launch the Instruments application and begin
collecting trace data immediately using a specific document template. You can use this feature if you are
running an application and see something—such as a bug or unresponsive behavior—that you want to
capture right away. You can associate different key combinations with different Instruments templates to
capture different types of behavior.

To assign a Quick Start key combination, open the Instruments preferences and navigate to the Quick Start
pane. This pane displays the list of Instruments templates that you can assign to key combinations. All
templates start without a key combination. To assign one, find the row containing the desired template and
double-click its Key column to create an editable cell. While the cell is in edit mode, press the key combination
you want to use. For example, to assign the key combination Command-Option-1, press the Command,
Option, and number 1 key all at the same time.

To remove a key combination from a template, select a row and press Delete.

Note: Quick Start key combinations should use at least two key modifiers (Command, Option, Control, Shift).
You should avoid choosing key combinations that are commonly used by other applications.

To gather data for an application using a Quick Start Key, do the following:

1. Place the cursor over a window belonging to the application you want to trace.

2. Press the appropriate key combination to begin tracing.

3. Exercise the application.

4., When you want to stop tracing, you have two options:

m Place the cursor over one of the application’s windows and press the key combination again.

= Find the trace document that was opened and press the Stop button.

Launching Instruments Using Quick Start Keys 35
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

Because Quick Start Keys require you to move the cursor over one of the application’s windows, you can
initiate multiple trace sessions for different applications using the same Quick Start Key without stopping
any of the previous traces. You could also start different types of traces for the same application using different
key combinations and have them all gathering data at the same time.

Running in Mini Mode

Mini mode provides a way for you to minimize the visual footprint of the Instruments application while
gathering your data. When you are gathering data from certain types of applications, particularly
graphics-oriented applications, there may be times when you want to gather data while remaining focused
on your own application. Mini mode hides all open trace documents and in their place displays a small floating
window that you can use to start and stop tracing. An added advantage of mini mode is that the Instruments
application itself requires less drawing and therefore has less of an impact on system performance.

Figure 3-4 shows the mini Instruments window with several trace documents open. Instruments shows only
three trace documents at a time in Mini mode, but you can use the up and down arrows to find the document
you want.

Figure 3-4 The Mini Instruments window

Mini Instruments

-

Safari3.trace |

Instruments3.trace

Clicking the record button next to a trace document begins recording data for that document. The document
must already have its instrument and target process configured before tracing can begin. During tracing,
Instruments displays the elapsed time since tracing began but displays no other instruments, controls, or
data.

To enable Mini mode, click the Mini button in the toolbar of any open trace document. To disable Mini mode,
click the close box in the mini Instruments window. You can also toggle between standard and mini modes
by choosing choose View > Mini Instruments from the menus.

Running Instruments from Xcode

36

During development, you can launch your programs in Instruments directly from the Xcode user interface.
This integration lets you quickly launch Instruments and gather trace data in much the same way that you
would launch your program and debug it using GDB.

The Run > Start with Performance Tool menu in Xcode provides several options for launching your program
using the available performance tools, including Instruments. When launching your program in Instruments,
you tell Xcode which Instruments template you want to use by selecting the appropriate menu item. Xcode
launches Instruments, creates a trace document using the specified template, sets the target to your program,
and tells Instruments to launch your program and start recording.

Running in Mini Mode
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

In addition to the existing templates in the Start with Performance Tool menu, Xcode lets you add custom
trace templates to this menu as well. For information on how to save a trace template and add it to this
menu, see “Saving an Instruments Trace Template” (page 61).

Connecting Wirelessly to an iOS Device

To collect data from an iOS application that uses an external accessory, you can create a wireless connection
between Instruments and your device. You may also use a wireless connection when a wired connection is
impractical or inconvenient.

Software requirements: This feature is available in iPhone SDK 3.1 and later.

In general, if you do not need to attach an external accessory to your device, you should use a wired
connection. The wireless connection is slower than the wired connection and requires more power from the
device to accommodate the heavy traffic that can come from Instruments. As a result, using a wireless
connection drains the device’s battery more rapidly than using a wired connection.

Important: For Instruments to be able to connect wirelessly to your device, both your Mac and the device
must have Wi-Fi networking turned on and must be connected to the same Wi-Fi access point. This access
point must be configured to provide Bonjour services.

To create a wireless connection between Instruments and your device:

1. Connect your device to your computer using a USB cable.

2. In Xcode, install your application on the device.

3. InInstruments, open or create a trace document.

Connecting Wirelessly to an iOS Device 37
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Recording Trace Data

4. Press the Option key and choose “Enable <device_name> - Wireless” from the Default Target menu, as
shown in “Connecting Wirelessly to an iOS Device.”

Figure 3-5 Creating a wireless connection between Instruments and an iOS device

aen Instruments

@@@ (Gunchxecambiea) | ~ 00:00:00 0

Run 0 of 0 >
= My Computer !

)

All Processes
Attach to Process »
Launch Executable >

Instrument Specific

(Q~ Category

I3 | OO | All Objects |

d

After a moment, a wireless target appears in the Default Target menu, named “<device_name> Wireless.”
If the wireless target does not appear, your Wi-Fi access point may not be configured to support Bonjour
traffic.

At this point you have two Instruments servers running on your device: one using the wired connection
and the other using the wireless connection.

5. Disconnect the USB cable from your device and connect the external accessory.
Even if you are not using an external accessory, you should disconnect the USB cable from your device
to conserve memory.

Now you can use Instruments to gather performance data about your application, as described in “Choosing

Which Process to Trace” (page 31).

The wireless connection remains in effect even after quitting Instruments or locking your device. You can
continue using the wireless connection while the network connectivity conditions described earlier remain.

To terminate the wireless connection:
1. In Instruments, open a trace document.
2. Press the Option key and choose “Disable <device_name> - Wireless” from the Default Target menu.

After a moment, the “<device_name> Wireless” target dims, indicating the wireless connection and
Instruments server are terminated.

38 Connecting Wirelessly to an iOS Device
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with a User Interface Track

A user interface track records a series of events or operations in a running program. After the events are
recorded, you can replay that track multiple times to reproduce the same sequence of events over and over.
Each time you replay a user interface track, you can collect data using other instruments in your trace
document. The benefit of doing so is that you can then compare the data you gather on each successful run
and use it to measure the changes in your application’s performance or behavior.

Recording a User Interface Track

You record a user interface track with the User Interface instrument. You add this instrument to your trace
document just as you would any other instrument. When you click the Record button in your document, the
User Interface instrument gathers events related to user input, such as mouse and keyboard events. It collects
these events and displays them in the track pane for you to see and examine.

Note: If you create a new trace document using the Ul Recorder template, Instruments automatically adds
the User Interface instrument to the document for you.

After you have gathered a set of events for the user interface track, the title of the Record button changes
to Drive & Record. Pushing this button again causes Instruments to drive the user interface, replaying the
sequence of events you recorded previously. While it does this, the other instruments in your trace document
gather data as usual. Upon completion of the event stream, you should have a new run of data to examine.
Figure 4-1 shows a trace document with a User Interface track and several other instruments. Here, the user
interface track already contains a sequence of events that are ready to be replayed.

Recording a User Interface Track 39
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with a User Interface Track

Figure 4-1 Recording a user interface track

B Instruments

oo:o00:5t e

Runlofl »|

Instruments

'u User Interface i

|Triggers | Type Key |Title 'Location {
Mouse Moved 4

User Interface # | 4+m
v Drive & Capture 106
Selected run is driver.

Trlggers

| Left Mouse Down 787, 336
Trlggers
Left Mouse Up 787, 336

e | rgges)

W User Interface Events)

[Q~ Instrument Detail

Important: User interface recording takes advantage of accessibility features normally used by screen readers
and other assistive devices for disabled persons. To ensure that your computer supports this feature, open
the Universal Access pane of System Preferences and make sure the “Enable access for assistive devices”
setting is enabled.

The Detail pane for the User Interface instrument lists the events that were recorded, the location of the
event, and the key that was pressed, if any. The instrument can also capture a screen shot of the area affected
by the user action. A thumbnail version of the screen shot is shown in both the track pane and the detail
pane. Each event is color-coded according to its type:

= Mouse events are blue.
= Key events are green.

= System events are yellow.

Rerecording a User Interface Track

40

If, after capturing a sequence of events, you decide that you did not get the sequence right, you can go back
and recapture the sequence as needed until you get it right. Before you recapture the sequence, though,
you must tell Instruments not to drive the user interface using the old event sequence. The Action section
of the User Interface inspector contains a pop-up menu that lets you specify how you want that instrument
to run. Normally, after you capture a sequence of events, the Action setting is automatically set to Drive. To
recapture, you must change the setting to Capture. After you have done that, you can begin recording the
new sequence. Because the Action setting switches back to Drive after each recording, recapturing a sequence
several times requires that you change the Action setting back to Capture every time you record.

Rerecording a User Interface Track
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with a User Interface Track

Replaying a User Interface Track

After you have recorded a user interface track, you can replay that track to reproduce the sequence of user
events that you recorded. After recording a sequence of events, Instruments automatically changes the title
of the Record button to Drive & Record. Clicking this button launches the selected application and performs
each of the actions recorded in the user interface track. At the same time, Instruments begins collecting data
for any active instruments in the Instruments pane.

After each successful run of the user interface track, Instruments displays the results of that run in the track
pane. To change the active set of results in the track pane, you can use the arrows in the Time control. Clicking
these arrows cycles through each of the available data sets, updating the display for each of the available
instruments.

You can also view all of the runs for an instrument at the same time so that you can compare them. Each
instrument includes a disclosure triangle on its left side. Clicking this control expands the instrument and
displays the data from all of the previous runs side by side, as shown in Figure 4-2.

Figure 4-2 Viewing multiple runs

0 O (o] B Instruments =
00:00:20 ©

4 Run3of3

Instruments
s(Bewece o (OO -

12y S bjectAlloc i

A

Run 2 0g:00:20 :: [L35
- s uﬂ Dﬂ Eﬂ :

> ﬁl‘ File Activity "Trk Dt’ipth ' I

While collecting trace data, you can have Instruments repeat the events in the user interface track multiple
times in succession by clicking the Loop button in the document toolbar. The state of the button is sticky,
so clicking it enables looping and clicking it again disables it. When looping is enabled, Instruments runs the
event sequence in a continuous loop, gathering a new set of trace data each time through the loop. You
might use this feature to repeat a sequence of events that exhibits undesirable behavior after a number of
tries. You can also use looping to stress-test your application by keeping it constantly busy.

Replaying a User Interface Track 1
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Working with a User Interface Track

42 Replaying a User Interface Track
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Because Instruments lets you gather data from multiple instruments simultaneously, the amount of data
available to you can quickly get overwhelming. Fortunately, Instruments devotes much of its interface to
organizing and displaying data in ways that help you analyze and navigate that data. Understanding the
different areas of your trace document window is essential to spotting trends and finding potential problem
areas.

Every trace document includes the following interface elements:

m The Track pane
m The Detail pane
m The Extended Detail pane

= The Run Browser

Each of these elements show you the exact same data in your trace document; they just show it in very
different ways, ranging from high-level overviews to detailed information about each data point. The idea
is to give you different ways to visualize your data. You can view the high-level data to look for general trends,
and then look at the detailed data to find out exactly what is happening in your code and formulate ideas
on how to fix potential issues.

In addition to the user interface options, many instruments can be configured to present their data in several
different ways. You can use these configuration options during the analysis phase to get fresh perspectives
on the gathered data.

In this chapter, you learn how to use the information provided to you by Instruments and how you can modify
the way that information is presented it to suit your workflow needs.

Tools for Viewing Data

The following sections describe key elements of the Instruments user interface and how you use those
elements to view trace data.

The Track Pane

The most prominent portion of a trace document window is the track pane. The track pane occupies the
area immediately to the right of the instruments pane. This pane presents a high-level, graphical view of the
data gathered by each instrument. You use this pane to examine the data from each instrument and to select
the areas you want to investigate further.

Tools for Viewing Data 43
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

44

CHAPTER 5

Viewing and Analyzing Trace Data

The graphical nature of the track pane makes it easier to spot trends and potential problem areas in your
program. For example, a spike in a memory usage graph indicates a place where your program is allocating
more memory than usual. This spike might be normal, or it might indicate that your code is creating more
objects or memory buffers than you had anticipated in this location. An instrument such as the Spin Monitor
instrument can also point out places where your application becomes unresponsive. If the graph for the Spin
Monitor is relatively empty, you know that your application is being responsive, but if the graph is not empty,
you might want to examine why that is.

Figure 5-1 shows a sample trace document and calls out the basic features of the track pane. You use the
timeline at the top of the pane to select where you want to investigate. Clicking in the timeline moves the
playhead to that location and displays a set of inspection flags, which summarize the information for each
instrument at that location. Clicking in the timeline also focuses the information in the Detail pane on the
surrounding data points; see “The Detail Pane” (page 47).

Figure 5-1 The track pane

r Show/Hide Cycle through
Trace Runs Trace Runs
r Timeline r Playhead r Inspection flag
ane B Instruments
(W(0)(@) [©ssmnapp |] [_omnizie (B (=] -
Record Default Target l‘ Run 3 of 3[a16 min |r:specuun Range Mini View
Instruments. To ’v
75 Frame§s —mm — ¥ ¥ —— I

mmﬂn\ ill i“‘\ H’Wm [

Although each instrument is different, nearly all of them offer options for changing the way data in the track
pane is displayed. In addition, many instruments can be configured to display multiple sets of data in their
track pane. Both features give you the option to display the data in a way that makes sense for your program.

il ‘“I\ i1

The sections that follow provide more information about the track pane and how you configure it.

Viewing Trace Runs

Each time you click the Record button in a trace document, Instruments starts gathering data for the target
processes. Rather than append the new data to any existing data, Instruments creates a new trace run to
store that data. A trace run constitutes all of the data gathered between the time you clicked the Record
button and stopped gathering data by clicking the Stop button. By default, Instruments displays only the
most recent trace run in the track pane, but you can view data from previous trace runs in one of two ways:

m Use the Time/Run control in the toolbar to select which trace run you want to view.

= Click the disclosure triangle next to an instrument to display the data for all trace runs for that instrument.

Figure 5-2 shows an instrument that has been expanded to show multiple trace runs. In this example, several
trace runs have been collected, each of which was generated from a slightly different set of events. You
might gather multiple trace runs when you are trying to reproduce a problem that does not occur every
time, creating new trace runs until the problem surfaces. If you want to compare multiple trace runs using
the exact same set of events, however, you need to create a user interface track, a process that is described
in “Working with a User Interface Track” (page 39).

Tools for Viewing Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Figure 5-2 Viewing multiple runs of an instrument

ane By Safari trace =
oo:gl:lie

Run 3 of 3 >

Ir_;" File Activity

LR 00 00: 04

r(lvlnstr'ur'ﬂar'u Detail

When you save a trace document, Instruments normally discards the data from all runs except the one that
is currently selected. It does this to keep the size of your trace documents from becoming too large. If you
want to save all trace runs for your documents, go to the General tab of the Instruments preferences and
uncheck the Save Current Run Only option.

Displaying Multiple Data Sets for an Instrument

Some instruments are capable of displaying multiple streams of data inside their corresponding track pane.
You can configure which streams of data are displayed using the instrument inspector, as shown in Figure
5-3. The Statistics to Graph section lists all of the integer-based data values gathered by the instrument.
Selecting the checkboxes in that section adds the corresponding statistics to the track pane.

Tools for Viewing Data 45
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Figure 5-3 Configuring the statistics to graph

B File_activity

_ |Stack Depth

IJLJ.IML. il m‘lhu]mm.nu.. TR T T

lal bk

Target

(_All Processes

A o

Track Display
Style: (_Filled Line Graph ™
Type: (Stacked]
Zoom: () 2%
Statistics to Graph
O Thread ID o=
 Stack Depth He
H e

*

¥ FD
Bytes

(- Instrument Detail

For information about the data gathered by each instrument, see “Built-in Instruments” (page 75).

Changing the Display Style of a Track

Instruments provides several different styles for graphing data in the track pane. Most instruments choose
a style that makes the most sense for the type of data they are displaying. You can change the selected style
for an instrument using the Style pop-up menu in the instrument’s inspector. Figure 5-4 shows several of
the styles.

46 Tools for Viewing Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Figure 5-4 Track styles

r Peak Graph r Filled Line Graph Line Graph | Block Graph

e - % MRS

IJLJ.IML. [T -mihulm.n..lu.. [T | PO T

w File Activity i SIaCkl 2epth
- Bytes
> eads /Writes [i]
Bl gl |l A il (kA

@0 e B ||ile_activity

[
A
Stack Depth
\.N_‘AMH‘_.‘.M sy TN
Stack Depth
L3 ! File Attributes [i]
—eseee

Stack Depth

[Directory 1/O [}
S e — 11

W | File Activity (Q- Instrument Detai
/

Note: The style option you choose affects all of the data streams displayed by the instrument.

Zooming in the Track Pane

Instruments supports zooming in and out on track pane data along both the vertical and the horizontal axes.

= To change the horizontal (time) scale, use the slider control below the instruments pane.

= To change the vertical (amplitude or volume) scale, select an instrument and do one of the following:
[Open the instrument’s inspector and use the Zoom slider there.
[Select the View > Increase Deck Size menu item to increase the zoom factor.

[—Select the View > Decrease Deck Size menu item to decrease the zoom factor.

For horizontal zooming, Instruments expands or contracts the track pane around the current playhead
position. If you set the playhead to a particular point before zooming, you can zoom in or out on the data
under that point.

The Detail Pane

After you identify a potential problem area in the track pane, you use the Detail pane to examine the data
in that area. The Detail pane displays the data associated with the current trace run for the selected instrument.
Instruments displays only one instrument at a time in the Detail pane, so you must select different instruments
to see different sets of details.

Tools for Viewing Data 47
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

48

CHAPTER 5

Viewing and Analyzing Trace Data

Different instruments display different types of data in the Detail pane. Figure 5-5 shows the Detail pane
associated with the File Activity instrument, which records information related to specific file system routines.
The Detail pane in this case displays the function or method that called the file system routine, the file
descriptor that was used, and the path to the file that was accessed. For information about what each
instrument displays in the Detail pane, see “Built-in Instruments” (page 75).

. .
Figure 5-5 The Detail pane
ano B File_activity =
(0)(®)(@) [Alprocesses 00:00:36 ©
>
- Runlofl o = fiew T,
Instruments i i i
Stack Oepth 2
File Activity i l ‘L
wid | .l W |l hdn o b ow, Ll el PRI
Bytes
> Reads/Writes (/]
IRl e |ELN. - | — NN AN
Stack Depth b
[£1] [
File Activity # +F Caller Function Executable | FD Path
¥ Call Tree 1 [-[WMUMemory_File initWi... open ReportCr.. 3 ...vices.framework/Versions/A/DictionaryServices &
Separate by Thread 4 [-[VMUMemory_File initWi... open ReportCr.. 3 .. Frameworks/IOKit.framework/Versions /A/IOKit
Invert Call Tree 7 [-[¥MUMemory_File initWi... open ReportCr.. 3 ...bitration.framework/Versions/A/DiskArbitration
Hide Missing Symbols 10 [-[WMUMemory_File initWi... open ReportCr.. 3 Jusr/libflibbsm.dylib
Hide System Libraries 13 [-[VMUMemory_File initwi... open ReportCr.. 3 Jusr/lib/libxslt. 1.dylib
Shaw Obj-C Only 16 [-[VMUMemory_File initwi... open ReportCr.. 3 Jusr/lib/dyld
Flatten Recursion 19 [_CFStreamOpen open ReportCr... -1 ..ry/Managed Preferences /root/ReportCrash.plist
» Call Tree Constraints 20 [] _CFStreamDpen open ReportCr... -1 ([Library/Managed Preferences/ReportCrash.plist
21 [_CFStreamOpen open ReportCr... -1 ...ences/ByHost/ReportCrash.0016cbalb6ad.plist
22 [] _CFStreamOpen open ReportCr... -1 /var/root/Library/Preferences/ReportCrash.plist
23 [_CFStreamOpen open ReportCr. 3 _../ByHost/.GlobalPreferences.0016cbalb6ag.plist
25 [_CFStreamOpen open ReportCr.. 3 ...ot/Library/Preferences/.ClobalPreferences.plist
27 [_CFStreamOpen open ReportCr... -1 /Library/Preferences/ReportCrash.plist v
#-| (= 3 =z| O | File Activity) Q- Instrument Detai y
Action Menu - L Navigation path { Search
Full-Screen Mode - L Open Extended Detail Pane
Show/Hide Detail Pane — L Diagram
— Outline mode
— Table mode

To open or close the Detail pane, do one of the following:

= Choose View > Detail.

m Click the View button in the toolbar and select Detail from the pull-down menu.

m Click the Toggle Detail Pane button at the bottom left of the trace document window, next to the Full

Screen mode button.

= Select Detail from the Action menu at the bottom of the Instruments window.

Changing the Display Style of the Detail Pane

For some instruments, you can display the data in the Detail pane using more than one format. The Detail
pane supports the following formatting modes:

= Table mode displays a flat list of aggregated sample data.

= Outline mode displays a hierarchical list of samples, typically organized using stack trace or process

information.

Tools for Viewing Data

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

= Diagram mode displays a list of the individual samples.

To view an instrument’s data using one of these formats, click the appropriate mode button along the bottom
of the Detail pane (see Figure 5-5 (page 48)). Which modes an instrument supports depends on the type of
data gathered by that instrument. For example, the Sample instrument supports only table and outline
modes, but the Network Activity instrument supports all three modes.

When displaying data in Outline mode, you can use disclosure triangles in the appropriate rows to dive
further down into the corresponding hierarchy. Clicking a disclosure triangle expands or closes just the given
row. To expand both the row and all of its children, hold down the Option key while clicking on a disclosure
triangle.

Sorting in the Detail Pane

You can sort the information displayed in the Detail pane according to the data in a particular column. To
do so, click the appropriate column header. The columns in the Detail pane differ with each instrument.

Searching in the Detail Pane

You can type a string in the search field in the lower-right corner below the Detail pane to narrow down the
list of information displayed in the Detail pane. By default, Instruments applies the specified search string
against all of the data recorded by the instrument. With some instruments, however, you can refine the scope
of your search even further. For example, use the ObjectAlloc instrument to apply the search string against
specific subsets of the instrument data, such as the library or routine that created the memory block. You
can even search for objects at a specific memory address.

The filter scoping criteria varies from instrument to instrument. To specify the desired scope, click the
magnifying glass in the search field and choose from the available options. Figure 5-6 shows the search
options for the ObjectAlloc instrument.

Figure 5-6 Filtering the Detail pane

ObjectAlloc : Safari # Object Address Category Creation Time Size Responsible Library Responsible Caller
¥ Allocation Lifespan 0 0x20ea00 GeneralBlock-128 00:00.410 128 dyld _dyld_start
@ All Objects Created 1 0x20ea80 GeneralBlock-16 00:00.410 16 dyld _dyld_start
O Created & Still Living 2 0x20eal0 GeneralBlock-16 00:00.410 16 dyld _dyld_start
¥ Call Tree 3 O0x20eaad GeneralBlock-32 00:00.410 32 dyld _dyld_start
4 0x20eacd CeneralBlock-32 00:00.410 32 dyld _dyld_start

Separate by Thread

\vert Call Tree 5 Dx20eacl NSRecursiveLock 00:00.410 80 dyld _dyld_start
= ng Symbals 6 0x20ea00 GeneralBlock-128 00:00.411 128 dyld _dyld_start
m Libraries 7 0x20ea00 GeneralBlock-32 00:00.411 32 libGLProgrammabi... std::_Rb_tree<long, std::pair...
Show Obj-C Only 8 0x20ea20 GeneralBlock-32 00:00.411 32 libGLProgrammabi... std::_Rb_tree <long, std::pair.
Flatten Recursion 9 0x20ea40 GeneralBlock-32 00:00.411 32 libGLProgrammabi. . std::_Rh_tree<long, ir
»_Call Tree Constraints 10 0x20ea60 CeneralBlock-32 00:00.411 3z I\bGL_Pragrammabl .. std :_Rb_(ree<|o|j|g.._s(d::palr...
11 0x220eal GeneralBlock-32 00:00.480 32 AppKit +[NSApplication initialize]
12 Oxfa20eald CFArray (store-deque) 00:41.057 144 Foundation -[NSCFArray insertObject-atin
13 0Oxfa20eal CFArray (store-deque) 00:41.057 80 Foundation ~[NSCFArray insertObject:atin..
14 Oxfa20eal CFString 00:41.057 32 Foundation ~[NSCFString substringWithRa.
15 Oxfa20eald CFDictionary (key-st... 00:48.667 16 SystemConfiguration SCDynamicStoreCopyValue
16 Oxfa20eal CFDictionary (key-st... 00:48.667 16 SystemConfiguration SCDynamicStereCopyProxies
#-|=l| @ EH | = | 22 [0 | All Objects (- 0x20ed)

Category
Responsible Library
Responsible Caller

¥ Matches All
Matches Any

Tools for Viewing Data 49
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

50

CHAPTER 5

Viewing and Analyzing Trace Data

Viewing Data for a Range of Time

Although zooming in on a particular event in the track pane lets you see what happened at a specific time,
you may also be interested in seeing the data collected over a range of time. You use the Inspection Range
control (shown in Figure 5-7) to focus on the data collected in a specific time range.

Figure 5-7 Inspection Range control

Set Start of Range
Clear Range
’V |— Set End of Range

O 0D

To mark a time range for inspection, do the following:
1. Set the start of the range.
a. Drag the playhead to the desired starting point in the track pane.

b. Click the leftmost button in the Inspection Range control.

2. Setthe end of the range.
a. Drag the playhead to the desired endpoint in the track pane.

b. Click the rightmost button in the Inspection Range control.

Instruments highlights the contents of the track pane that fall within the range that you specified. When you
set the starting point for a range, Instruments automatically selects everything from the starting point to the
end of the current trace run. If you set the endpoint first, Instruments selects everything from the beginning
of the trace run to the specified endpoint.

You can also set an inspection range by holding the Option key and clicking and dragging in the track pane
of the desired instrument. Clicking and dragging makes the instrument under the mouse the active instrument
(if it is not already) and sets the range using the mouse-down and mouse-up points.

When you set a time range, Instruments filters the contents of the Detail pane, showing data collected only
within the specified range. You can quickly narrow down the large amount of information collected by
Instruments and see only the events that occurred over a certain period of time.

To clear an inspection range, click the button in the center of the Inspection Range control.

The Extended Detail Pane

For some instruments, the Extended Detail pane shows additional information about the item currently
selected in the Detail pane. To open or close the Extended Detail pane, do one of the following:

m Choose View > Extended Detail.

Tools for Viewing Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

= Click the Toggle Extended Detail Pane button at the bottom of the Instruments window, next to the
navigation bar.

= (Click the View button and choose Extended Detail from the pull-down menu.

m Select Extended Detail from the action menu at the bottom of the Instruments window.

The Extended Detail pane usually includes a description of the probe or event that was recorded, a stack
trace, and the time when the information was recorded. Not all instruments display this information, however.
Some instruments may not provide any extended details, and others may provide other information in this
pane. For information about what a particular instrument displays in this pane, see the instrument descriptions
in “Built-in Instruments” (page 75).

Figure 5-8 shows the Extended Detail pane for the ObjectAlloc instrument. In this example, the instrument
displays information about the type of memory that was allocated, including its type, pointer information,
and size.

Figure 5-8 Extended Detail pane

[_Jakél ObjectAlloc trace -
(o)) 00:00:56 © [e=]
- Run 1lof1 > ibrary
Instruments Extended Detail
¥ Description 3
ObjectAlloc i Category: NSRectSet .‘n
Type: Malloc)
Pointer: Ox2b7b30 }
Retain Count: 1 }
Size: 32 b
|
¥ Stack Trace #- Q|
calloc }
@ = 1] libSystem.B.dylib |
ObjectAlloc : Safari # Object Category Creation | Size|Responsible Responsible Caller _internal_class_createlnstanceFromZone }
¥ Allocation Lifespan 4..0x39... GeneralBlock... 00:11... 32.. Foundation -[NSHTTPCookieStora.. 4 libobje.A.dylib }
@ All Objects Created 4. 0x2ac700 CFData 00:11... 48 Foundation -[NSHTTPCookieStora. _internal_class_createlnstance)
O Created & Still Living 4..0x326000 CFString 00:11... 32... Foundation -[NSHTTPCookieStora... libobjeAdylib 1
v Call Tree 40330000 GeneralBlock... 00:11... 5. Foundaton -INSHTTPCookieStora.., (L) ¥INSObiect alocithZane]
] Separate by Thread 4. 0x2a2c770 CFArray 00:11... 32 Foundation -[NSHTTPCookieStora. IE ‘-;r”"’”""'?""’"
EY inwert Call Tree 4., 0x2ac7e0 CFSet 00:11.... 80 Foundation -[NSHTTPCookieStora... Tl)
Hide Missing Symbals 4..0xBSCe00 | CFSet (key-st... 00:LL... 1024 Foundation -INSHTTPCookieStora... | | oo éﬁﬁﬁ.‘iﬁ?ﬂ;ﬁun‘m
7 Hide System Libraries 4. 0x2ac830 CFString 00:11.... 32 Foundation -[NSHTTPCookieStora. = P -
7 Show Obj-C Only 4., 0xB5%e00 CFString (store) 00:11... 512 Foundation -[NSHTTPCookieStora... [HSVi AppKit =
= vkt 4..0x2ac730 CFtring 00:1L.. 32 Foundation -[NSHTTPCookicStora.., | | (MSVieW recushveDsplaReciiesd.
S 4. Ox2ac5ad CFString 00:11... 32 Foundatien -[NSHTTPCookieStora. — mm““:‘;ﬁ;w“mm”d
4. 0x2ac760 CFNumber 00:11.... 16 Foundation -[NSHTTPCookieStora... = o
4. 0x2ac5c0 CPDictionary 00:11... 64 Foundation -[NSHTTPCookieStora... S
4. 0x2ac600 CFDictionary (. 0D:11.. 64 Foundation -[NSHTTPCookieStora. R T B
4., Ox2ac640 CFDictionary (... 00:11.... 64 Foundation -[NSHTTPCookieStora... clapin
4. 0x22¢750 CFString 00:1l... | 16 Foundation -[NSHTTPCookieStora... | i\VieW recursiveDisplayRectifNeed..
4.. 0x2ac490 CFString 00:11.... 32 Foundation -[NSHTTPCookieStora... | ¥ Abex P 1
-[NSThemeFrame _recursiveDisplayRe... |,
-3 EH | = | II| 0 Al Objects) (o] DALl 4

For instruments that display stack trace information in the Extended Detail pane, double-clicking an entry
for which you have source code opens the source file in Xcode. You can also configure the information shown
in the stack trace using the Action menu at the top of that section. Clicking and holding the Action menu
icon displays a menu from which you can enable or disable the options in Table 5-1.

Table 5-1 Action menu options
Action Description
Invert Stack Toggles the order in which calls are listed in the stack trace.
Tools for Viewing Data 51

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

52

CHAPTER 5

Viewing and Analyzing Trace Data

Action Description

Color by Library Highlights each symbol according to the library to which it belongs.

Source Location Displays the source file that defines each symbol whose source you own.

Library Name Displays the name of the library containing each symbol.

Frame # Displays the number associated with each frame in the stack trace.

File Icon Displays an icon representing the file in which each symbol is defined.

Trace Call Duration Creates a new Instruments instrument that traces the selected symbol and
places that instrument in the Instruments pane.

Look up API Documentation | Opens the Xcode Documentation window and brings up documentation, if
available, for the selected symbol.

Copy Selected Frames Copies the stack trace information for the selected frames to the pasteboard
so that you can paste it into other applications.

In addition, if you have an Xcode project with the source code for the symbols listed in a stack trace, you can
double-click a symbol name in the Extended Detail pane to launch Xcode and jump to the relevant source
code.

The Run Browser

The Run Browser is a way to view and manage previous runs quickly. If your trace document contains numerous
runs, you can use this mode to scan those runs for the one you want and promote it to the top of the list.
You can also delete runs and add comments to runs from this view.

To open the Run Browser, select View > Run Browser.

“The Run Browser” shows the Run Browser view in Instruments. Clicking views on either side of the selected
view scrolls the new view into focus. To enter a comment for a view, double click the text in the Comment
field to make it editable. To exit the Run Browser view, click the return arrow button in the bottom-right
portion of the window.

Tools for Viewing Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Figure 5-9 The Run Browser
®NO Instruments. (e
(w)(e)(=) 06:00:57 0
Record Default Target - Run 4 of 4 = Inspection Range Mini View Library

Run:
Captured: 09-12 16:19:30 -0700

Duration:

Executable: B Leopard @ Applications @ Safari.app

Architecture: 386, Little Endi. 32 Bit
OS Version: Mac 05 X, 10.5,
Environment:
Arguments:

Comment: Enter Comment

Delete Run Promote Run

Analysis Techniques

Gathering and viewing trace data is easy. Analyzing that data and locating potential problems is hard. It is
this latter task where the art of performance tuning and debugging comes into play. Recognizing patterns
in the massive amounts of data gathered by performance tools can be daunting, even for experienced
developers. This is where having the right tools (and knowing how to use them) makes all the difference.
The instruments that come with the Instruments application provide many different options for organizing
and filtering trace data. The following sections describe some of the behaviors and options available for
specific instruments and how you use those instruments to identify issues in your code.

Analyzing Data with the Sampler Instrument

The Sampler instrument is a tool for performing a statistical analysis on a running application. Performing a
statistical analysis involves stopping an application at regular intervals and recording information about what
was executing at that moment in time. For each thread, the Sampler instrument records information about
the functions and methods currently on the stack, including the name of the function or method and the
module that owns it. After gathering the data, it coalesces the call stack information from the individual
samples to form a master call tree for the application. This tree shows all of the execution paths that were
seen during sampling and how many times each one was seen.

Analysis Techniques 53
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

54

CHAPTER 5

Viewing and Analyzing Trace Data

The advantage of statistical sampling is that it is a lightweight and convenient way to find out what your
application is doing over a period of time. The technique can be used on any application without specially
instrumenting the code, and it usually offers a reasonably accurate picture of your application’s runtime
behavior.

The disadvantage of statistical sampling, however, is that it does not give you a 100% accurate picture of
what your application is doing. Because it only takes snapshots of the call stack at periodic intervals, the
Sampler instrument does not record an exact history of all of the functions and methods that were executed.
With typical sampling intervals on the order of 1 to 10 milliseconds, it is possible for a lot of functions and
methods to be called between samples. Despite this seemingly inaccurate picture, statistical sampling does
work for most applications when enough samples are gathered. Over time, the distortions caused by the
sampling interval tend to smooth out as more samples are gathered. As a result, statistical sampling is still
a good way to gather information about your application quickly and without too much effort.

Note: The Sampler instrument replaces the Sampler application, which is not available in Mac OS X v10.5
and later.

Analyzing the Call Stack Data

The purpose of the Sampler instrument is to show you where your application is spending its time. It does
this by showing you which functions were called and how often they were called.

The place to start in the Sampler tool is the Track pane. By default, the track pane graphs the maximum call
stack depth for all the threads of the application. (You can also change this graph to show the CPU load
instead.) Because it offers a visual approach, the Track pane can help you spot trends in your code. Repeated
patterns can indicate similar code paths being executed. The shape of different sections can also give some
indication as to what they were doing. By clicking in an interesting area, you can then begin analyzing the
data at that area using the Detail pane.

The Detail pane is where you do a more in-depth analysis of your code. The Detail pane supports both the
Table and Outline viewing modes. Table mode presents you with the time-ordered list of samples. You can
use this list to see what code was executing at a given point in your application. In Outline mode, you are
presented with the sample data organized by call stack. From this view, you can look at each execution
branch of each thread and see which ones have unusually large numbers of samples. Expanding each thread
lets you see the individual methods and functions and the number of samples gathered for each one. To
expand an entire hierarchy all at once, hold down the Option key while clicking the disclosure triangle.

In addition to starting at a thread’s main routine and searching for heavy branches, you can also invert the
call tree to start at the leaf nodes and see which methods and functions were called most often. Inverting
the call tree can help quickly identify methods and functions that are perhaps being used too frequently.
You can then expand the tree from these leaf nodes to find out who called that method or function and how
often. While doing this, it is often helpful to display the number of milliseconds the given method or function
spent running so that you can correlate the number of samples with the actual amount of time that function
used.

Analysis Techniques
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

Note: Although the Sampler instrument reports the amount of time spent in a given branch, these times
are only approximations. You can use these values to determine roughly where your application spent its
time but should not use them as performance metrics to determine how fast your code is.

The Extended Detail pane provides you with additional views of the sample data. In Table mode, the pane
displays the data gathered by the selected sample, which includes the stack traces for all threads running
when the sample was taken. In Outline mode, it shows the deepest stack trace containing the selected
method or function.

Filtering the Contents of the Detail Pane

Table 5-2 lists the high-level configuration options you can apply to samples gathered with the Sampler
instrument. You use these options to focus your analysis on the events that occurred at a particular time or
that involve a particular portion of your code.

Table 5-2 Configuration options for the Sampler instrument
Configuration Description
section
Sample Choose between displaying all samples that were captured or only those that were
Perspective captured while the specified thread (or threads) were running. Viewing all samples

can give you a complete picture of the behavior of a thread over a period of time,
including how much time was spent blocked or waiting for data. Viewing only the
running samples provides an approximate picture of how much time was spent actually
executing your code. (The actual running time may differ somewhat from the time
reported by Instruments so you should use the reported values only as a rough guide.)

Call Tree Choose these options to flatten or hide uninteresting parts of the call tree. You can
separate out symbols that were gathered from different threads of execution, hide
missing symbols or libraries, flatten branches of the call tree that contain recursive
calls, and more. These options help you trim irrelevant portions of the call tree and
organize the remaining data in ways that make it easier to spot trends.

Call Tree Choose the constraints for the data you want to view. You can use these configuration
Constraints fields to prune the current data set. The Sampler instrument supports constraining
data based on the number of samples gathered in a branch or the number of
milliseconds spent executing a branch.

Active Thread Choose the thread you want to analyze. Focusing on a specific thread displays only
the samples for that thread, making it easier to see what the thread was doing. Viewing
all threads lets you see all of the work being performed by your application.

The Call Tree configuration options offer several ways to trim down the call tree without removing any sample
data. When you hide or flatten a set of symbols, Sampler applies the samples for those symbols to the calling
function or method. This lets you remove any symbols that you cannot control and focus on your own code
and how much time it took to execute.

Alternatively, the Call Tree Constraints actually remove sets of samples from the view to let you focus on
code paths that meet specific criteria. For example, you might use a time-based constraint to focus on code
paths that took at least 100 milliseconds to run.

Analysis Techniques 55
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

56

CHAPTER 5

Viewing and Analyzing Trace Data

When applying an instrument’s configuration options, do not forget that you can also constrain the sample
data based on when those samples were gathered. The Inspection Range control in each trace document
lets you view the data from a specific set of sample points. This feature works in combination with all of the
instrument’s other configuration options. For more information on how to use the Inspection Range control,
see “Viewing Data for a Range of Time” (page 50).

Analyzing Data with the ObjectAlloc Instrument

The ObjectAlloc instrument is a tool for tracking all of the memory allocations made by an application. You
can then use that information to identify memory allocation patterns in your application and identify places
where your application is using memory inefficiently. The ObjectAlloc instrument provides data trimming
and pruning facilities that are equal to or better than the former ObjectAlloc application. Because it is
integrated with the Instruments environment, you can also use the instrument to correlate your application’s
memory behavior with other types of behavior.

Because it tracks memory allocations over the life of an application, you must launch your application from
Instruments so that the ObjectAlloc instrument can gather the data it needs. At launch time, the ObjectAlloc
instrument uses existing hooks in the system to record information about allocation and deallocation events
in your application, whether those events originated with the standard system malloc routines or your own
custom malloc library. As data flows in, the instrument updates its displays in real time to show you how
memory is being allocated.

The ObjectAlloc instrument works with applications that use the standard malloc functions (such asmalloc,
calloc, and free) but also works with garbage collected applications. In the latter case, the collector still
issues free calls for GC-aware memory. The ObjectAlloc instrument also works with routines built on top of
malloc, including the memory allocation routines in both Core Foundation and Cocoa.

Note: The ObjectAlloc instrument replaces the ObjectAlloc application, which is not available in Mac OS X
v10.5 and later.

Analyzing the Object Allocation Data

The purpose of the ObjectAlloc instrument is to show you how your application is using memory. Memory
is an important system resource that you should use wisely. Each memory allocation has both an immediate
cost and a potential long-term cost. The immediate cost is the time it takes to allocate the memory, which
could involve creating new virtual memory pages and mapping them into physical memory. It could also
involve writing out stale memory pages to disk. Long term, keeping blocks resident in physical memory can
trigger additional paging in the system, which as with all paging operations can seriously hamper performance.

Like all tools, the place to start in the ObjectAlloc tool is the Track pane. In its default configuration, the Track
pane graphs the net amount of memory currently in use by your application. Using the instrument’s inspector,
you can change this view to show the allocation density, which shows you where the memory allocations
occurred, or you can display the stack depth. The allocation density graph lets you see how frequently memory
allocations occurred throughout your program. Spikes in the allocation density can indicate potential
bottlenecks that you might want to mitigate by preallocating some blocks or being more lazy about other
blocks.

Regardless of which display options you set using the inspector, the Track pane displays the allocations for
all types of objects by default. To focus on a specific subset of memory allocations, you can use the Detail
pane to configure which objects you want to include in the Track pane’s graph. To focus on a particular
object type or block size, open the Detail pane and set it to Table mode. In this mode, the Detail pane sorts

Analysis Techniques
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

memory allocations by object type or size. The Graph column contains checkboxes for selecting which objects
you want to graph. Disabling the All Allocations checkbox (which is enabled by default) and enabling the
checkbox for another object type updates the Track pane accordingly. If you enable multiple checkboxes,
the ObjectAlloc instrument layers the graphs on top of each other using different colors.

The Detail pane (while it is in Table mode) displays other useful information to help you spot potential
allocation issues. The net versus overall allocations column of the table shows a histogram of the currently
active objects and the total number that were ever created. As the ratio of net allocations to overall allocations
shrinks, the color of the histogram bar changes. Blue histogram bars represent a reasonable ratio while colors
shifted towards the red spectrum represent lower ratios that might warrant some investigation.

Although Table mode is very useful for getting an overall picture of your allocations, the Detail pane takes
advantage of all three viewing modes. Table 5-3 describes the information presented in each mode and how
you might use that mode to look for problems.

Table 5-3 Analyzing data in the Detail pane

Mode Description

Table Use this mode to see the summary of net versus overall allocations and to choose which objects
you want to graph in the Track pane. Allocations in this mode are grouped by size or object type
initially. Clicking the follow link button next to an object type takes you a level deeper by showing
you the individual allocation events for that object. Clicking the follow link button again shows
you the history of events that occurred at the same memory address.

Outline | Use this mode to see the call trees associated with allocated objects. Clicking the follow link
button next to an object type focuses on the call trees associated solely with that object type.

Diagram | Use this mode to see all objects in the order in which they were allocated. Clicking the follow
link button next to the object address shows the allocation events associated with that memory
address.

The Extended Detail pane for the ObjectAlloc instrument primarily displays stack trace information for the
selected allocation event. For some allocation events, this pane also displays descriptive information about
the event, including the type and size of the event and the object retain count (if any). This information is
there to help you locate the allocation event in your code.

Tracking Reference Counting Events

When you add the ObjectAlloc instrument to your document, the instrument is initially configured to record
only memory allocation and deallocation events. By default, it does not record reference counting events,
such as CFRetain and CFRelease calls. The reason is that recording reference counting events adds
significant overhead to the data gathering process and is not needed in all situations. If your code is leaking
memory, however, you might want to configure the ObjectAlloc instrument to record these events as part
of your effort to track down the leaks. In particular, you can look for any mismatched retain and release events
to see if an object is still retained when the last reference to it is removed.

To enable the gathering of reference counting events, open the inspector for the ObjectAlloc instrument
and enable the “Record reference counts” option.

Analysis Techniques 57
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

58

CHAPTER 5

Viewing and Analyzing Trace Data

Note: The ObjectAlloc instrument found in the Leaks template document comes preconfigured with the
“Record reference counts” option already enabled to help you track down memory leaks.

Filtering the Contents of the Detail Pane

Table 5-4 lists the high-level configuration options you can apply to memory events recorded by the
ObjectAlloc instrument. You use these options to focus your analysis on the events that occurred at a particular
time or that involve a particular portion of your code. All of these options apply only when viewing data in
Outline and Diagram modes. In Table mode, the ObjectAlloc instrument displays the history of all allocations.

Table 5-4 Configuration options for the ObjectAlloc instrument

Configuration section | Description

Allocation Lifespan Choose between displaying all allocation events and those associated with objects
that still exist.

Call Tree Choose these options to flatten or hide uninteresting parts of the call tree. You
can separate out memory blocks based on which thread allocated them, hide
allocations made by system libraries, show allocations made from Objective-C
calls only , and more. These options help you trim irrelevant portions of the call
tree and organize the remaining data in ways that make it easier to spot trends.

Call Tree Constraints Choose the constraints for the data you want to view. You can use these
configuration fields to prune the current data set. The ObjectAlloc instrument
supports constraining data based on the number of allocations made for a given
type or the size (in bytes) of the allocations.

When applying an instrument’s configuration options, do not forget that you can also constrain the sample
data based on when those samples were gathered. The Inspection Range control in each trace document
lets you view the data from a specific set of sample points. This feature works in combination with all of the
instrument’s other configuration options. For more information on how to use the Inspection Range control,
see “Viewing Data for a Range of Time” (page 50).

Looking for Memory Leaks

The Leaks instrument provides leak-detection capabilities identical to those in the 1eaks command-line tool.
This instrument analyzes the in-use memory blocks of your application looking for blocks that are no longer
referenced by your code. Unreferenced blocks are deemed “leaks” because they cannot be freed by your
application and continue to occupy memory space until the user quits the application.

Eliminating memory leaks from your application is an important step toward improving your application’s
reliability. This is especially true for applications that are designed to run for long periods of time. Leaks
increase your application’s overall memory footprint, which can lead to paging. Applications that continue
to leak memory may even find themselves unable to complete an operation because they cannot allocate
the necessary memory. In extreme cases, the application may become so impaired that it crashes.

Analysis Techniques
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Viewing and Analyzing Trace Data

The Leaks instrument records all allocation events that occur in your application and then periodically searches
the application’s writable memory, registers, and stack for references to any active memory blocks. If it does
not find a reference to a block in one of these places, it reports the buffer as a leak and displays the relevant
information in the Detail pane.

In the Detail pane, you can view leaked memory blocks using Table and Outline modes. In Table mode,
Instruments displays the complete list of leaked blocks, sorted by size. Clicking the follow link button next
to a memory address shows the allocation history for memory blocks at that address, ultimately culminating
in an allocation event without a matching free event. Selecting one of these allocation events displays the
stack trace for that event in the Extended Detail pane along with general information about the memory
block. In Outline mode, the Leaks instrument displays leaks organized by call tree. You can use this mode to
find out how many leaks are in a specific branch of your code and how much memory was leaked by that
branch. Selecting a branch displays the deepest code path for that branch in the Extended Detail pane.

Table 5-5 lists the configuration options for the Leaks instrument. Many of these options affect how leaks
looks for information, but some affect how leaked buffers are reported.

Table 5-5 Configuration options for the Leaks instrument

Configuration option | Description

Leaks Configuration Use the available option to enable automatic leak detection and to gather the
contents of leaked memory blocks when a leak occurs.

Sampling Options Use the specified field to set the frequency of automatic leak-detection checks.
Leaks Status Displays the time until the next automatic leak-detection pass.

Check Manually Use the provided button to initiate a check for memory leaks.

Call Tree Choose these options to flatten or hide uninteresting parts of the call tree. You

can hide allocations made by system libraries, show allocations made from
Objective-C calls only, and more. These options help you manage the size of the
call tree and organize it in ways that make it easier to spot trends.

For information about the 1eaks command-line tool, see Teaks man page.

Analyzing Core Data Applications

For applications that use Core Data to manage their underlying data model, Instruments provides several
Core Data-related instruments to analyze potential performance issues. These instruments give you insight
into the events happening behind the scenes in Core Data and may help you identify places where your your
application is not fetching or saving data efficiently. Table 5-6 lists the provided instruments and how you
might use each one.

Analysis Techniques 59
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

60

CHAPTER 5

Viewing and Analyzing Trace Data

Table 5-6 Core Data instrument usage

Instrument

Description

Core Data Saves

Use this instrument to find a balance between saving data too often and not saving
it enough. Saving too often can lead to I/O overhead as your program writes data

frequently to the disk. Conversely, saving infrequently can increase the application’s
memory overhead and lead to paging.

Core Data Fetches

Use this instrument to optimize the data your application reads from disk. Fetch
operations that take a long time might be improved by adding more specific
predicates to retrieve only the data needed at that moment. Alternatively, if you
notice gaps of inactivity followed by a large number of fetch requests, you might
want to use those gaps to prefetch data that you know will be needed later.

Core Data Faulting

Use this instrument to track the lazy initialization of an NSManagedObject or its
to-many relationship. Object faults can be mitigated by prefetching the object itself
or the objects to which it is related.

Core Data Cache
Misses

Use this instrument to locate potential performance issues caused by cache misses.
Data not found in the caches must be fetched from the disk. Prefetching objects
during relatively quiet periods can help mitigate cache misses by ensuring the
required objects are already in memory.

The Core Data template creates a new trace document containing the Core Data Fetches, Core Data Cache
Misses, and Core Data Saves instruments. This template is the recommended starting point for analyzing
your Core Data applications.

For more information about tuning a Core Data application, see Core Data Programming Guide.

Analysis Techniques

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Saving and Importing Trace Data

Instruments provides a number of ways for you to save instrument and trace data. For a given Instruments
document window, you can save the trace data you've recorded with that document or you can save the
instrument configuration of that document. Saving the trace data lets you maintain a record of your
application’s performance over time. Saving the document configuration avoids the need to recreate a
commonly used configuration each time you run Instruments.

The following sections explain how to save your trace documents and also how to export trace data to formats
that other applications can read.

Saving a Trace Document

To save a set of instruments together with the data that they have collected over one or more trace sessions,
choose File > Save. Instruments saves the current document as an Instruments trace file, with the . trace
extension.

By default, Instruments saves only the trace data collected on the most recent run. If you have recorded
multiple runs and want Instruments to save all of that data, you must deselect the Save Current Run Only
option in the General pane of Instruments Preferences before saving the document.

Saving an Instruments Trace Template

During your development cycle, you may want to gather data at several points by running Instruments on
your application using a fixed set of instruments. Rather than reconfigure the same set of instruments in your
trace document each time you run Instruments, you can configure the trace document once and save it as
a trace template. Choose File > Save As Template to save your document’s current instruments and
configuration (including any user interface tracks) as a template.

Trace template documents are not the same as the Instruments templates that appear when you create a
new document. You open a trace template in the same way that you open other Instruments documents,
by choosing File > Open. When you open a trace template, Instruments creates a new trace document with
the template configuration but without any data.

Xcode supports launching your applications using your custom trace templates. To add your trace template
to the Run menu in Xcode, drop the template in the /Users/<username>/Library/Application
Support/Instruments/Templates directory on your local system. To open it, choose it from the Run >
Start with Performance Tool menu.

Saving a Trace Document 61
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Saving and Importing Trace Data

Exporting Track Data

Instruments lets you export trace data to a comma-separated value (CSV) file format. This simple data file
format is supported by many applications. For example, you might save your trace data in this format so that
you can import it into a spreadsheet application.

To save your trace data to a CSV file, select the instrument whose data you want to export and choose
Instrument > Export Data for: <Instrument Name>. Instruments exports the data for the most recent run of
that instrument.

Note: Not all instruments support exporting to the CSV file format.

Importing Data from the Sample Tool

If you use the samp1e command-line tool to do a statistical analysis of your program’s execution, you can
import your sample data and view it using Instruments. Importing data from the samp1e tool creates a new
trace document with the Sampler instrument and loads the sample data into the Detail pane. Because the
samples do not contain time stamp information, you can only view the data using Outline mode in the Detail
pane. And although you can use the Call Tree configuration options of the Sampler instrument to trim the
sample data, you cannot prune data using the Call Tree Constraints or Inspection Range controls.

To import data, choose File > Import Data. Instruments prompts you to select the text file containing the
sample data. It then creates a new trace document based on the file you select.

Working With DTrace Data

62

If your trace document contains custom instruments, you can export the underlying scripts for those
instruments and run them using the dtrace command-line tool. After running the scripts, you can then
reimport the resulting data back into Instruments. For information on how to do this, see “Exporting DTrace
Scripts” (page 73).

Exporting Track Data
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

The built-in instruments of the Instruments application can provide a great deal of information about the
inner workings of your program. Sometimes, though, you may want to tailor the information being gathered
more closely to your own code. For example, instead of gathering data every time a function is called, you
might want to set conditions on when data is gathered. Alternatively, you might want to dig deeper into
your own code than the built-in instruments allow. For these situations, Instruments lets you create custom
instruments.

Custom instruments use DTrace for their implementation. DTrace is a dynamic tracing facility originally
created by Sun and ported to Mac OS X v10.5. Because DTrace taps into the operating system kernel, you
have access to low-level operation about the kernel itself and about the user processes running on your
computer. Many of the built-in instruments are already based on DTrace. And even though DTrace is itself a
very powerful and complex tool, Instruments provides a simple interface that gives you access to the power
of DTrace without the complexity.

DTrace has not been ported to iOS, so it is not possible to create a custom instrument for devices running
iOS.

Important: Although the custom instrument builder simplifies the process of creating DTrace probes, you
should still be familiar with DTrace and how it works before creating new instruments. Many of the more
powerful debugging and data gathering actions require you to write DTrace scripts. To learn about DTrace
and the D scripting language, see the Solaris Dynamic Tracing Guide, available from the OpenSolaris website.
For information about the dtrace command-line tool, see dtrace man page.

Note: Several Apple applications—namely iTunes, DVD Player, and Front Row, and applications that use
QuickTime—prevent the collection of data through DTrace (either temporarily or permanently) in order to
protect sensitive data. Therefore, you should not run those applications when performing systemwide data
collection.

The following sections show you how to create a custom instrument and how to use that instrument both
with the Instruments application and the dt race command-line tool.

About Custom Instruments

Custom instruments are built using DTrace probes. A probe is like a sensor that you place in your code. It
corresponds to a location or event, such as a function entry point, to which DTrace can bind. When the
function executes or the event is generated, the associated probe fires and DTrace runs whatever actions
are associated with the probe. Most DTrace actions simply collect data about the operating system and user
program behavior at that moment. It is possible, however, to run custom scripts as part of an action. Scripts
let you use the features of DTrace to fine tune the data you gather.

About Custom Instruments 63
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

http://www.opensolaris.org/os/downloads/docs/

CHAPTER 7

Creating Custom Instruments with DTrace

Probes fire each time they are encountered, but the action associated with the probe need not be run every
time the probe fires. A predicate is a conditional statement that lets you restrict when the probe’s action is
run. For example, you can restrict a probe to a specific process or user, or you can run the action when a
specific condition in your instrument is true. By default, probes do not have any predicates, meaning that
the associated action runs every time the probe fires. You can add any number of predicates to a probe,
however, and link them together using AND and OR operators to create complex decision trees.

An instrument consists of the following blocks:

m A description block, which contains the name, category, and description of the instrument
= One or more probes, each containing its associated actions and predicates
m A DATA declaration area, which you use to declare global variables shared by all probes

m A BEGIN script, which initializes any global variables and performs any startup tasks required by the
instrument

= An END script, which performs any final clean up actions

All instruments must have at least one probe with its associated actions. Similarly, all instruments should
have an appropriate name and description to identify them to Instruments users. Instruments displays your
instrument’s descriptive information in the library window. Providing good information makes it easier to
remember what the instrument does and how it should be used.

Probes are not required to have global data or begin and end scripts. Those elements are used in advanced
instrument design when you want to share data among probes or provide some sort of initial configuration
for your instrument. The creation of DATA, BEGIN, and END blocks is described in “Tips for Writing Custom
Scripts” (page 71).

Creating a Custom Instrument

64

To create a custom DTrace instrument, select Instrument > Build New Instrument. (You can also choose Add
Instrument > DTrace Instrument from the action menu of your trace document to perform the same action.)
This command displays the instrument configuration sheet, which is shown in Figure 7-1. You use this sheet
to specify your instrument information, including any probes and custom scripts.

Creating a Custom Instrument
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Figure 7-1 The instrument configuration sheet
Instrument Name: DTrace Instrument Category: | Custom Instruments
Description
Description: | DTrace Instrument (Created Fri 08/17 /07 09:4% AM)
Global Data » DATA 1
e . 1l
Initialization B BEGRY |
Code ¥ Probe 1 - pid: : :entry
If the following conditions are met:
Probe | Probe 1 of type (User Process 3 hits |Library Function |entry 5
| Caller) (== 3) | value | AND ¥) =i+
Perform the following script:
Probes
Record the following data:
(_Record in Instruments 3) (Caller 3 =) i
| Record in Instruments 3) (User ID ¥ =] ik
o/
[Record in Instruments %) (Custom +) | this-=varl Variable 1 | Integer +) =&
[Record in Instruments %) [Custom + | my_global_var Global Variable (_String s =)+
> EnD
Clean up code — v
Add/Remove + | — | [User Stack Trace | 3'1 Cancel @
Probe —
Stack Trace Type

At a minimum, you should provide the following information for every instrument you create:

= Name. The name associated with your custom instrument in the library.

= Category. The category in which your instrument appears in the library. You can specify the name of an
existing category—such as Memory—or create your own.

m Description. The instrument description and is used in both the library window and in the instrument’s
help tag.

= Probe provider. The probe type and the details of when it should fire. Typically, this involves specifying
the method or function to which the probe applies. For more information, see “Specifying the Probe
Provider” (page 66)

= Probe action. The data to record or the script to execute when your probe fires; see “Adding Actions to
a Probe” (page 69).

An instrument should contain at least one probe and may contain more than one. The probe definition
consists of the provider information, predicate information, and action. All probes must specify the provider
information at a minimum, and nearly all probes define some sort of action. The predicate portion of a probe
definition is optional but can be a very useful tool for focusing your instrument on the correct data.

Adding and Deleting Probes

Every new instrument comes with one probe that you can configure. To add more probes, click the plus (+)
button at the bottom of the instrument configuration sheet.

To remove a probe from your instrument, click the probe to select it and press the minus (-) button.

Creating a Custom Instrument 65
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

When adding probes, it is a good idea to provide a descriptive name for the probe. By default, Instruments
enumerates probes with names like “Probe 1” and “Probe 2"

Specifying the Probe Provider

To specify the location point or event that triggers a probe, you must associate the appropriate provider with
the probe. Providers are kernel modules that act as agents for DTrace, providing the instrumentation necessary
to create probes. You do not need to know how providers operate to create an instrument, but you do need
to know the basic capabilities of each provider. Table 7-1 lists the providers that are supported by the
Instruments application and available for use in your custom instruments. The Provider column lists the name
displayed in the instrument configuration sheet while the DTrace provider column lists the actual name of
the provider used in the corresponding DTrace script.

Table 7-1 DTrace providers

Provider DTrace Description
provider
User Process pid The probe fires on entry (or return) of the specified function in your

code. You must provide the function name and the name of the library
that contains it.

Objective-C objc The probe fires on entry (or return) of the specified Objective-C method.
You must provide the method name and the class to which it belongs.

System Call syscall The probe fires on entry (or return) of the specified system library
function.

DTrace DTrace The probe fires when DTrace itself enters a BEGIN, END, or ERROR block.

Kernel Function | fbt The probe fires on entry (or return) of the specified kernel function in

Boundaries your code. You must provide the kernel function name and the name

of the library that contains it.

Mach mach_trap The probe fires on entry (or return) of the specified Mach library
function.
Profile profile The probe fires regularly at the specified time interval on each core of

the machine. Profile probes can fire with a granularity that ranges from
microseconds to days.

Tick tick The probe fires at periodic intervals on one core of the machine. Tick
probes can fire with a granularity that ranges from microseconds to
days. You might use this provider to perform periodic tasks that are
not required to be on a particular core.

I/0 io The probe fires at the start of the specified kernel routine. For a list of
functions monitored by this probe, use the dtrace -1 command from
Terminal to get a list of probe points. You can then search this list for
probes monitored by the io module.

66 Creating a Custom Instrument
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Provider DTrace Description
provider
Kernel Process proc The probe fires on the initiation of one of several kernel-level routines.

For a list of functions monitored by this probe, use the dtrace -1
command from Terminal to get a list of probe points. You can then
search this list for functions monitored by the proc module.

User-Level plockstat | The probe fires at one of several synchronization points. You can use
Synchronization this provider to monitor mutex and read-write lock events.
Core Data CoreData The probe fires at one of several Core Data-specific events. For a list

of methods monitored by this probe, use the dtrace -1 command
from Terminal to get a list of probe points. You can then search this
list for methods monitored by the CoreData module.

Ruby ruby The probe fires at one of several Ruby-specific events.

After selecting the provider for your probe, you need to specify the information needed by the probe. For
function-level probes, this may require entering function or method name along with the code module or
class containing it. Some providers may simply involve selecting the appropriate events from a pop-up menu.

After you have configured a probe, you can proceed to add additional predicates to it (to determine when
it should fire) or you can go ahead and define the action for that probe.

Adding Predicates to a Probe

Predicates let you control when a probe’s action is executed by Instruments. You can use them to prevent
Instruments from gathering data in situations you do not care about or that might provide erroneous
information. For example, if your code exhibits unusual behavior only when the stack reaches a certain depth,
you could use a predicate to specify the minimum target stack depth. Every time a probe fires, Instruments
evaluates the associated predicates. Only if they evaluate to true does DTrace perform the associated actions.

To add a predicate to a probe, click the plus (+) button at the end of the Probe line. Instruments adds a new
predicate to the probe, as shown in Figure 7-2. You can add subsequent predicates using the plus (+) buttons
of either the probe or the predicate. To remove a predicate, click the minus (-) button next to the predicate.
To rearrange predicates, click the handle along the left side of the predicate line and drag it to a new location.

Figure 7-2 Adding a predicate

W Probe 1 - pid: : :entry

If the following conditions are met:

Probe point ———— Probe |Probel of type [User Process 3 hits |Library Function (entry 1) +
Predicate —————————— caller $) (== 1) [value _AND D) &

Instruments evaluates predicates from top to bottom in the order they appear. You can link predicates using
the AND and OR operators but you cannot group them to create nested condition blocks. Instead, you must
order your predicates carefully to ensure all of the appropriate conditions are checked.

Creating a Custom Instrument 67
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

68

CHAPTER 7

Creating Custom Instruments with DTrace

The first pop-up menu in a predicate line lets you choose the data to inspect as part of the condition. Table
7-2 lists the standard variables defined by DTrace that you can use in your predicates or script code. The

Variable column lists the name as it appears in the instrument configuration panel, while the DTrace variable
column lists the actual name of the variable used in corresponding DTrace scripts. In addition to the standard
variables, you can test against custom variables and constants from your script code by specifying the Custom
variable type in the predicate field.

Table 7-2 DTrace variables

Variable DTrace variable Description

Caller caller The value of the current thread’s program counter just before
entering the probe. This variable contains an integer value.

Chip chip The identifier for the physical chip executing the probe. This
is a 0-based integer indicating the index of the current core.
For example, a four core machine has cores 0 through 3.

CPU cpu The identifier for the CPU executing the probe. This is a
0-based integer indicating the index of the current core. For
example, a four core machine has cores 0 through 3.

Current Working | cwd The current working directory of the current process. This

Directory variable contains a string value.

Last Error # errno The error value returned by the last system call made on the
current thread. This variable contains an integer value.

Executable execname The name that was passed to exec to execute the current
process. This variable contains a string value.

User ID uid The real user ID of the current process. This variable contains
an integer value.

Group ID gid The real group ID of the current process. This variable contains
an integer value.

Process ID pid The process ID of the current process. This variable contains
an integer value.

Parent ID ppid The process ID of the parent process. This variable contains
an integer value.

Thread ID tid The thread ID of the current thread. This is the same value
returned by the pthread_self function.

Interrupt Priority | ip]l The interrupt priority level on the current CPU at the time the

Level probe fired. This variable contains an unsigned integer value.

Function probefunc The function name part of the probe’s description. This
variable contains a string value.

Module probemod The module name part of the probe’s description. This

variable contains a string value.

Creating a Custom Instrument

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Variable DTrace variable Description

Name probename The name portion of the probe’s description. This variable
contains a string value.

Provider probeprov The provider name part of the probe’s description. This
variable contains a string value.

Root Directory root The root directory of the process. This variable contains a
string value.

Stack Depth stackdepth The stack frame depth of the current thread at the time the
thread fired. This variable contains an unsigned integer value.

Relative timestamp The current value of the system’s timestamp counter,

Timestamp measured in nanoseconds. Because this counter increments

from an arbitrary point in the past, you should use it to
calculate only relative time differences. This variable contains
an unsigned 64-bit integer value.

Virtual Timestamp | vtimestamp The amount of time the current thread has been running,
measured in nanoseconds. This value does not include time
spentin DTrace predicates and actions. This variable contains
an unsigned 64-bit integer value.

Timestamp walltimestamp/1000 | The current number of nanoseconds that have elapsed since
00:00 Universal coordinated Time, January 1, 1970. This
variable contains an unsigned 64-bit integer value.

arg0 through arg0 through arg9 The first 10 arguments to the probe represented as raw 64-bit
arg9 integers. If fewer than ten arguments were passed to the
probe, the remaining variables contain the value 0.

Custom The name of your Use this option to specify a variable or constant from one of
variable your scripts.

In addition to the condition variable, you must specify the comparison operator and the target value.

Adding Actions to a Probe

When a probe point defined by your instrument is hit, and the probe’s predicate conditions evaluate to true,
DTrace runs the actions associated with the probe. You use your probe’s actions to gather data or to perform
some additional processing. For example, if your probe monitors a specific function or method, you could
have it return the caller of that function and any stack trace information to Instruments. If you wanted a
slightly more advanced action, you could use a script variable to track the number of times the function was
called and report that information as well. And if you wanted an even more advanced action, you could write
a script that uses kernel-level DTrace functions to determine the status of a lock used by your function. In
this latter case, your script code might also return the current owner of the lock (if there is one) to help you
determine the interactions among your code’s different threads.

Creating a Custom Instrument 69
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

70

CHAPTER 7

Creating Custom Instruments with DTrace

Figure 7-3 shows the portion of the instrument configuration sheet where you specify your probe’s actions.
The script portion simply contains a text field for you to type in your script code. (Instruments does not
validate your code before passing it to DTrace, so check your code carefully.) The bottom section contains
controls for specifying the data you want DTrace to return to Instruments. You can use the pop-up menus
to configure the built-in DTrace variables you want to return. You can also select Custom from this pop-up
menu and return one of your script variables.

Figure 7-3 Configuring a probe’s action

Perform the following script:

Record the following data:

. Record in Instruments (Caller 3) -

Record in Instruments User ID

- - - - = 7

_Record in Instruments _Custom | | this-»varl Variable 1 _Integer

RN ET
ROIRTIETS
4| |

LTS

. Record in Instruments . Custom J | my_global_var Global Variable String

When you configure your instrument to return a custom variable, Instruments asks you to provide the
following information:

m The script variable containing the data
= The name to apply to the variable in your instrument interface

= The type of the variable

Any data your probe returns to Instruments is collected and displayed in your instrument’s Detail pane. The
Detail pane displays all data variables regardless of type. If stack trace information is available for a specific
probe, Instruments displays that information in your instrument’s Extended Detail pane. In addition,
Instruments automatically looks for integer data types returned by your instrument and adds those types to
the list of statistics your instrument can display in the track pane.

Because DTrace scripts run in kernel space and the Instruments application runs in user space, if you want
to return the value of a custom pointer-based script variable to Instruments, you must create a buffer to hold
the variable’s data. The simplest way to create a buffer is to use the copyin or copyinstr subroutines found
in DTrace. The copyinstr subroutine takes a pointer to a C string and returns the contents of the string in
a form you can return to Instruments. Similarly, the copyin subroutine takes a pointer and size value and
returns a buffer to the data, which you can later format into a string using the stringof keyword. Both of
these subroutines are part of the DTrace environment and can be used from any part of your probe’s action
definition. For example, to return the string from a C-style string pointer, you would simply wrap the variable
name with the copyinstr subroutine as shown in Figure 7-4.

Figure 7-4 Returning a string pointer

Record the following data:

Record in Instruments 7 | Custom *) copyinstr(myStringPtr)| String String Pz

Record No Data 2 =)t

Creating a Custom Instrument
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Important: Instruments automatically wraps built-in variables (such as the arg0 through arg9 function
arguments) with a call to copyinstr if the variable type is set to string. It does not do this with your script’s
custom variables, however. You are responsible for ensuring that the data in a custom variable actually
matches the type specified for that variable.

For a list of the built-in variables supported by Instruments, see Table 7-2 (page 68). For more information
on scripts and script variables, see “Tips for Writing Custom Scripts” (page 71). For more information on
DTrace subroutines, including the copyin and copyinstr subroutines, see the Solaris Dynamic Tracing Guide
available from the OpenSolaris website.

Tips for Writing Custom Scripts

You write DTrace scripts using the D scripting language, whose syntax is derived from a large subset of the
C programming language. The D language combines the programming constructs of the C language with a
special set of functions and variables to help you trace information in your program.

The following sections describe some of the common ways to use scripts in your custom instruments. These
sections do not provide a comprehensive overview of the D language or the process for writing DTrace
scripts, however. For information about scripting and the D language, see the Solaris Dynamic Tracing Guide,
available on the OpenSolaris website.

Writing BEGIN and END Scripts

If you want to do more than return the information in DTrace’s built-in variables to Instruments whenever
your action fires, you need to write custom scripts. Scripts interact directly with DTrace at the kernel level,
providing access to low-level information about the kernel and the active process. Most instruments use
scripts to gather information not readily available from DTrace. You can also use scripts to manipulate raw
data before returning it to Instruments. For example, you could use a script to normalize a data value to a
specific range if you wanted to make it easier to compare that value graphically with other values in your
instrument’s track pane.

In Instruments, the custom instrument configuration sheet provides several areas where you can write DTrace
scripts:

= The DATA section contains definitions of any global variables you want to use in your instrument.
= The BEGIN section contains any initialization code for your instrument.
= Each probe contains script code as part of its action.

m The END section contains any clean up code for your instrument.

All script sections are optional. You are not required to have initialization scripts or clean up scripts if your
instrument does not need them. If your instrument defines global variables in its DATA section, however, it
is recommended that you also provide an initialization script to set those variables to a known value. The D
language does not allow you to assign values inline with your global variable declarations, so you must put
those assignments in your BEGIN section. For example, a simple DATA section might consist of a single
variable declaration, such as the following:

int myVariable;

Tips for Writing Custom Scripts 71
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

http://www.opensolaris.org/os/downloads/docs/
http://www.opensolaris.org/os/downloads/docs/

72

CHAPTER 7

Creating Custom Instruments with DTrace

The corresponding BEGIN section would then contain the following code to initialize that variable:
myVariable = 0;

If your corresponding probe actions change the value of myVariable, you might use the END section of
your probe to format and print out the final value of the variable.

Most of your script code is likely to be associated with individual probes. Each probe can have a script
associated with its action. When it comes time to execute a probe’s action, DTrace runs your script code first
and then returns any requested data back to Instruments. Because passing data back to Instruments involves
copying data from the kernel space back to the Instruments program space, you should always pass data
back to Instruments by configuring the appropriate entries in the “Record the following data:” section of the
instrument configuration sheet. Variables returned manually from your script code may not be returned
correctly to Instruments.

Accessing Kernel Data from Custom Scripts

Because DTrace scripts execute inside the system kernel, they have access to kernel symbols. If you want to
look at global kernel variables and data structures from your custom instruments, you can do so in your
DTrace scripts. To access a kernel variable, you must precede the name of the variable with a single back
quote character (). The back quote character tells DTrace to look for the specified variable outside of the
current script.

Listing 7-1 shows a sample action script that retrieves the current load information from the avenrun kernel
variable and uses that variable to calculate one-minute average load of the system. If you were to create a
probe using the Profile provider, you could have this script gather load data periodically and then graph that
information in Instruments.

Listing 7-1 Accessing kernel variables from a DTrace script

this->Toadla = “avenrun[0]/1000;
this->Toadlb = ((“avenrun[0] % 1000) * 100) / 1000;
this->Toadl = (100 * this->loadla) + this->Toadlb;

Scoping Variables Appropriately

DTrace scripts have an essentially flat structure, due to a lack of flow control statements and the desire to
keep probe execution time to a minimum. Variables in DTrace scripts, however, can be scoped to different
levels depending on your need. Table 7-3 lists the scoping levels for variables and the syntax for using
variables at each level.

Table 7-3 Variable scope in DTrace scripts

Scope | Syntax example Description

Global | myGlobal = 1; Global variables are identified simply using the variable name. All probe
actions on all system threads have access to variables in this space.

Tips for Writing Custom Scripts
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Scope | Syntax example Description

Thread | self->myThreadVar | Thread-local variables are dereferenced from the self keyword. All
=1; probe actions running on the same thread have access to variables in
this space. You might use this scope to collect data over the course of
several runs of a probe’s action on the current thread.

Probe | this->mylocalVar = | Probe-local variables are dereferenced using the this keyword. Only
1; the current running probe has access to variables in this space. Typically,
you use this scope to define temporary variables that you want the
kernel to clean up when the current action ends.

Finding Script Errors

If the script code for one of your custom instruments contains an error, Instruments displays an error message
in the track pane when the script is compiled by DTrace. Instruments reports the error after you press the
Record button in your trace document but before tracing actually begins. Inside the error message bubble
is an Edit button. Clicking this button opens the instrument configuration sheet, which now identifies the
probe with the error.

Exporting DTrace Scripts

Although Instruments provides a convenient interface for gathering trace data, there are still times when it
is more convenient to gather trace data directly using DTrace. If you are a system administrator or are writing
automated test scripts, for example, you might prefer to use the DTrace command-line interface to launch
a process and gather the data. Using the command-line tool requires you to write your own DTrace scripts,
however, which can be time consuming and can lead to errors. If you already have a trace document with
one or more DTrace-based instruments, you can use the Instruments application to generate a DTrace script
that provides the same behavior as the instruments in your trace document.

Instruments supports exporting DTrace scripts only for documents where all of the instruments are based
on DTrace. This means that your document can include custom instruments and a handful of the built-in
instruments, such as the instruments in the File System and CoreData groups in the Library window.
Information about whether an instrument is DTrace-based is included with the instrument description in
“Built-in Instruments” (page 75).

To export a DTrace script, select the trace document containing the instruments and choose File > DTrace
Script Export. This command places the script commands for your instruments in a text file that you can then
pass to the dtrace command-line tool using the -s option. For example, if you exported a script named
MylnstrumentsScript.d, you would run it from Terminal using the following command:

sudo dtrace -s MyInstrumentsScript.d

Exporting DTrace Scripts 73
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Creating Custom Instruments with DTrace

Note: You must have superuser privileges to run dt race in most instances, which is why the sudo command
is used to run dtrace in the preceding example.

Another advantage of exporting your scripts from Instruments (as opposed to writing it manually) is that
after running the script, you can import the resulting data back into Instruments and review it there. Scripts
exported from Instruments print a start marker (with the text <dtrace_output_begin>) at the beginning
of the dtrace output. To gather the data, simply copy all of the DTrace output (including the start marker)
from Terminal and paste it into a text file, or just redirect the output from the dtrace tool directly to a file.
To import the data in Instruments, select the trace document from which you generated the original script
and choose File > DTrace Data Import.

74 Exporting DTrace Scripts
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

A number of instruments come built into the Instruments application. Each instrument has its own
configuration options and way of displaying information, appropriate to the type of data that instrument
collects. The built-in instruments are grouped into a handful of categories, based on the type of information
that the instrument gathers. The following sections describe the built-in instruments in greater detail.

Core Data Instruments

The following instruments gather data related to events in Core Data applications. You can use the information
returned by these instruments to assess the performance implications of various events and to identify
potential courses of action to correct issues.

Core Data Saves

The Core Data Saves instrument records save operations in Core Data applications. This instrument can
operate on a single process or on all processes currently running on the system. It records data only for those
processes that use Core Data. This instrument uses DTrace in its implementation and can be exported to a
DTrace script.

Sample Data in the Detail Pane

This instrument captures the following information:

= Caller. The name of the method that initiated the save operation (including the stack trace information.)

= Save duration. The duration of the save operation in microseconds.

Display Options in the Track Pane

The Track pane can be set to display any of the following data:

m Stack depth. The depth of the call stack.
= Thread ID. The thread identifier.

= Save duration. The duration of the save operation.

Additional Data in the Extended Detail Pane

For each event in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call,
as well as the time at which the event occurred.

Core Data Instruments 75
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

76

CHAPTER 8

Built-in Instruments

Core Data Fetches

The Core Data Fetches instrument records data store fetch operations in Core Data applications. This instrument
can operate on a single process or on all processes currently running on the system. It records data only for
those processes that use Core Data. This instrument uses DTrace in its implementation and can be exported
to a DTrace script.

Sample Data in the Detail Pane

This instrument captures the following information:

= Caller. The name of the method that initiated the fetch operation (including the stack trace information).
m Fetch entity. The name of the entity that was fetched.
m Fetch count. The fetch count for that entity.

m Fetch duration. The duration of the fetch operation in microseconds.

Display Options in the Track Pane

The Track pane can be set to display any of the following data:

= Stack depth. The depth of the call stack.
= Thread ID. The thread identifier.
m Fetch count. The fetch count for that entity.

= Fetch duration. The duration of the fetch operation.

Additional Data in the Extended Detail Pane

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as the time at which the event occurred.

Core Data Faults

The Core Data Faults instrument records fault events that occur during the lazy initialization of an
NSManagedObject or its to-many relationship. This instrument can operate on a single process or on all
processes currently running on the system. It records data only for those processes that use Core Data. This
instrument uses DTrace in its implementation and can be exported to a DTrace script.

Sample Data in the Detail Pane

This instrument captures the following information:

= Caller. The name of the method that triggered the fault (including the stack trace information).
= Fault object. The name of the object that caused the fault.

= Fault duration. The execution duration for the fault handler (specified in microseconds).

Core Data Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

= Relationship fault source.
= Relationship. The relationship name.

= Relationship fault duration. The relationship fault duration (specified in microseconds).

Display Options in the Track Pane

The Track pane can be set to display any of the following data:

= Stack depth. The depth of the call stack.
m Thread ID. The thread identifier.
= Fault duration

= Relationship fault duration

Additional Data in the Extended Detail Pane

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as the time at which the event occurred.

Core Data Cache Misses

The Core Data Cache Misses instrument records fault events that result in cache misses. This instrument can
operate on a single process or on all processes currently running on the system. It records data only for those
processes that use Core Data. This instrument uses DTrace in its implementation and can be exported to a
DTrace script.

Note: This instrument provides a subset of the behavior offered by the Core Data Faults instrument but is
more useful for analyzing your application’s overall performance.

Sample Data in the Detail Pane

This instrument captures the following information:

= Caller. The name of the method that triggered the cache miss (including the stack trace information).
m Cache Miss. The name of the object that caused the cache miss.

= CM duration. The execution duration for the fault handler (specified in microseconds).

= RCM source. The relationship cache miss source.

= RCM relationship. The relationship name.

= RCM duration. The relationship cache miss duration (specified in microseconds).

Display Options in the Track Pane

The Track pane can be set to display any of the following data:

Core Data Instruments 77
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

= Stack depth. The depth of the call stack.
m Thread ID. The thread identifier.
= CM duration. See above.

= RCM duration. See above.

Additional Data in the Extended Detail Pane

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as the time at which the event occurred.

Dispatch Instruments

78

The instrument in this section gathers data related to Grand Central Dispatch (GCD). GCD is a technology for
executing asynchronous tasks concurrently. GCD is available in Mac OS X v10.6 and later and is not available
in iOS.

You need to be familiar with GCD queues and block objects in order to use the Dispatch instrument effectively.
For more information, see Concurrency Programming Guide.

Dispatch

The Dispatch instrument captures information about GCD queues created by your application and about the
block objects that have been executing on these queues. It shows you the behavior of your application in
terms of how your queues and block objects are executing. It records queue lifetimes, and tracks block
invocations and their duration.

Dispatch helps you fine-tune the execution of your blocks. It shows you which blocks have been executing
the most number of times and how long they have taken to execute on the CPU. You can find hot spots in
terms of the blocks you're enqueuing and optimize your code for those blocks. You can also find cases where
you have queues in which blocks are executing synchronously. (GCD queues work more efficiently when
work is performed asynchronously.)

Dispatch operates on a single process. This instrument uses DTrace in its implementation, but Dispatch trace
data cannot be exported to a DTrace script.

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as the time at which the event occurred.

Dispatch provides several different views of the trace data. The primary views are the queues view, the call
tree view, and the blocks view. The call tree view is the default view. You can use buttons located below the
Detail pane to display any of the three primary views.

Queues View

The queues view shows you all the queues the application has created, the blocks that have been executed
on them, and related statistics.

Dispatch Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

The queues view displays the following information:
= Graph. If this option is selected, the Dispatch instrument plots statistics from this queue in the Track
pane.

= Queue Name. The name assigned by the user when the queue is created. The global queue names are
assigned by the system.

m Conc. Indicates that this queue is concurrent (rather than serial).

= Live. Indicates that this queue is active (has not been freed yet).

= # Blocks. Number of blocks currently enqueued but not invoked.

= # Sync. Number of blocks that have been dispatched synchronously.
= Total Processed. Total number of blocks executed.

= Latency. Average time in milliseconds that blocks are on a queue. In other words, the average difference
between invoke time and enqueue time.

= Total CPU Time. Total time in milliseconds that the specified queue’s blocks have been executing on
the CPU.

You can choose to display data from one or more queues in the Track pane. The Track pane can be set to
display any of the following data:

= Blocks Processed. Total number of blocks processed during a specified time period. The default period
is 10 milliseconds.

= Block Count. Number of blocks currently on a queue during a specified time period.
m CPU Usage. Queue CPU activity during a specified time period.
= Work Time. Total CPU time that a queue’s blocks consumed during the specified time period.

= Latency. Average block latency in milliseconds during a specified time period.

For each queue listed in the queues view, you can click its focus button to see a list of the blocks that have
been enqueued and invoked using the queue. This view is useful if you care about the execution order of
your blocks or you want a more detailed view of the stack traces. You can select a block and display the
extended detail view to see the enqueue and invoke stack traces for the block.

Call Tree View

The call tree view aggregates all stack traces and displays them as call trees. If you separate the call trees by
gueue, you can see which queues have had the most activity, in terms of number of blocks invoked.

The call tree view displays the following information:

m % Calls. Percent of total calls in which this stack trace has appeared.
= # Calls. Number of times this stack trace has appeared.

m Library. The name of the framework or bundle in which this stack trace appears.

Symbol Name. The frame identifier of the stack trace.

The Track pane can be set to display any of the following data:

Dispatch Instruments 79
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

= Blocks Invoked. Number of blocks of specified type invoked during the specified time period.

= Total Work Time. Total CPU time that blocks consumed during the specified time period.

For each symbol in the call tree view, you can click its focus button to prune the rest of the tree and focus
on that particular node and its children. You can select a block and display the extended detail view to see
the heaviest stack trace for the block.

Blocks View

The blocks view displays block and queue information. This view shows all blocks executed in a queue context,
including blocks that were not explicitly enqueued. For example, if block A is enqueued and executes block
B, both blocks are listed in the blocks view but only block A is listed in the queues view.

The blocks view displays the following information:

= Graph. If this option is selected, the instrument plots statistics from this block in the Track pane.
= Block Name. The name assigned to this block by the compiler.

= Block Library. The framework or bundle in which the block has been declared.

= Total Work Time. Total execution time for all invocations of this block in microseconds.

= Average Work Time. Average execution time for this block in microseconds.

= Count. Number of invocations of this block.

The extended detail view for a block shows you the maximum invoked stack trace. The block has been mostly
invoked from this stack trace.

You can choose to display data from one or more blocks in the Track pane. The Track pane can be set to
display any of the following data:

= Blocks Invoked. Number of blocks of specified type invoked during the specified time period.

= Total Work Time. Total CPU time that blocks consumed during the specified time period.

For each block in the blocks view, you can click its focus button to see a list of queues used to execute the
block. For each queue, you can click its focus button to see a list of blocks associated with the queue. This
view is useful if you care about which blocks were invoked in the queue context and their order of execution.

Energy Diagnostics Instruments

80

The instruments in this section provide diagnostics regarding energy usage in iOS devices. They also measure
the on-off state of major device components.

iOS devices behave differently when operating on battery power versus external power. This could affect
the data seen in these instruments. The Energy Usage instrument, in particular, will be affected. It's not
effective to measure Energy Usage while the device is connected to external power.

Here’s a typical workflow to use these instruments:
1. Connect the device to your development system.

Energy Diagnostics Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

2. Launch Xcode or Instruments.

3. On the device, Open Settings > Developer and turn on power logging.
4. Disconnect the device and perform the desired tests.

5. Reconnect the device.

6. InInstruments, open the Energy Diagnostics template.

7. Choose File > Import Energy Diagnostics from Device.

Energy diagnostics data is cleared when:

= You turn off power logging on the device.
= You disconnect the device and reboot.

= You drain the battery.

Energy Usage

The Energy Usage instrument measures energy usage since start-up. The instrument provides a macro
measurement of a substantial workflow. The numeric scale is useful for comparison of different runs. Power
source events (flags) are added programmatically.

The detail view displays the following information:

= Energy Usage Level. Relative energy usage on a scale of 0-20.

= Power Source Events. Transitions to battery or external power.

Note: The Energy Usage instrument is currently supported in the iPhone 3GS and the third-generation iPod
touch.

CPU Activity

The CPU Activity instrument gives an indication of what the device is doing. The instrument provides a
condensed version of the Activity Monitor instrumentation.

The detail view displays the following information:

= Time. The time interval for the measurement.

= Total Activity. Percentage CPU activity.

= Foreground App Activity. Percentage foreground app activity.
= Audio Processing. Percentage audio activity.

= Graphics. Percentage graphics activity.

= App Activity. Application state transitions.

Energy Diagnostics Instruments 81
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

Display Brightness

The Display Brightness instrument records changes in brightness that affect energy usage. The instrument
does not record brightness changes due to ambient light sensor.

You can set the default screen brightness by choosing Settings > Brightness. When the screen turns on, the
recording jumps to the preset level. When the screen turns off, the recording drops to zero.

Sleep/Wake

The Sleep/Wake instrument displays a red band if the device is running and darker bands if the device is
sleeping, attempting to sleep, or waking from sleep. During sleep, power measurement goes to zero. This
instrument is useful in correlation with other instruments.

Bluetooth

The Bluetooth instrument displays a red band if Bluetooth is active, or a black band if Bluetooth is off.

WiFi

The WiFi instrument displays a red band if WiFi is active, or a black band if WiFi is off.

GPS

The GPS instrument displays a red band if GPS is active, or a black band if GPS is off.

File System Instruments

82

The instruments in this section analyze file-system information and activity, such as read and write operations,
permissions, and so forth.

I/0 Activity

The 1/0O Activity instrument records I/0 events: calls to functions such as read, write, open,and close that
operate on files. You can use this instrument to launch and sample a single process running on an iOS device.
The I/0 Activity instrument is analogous to the fs_usage utility in Mac OS X, although 1/0 Activity also
provides backtraces with a full call tree view.

In the Detail pane, you can choose one or more of the following categories. Each category contains a set of
probes (BSD functions):

= File Attributes

File System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

getattrlist
setattrlist
lTistxattr

m File Permissions

chmod
fchmod
chown
fchown
Tchown
access

= Open and Close

open
fdopen
fopen
freopen
close
fclose

= Other

1seek
fsync
dup
dup?
link
unTink

= Read and Write

read

pread(2) Mac 0S X Manual Page
readv

write

pwrite

writev

= Shared Memory
shm_open
shm_unlink

= Sockets

recv
recvfrom
recvmsg
send

File System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

84

CHAPTER 8

Built-in Instruments

sendmsg
sendto

= Stats

Istat
Istate4d
stat
stat64
fstat
fstatod

The 1/0 Activity instrument captures the following information:

= Function. The name of the function being called.

= Duration. The duration of the function call in microseconds.

= In File. The input file descriptor.

= In Bytes. The requested number of bytes to read or write.

= Out File. The output file descriptor.

= Out Bytes. The actual number of bytes read or written.

= Thread ID. The thread identifier.

= Stack Depth. The number of stack frames in use during this function call.

= Error. The most recent error during the function call.

= Path. The path to the file on which the executable performed the operation.

= Parameters. Function call parameters. For a full description of the parameters for a specific function,
see the APl documentation.

The Track pane can be set to display any of the following data:

= Sample number

= Call duration

= Input file descriptor
= Input bytes

= Output file descriptor
= Output bytes

m Thread ID

m Stack depth

For any function call, you can open the Extended Detail pane to see the full backtrace for that call. The
instrument also provides a full call tree view in the Detail pane.

The I/0 Activity instrument is sometimes used in tandem with other iOS instruments. For example, you can
use 1/0O Activity with the OpenGL ES instrument to examine the texture-loading process.

File System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

File Locks

The File Locks instrument records advisory file-locking operations that use the f1ock function call. This
instrument can operate on a single process or on all processes currently running on the system. This instrument
uses DTrace in its implementation and can be exported to a DTrace script.

This instrument captures the following information:

= The name of the function
= The caller of the function (including the executable name and stack trace information)
m The path to the file being locked

m The operation type, which is an integer value corresponding to one of the following values (or a
combination of values):

1 - shared lock

2 - exclusive lock

4 - don't block when locking
8 - unlock

The Track pane can be set to display any of the following data:

= Stack depth
m Thread ID

= Timestamp

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

File Attributes

The File Attributes instrument records changes to ownership and access permissions for files in the file system.
This instrument can operate on a single process or on all processes currently running on the system. This
instrument uses DTrace in its implementation and can be exported to a DTrace script. This instrument captures
information about calls to each of the following functions:

m Changes to file permission bits of a file made by the chmod and fchmod functions

= Changes to the file owner and group of a file made by the chown and fchown functions

For each function call, this instrument captures the following information:

= The name of the function
= The caller of the function (including the executable name and stack trace information)
m The path to the file on which the executable performed the operation

= The file descriptor of the file that was modified

File System Instruments 85
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

86

CHAPTER 8

Built-in Instruments

= The mode flags, which indicate the permissions being applied to the file (This value is captured only for
calls to chmod of fchmod.)

m The user ID of the new file owner (This value is captured only for calls to chown of fchown.)

m The group ID of the new group (This value is captured only for calls to chown of fchown.)

Note: For information about how to interpret the mode flags, see the chmod man page.

The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID

m File descriptor

= Mode
= UserID
m GroupID

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

File Activity

The File Activity instrument lets you monitor file system access. This instrument can operate on a single
process or on all processes currently running on the system. This instrument uses DTrace in its implementation
and can be exported to a DTrace script. This instrument captures information about calls to each of the
following functions:

= Open or create a file for reading or writing (open)
m Delete a descriptor from the per-process reference table(close)

m Getinformation about a file (fstat)

For each function call, this instrument captures the following information:

= The name of the function
= The caller of the function (including the executable name and stack trace information)
= The path to the file on which the executable performed the operation

m The file descriptor of the file

The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID

= File descriptor

File System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

Directory 1/O

The Directory 1/O instrument records directory operations, such as moving directories, creating symbolic
links, and so forth. This instrument can operate on a single process or on all processes currently running on
the system. This instrument uses DTrace in its implementation and can be exported to a DTrace script. This
instrument captures information about calls to each of the following functions:

m delete - delete files and directories

m 1ink - create a hard or symbolic link

mkd1ir - create a directory

mount - mount a file system
= rename - change the name of a file or directory

= rmdir - remove a directory

symlink - create a symbolic link

unlink - remove a link

unmount - dismount a file system

For each function call, this instrument captures the following information:

= The name of the function
= The caller of the function (including the executable name and stack trace information)
m The path to the file or directory on which the executable performed the operation

= The new file or directory name (where appropriate)

The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

Garbage Collection Instruments

The instruments in this section collect information on memory reclaimed by the garbage collector. To use
these instruments, the program must be built for garbage collection and must be run with garbage collection
enabled. See Garbage Collection Programming Guide for information about writing and building a program
for garbage collection.

Garbage Collection Instruments 87
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

88

CHAPTER 8

Built-in Instruments

GC Total

The GC Total instrument tracks the total number of objects and bytes allocated and reclaimed by the garbage
collector. This instrument can operate on a single process or on all processes currently running on the system.
This instrument uses DTrace in its implementation and can be exported to a DTrace script. It records data
only for those processes that have garbage collection enabled.

This instrument captures the following information:

= The function that initiated the reclamation of objects (including the stack trace information)
= The number of objects reclaimed by the garbage collector

= The total number of bytes reclaimed by the garbage collector

= The total number of allocated bytes still in use

= The total number of bytes, both reclaimed and in use

The Track pane can be set to display any of the following data:

m Stack depth

m Thread ID

m Objects reclaimed
m Bytes reclaimed

m Bytesin use

= Total bytes

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

Garbage Collection

The Garbage Collection instrument measures the reclaim data of the Garbage Collector’s scavenge phase.
This instrument can operate on a single process or on all processes currently running on the system. This

instrument uses DTrace in its implementation and can be exported to a DTrace script. It records data only
for those processes that have garbage collection enabled.

This instrument captures the following information:

= The function that initiated the reclamation of objects (including the stack trace information)
= The zone in which the memory is allocated

= Whether the event is generational (1 for yes, 0 for no)

= The number of objects reclaimed by the garbage collector

= The number of bytes reclaimed by the garbage collector

= The duration of the scavenge event (specified in microseconds)

The Track pane can be set to display any of the following data:

Garbage Collection Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

m Stack depth
m Thread ID
= Zone

m s generational (the generational collector finds older objects no longer in use that are missed by the
non-generational collector, but takes longer to run and is therefore run less frequently)

m Objects reclaimed
m Bytes reclaimed

= Duration

For entries in the Detail pane, you can open the Extended Detail pane to see the stack trace for that call, as
well as any available probe information and the time at which the event occurred.

Graphics Instruments

The following instruments gather graphics-related data.

Core Animation

The Core Animation instrument measures the number of Core Animation frames per second in a process
running on an iOS device. Offscreen frames are counted as well.

In addition, the Core Animation instrument can provide visual hints that help you understand how content
is rendered on the screen. The instrument has a number of options that allow you to select specific types of
rendering hints. The hints work in any application running on the device. It is not necessary to record samples
to activate the hints. The hints are turned off when you close the Instruments document or delete the

instrument. If there is an OpenGL surface being displayed, the rendering hints have no effect on the surface.

The instrument includes the following rendering hints:

= Color Blended Layers. Puts a red overlay over layers that were drawn with blending enabled. Puts a
green overlay over layers drawn without blending.

m Color Copied Images. Puts a cyan overlay over images that were copied by Core Animation.
m Color Immediately. Don't wait 10 ms after performing a color-flush operation.

= Color Misaligned Images. Puts a magenta overlay over images whose source pixels aren't aligned to
destination pixels.

= Color Offscreen-Rendered Yellow. Puts a yellow overlay over offscreen-rendered content.
= Color OpenGL Fast Path Blue. Puts a blue overlay over content that's detached from the compositor.

= Flash Updated Regions. Flashes updated screen regions yellow.

You can use these rendering hints to find out if you're doing unnecessary drawing—that is, redrawing content
that hasn’t changed.

Graphics Instruments 89
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

920

CHAPTER 8

Built-in Instruments

The Track pane displays the frames per second. The Extended Detail pane shows the statistics at each sample
point.

OpenGL Driver

The OpenGL Driver instrument samples OpenGL statistics. This instrument can operate on a single process
or on all processes currently running on the system.

This instrument captures the following information:

m Buffer swap count

= Client GLWait time

= Command2 DBytes per sample
m Context2 DCount

m Context GLCount

m Free Context Buffer2 DWait time
= Gart size bytes

= Surface count

m Texture count

= Vram free bytes

= and much more...

To see the full list of captured data, install the instrument and open the Extended Detail pane.

The Track pane indicates when the data was gathered. The Extended Detail pane shows the statistics at each
sample point.

OpenGL ES

The OpenGL ES instrument queries the GPU driver on an iOS device to sample OpenGL statistics for a single
process. The instrument helps you determine how efficiently you're using OpenGL and the GPU on the device.

Note: Apple has shipped various GPUs, each with a different set of statistics. Instruments is unaware of what
statistics will be displayed until it queries the device.

The GPU hardware effectively has two components: a tiler and a renderer. A scene is tiled and then rendered.
The tiler and renderer components are often working on different scenes. The utilization of each component
may reach 100%.

Tiler and renderer utilization can be useful for determining bottlenecks. A low renderer utilization might
mean the process is stuck waiting for tiling, in which case decreasing scene complexity might help. Low tiler
and renderer utilization can imply a CPU bottleneck elsewhere in a program.

This instrument captures the following information:

Graphics Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

= Context Count. The number of global OpenGL contexts. Note that there are other processes running
(for example, SpringBoard) that can be responsible for creating a context. This statistic is useful for
keeping an eye on any errant contexts that didn't get destroyed.

= Command Buffer Allocated Bytes. The number of bytes allocated to store and submit command buffer
data. This space is used to submit all OpenGL commands and vertex data specified by the user.

= Command Buffer Submitted Bytes. The number of command buffer bytes submitted to the driver. The
number includes all OpenGL commands and vertex data specified by the user. Submitted Bytes is
incremented for every submission, by the total amount of memory used in that submission. You may
want to divide by the Submit Count value to get an idea of average per-submission usage (this average
should be slightly less than Allocated Bytes, because the allocated size is bound to what is actually being
used.)

= Command Buffer Submit Count. Incremented when a command buffer is pushed to the GPU (each of
which may contain 0 or more scenes).

= Command Buffer Implicit Submit Count. Incremented whenever a command buffer submission happens
early—for example, when running out of command buffer space.

= Renderer Utilization %. The percentage of the renderer that is currently being used.
= Tiler Utilization %. The percentage of the tiler that is currently being used.

= Device Utilization %. Records any device activity. The hardware is considered used if either the tiler or
renderer, or anything else, is active.

= Tiled Scene Bytes. The number of bytes used for tiling a scene. A high value indicates high scene
complexity. If your scene is too complex to fit into the tiled scene bytes, you go into split scene mode,
something that you should avoid. This statistic is incremented for every scene. To be useful, you need
to divide the byte count by the number of scenes.

= Split Scene Count. The number of times a component had to go into split scene mode. Split scene mode
occurs when scene complexity is high and can't fit into the tiled scene bytes buffer. Split Scene Count
and Tiled Scene Bytes can be used to determine the rendering paths in which you need to reduce
complexity. A split scene is something that you should avoid.

= Resource Bytes. The number of bytes used for textures.
= Resource Count. The number of textures in use.

= Scene Count. The number of times a scene was sent to be tiled and rendered. A scene is sent to be tiled
and rendered when it is flushed or command buffer space is filled.

= Implicit Scene Count. The number of times a scene was implicitly sent because OpenGL had reason to
do so based on a particular state change. The count does not include explicit flushes by the user.

The Track pane indicates when the data was gathered.

Because events are not being captured, there is no backtrace in the Extended Detail pane. Instead, the
Extended Detail pane shows the full list of statistics at each sample point.

OpenGL ES Analyzer

OpenGL ES Analyzer is an iOS instrument that measures and analyzes OpenGL ES activity in an application.
The instrument includes an expert system that finds problems and offers relevant solutions based on best
practices and intricate knowledge of Apple's hardware and software platforms. The instrument also provides
a large range of performance statistics.

Graphics Instruments 91
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

Every time an application makes a call into the OpenGL ES framework, the instrument traces the call and
records timing, duration, backtrace, and other parameters, and uploads this information to the host. The
instrument analyzes this stream of OpenGL commands to compute useful performance statistics and to drive
the expert system, that in turn offers correctness and performance suggestions.

For example, the instrument might tell you that it “detected vertex data array without using vertex buffer
objects.” Vertex arrays are client data stored in main memory. It's more efficient to upload this data to the
GPU in the form of a vertex buffer object. Although the implementation is a little more complicated, the
performance gains can be significant.

The instrument provides the following views:

= Frame statistics. Corresponds to the timeline on the graph. Gives you the data being rendered in the
graph in table form.

= Analysis findings. Expert system recommendations, and a stack trace in the extended detail view. Color
is used to indicate the severity of the problem. You can drill down to view specific occurrences of each
category of recommendations, then drill down further to view which sequence of OpenGL ES commands
generated that recommendation.

= Function trace. Entire list of OpenGL commands, with arguments and the backtrace in extended detail
view.

= APl statistics. Lists unique OpenGL calls with total time and average time for each call.

= Call tree. Provides navigation of all OpenGL ES or EAGL functions called by the user, leveraging
Instrument's data mining tools.

When you double-click a symbol in the backtrace from the analysis findings or the function trace, the relevant
line of source code is displayed.

The Overrides section is used to bypass stages in the graphics pipeline. This allows you to isolate problems
and find bottlenecks in your code.

Note: The OpenGL ES Analyzer instrument is currently supported in the iPhone 3GS and the third-generation
iPod touch.

Input/Output Instruments

92

The following instruments gather data related to I/O operations.

Reads/Writes

The Reads/Writes instrument records reads from and writes to files. This instrument can operate on a single
process or on all processes currently running on the system. This instrument uses DTrace in its implementation
and can be exported to a DTrace script. It gathers information about each call to read and write functions,
including read, write, pread, and pwrite.

This instrument captures the following information:

m The name of the function

Input/Output Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

= The caller of the function (including the executable name and stack trace information)
= The path to the file on which the executable performed the operation
= The file descriptor of the file that was modified

= The number of bytes read or written

The Track pane can be set to display any of the following data:

= Stack depth
m Thread ID
= File descriptor

m Bytes

For any of these calls, you can open the Extended Detail pane to see the stack trace for that call, as well as
any available probe information and the time at which the event occurred.

Master Tracks Instruments

The Master Tracks section contains the User Interface recorder, which lets you record and play back a series
of user actions in an application.

User Interface

The User Interface instrument can launch an application or attach to a process and record your interaction
with the user interface. You can then play back this recording as many times as you want, and run any other
instruments you choose as you do so. You can use this instrument to create repeatable tests of the user
interface as part of your quality assurance program and to capture errors that occur only sporadically. The
use of the User Interface instrument is described in detail in “Working with a User Interface Track” (page 39).

Memory Instruments

The instruments in this section track memory use.

Shared Memory

The Shared Memory instrument records the opening and unlinking of shared memory. This instrument can
operate on a single process or on all processes currently running on the system. This instrument uses DTrace
in its implementation and can be exported to a DTrace script. It gathers information about each shared
memory access, including shm_open and shm_un1ink.

This instrument captures the following information:
= The name of the function

Master Tracks Instruments 93
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

94

CHAPTER 8

Built-in Instruments

= The caller of the function (including the executable name and stack trace information)
= The name of the shared memory region
= The flags used to open the shared memory region (see the shm_open man page)

= The mode flags, indicating the access permissions for the region (see the chmod man page)

The Track pane can be set to display any of the following data:

m Stack depth

m Thread ID
= Flags
m mode_t

For any of these calls, you can open the Extended Detail pane to see the stack trace for that call, as well as
any available probe information and the time at which the event occurred.

ObjectAlloc

The ObjectAlloc instrument tracks memory allocation for an application. This instrument requires that you
launch a single process so that it can gather data from the start of the process.

This instrument captures the following information:

= Category - typically a Core Foundation object, an Objective-C class, or a raw block of memory.
= Net Bytes - the number of bytes of this type currently allocated but not yet released.
= # Net - the number of objects or memory blocks of this type currently allocated but not yet released.

= Overall Bytes - the total number of bytes of this type that have been allocated, including those that have
been released.

= # Overall - the total number of objects or memory blocks of this type that have been allocated, including
those that have been released.

= # Allocations (Net / Overall) - A histogram of the current and total counts. The bars are normally shades
of blue. They are colored shades of yellow when the ratio between the total number of objects and the
peak, or the ratio between the peak and the current number, is 1/3 or less. The bars are shades of red
when the ratio is 1/10 or less.

Although the ratios displayed aren't necessarily bad (often, they're normal over the long run of an application),
Instruments colors them to point out allocation patterns that may deserve a further look. If you see categories
where the color is red or yellow, you might try to eliminate unnecessary temporary allocations of the given
type in your application. Similarly, you might simply try to eliminate the high-water mark in the number of
objects.

The data table in the details pane contains a Graph column, which contains a checkbox for each row in the
table. When the checkbox for a given category is enabled, the instrument displays the graph for that particular
category type in the Track pane. Instruments automatically assigns a color to each graphed category.

Memory Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

When you mouse over category names in the details pane, a more Info button appears next to the category
name. Clicking this button displays detailed information about the objects in that category, including the
following attributes:

m The address of the block.

= The function call or class that generated the allocation event. For example, you can see which method
in a class retained an object.

m The creation time of the object.

m The library responsible for creating the object.

For any of these events, you can open the Extended Detail pane to see the stack trace for each object
allocation, including the type of allocation and the time at which the event occurred.

For specific instances of an object (or memory block), you can click the more info button in the Object Address
column to see the allocation events associated with that object. For each allocation event, this instrument
displays the following information:

m The category of the object (its type)

m The event type.

m The timestamp for each event.

m The address of the block

m The size of the block

m The library responsible for allocating the block.

= The function that caused the allocation event.

For any allocation event, you can open the Extended Detail pane to see the stack trace, as well as any available
event information and the time at which the event occurred.

To further filter information in the Detail pane, you can configure the Allocation Lifespan options. These
options let you filter the allocation events based on the following criteria:

= All Objects Created - display all objects, regardless of whether they have been deallocated.

m Created & Still Living - display only objects that existed in memory when you stopped recording data..

The inspector for the ObjectAlloc instrument lets you configure the way the instrument tracks information.
From the inspector, you can set the following options:

= Record reference counts. Use this option to track the reference count of each object.

m Discard unrecorded data on stop. Use this option to discard any data that has been gathered but not
yet processed by the ObjectAlloc instrument.

For additional information about the ObjectAlloc instrument, see “Analyzing Data with the ObjectAlloc
Instrument” (page 56).

Memory Instruments 95
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

Leaks

The Leaks instrument examines a process'’s heap for leaked memory. You can use this instrument together
with the ObjectAlloc instrument to get memory address histories. This instrument requires that you launch
a single process so that it can gather data from the start of the process.

This instrument captures the following information:

m The number of leaks

m The size of each leak

m Address of the leaked block
= Type of the leaked object

Each view mode in the Detail pane shows the leak data in a slightly different way. In table mode, this
instrument shows the individual leaks along with the percentage that each individual leak contributes to the
total amount of leaked memory discovered. In outline mode, the data is reorganized so that you can see
how much memory is leaked from within a given symbol. For entries in either mode, the Extended Detail
pane displays a heavy stack trace showing from where the leak originated.

For additional information about the Leaks instrument, see “Looking for Memory Leaks” (page 58).

System Instruments

96

The instruments in this section gather data about system activity and resources.

Time Profiler

The Time Profiler instrument stops a Mac OS X program at prescribed intervals and records the stack trace
information for each of the program’s threads. You can use this information to determine where execution
time is being spent in your program and improve your code to reduce running time. Unlike many instruments,
Time Profiler does not require DTrace probes in order to function. Time Profiler operates on a single process
or all processes.

During sampling, this instrument captures the following information:

m The time at which sampling began

m The sampling duration

m Stack trace information (including the library and caller information)
m The maximum stack depth encountered during sampling

= The function encountered most frequently during sampling (the hot frame)

Time Profiler lets you view this information in different ways. In table mode, you can view the samples in the
order they were gathered, which shows the execution order of your code. In outline mode, Time Profiler
provides a tree view of your program’s call stack and shows the number of samples that occurred in each
function in that call stack.

System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

To display a detailed call stack for a function, you can disclose items in the outline mode or select a function
and open the Extended Detail pane. In outline mode, you can expand the entire call stack below a given
entry by pressing the Option key and clicking the disclosure triangle for the entry.

The Track pane displays the stack depth at each sample time by default. This view is useful for identifying
patterns of what is going on in your code. Because it is unlikely that two different execution paths will result
in the same pattern of stack depths, when you see repeated structures in the graph, it is likely that the same
code is being executed repetitively.

A unique feature of Time Profiler is the ability to record a profile without actually running Instruments. This
feature is useful if you need to record a transient event and it would take too long to open and configure
Instruments. To record a profile in this manner, first make sure Instruments is not running. Press the Instruments
icon in the Dock. The Dock displays a menu that contains Time Profiler commands, settings, and profiles.
You can choose to profile a specific process, all processes, or automatically profile any blocked (spinning)
process. After a profile is created, it is listed under the Recent Time Profiles heading in the Instruments Dock
menu. If you choose a profile, Instruments opens and displays the profile data.

The Time Profiler instrument and the Sampler instrument are similar, but there are some differences:

= Time Profiler gathers backtrace data in the same manner as Shark, from kernel space. Sampler, on the

other hand, gathers data from user space. Consequently, Time Profiler is more efficient than Sampler at
gathering data.

Note: Time Profiler (and Shark) can yield inaccurate backtrace data if the target process is optimized to
omit frame pointers.

m Time Profiler can gather data from one or all processes. Sampler can only sample a single process.

m Time Profiler can sample all thread states or running threads only. Sampler always samples all thread

states. Generally, you're interested in running threads. When your application is hung, you want to
examine all thread states.

Spin Monitor

The Spin Monitor instrument automatically samples any applications that become unresponsive on the
system. An application becomes unresponsive when it does not retrieve events from the window server for
3 or more seconds. Applications that are unresponsive during this time may actually be doing useful work
or they may be hung. You can use the sample information generated by this instrument to adjust your code
so as to ensure your application keeps processing events in a timely manner. This instrument can operate
on a single process or on all processes currently running on the system.

During sampling, this instrument captures the following information:

m The time at which sampling began

= The sampling duration

m Stack trace information (including the library and caller information)
m The maximum stack depth encountered during sampling

= The function encountered most frequently during sampling (the hot frame)

System Instruments 97
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

98

CHAPTER 8

Built-in Instruments

Each view mode in the Detail pane shows the sample data in a slightly different way. Both table and outline
mode start by showing you the sessions during which a given application was sampled. Each session
corresponds to a period of time where the application was deemed unresponsive and you can expand a
given session to see what the application was during this time. In table mode, the instrument shows data
about the functions that occurred most often during sampling. In outline mode, the instrument shows the
number of samples that were gathered during each session. You can also show the running time for the
samples that were gathered using the Sample Perspective options.

The inspector for this instrument lets you set the sample rate at which to gather samples. By default, this
instrument gathers a sample once every 10 milliseconds.

Sampler

The Sampler instrument stops a program at prescribed intervals and records the stack trace information for
each of the program'’s threads. You can use this information to determine where execution time is being
spent in your program and improve your code to reduce running time. Unlike many instruments, Sampler
does not require DTrace probes in order to function. This instrument operates on a single process.

The Sampler instrument records the following types of data for each sample:

m The function being executed
m The stack trace for each of the program’s threads

m The time the sample was taken

The Sampler instrument lets you view this information in different ways. In table mode, you can view the
samples in the order they were gathered, which shows the execution order of your code. In outline mode,
Sampler provides a tree view of your program’s call stack and shows the number of samples that occurred
in each function in that call stack.

In studying the performance of a running program you should compare the impact of a function to the cost
of executing that function. If your program spends a lot of time in a low-impact function, this instrument can
show you that behavior. You can then use the sample data to find out why your program is spending its
time there and who is calling the function, which can lead you to fixing your code so that the function is
called less frequently.

To display a detailed call stack for a function, you can disclose items in the outline mode or select a function
and open the Extended Detail pane. In outline mode, you can expand the entire call stack below a given
entry by pressing the Option key and clicking the disclosure triangle for the entry.

The Track pane displays the stack depth at each sample time by default. This view is useful for identifying
patterns of what is going on in your code. Because it is unlikely that two different execution paths will result
in the same pattern of stack depths, when you see repeated structures in the graph, it is likely that the same
code is being executed repetitively. If this code also takes a long time to execute, it is a good target for
optimization.

For additional information about the Sampler instrument, see “Analyzing Data with the Sampler
Instrument” (page 53).

System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

Process

The Process instrument records processes forked by another process. This instrument can operate on a single
process or on all processes currently running on the system. This instrument uses DTrace in its implementation
and can be exported to a DTrace script.

This instrument captures the following information:

m Execute a process (execve)

m Process exit (exit)

The Process instrument returns information about each call made to these functions, including:

= The name of the function (execve or exit)
m The caller of the function (including the executable name, path, and stack trace information)
m The process ID

= The exit status of the process

The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID
m Process|D

= Exit status

For any of these calls, you can open the Extended Detail pane to see the stack trace for that call, as well as
any available probe information and the time at which the event occurred.

Network Activity Monitor

The Network Activity Monitor instrument records network traffic through the computer. This instrument can
operate on a single process or on all processes currently running on the system.

The Track pane is set to display the following network-related data by default, but you can configure it to
display other types of data as well. By default, it displays the following information:

= The number of bytes sent each second
= The number of bytes received each second
= The number of packets sent each second

= The number of packets received each second

System Instruments 929
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

100

CHAPTER 8

Built-in Instruments

Memory Monitor

The Memory Monitor instrument records the amount of real and virtual memory used by processes. This
instrument can operate on a single process or on all processes currently running on the system.

The Track pane is set to display the following memory-related data by default, but you can configure it to
display other types of data as well. By default, it displays the following information:

= The number of virtual memory page ins

= The number of virtual memory page outs

= The total amount of virtual memory space in use
m The total amount of free physical memory

= The total amount of used physical memory

Disk Monitor

The Disk Monitor instrument records disk read and write operations. This instrument can operate on a single
process or on all processes currently running on the system.

The Track pane is set to display the following disk-related data by default, but you can configure it to display
other types of data as well. By default, it displays the following information:

= The number of bytes per second written to disk
= The number of bytes per second read from disk
= The number of write operations processed per second

= The number of read operations processed per second

CPU Monitor

The CPU Monitor instrument records the load on the system. This instrument can operate on a single process
or on all processes currently running on the system.

The Track pane is set to display the following load values by default, but you can configure it to display other
types of data as well. By default, it displays the following information:

= The amount of load generated by the system
= The amount of load generated by the user

m The total load on the system

Activity Monitor

The Activity Monitor instrument records the load on the system measured against the virtual memory size.
This instrument can operate on a single process or on all processes currently running on the system.

System Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

The Track pane is set to display the following load values by default, but you can configure it to display other
types of data as well. By default, it displays the following information:

= The total amount of virtual memory space in use
= The amount of load generated by the system
= The amount of load generated by the user

m The total load on the system

Threads/Locks Instruments

The following instruments gather thread-related data.

Java Thread

The Java Thread instrument records the initialization and destruction of Java threads. It displays:

= The time each measurement was taken

= Total threads

You can specify the colors to use when charting the running, waiting, and blocked threads.

Ul Automation

Automation

The Automation instrument allows you to automate user interface tests of your iOS application. You write
JavaScript tests that use the user interface automation API to simulate user interactions with your application.
The instrument exercises the user interface elements of your application as it runs on a connected iOS-based
device, logging the results for your analysis.

Note: For your protection, the instrument does not allow you to process any application that is not
code-signed with your provisioning profile. This includes any copy that has been downloaded from the iTunes
App Store.

Test Automation Script

You write your tests in JavaScript, using the user interface automation API to specify actions that should be
performed in your application while it runs on a connected device. See Ul Automation Reference Collection
for API details.

The test script must be a valid executable JavaScript file accessible to the instrument on the host computer.

You can create as many scripts as you like, but you can run only one at a time.

Threads/Locks Instruments 101
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

The APl offersa ffimport directive that allows you to write smaller, reusable discrete test scripts. For example,
if you were to define commonly used functions in a file named TestUtilities. js, you could make those
functions available for use in your test script TestXYZ. js by including in that script the line

ffimport "<path-to-library-folder>/TestUtilities.js"

Launching the Automation Instrument

With minor variations, you launch the Automation instrument much the way you would any other built-in
instrument. The following procedure steps through the process:

1. Launch the Instruments application.

2. Choose the Automation template to create a trace document. (Alternatively, you can find the Automation
template in the Ul Automation category of the template library.)

3. Click the center button in the Primary View controller to select the detail view.

4. In the Target menu, choose iPhone, then choose your application from the list of iOS applications.

Running the Automation Instrument

To run the Automation instrument, follow these steps:

1. Click the Script disclosure triangle, if necessary, to display the contents of that pane.

2. C(lick Choose Script.

3. Inthe Open panel, locate the script file and open it.

4, Click the Record button in the Instruments toolbar. Script log entries begin to appear in the Detail pane.

5. Click any script log entry in the Detail pane to reveal more information for that entry in the Extended
Detail pane.

6. Use the stop and start script control buttons to stop/pause and start/resume execution of your test
sequence script.
To configure Automation to automatically start and stop your script under control of the Instruments Record

button in the toolbar, select the Run on Record checkbox.

If your application crashes or goes to the background, your script is blocked until the application is frontmost
again, at which time the script continues to run.

Note that you must explicitly stop recording. Completion or termination of your script does not turn off
recording.

User Interface Instruments

The following instruments gather data for application-level events.

102 User Interface Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

Cocoa Events

The Cocoa Events instrument records events sent through the sendEvent: method of the NSApplication
class. This is the main method for dispatching events to a Cocoa application. You can use this instrument to
correlate application events with other application behavior, such as memory and CPU usage. This instrument
operates on a single process. This instrument uses DTrace in its implementation and can be exported to a
DTrace script.

This instrument captures the type of event that was sent (both as an NSEventType code and spelled out).
The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID

= The event kind

For any of these calls, you can open the Extended Detail pane to see the stack trace for that call, as well as
the time at which the event occurred.

Carbon Events

The Carbon Events instrument records events returned by the WaitNextEvent function in the Carbon Event
Manager. You can use this instrument to correlate application events with other application behavior, such

as memory and CPU usage. This instrument operates on a single process. This instrument uses DTrace in its
implementation and can be exported to a DTrace script.

This instrument captures the type of event that was sent.
The Track pane can be set to display any of the following data:

m Stack depth
m Thread ID

= The event kind

For any of these calls, you can open the Extended Detail pane to see the stack trace for that call, as well as
the time at which the event occurred.

User Interface Instruments 103
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Built-in Instruments

104 User Interface Instruments
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Instruments User Guide.

Date Notes

2010-07-09 Changed occurrences of "iPhone 0S" to "iOS".

2010-05-27 Updated with information about new iPhone instruments.
Added “Energy Diagnostics Instruments” (page 80), “OpenGL ES Analyzer” (page
91), and “Automation” (page 101).

2010-01-20 Added information about iPhone-specific instruments.
Added “I/0 Activity” (page 82), “Core Animation” (page 89), “OpenGL ES” (page
90), and “Time Profiler” (page 96).

2009-08-20 Added information about the Dispatch instrument.
Added “Dispatch Instruments” (page 78).

2009-07-24 Added information about gathering performance data from a wireless device.
Added “Connecting Wirelessly to an iOS Device” (page 37).

2008-10-15 Made minor editorial corrections.

2008-02-08 Explained how playing protected content affects systemwide data collection.

2007-10-31 New document that describes how to use the Instruments application.

105

2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

106
2010-07-09 | © 2010 Apple Inc. All Rights Reserved.

	Instruments User Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Instruments Quick Start
	Launching Instruments
	Creating a Trace Document
	A Tour of the Trace Document Window
	Example: Performing a Quick Trace
	What’s Next?

	Adding and Configuring Instruments
	Using the Instrument Library
	Changing the Library View Mode
	Finding an Instrument in the Library
	Creating Custom Instrument Groups
	Creating a Static Group
	Creating a Smart Group

	Adding and Removing Instruments
	Configuring an Instrument

	Recording Trace Data
	Choosing Which Process to Trace
	Tracing All Processes
	Attaching to an Existing Process
	Launching an Executable from Instruments
	Specifying a Different Target for Each Instrument

	Collecting Data
	Launching Instruments Using Quick Start Keys
	Running in Mini Mode
	Running Instruments from Xcode
	Connecting Wirelessly to an iOS Device

	Working with a User Interface Track
	Recording a User Interface Track
	Rerecording a User Interface Track
	Replaying a User Interface Track

	Viewing and Analyzing Trace Data
	Tools for Viewing Data
	The Track Pane
	Viewing Trace Runs
	Displaying Multiple Data Sets for an Instrument
	Changing the Display Style of a Track
	Zooming in the Track Pane

	The Detail Pane
	Changing the Display Style of the Detail Pane
	Sorting in the Detail Pane
	Searching in the Detail Pane
	Viewing Data for a Range of Time

	The Extended Detail Pane
	The Run Browser

	Analysis Techniques
	Analyzing Data with the Sampler Instrument
	Analyzing the Call Stack Data
	Filtering the Contents of the Detail Pane

	Analyzing Data with the ObjectAlloc Instrument
	Analyzing the Object Allocation Data
	Tracking Reference Counting Events
	Filtering the Contents of the Detail Pane

	Looking for Memory Leaks
	Analyzing Core Data Applications

	Saving and Importing Trace Data
	Saving a Trace Document
	Saving an Instruments Trace Template
	Exporting Track Data
	Importing Data from the Sample Tool
	Working With DTrace Data

	Creating Custom Instruments with DTrace
	About Custom Instruments
	Creating a Custom Instrument
	Adding and Deleting Probes
	Specifying the Probe Provider
	Adding Predicates to a Probe
	Adding Actions to a Probe

	Tips for Writing Custom Scripts
	Writing BEGIN and END Scripts
	Accessing Kernel Data from Custom Scripts
	Scoping Variables Appropriately
	Finding Script Errors

	Exporting DTrace Scripts

	Built-in Instruments
	Core Data Instruments
	Core Data Saves
	Sample Data in the Detail Pane
	Display Options in the Track Pane
	Additional Data in the Extended Detail Pane

	Core Data Fetches
	Sample Data in the Detail Pane
	Display Options in the Track Pane
	Additional Data in the Extended Detail Pane

	Core Data Faults
	Sample Data in the Detail Pane
	Display Options in the Track Pane
	Additional Data in the Extended Detail Pane

	Core Data Cache Misses
	Sample Data in the Detail Pane
	Display Options in the Track Pane
	Additional Data in the Extended Detail Pane

	Dispatch Instruments
	Dispatch
	Queues View
	Call Tree View
	Blocks View

	Energy Diagnostics Instruments
	Energy Usage
	CPU Activity
	Display Brightness
	Sleep/Wake
	Bluetooth
	WiFi
	GPS

	File System Instruments
	I/O Activity
	File Locks
	File Attributes
	File Activity
	Directory I/O

	Garbage Collection Instruments
	GC Total
	Garbage Collection

	Graphics Instruments
	Core Animation
	OpenGL Driver
	OpenGL ES
	OpenGL ES Analyzer

	Input/Output Instruments
	Reads/Writes

	Master Tracks Instruments
	User Interface

	Memory Instruments
	Shared Memory
	ObjectAlloc
	Leaks

	System Instruments
	Time Profiler
	Spin Monitor
	Sampler
	Process
	Network Activity Monitor
	Memory Monitor
	Disk Monitor
	CPU Monitor
	Activity Monitor

	Threads/Locks Instruments
	Java Thread

	UI Automation
	Automation
	Test Automation Script
	Launching the Automation Instrument
	Running the Automation Instrument

	User Interface Instruments
	Cocoa Events
	Carbon Events

	Revision History

