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Technology Overview

Network kernel extensions (NKEs) provide a way to extend and modify the networking infrastructure of Mac
OS X while the kernel is running, without requiring the kernel to be recompiled, relinked, or rebooted.

NKEs allow you to create modules that can be loaded and unloaded dynamically at specific positions in the
network hierarchy. These modules can monitor and modify network traffic, and can receive notification of
asynchronous events from the driver layer, such as interface status changes.

This document is primarily of interest to developers who need to extend or modify the Mac OS X networking
infrastructure. This includes:

 ■ Adding support for new, non-ethernet interface types.

 ■ Designing custom routing technologies.

 ■ Creating link-layer encryption technologies.

This document assumes a significant understanding of networking concepts, including a basic familiarity
with sockets, packet filtering, and so on. It also assumes that you are already familiar with the basics of
kernel-level operating systems programming.

Because even minor bugs in kernel-level code can cause serious consequences, including application instability,
data corruption, and even kernel panics, the techniques described in this document should be used only if
no other mechanism already exists. For example, where possible, IP filtering should generally be done using
ipfw(8). Similarly, packet logging should generally be done using bpf(4).

This document is intended to provide supplementary conceptual material specific to network kernel extensions.
It is not intended as a reference document, and assumes prior knowledge of Mac OS X kernel extensions
(KEXTs). For reference material specific to networking KEXTs, see the document KPI Reference. For additional
information on Mac OS X KEXTs in general, see the document Kernel Extension Programming Topics.

Note:  The information provided in this document is only relevant for Mac OS X version 10.4 and later. The
network kernel extension mechanism used prior to 10.4 is not supported in 10.4 and later. For information
on writing network kernel extensions for previous versions of Mac OS X, see Network Kernel Extensions (legacy).

See Also

The following sources provide additional information that may be of interest to developers of network kernel
extensions:

 ■ Kernel Extension Programming Topics—conceptual information about kernel extensions in Mac OS X.
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 ■ KPI Reference—reference documentation specific to network kernel extensions and other non-I/O Kit
(device driver) KEXTs.

 ■ Kernel Framework Reference—reference documentation for I/O Kit device drivers, including network
device drivers.

 ■ The Design and Implementation of the 4.4 BSD Operating System. M. K. McKusick et al., Addison-Wesley,
Reading, 1996.

 ■ Unix Network Programming, Second Edition, volume 1. Richard W. Stevens, Prentice Hall, New York, 1998.

 ■ TCP/IP Illustrated, volume 1: The Protocols. Richard W. Stevens, Addison-Wesley, Reading, 1994.

 ■ TCP/IP Illustrated, volume 2: The Implementation. Richard W. Stevens and Gary R. Wright, Addison-Wesley,
Reading, 1995.

 ■ TCP/IP Illustrated, volume 3: Other Protocols. Richard W. Stevens, Addison-Wesley, Reading, 1996.

The following websites provide information about the Berkeley Software Distribution (BSD):

 ■ http://www.FreeBSD.org

 ■ http://www.NetBSD.org

 ■ http://www.OpenBSD.org/

8 See Also
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Network kernel extension (NKE) is a term used to describe any Mac OS X kernel extension that interacts with
the networking stack. It is a separately compiled module (produced, for example, by Xcode using the Kernel
Extension (KEXT) project type).

Loading a kernel extension is handled by the kextload(8) command line utility, which adds the NKE to
the running Mac OS X kernel as part of the kernel's address space. Eventually, the system will provide automatic
mechanisms for loading extensions. Currently, automatic loading is possible only for I/O Kit KEXTs and other
KEXTs that they depend on.

As a kernel extension, an NKE provides initialization and termination routines that the kernel invokes when
an NKE is loaded or unloaded. The initialization routine handles initializing local data structures and registering
controls, filters, and interfaces. Similarly, the termination routine must free any allocated memory and
unregister the extension along with any kernel controls associated with it.

NKE Implementation

Review of 4.4BSD Network Architecture

Mac OS X is based on the 4.4BSD UNIX operating system. The following structures control the 4.4BSD network
architecture:

 ■ socket structure, which the kernel uses to keep track of sockets. The socket structure is referenced by
file descriptors from user mode.

 ■ domain structure, which describes protocol families.

 ■ protosw structure, which describes protocol handlers. (A protocol handler is the implementation of a
particular protocol in a protocol family.)

 ■ ifnet structure, which describes a network device and contains pointers to interface device driver
routines.

None of these structures is used uniformly throughout the 4.4BSD networking infrastructure. Instead, each
structure is used at a specific level, as shown in Figure 1-1 (page 10).

NKE Implementation 9
2009-08-14   |   © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Network Kernel Extensions Overview



Figure 1-1 Traditional 4.4BSD Networking Architecture
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In Mac OS X, the structures themselves are hidden behind opaque types (or in some cases, integer identifiers).
However, from a conceptual perspective, equivalent data structures exist and are accessible through accessor
functions. The Mac OS X architecture is summarized in Figure 1-2 (page 10).

Figure 1-2 Mac OS X Networking Architecture

socket structure
Kernel space

Socket management

I/O Kit

Protocol stack

Interface filters

Socket filters

Protocol plumber
Plumbing

Protocol stack

User space

Device

The socket structure is used to manage the socket. The domain, protosw, and ifnet structures are used
to manage packet delivery to and from the network device.

Network KPI Mechanisms

Mac OS X, beginning in version 10.4, supports several networking-related kernel programming interfaces
(KPIs). This KPI mechanism consists of opaque data types and functions for manipulating the underlying data
structures. Unlike the direct structure access used in previous versions, the KPI mechanism allows for
maintaining binary compatibility across OS releases.

Each of the networking KPI mechanisms performs a specific task. The basic networking KPI mechanisms are:

10 NKE Implementation
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 ■ Socket filter KPI, which permits a KEXT to filter inbound or outbound traffic on a given socket, depending
on how they are attached. Socket filters can also filter out-of-band communication such as calls to
setsockopt or bind. The resulting filters lie between the socket layer and the protocol.

 ■ IP filter KPI, which enables a KEXT to perform TCP/IP packet filtering on full (non-fragmented) IP frames.
The resulting filters are invoked each time a TCP/IP packet enters the protocol handler layer (usually
from the data link layer after the packet is reassembled), and again each time a packet leaves the protocol
handler layer (usually going back out to the data link layer).

 ■ Interface filter KPI, which allows a KEXT to add a filter to a specific network interface. These interface
filters (previously known as data link NKEs) can passively observe traffic (regardless of packet type) as it
flows into and out of the system. They can also modify the traffic (for example, encrypting or performing
address translation). They essentially act as filters between a protocol stack and a device.

 ■ Interface KPIs, which allow a KEXT to register a network interface, attach protocols to interfaces, gather
information about interfaces, and send packets on an interface. A virtual device created using this
mechanism defines a number of media-specific support callbacks (demultiplexing, framing, and pre-output
functions such as ARP). Virtual devices can be written entirely using the Interface KPI mechanism.

Note:  For hardware devices, you must write an I/O Kit driver (and optionally, an I/O Kit family). For
hardware-specific interface types, you should generally add support through subclassing the
IONetworkInterface and IONetworkController classes.

 ■ Protocol plumber KPIs, which allow a KEXT to register code to handle existing protocols on new interface
types.

Figure 1-3 (page 12) shows the NKE architecture in detail.

NKE Implementation 11
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Figure 1-3 NKE architecture
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Tracking KEXT Usage

The most important aspect of removing a networking filter, pseudo-interface, and similar components is
ensuring that all system resources allocated by the KEXT are returned to the system.

To support the dynamic loading and unloading of KEXTs in Mac OS X, the kernel keeps track of the use of
registered filters and similar components by other parts of the system. However, while this protects against
dangling dependencies on your KEXT, your KEXT must still release any data structures that it has retained
from elsewhere. The KEXT must track its use of resources, such as socket structures and mbufs so that the
KEXT’s termination routine can eliminate references and return system resources.

Typically, for socket filters, most resources will be specific to a given socket. However, there is a mechanism
provided for per-filter allocation. When the networking stack has disposed of all instances of your filter, it
will call the filter’s sf_unregistered_func callback. At that time, your filter should deallocate any resources
that are global to the filter.

When the networking stack finishes with a particular instance of your filter, it will call its sf_detach_func,
iff_detach_func, or ipf_detach_func callback, respectively. Your extension most not unload until it
has received detached or unregistered callbacks for every filter or interface that it has registered. Further, it
should track any resources it uses and free those resources before unloading.

Resources that are not per-interface or per-filter can be allocated and freed in the KEXT’s start and stop
routines.

12 NKE Implementation
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Instance-Specific Persistent Data

The networking KPI mechanism provides some rudimentary support for tracking memory and data associated
with a particular instance of filters. When a filter is attached (regardless of filter type), a cookie is assigned to
that particular instance. In the case of socket filters, the attach callback returns this value. For other filter
types, the value is passed into the attach function by the caller. While this cookie can contain arbitrary
KEXT-specific data, it is generally used to hold a pointer to the data structure of your choice.

The cookie value will be passed as an argument whenever any of your filter’s functions are subsequently
called on a given filter instance. You can then cast the value to a pointer to the appropriate structure and
use this to recover the information stored therein.

As far as the networking stack is concerned, the cookie is a black box that only has meaning within the context
of your kernel extension. It will not attempt to manipulate the cookie in any way, and more importantly, if
it contains a pointer to a dynamically-allocated object, your KEXT is expected to manage the deallocation of
the underlying data object after the filter instance is detached.

KEXT Dependency Information

The dependencies for KPI-based KEXTs are different from those used for pre-KPI KEXTs in prior versions of
Mac OS X.

The KPI dependencies for Mac OS X 10.4 are:

Table 1-1 KEXT Dependencies

DescriptionVersionBundle Identifier

BSD APIs8.0.0com.apple.kpi.bsd

I/O Kit APIs8.0.0com.apple.kpi.iokit

User/Kernel Boundary Crossing APIs8.0.0com.apple.kpi.libkern

Mach APIs8.0.0com.apple.kpi.mach

Unsupported and legacy APIs8.0.0com.apple.kpi.unsupported

For dependency versions for other releases of Mac OS X, see Kernel Extension Programming Topics.
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Most of the networking KPIs enable you to write extensions that change the behavior of the networking
stack. The mbuf KPI routines are central to these KPIs, providing functions to manipulate individual network
packets within the kernel. You may also sometimes find it useful to perform socket communication in the
kernel, for example, to contact a remote server in a network filesystem client such as AFS. The socket KPI
routines were designed to help you work with sockets at the kernel level, using mbufs as the fundamental
unit of data.

The mbuf KPIs may be unfamiliar territory for you if you are used to user-space network programming.
Conceptually, they are just linked lists of objects that can either contain packet data or pointers to external
buffers that contain packet data. For incoming traffic, the packet header is also encapsulated in the mbuf
structure.

Working with Memory Buffers

All of the networking KPIs are built on top of a shared data structure called a memory buffer, or mbuf. An
mbuf is the fundamental unit of data flow through the networking stack and represents a packet (or portion
thereof ). This section describes the way mbufs and mbuf chains are organized and describes a number of
common operations on mbufs. For a complete list of mbuf operations, see kpi_mbuf.h.

Structure of an mbuf

A memory buffer, or mbuf, represents the contents of a single data packet. Its structure consists of a packet
header (which may be absent for newly-generated outgoing traffic) and a payload (which contains the actual
data).

Figure 2-1 A chain of mbuf chains
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For smaller payloads, the data may be encapsulated in the mbuf structure itself as an offset from the start
of the structure. For a larger payload (beyond the length of the mbuf itself ), the payload can be stored
separately by associating the mbuf with an external buffer, called a cluster. You can learn whether an mbuf
has a cluster by calling mbuf_flags and checking to see if the MBUF_EXT bit is set.

An mbuf can be part of a singly-linked list, called an mbuf chain. This allows you to chain data together that
does not exist in a physically contiguous buffer without copying the data. You can find the next node in an
mbuf chain by calling mbuf_next. (You cannot obtain the previous node because an mbuf chain is a
singly-linked list.)

When moving more data than will fit in a single packet, these mbufs and mbuf chains can, in turn, be combined
to form a larger singly-linked list that represents a stream of packets. You can find the next packet by calling
mbuf_nextpkt.

Note:  Not all parts of the networking stack support chains of packets. If you are sending data to an unfamiliar
part of the stack, you should err on the side of caution and send packets individually as a single mbuf chain
rather than as a chain of mbuf chains.

The packet represented by an mbuf or mbuf chain may be a fragment of a larger packet.

Manipulating an mbuf or mbuf Chain

Using routines in kpi_mbuf.h, you can manipulate an mbuf or mbuf chain in a number of ways, including
copying data to or from an mbuf or mbuf chain, adding new mbufs to a chain, freeing an mbuf or mbuf
chain, shifting data between mbufs in a chain to make a byte range contiguous (if space is available), and so
on. This section explains some of the more common mbuf operations.

The most common operation you will need to perform is copying data into and out of an mbuf. To copy data
from an mbuf or mbuf chain into a local buffer of your choosing, use mbuf_copydata. Be careful not to
overflow the buffer. To copy data back into the mbuf or mbuf chain, use mbuf_copyback. If needed, the
mbuf_copyback function will extend the chain to accommodate more data. For an example of how to use
mbuf_copydata, see Listing 2-1 (page 19).

If you are modifying an existing mbuf in a kernel extension, you should also familiarize yourself with the
checksum functions. If your modifications involve changes to packet header information (protocol field,
address information, and so on), you must swallow the packet entirely and reinject it.

For payload changes, before modifying the data, your extension should first call mbuf_inbound_modified,
which disables hardware checksums for a packet, and then call mbuf_outbound_finalize, which performs
any outstanding operations on the packet so that it is safe for you to modify it. After modifying data, it should
call mbuf_outbound_finalize again to recompute any checksums invalidated by those data changes.

If you are writing code that must avoid processing an mbuf more than once, the approach you should use
depends on the type of filter you are writing. The networking stack will automatically track which IP filters
have processed an mbuf. Thus, an IP filter should not see an mbuf more than once. If a socket filter reinjects
a packet, however, the system will call all of the socket filters again to process the newly-altered packet.

To guarantee that you will not accidentally process an mbuf more than once, you can use mbuf tagging to
attach data to the mbuf as it travels through the system. If you see the mbuf a second time, you can detect
that tag and skip that mbuf. This feature is described more fully in “Creating a Socket Filter” (page 32).

16 Working with Memory Buffers
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Finally, Mac OS X maintains a fair amount of statistical information about these networking-related data
structures, including the number of mbufs, the number of clusters, the number of payload bytes available
in an mbuf (without using a cluster), and so on. You can obtain this information by calling mbuf_stats and
examining the information that it returns.

Blocking and Nonblocking mbuf Operations

Many mbuf operations—particularly operations that allocate new buffers—take additional flags of type
mbuf_how_t to request blocking or nonblocking behavior. If you call them in blocking mode, the operations
will block until the requested storage is available. If you call them in nonblocking mode, they will immediately
return either the requested storage (if available) or an error code indicating why the operation could not be
completed. Here are some tips for choosing whether to request blocking or nonblocking behavior:

 ■ If your code is called from a part of the kernel where blocking is prohibited, you must use nonblocking
buffer allocation. For example, you must use nonblocking allocation in any function that could be called
from the VM system paging path, from an interrupt filter routine, or while holding a spinlock.

 ■ If your code is executing on a performance-critical path, use nonblocking operations:

 ❏ For callback functions marked as “fast path” in the Kernel framework reference documentation.

 ❏ When a higher-level layer can retry the operation without data loss. This will generally result in better
performance by allowing other work to occur while you wait.

 ■ If your code is called in a context where failure is not allowed, you should always use blocking operations.

 ■ If none of the above applies, you can choose whichever mode is most compatible with your usage model.
When in doubt, choose nonblocking operation.

Working with Sockets in the Kernel

The socket KPIs are very similar to user-space socket functions except that they are prefixed with sock_. For
example, the KPI function sock_accept is nearly identical to the function accept(2). Unlike its user-space
equivalent, however, sock_accept does not return a socket (file descriptor) through its return value. Instead,
it returns a socket_t opaque object through a pointer argument and returns an error code (errno_t)
through its return value. As a result, the KPI functions are more consistent, and your code can perform better
error checking and reporting.

Beyond these differences in coding style, kernel-space socket programming requires a great deal more care
because of a few subtle differences from their user-space equivalents. These differences, described in the
sections that follow, are in two major areas: socket I/O and manipulation of the sockets and file descriptors
themselves.

There are also minor differences in the flags that are supported by various functions, as well as other subtle
variations in behavior and syntax. These are documented in the API reference for the relevant functions. See
Kernel Framework Reference for more information.

Working with Sockets in the Kernel 17
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Manipulating Sockets and File Descriptors

In both user-space code and kernel-space code, a socket is an opaque reference to an underlying object.
However, the nature of that reference differs somewhat. In kernel-space code, a socket is represented as an
opaque type of type socket_t. In user-space code, a socket is represented instead as an integer file descriptor.
When user-space code performs any operation on that socket, the kernel looks up that integer in a per-process
table, then performs the operation on the underlying kernel-space socket. This relationship between in-kernel
sockets and user-space file descriptors affects the way you use sockets in the kernel.

 ■ In the kernel, you must maintain the relationship between sockets and user-space file descriptors
if it exists. Because you cannot manually tie a socket to a file descriptor in a process, you cannot perform
certain operations on user-space sockets from inside the kernel. In particular, if you are manipulating
sockets passed in from user-space applications (within a network kernel extension, for example), you
cannot safely call sock_close on these sockets. If you do call sock_close, it leaves a dangling file
descriptor, which will probably cause a kernel panic.

Note:  If you were considering calling sock_close to redirect a socket to a different location, you can
do this by intercepting the connection request with a socket filter and redirecting the stream when the
application first opens the socket. Once opened, however, a stream cannot be redirected. For more
information, see “Socket filters” (page 31).

 ■ Kernel-space sockets are not bounded by descriptor limits. Because kernel sockets are not tied to file
descriptors, the number of open sockets inside the kernel is not bounded by limitations on the number
of per-process file descriptors.

 ■ You must close kernel-space sockets to avoid leaks. Because kernel-space sockets are not tied to a
process (and thus are not destroyed when the process exits), the burden of maintaining those sockets
falls squarely on the shoulders of the developer of the kernel extension that allocates them.

If you create a socket with sock_socket and do not call sock_close on that socket, it will live on until
the next reboot, stealing precious resources from other kernel extensions and running applications. You
must clean up after yourself. The kernel cannot do it for you. This means:

 ❏ If you create a socket with sock_socket, you must close it with sock_close.

 ❏ If you allocate an mbuf, you must either free it explicitly or pass it to a send function that frees it
implicitly.

Socket Input and Output

Socket I/O in the kernel differs from user-space socket I/O in two main ways:

 ■ In the kernel, the read(2) and write(2) system calls are not available. Instead, you must copy data
between the mbuf_t object and a local buffer using mbuf_copydata and mbuf_copyback.

 ■ In the kernel, asynchronous socket reads are handled differently. The kernel does not provide the
equivalent of select(2) for writing wait loops. Instead, it provides a callback mechanism that calls a
function in your extension whenever data becomes available on a socket.

18 Working with Sockets in the Kernel
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If your code is in a performance-critical part of the kernel (as opposed to a call from user space), you should
generally perform socket I/O asynchronously. In the kernel, this asynchronous I/O is based on a callback
mechanism, using callbacks of the type sock_upcall. Listing 2-1 shows how to open a socket asynchronously
and perform an asynchronous read on the socket using sock_receivembuf.

Listing 2-1 Reading from a kernel-space socket asynchronously

#include <kern/debug.h>
#include <sys/errno.h>
#include <sys/kpi_mbuf.h>
#include <sys/kpi_socket.h>
#include <net/kpi_protocol.h>
#include <net/ethernet.h>
#include <sys/param.h>
#include <sys/filio.h>

#define ULTIMATE_ANSWER 0x00000042

/* Forward declarations */
errno_t set_nonblocking(socket_t so, int value);
static void my_sock_callback(socket_t so, void* cookie, int waitf);

/* This function opens a connection and sets it up to wait
   for data.  When data is received, the network stack will
   call the callback function my_sock_callback(). */
errno_t open_socket_and_start_listener(void)
{
    socket_t so;
    errno_t err;
    int protocol = 0; // usually the right choice
    struct sockaddr to;
    uint32_t cookie = ULTIMATE_ANSWER; // Normally, we would
                                       // point to a private
                                       // data structure here.

    if ((err = sock_socket(PF_INET, SOCK_STREAM, protocol,
        (sock_upcall)&my_sock_callback, (void *)cookie, &so))) {
            return err;
    }

    /* Set the socket to non-blocking mode */
    set_nonblocking(so, 1);

    /* ... Fill in sockaddr value here ... */

    err = sock_connect(so, &to, MSG_DONTWAIT);
    if (err == EINPROGRESS) return 0; // it worked.
    return err;
}

/* This function is called when data is available on the socket.
   It reads data from the socket. */
static void my_sock_callback(socket_t so, void* cookie, int waitf)
{
    errno_t err;
    size_t len = sizeof(value);
    mbuf_t data;
    int value;
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    /* The socket should have some data available now. */
    if (cookie == (void *)ULTIMATE_ANSWER) {
        // This socket's cookie matches the desired magic value,
        // so read data from the socket here.
        err = sock_receivembuf(so, NULL, &data, MSG_WAITALL, &len);
        if (err == EWOULDBLOCK) {
            // The kernel hasn't seen enough data yet.
            return;
        } else if (err || len < sizeof(value)) {
            /* This example does no error recovery.  Your code should. */
            panic("Something is very wrong.  Maybe the other end closed the 
connection....\n");
        }
    }

    // Copy the data from the mbuf chain into local storage.
    err = mbuf_copydata(data, 0, sizeof(value), &value); // Copy 4 bytes at 
start

    // Call a function with the value received.
    dont_panic(htonl(value));

    // We no longer need this socket, so close it.
    sock_close(so);
}

/* This is a short example of how to use the sock_ioctl()
   function on a socket within the kernel.  This is the
   KPI equivalent of the ioctl() system call. */
errno_t set_nonblocking(socket_t so, int value)
{
    errno_t err;
    int val = value; // taking the address of parameters is bad

    if (value != 0 && value != 1) return EINVAL;
    err = sock_ioctl(so, FIONBIO, &val);
    return err;
}

Listing 2-1 also shows the use of the mbuf routine mbuf_copydata. This routine copies data from an mbuf
chain to a buffer. When using this function, you must make sure you do not overflow the destination buffer.

Handling incoming connections works similarly. If you want to block until a connection is pending, you can
use sock_accept in blocking mode to wait for an incoming connection. If you would prefer to handle
incoming connections asynchronously, you can pass in a callback of type sock_upcall when you create
the socket with sock_socket. That callback will be called whenever a client connects to your listen socket.
From your callback handler, you should then call sock_accept (optionally with the MSG_DONTWAIT flag).

Writing data to a socket is similar to reading data synchronously. The steps for writing data to a socket are
as follows:

1. If you do not already have an mbuf, call mbuf_allocpacket to create an mbuf with a cluster to hold
external data. This need not be as large as your data; the next step will expand the chain as needed.
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2. Call mbuf_copyback to copy data from a local buffer into the mbuf. To copy data from additional buffers,
simply repeat this step for each subsequent buffer, specifying the offset from the start of the mbuf where
the contents of the buffer should be stored.

3. Call sock_sendmbuf to send the data.

For More Information

For information about user-space socket programming in general, you should read the UNIX Socket FAQ.
This bulletin board provides the answers to a lot of basic, intermediate, and advanced user-space socket
programming questions, and includes numerous examples. You can also find details about user-space socket
functions in Mac OS X Man Pages.

To learn more about the KPI networking functions, read Kernel Framework Reference—in particular, the kernel
mbuf data structures and associated functions, described in kpi_mbuf.h, and socket APIs, described in
kpi_socket.h.
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This chapter describes two mechanisms for interacting with a network kernel extension: the kernel control
and kernel event APIs. These socket-based APIs allow you to communicate with a KEXT and receive broadcast
notifications from the KEXT, respectively.

To support this communication, Mac OS X defines a new socket domain—the PF_SYSTEM domain—to
provide a way for applications to configure and control KEXTs. The PF_SYSTEM domain, in turn, supports
two protocols, SYSPROTO_CONTROL and SYSPROTO_EVENT.

The kernel control (kern_control) API, which uses the SYSPROTO_CONTROL protocol, allows applications
to configure and control a KEXT.

The kernel event (kern_event) API, which uses the SYSPROTO_EVENT protocol, allows applications and
other KEXTs to be notified when certain kernel events occur. It should be used when multiple clients need
to know about a given event, and is not intended as a point-to-point communication mechanism. In general,
the kernel control API is preferred, as it provides bidirectional communication.

For detailed reference documentation on these APIs, see Kernel Framework Reference.

Using the Kernel Control API for KEXT Control

The kernel control API is a bidirectional communication mechanism between a user space application and
a KEXT. This section describes this API at the kernel level and the user space level.

Supporting Kernel Controls in Your KEXT

Supporting kernel controls in a KEXT is relatively straightforward.

In the KEXT’s start function, you must register a kernel control structure using the ctl_register function.
The ctl_register function is defined in <sys/kern_control.h> as follows:

int ctl_register(struct kern_ctl_reg *userctl,
            kern_ctl_ref *ctlref);

The kern_ctl_reg structure contains three fields that are used to identify the control. The fields ctl_id
and ctl_name can be shared across multiple controls.

The final field, ctl_unit, contains a value that is specific to a given control. A control can be registered
multiple times with the same ctl_id, but for each instance a different unit number must be used. For
dynamically-allocated control IDs, this value is filled in automatically.

Other fields of the kern_ctl_reg structure contain handler functions that you must create to handle various
control requests.
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The structure’s fields are defined as follows:

ctl_name
a bundle ID string for your control of up to MAX_KCTL_NAME bytes (including the terminating null).
This may be used to generate ctl_id.

ctl_id
a unique 4 byte ID for the control. (See note below.)

ctl_unit
the unit number for the control. The value is automatically assigned for dynamically-allocated ctl_id
values.

ctl_flags
flags that affect the behavior of a control. You can set the CTL_FLAG_PRIVILEGED flag to require
that the user have admin privileges to contact the control.

For more TCP-like behavior, the flag CTL_FLAG_REG_SOCK_STREAM may be specified to indicate that
the control should be registered for stream connections rather than datagrams. Note, however, that
if you set CTL_FLAG_REG_SOCK_STREAM, you must connect to the control using SOCK_STREAM
instead of SOCK_DGRAM.

ctl_sendsize
size of buffer reserved for sending messages. A value of 0 indicates that the default size should be
used.

ctl_recvsize
size of buffer reserved for receiving messages. A value of 0 indicates that the default size should be
used.

ctl_connect
called when the client process calls connect on the socket with the ID/unit number of the registered
control.

ctl_disconnect
called when the user client process closes the control socket.

ctl_send
called when the user client process writes data to the socket.

ctl_setopt
called when the user client process calls setsockopt to set the control configuration.

ctl_getopt
called when the user client process calls getsockopt on the socket.

Note:  You may use either a registered Creator ID (available from the Apple Developer Creator ID web page
at http://developer.apple.com/dev/cftype/) or you may use a dynamically-assigned ID.

It is strongly recommended that you use a dynamically-assigned ID. This is the default behavior. In that case,
the memory referenced by the ctl_id field will be overwritten with the dynamically-generated ID value
when ctl_register returns.

If you need to use a registered ID, you must set the CTL_FLAG_REG_ID_UNIT flag in ctl_flags. If this flag
is set, the value of ctl_name will be ignored.

On successful return, the second parameter, ctlref, will contain a reference to the registered kernel control.
This reference must be used to unregister the control, and is also passed as an argument to any callbacks
when they are called.
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It is possible to take advantage of kernel control naming to allow processes to interact with a KEXT in different
ways. A KEXT may, for example, register a root-only control for configuring the KEXT. It might register a
second control, available to any process, for gathering statistics. Each instance of the control will have a
different ctlref, and this value can then be used to determine which behavior to use.

When the kernel control receives a connection from a user-space process, the control’s ctl_connect_func
callback is called. In this function, you should determine the unit number associated with the connection so
that you can later send data back to the connecting process. You should then create a data structure (of your
choosing) to store connection-specific data, and should return this structure by assignment through the
void ** handle passed in as the third parameter. This value will be passed to the other callbacks when they
are called.

At this point, the user process can communicate with the control using getsockopt(2), setsockopt(2),
read(2)/recv(2), and write(2)/send(2) on the socket. With the exception of recv(2) (which reads
data from a queue), calls in user space to these functions result in a kernel-space call to the equivalent
callbacks in the control, ctl_getopt_func, ctl_setopt_func, and ctl_send, respectively.

The kernel process can, in turn, call a number of functions to send data back to the user space process. This
data can be read by the user process using the read(2) or recv(2) system calls. In particular, you can use
ctl_enqueuedata and ctl_enqueuembuf to queue up data to send to the user space process, and
ctl_getenqueuespace to find out how much free space is available in the queue.

When the user process closes the communication socket to the control, the ctl_disconnect_func callback
is called. At this point, the control should free any connection-specific resources that it has allocated.

Listing 3-1 (page 25) shows some basic example functions to use as a starting point:

Listing 3-1 A basic kern_control example

errno_t error;
struct kern_ctl_reg     ep_ctl; // Initialize control
kern_ctl_ref     kctlref;
bzero(&ep_ctl, sizeof(ep_ctl));  // sets ctl_unit to 0
ep_ctl.ctl_id = 0; /* OLD STYLE: ep_ctl.ctl_id = kEPCommID; */
ep_ctl.ctl_unit = 0;
strcpy(ep_ctl.ctl_name, "org.mklinux.nke.foo");
ep_ctl.ctl_flags = CTL_FLAG_PRIVILEGED & CTL_FLAG_REG_ID_UNIT;
ep_ctl.ctl_send = EPHandleWrite;
ep_ctl.ctl_getopt = EPHandleGet;
ep_ctl.ctl_setopt = EPHandleSet;
ep_ctl.ctl_connect = EPHandleConnect;
ep_ctl.ctl_disconnect = EPHandleDisconnect;
error = ctl_register(&ep_ctl, &kctlref);

/* A simple setsockopt handler */
errno_t EPHandleSet( kern_ctl_ref ctlref, unsigned int unit, void *userdata, int opt, 
void *data, size_t len )
{
    int    error = EINVAL;
#if DO_LOG
    log(LOG_ERR, "EPHandleSet opt is %d\n", opt);
#endif

    switch ( opt )
    {
        case kEPCommand1:               // program defined symbol
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            error = Do_First_Thing();
            break;

        case kEPCommand2:               // program defined symbol
            error = Do_Command2();
            break;
    }
    return error;
}

/* A simple A simple getsockopt handler */
errno_t EPHandleGet(kern_ctl_ref ctlref, unsigned int unit, void *userdata, int opt, 
void *data, size_t *len)
{
    int    error = EINVAL;
#if DO_LOG
    log(LOG_ERR, "EPHandleGet opt is %d *****************\n", opt);
#endif
    return error;
}

/* A minimalist connect handler */
errno_t
EPHandleConnect(kern_ctl_ref ctlref, struct sockaddr_ctl *sac, void **unitinfo)
{
#if DO_LOG
    log(LOG_ERR, "EPHandleConnect called\n");
#endif
    return (0);
}

/* A minimalist disconnect handler */
errno_t
EPHandleDisconnect(kern_ctl_ref ctlref, unsigned int unit, void *unitinfo)
{
#if DO_LOG
    log(LOG_ERR, "EPHandleDisconnect called\n");
#endif
    return;
}

/* A minimalist write handler */
errno_t EPHandleWrite(kern_ctl_ref ctlref, unsigned int unit, void *userdata, mbuf_t m,
 int flags)
{
#if DO_LOG
    log(LOG_ERR, "EPHandleWrite called\n");
#endif
    return (0);
}

Connection from the Client Process

Adding kern_control support in your NKE is only half of the story. The other half is actually using this
support from a client application.
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To communicate with an NKE, you must first open a PF_SYSTEM socket using the socket call as follows:

fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);

Note:  A kernel control may register either a datagram or stream control (SOCK_DGRAM or SOCK_STREAM). If
you registered your control with CTL_FLAG_REG_SOCK_STREAM, you should specify SOCK_STREAM here.
Otherwise, specify SOCK_DGRAM.

Next, your application must associate the socket with a particular kernel control. To do this, the client process
should call connect(2) with the file descriptor returned from the socket(2) call, along with a filled in
sockaddr_ctl structure containing the ID and unit number of the NKE's kernel control.

For example:

sockaddr_ctl addr;

/* (initialize addr here) */

result = connect(fd, (struct sockaddr *)&addr, sizeof(addr));

The second parameter, of type sockaddr_ctl, should be filled in as follows:

addr.sc_len = sizeof(struct sockaddr_ctl);
addr.sc_family = AF_SYSTEM;
addr.ss_sysaddr = AF_SYS_CONTROL;
addr.sc_id = MY_ID;     // set to value of ctl_id registered by the NKE in
                        // the ctl_register call described above.
addr.sc_unit = MY_UNIT; // set to the unit number registered by the NKE
                        // in the ctl_register call described above.

Of course, in the case of a dynamically-generated control ID, you must obtain the value for sc_id using the
CTLIOCGINFO ioctl, as shown in Listing 3-1 (page 25). When using a dynamically-generated control ID, the
unit number is ignored. The stack will automatically pick an unused unit number and fill in the sc_unit field
before passing the connect(2) call to the kernel control’s connect callback. While the kernel side must keep
track of the unit number for sending data back to the client, from the client’s perspective, the unit number
is unused.

Now that a communication channel is in place, the client process may use the setsockopt call to send
commands to the NKE, or the getsockopt call to obtain status information from the NKE. The NKE defines
which socket option names it will handle. The client process should pass only supported option names to
the NKE in the setsockopt call. However, for safety, it is the responsibility of the NKE to ignore options that
it does not understand, returning EOPNOTSUPP.

Listing 3-2 (page 27) shows a code example for opening a PF_SYSTEM socket to communicate with an NKE.

Listing 3-2 Opening a PF_SYSTEM socket to use with kern_control

    struct sockaddr_ctl       addr;
    int                       ret = 1;

    fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
    if (fd != -1) {
        bzero(&addr, sizeof(addr)); // sets the sc_unit field to 0
        addr.sc_len = sizeof(addr);
        addr.sc_family = AF_SYSTEM;
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        addr.ss_sysaddr = AF_SYS_CONTROL;
#ifdef STATIC_ID
        addr.sc_id = kEPCommID;  // should be unique - use a registered Creator ID here
        addr.sc_unit = kEPCommUnit;  // should be unique.
#else
        {
            struct ctl_info info;
            memset(&info, 0, sizeof(info));
            strncpy(info.ctl_name, MYCONTROLNAME, sizeof(info.ctl_name));
            if (ioctl(fd, CTLIOCGINFO, &info)) {
                perror("Could not get ID for kernel control.\n");
                exit(-1);
            }
            addr.sc_id = info.ctl_id;
            addr.sc_unit = 0;
        }
#endif

        result = connect(fd, (struct sockaddr *)&addr, sizeof(addr));
        if (result) {
           fprintf(stderr, "connect failed %d\n", result);
        }
    } else { /* no fd */
            fprintf(stderr, "failed to open socket\n");
    }

    if (!result) {
        result = setsockopt( fd, SYSPROTO_CONTROL, kEPCommand1, NULL, 0);
        if (result){
            fprintf(stderr, "setsockopt failed on kEPCommand1 call - result was %d\n",
 result);
        }
    }

Using the kern_event API for Kernel Notifications

The kernel event notification mechanism, or kern_event, is a lightweight mechanism that allows applications
to be notified when certain kernel events occur. It is a one-shot event from kernel space to user space that
is broadcast to all processes that are listening. For bidirectional communication, you must use the
kern_control API, described in “Using the Kernel Control API for KEXT Control” (page 23).

This API is relatively straightforward. At initialization time, your NKE should call kev_vendor_code_find
with the bundle name of your NKE (up to 200 characters in length). It will return a unique identifier that your
KEXT should use to identify any notifications that it posts. This identifier value is not persistent across reboots.

Once you have a vendor code, your NKE can post notifications. To post a notification, your NKE calls
kev_message_post with a kev_msg structure containing the vendor code obtained previously, along with
the event’s class, subclass, event code, and up to five pieces of data of arbitrary length associated with the
event.

You can define your own class and subclass values as appropriate for your NKE. The Apple-defined class
values used by kernel events built into Mac OS X can be found in the header file kern_event.h.
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Note:  Kernel extensions cannot post KEV_VENDOR_APPLE events.

Receiving Kernel Event Notifications

To receive kernel notifications in a client application, you must first create a kernel event socket as follows:

fd = socket(PF_SYSTEM, SOCK_RAW, SYSPROTO_EVENT);

Note:  Kernel event notifications can only be received by processes running as the root user.

Once you have created this socket, you can use this to receive event notifications. There are several ioctls
available to help you filter notifications:

 ■ SIOCGKEVFILT—get the kernel event filter for this socket.

 ■ SIOCGKEVID—get the current event ID pending on the socket. Each event will have a different ID.

 ■ SIOCGKEVVENDOR—look up a vendor code.

 ■ SIOCSKEVFILT—set the kernel event filter for this socket.

For example, to set the event filter to filter only for Apple-generated events from AppleTalk, you might do
the following:

struct kev_request req;
req.vendor_code=KEV_VENDOR_APPLE;
req.kev_class=KEV_APPLESHARE_CLASS;
req.kev_subclass=KEV_ANY_SUBCLASS;

if (ioctl(fd, SIOCSKEVFILT, &req)) {
    perror("SIOCSKEVFILT");
    exit(-1);
}

Using the SIOCGKEVFILT ioctl is similar:

struct kev_request req;

if (ioctl(fd, SIOCGKEVFILT, &req)) {
    perror("SIOCSKEVFILT");
    exit(-1);
}
printf("The current filter is vendor code %d, class %d, subclass %d\n",
    req.vendor_code, req.class, req.subclass);

To look up a vendor code for another vendor, you might do the following:

struct kev_vendor_code vc;
strcpy(vc.vendor_string, "org.mklinux.driver.swim3");
if (ioctl(fd, SIOCGKEVVENDOR, &vc)) exit(-1);
printf("Vendor code returned was %d\n", vc.vendor_code);

Finally, to obtain the next event ID from the socket, you might do something like this:
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uint32_t id;
if (ioctl(fd, SIOCGKEVID, &id)) exit(-1);
printf("ID returned was %d\n", id);

Implementing a Preference File for an NKE

Developers often ask how an NKE can open a “preference file” in an NKE’s start function. Under the existing
architecture, the NKE cannot reliably access a preference file. When the system starts the NKE, there are no
APIs that the NKE can use to open a file and read preference information.

The proper way to dynamically configure an NKE is with a startup daemon or other application-level process.
The daemon finds the NKE using the kernel control (kern_control) mechanism described in “Using the
Kernel Control API for KEXT Control” (page 23), and passes in configuration information that the NKE may
require.

Helpful Tips

To avoid crashes, unexplained behavior, and other pitfalls, there are a few simple rules you should follow
when using kern_control and kern_event in your NKE.

Unregister your control.
When someone tries to talk to you after your KEXT is unloaded, a kernel panic ensues. You must use
ctl_deregister to unregister your control before your NKE is unloaded. This call will fail if there
are clients still connected to your kernel control.

The maximum data size for events is 2KB.
Data passed with the kern_event APIs must be sent in chunks no larger than the mbuf cluster size,
or 2KB. Otherwise, truncation will occur.
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A socket filter is a filter associated with a particular socket, as shown in Figure 4-1 (page 31). These extensions
can filter inbound or outbound traffic on a socket. They also can filter out-of-band communication, including
calls to setsockopt(2), getsockopt(2), ioctl(2), connect(2), listen(2), and bind(2).

Figure 4-1 Socket filters in the Networking Stack
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Socket filters can operate in one of two modes: programmatic or global. A global filter is automatically enabled
for new sockets of the type specified for the filter. A programmatic filter is enabled only under program
control by using setsockopt(2) on a specific socket. (Within the code itself, the only difference between
global and programmatic filters is whether the flag SFLT_GLOBAL or SFLT_PROG was set in the filter’s
sf_flags field.)

When a KEXT calls sock_socket or an application calls socket(2) to create a socket, any global filters
associated with the corresponding protocol are attached to the socket structure. Depending on whether the
filter is filtering incoming or outgoing data, it will alter the data either just before the incoming data is stored
into the socket’s buffer or just after outgoing data is retrieved from that buffer by the kernel.

Alternately, an application can call setsockopt(2) using socket option SO_NKE to insert a programmatic
filter into that socket’s filter chain, as follows:

setsockopt(s, SOL_SOCKET, SO_NKE, &so_nke, sizeof (struct so_nke);

The so_nke structure is defined as follows:

struct so_nke {
    unsigned int nke_handle;
    unsigned int nke_where;
    int nke_flags;
};
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The values of nke_where and nke_flags are ignored. These fields are maintained only for compatibility.

The nke_handle specifies the filter to be linked to the socket. It is the programmer's task to locate the KEXT
containing the appropriate filter and make sure that it is loaded.

The nke_handle values are assigned by Apple Computer from the same name space as the type and creator
codes used in Mac OS 8 and Mac OS 9 and using the same registration mechanism.

However, you can also use the kernel event ID allocation mechanism to get a unique handle value for a socket
filter. A user-space application can then use the SIOCGKEVVENDOR ioctl on a kernel event socket to determine
the dynamic handle value for a given socket filter. This mechanism is described in “Using the kern_event API
for Kernel Notifications” (page 28).

Creating a Socket Filter

The life cycle of a socket filter can be summed up as follows:

 ■ Socket filters are installed in the kernel by calling sflt_register, typically from the filter’s initialization
routine.

 ■ Later, when the filter is instantiated on a socket, the protocol calls the filter’s sf_attach_func callback.
This callback may return a unique cookie through its first parameter that can be used for tracking storage
specific to a given filter instance (attached to a specific socket).

 ■ When the filter is detached (whether through the filter being unregistered, the socket being closed, or
the filter being explicitly detached from the socket), the filter’s sf_detach_func callback is called. At
this point, the filter should free any socket-specific resources that it has allocated (generally in
sf_attach_func).

 ■ The socket filter may, at some point, decide that it wishes to be unloaded. If so, it should call
sflt_unregister. This will prevent the filter from being attached to new sockets in the future and
will begin the process of detaching the filter from existing sockets.

As part of the call to sflt_register, your KEXT passes in a struct sflt_filter object. This structure
contains a number of fields that hold various callbacks and flags related to your filter.

Note:  Socket filters support both global and programmatic modes. To register a programmatic socket filter,
set the flag SFLT_PROG in the sf_flags field of the filter declaration structure. To register a global socket
filter, set the flag SFLT_GLOBAL.

Each socket filter contains a number of callbacks (function pointers). These callbacks are called automatically
when the corresponding socket functions are called. The callbacks permit the filter to selectively intercept
socket operations.

For example, the prototype for sf_bind_func looks like this:

int (*sf_bind_func)(void *cookie, socket_t so, const struct sockaddr *to);

The kernel's sobind function calls the filter’s sf_bind_func callback with the cookie value that the filter’s
sf_attach_func callback returned when the filter was first attached, along with a socket instance (so) and
the name of the local endpoint being bound (to).
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Most of these callbacks can return an integer value (with the exception of detach and notify, which are
assumed to always succeed). A return value of zero is interpreted to mean that the caller should continue
processing as usual. A non-zero return value is interpreted as an error (as defined in <sys/errno.h>) that
causes the processing of the packet or socket operation to halt; the error then propagates up through the
stack.

The one exception is the return value EJUSTRETURN. If you return this value, the calling function (for example,
sobind) returns at that point with a value of zero (no error). In this way, a filter can “swallow” a packet or an
operation. A filter may reinject the data or operation at a later time. For other non-zero return values, the
calling function returns the non-zero error code.

When any filter swallows and reinjects a packet or operation, it should expect the relevant filter function to
be called again on the injected data or operation. This may occur multiple times—each time the packet is
swallowed and reinjected.

Many filters (encapsulation, for example) naturally lend themselves to detecting reinjected packets. In other
situations, you can use the mbuf tag functionality to make it easy to spot reinjected traffic.

Note:  You should not confuse mbuf tags with virtual LAN (VLAN) tags. Both mechanisms allow you to
associate data with an mbuf, but they serve very different purposes. Virtual LAN tagging is intended to be
used by hardware interface drivers to identify packets as originating from a virtual LAN. If you care about the
source of such a packet, you may need to read this value. In general, this value should only be set from within
a network driver. You should never overload this to hold non-VLAN information.

To use mbuf tagging, you must first set a tag identifier for your KEXT in its start routine using the
mbuf_tag_id_find function Then, at the entry to your sf_data_in_func callback, use the mbuf_tag_find
function to see if your filter has already tagged this packet. If not, it should process the packet. Otherwise,
your filter function should return 0 immediately.

Once you have finished processing the packet, you should call mbuf_tag_allocate on the packet header
mbuf to tag the packet, indicating that you have already processed it. When the mbuf is later freed, any tag
references will also be deallocated.

Important:  If your KEXT swallows and reinjects packets, it must reinject those packets in the order that they
arrived on the socket.

The tcplognke sample provides an example of how to properly swallow and reinject packets.

Socket Filter Example: tcplognke

The tcplognke filter is a socket filter which is invoked for each TCP socket. It records detailed information
about each connection, including the number of bytes sent to and from the system, the time the connection
was up, and the remote IP address.

The tcplog utility demonstrates the use of the PF_SYSTEM socket to enable/disable logging in the tcplognke,
to read log information from the filter, and to specify different logging criteria.
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When tcplognke is loaded and initialized, it installs itself as a global filter for the TCP protocol and registers
a kernel control. The tcplognke filter then keeps a buffer of connection records. If no control program
attaches to it, the buffer is continually overwritten as connections are established and terminated. To retain
or view the information that the tcplognke filter gathers, use the enclosed tcplog command line utility.
The tool configures the tcplognke filter to send log records to the tcplog program. The tcplog tool then
loops, displaying and writing log records as the tcplognke filter creates them.

The source code for the tcplognke filter and for the tcplog command-line utility are available from the
ADC sample code website. See the Read Me file with the tcplognke sample code for more instructions on the
design and use of the sample KEXT.

34 Socket Filter Example: tcplognke
2009-08-14   |   © 2003, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Socket Filters



An IP filter is used to filter inbound or outbound IP traffic. It resides within the IP protocol stack, as shown in
Figure 5-1 (page 35). For inbound traffic, it is called after an IP packet has been reassembled. For outbound
traffic, it is called just prior to IP fragmentation. If IPSec processing is required for a given packet, the filter is
called twice—immediately before and after any IPSec processing.

Figure 5-1 IP Filters in the Networking Stack
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The Anatomy of an IP Filter

There are two basic categories of IP filters: IPv4 filters and IPv6 filters. With the exception of their handling
of addresses, they are essentially equivalent. The same basic data structure, ipf_filter, is used to describe
both.

The data structure contains five fields: cookie, name, ipf_input, ipf_output, and ipf_detach.

The first field, cookie, can contain arbitrary data. Your KEXT assigns it a value when it attaches the filter to
the IP stack. The IP stack then passes that value as an argument whenever the networking stack calls any
function in your KEXT. This allows a single filter to have multiple behaviors depending on where it is attached
by testing values stored in the cookie.

The structure referenced by this field can be arbitrarily defined by your KEXT. As far as the kernel is concerned,
it is essentially a void pointer. This mechanism is commonly used to store information about memory
allocations associated with a particular filter instance.

The second field, name, is the name of your filter. This is used only for debugging purposes, but should always
be filled in. It should contain either the identifier for the KEXT or something similar, for ease of identification.
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The remaining fields, ipf_input, ipf_output, and ipf_detach, are pointers to callback functions in your
KEXT. Those callbacks are called whenever your filter is asked to handle inbound packets, handle outbound
packets, or detach, respectively.

The ipf_input, ipf_output, and ipf_detach function pointers are described in their data type
declarations—respectively, ipf_input_func, ipf_output_func, and ipf_detach_func.

Generally, your ipf_input_func callback will be called as soon as a packet has been identified as being a
IP packet and reassembled. Similarly, your ipf_output_func function will be called just prior to sending it
to the data link interface layer (where it may be further processed by interface filters). However, in some
cases, such as IPSec encapsulation, your IP filter will be called once as each layer of encapsulation is decoded.

A registered filter is identified by the opaque type ipfilter_t. This is used later when you unregister the
filter.

IP Filter Gotchas

There are several quirks specific to modifying traffic in an IP filter. Some of these include:

Reinjecting modified traffic
If your filter modifies the protocol of inbound traffic or the destination of outbound traffic, the packet
may be misdelivered as a result of caching in the IP stack.

To prevent this problem, your filter must use ipf_inject_input or ipf_inject_output, as
appropriate. Your ipf_input_func or ipf_output_func callback should then swallow the previous
version by returning EJUSTRETURN.

Packet Fragmentation
IP filters only receive reassembled packets. It is not possible to filter on packet fragments.

Filter Loops
It is possible to create filter loops in which one filter changes a value and reinjects the packet, which
causes a second filter to change the value back and reinject it in an endless loop.

To reduce the likelihood of such a loop, when reinjecting packets, your filter should always specify
itself as the filter_ref parameter.
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This chapter describes the programming interface for creating interface filters, which are associated with a
particular network interface, as shown in Figure 6-1 (page 37).

Figure 6-1 Data Link Interface Layer
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Interface Filter Functions and Callbacks

An interface filter defines the following callbacks:

 ■ iff_input_func, which is used to process packets after they are demuxed.

 ■ iff_output_func, which is used to process packets before they are sent out from an interface to a
network.

 ■ iff_event_func, which is used to filter events specific to an interface.

 ■ iff_ioctl_func, which is used to filter ioctls sent to an interface. All undefined ioctls are reserved for
future Apple use. You should use kern_control if you need to add additional control mechanisms.

 ■ iff_detached_func, which is called when your filter is detached from an interface. When this callback
is called, you should perform any cleanup related to the interface. If this is called as a result of the interface
itself being detached, it will occur after you receive the interface detach notification.

To attach and detach an interface filter, the following functions are defined by the interface filter KPI:

 ■ iflt_attach, which inserts an interface filter between the protocol plumbers and an attached interface.

 ■ iflt_detach, which removes a previously inserted interface filter.
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Common Caveats

There are a number of surprises that you may run into when writing an interface filter. Several of these follow:

Packet injection
When your filter injects packets, it should use the ifnet_input and ifnet_output_raw functions.
If you do this, your filter should be prepared to ignore the packet it just injected, as your filter’s
iff_input_func or iff_output_func callback will see this packet again immediately. You should
use the mbuf_tag APIs (mbuf_tag_allocate, for example) to track these packets. If multiple filters
are swallowing and reinjecting packets, you may see a given packet multiple times.

Note:  When reinjecting packets, the filter must ensure that the packet header field is set in the first mbuf
structure. Otherwise, the call to ifnet_input will result in a kernel panic (NULL pointer dereference).

When your iff_input_func callback is called, you may find that the packet_header field has been set
to NULL. The frame_ptr parameter to iff_input_func can be used to set the packet_header field if
the packet must be reinjected. To do this, use the mbuf_pkthdr_setheader function to set the
packet_header field in the mbuf.

If your iff_input_func callback does not swallow a packet, it is not necessary to set the packet_header
field.

Input callbacks: Header pointers and mbufs
Your filter’s input callback receives an mbuf pointer to the packet contents and a separate header
pointer. The header pointer references the link-layer header, as defined by the relevant interface.

For most interfaces, the length of this header can be determined by inspecting the header length
(ifnet_hdrlen) defined by the interface. For some interfaces, however, such as PPP, the header
length is variable.

Output callbacks: Header pointers and mbufs
Your filter’s output callback receives the entire packet in the mbuf chain. To get the protocol layer
information, your filter must know how to parse the link-layer header. For this reason, if you are writing
a filter that needs to work with IP packets, you should consider writing an IP filter unless it is absolutely
necessary to access link-layer information.
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This chapter describes the network interface KPI. This programming interface allows a KEXT to attach new
network interfaces, communicate with and manipulate network interfaces, and create new virtual interfaces.

The mechanism recommended for supporting new interfaces depends on the nature of the interface. The
recommended mechanisms are:

 ■ Ethernet drivers—subclass the IOEthernetController and IOEthernetInterface classes from the
I/O Kit’s I/O Networking Family.

 ■ Other hardware network controllers—subclass the IONetworkController and IONetworkInterface
classes.

 ■ Virtual interfaces—the interface KPI described in this section is recommended.

This chapter also describes protocol plumbers. Protocol plumbers are used to attach network protocols to
interfaces.

If you are creating support for an interface type that the stack does not already support (such as ATM),
regardless of whether your KEXT uses the I/O Kit, you must register protocol plumbers for attaching existing
protocols to the new interface type.

Note:  Since more than one developer might attempt to register plumbers for a given interface type, your
KEXT should be prepared to handle such a situation. If the demux descriptors are standard, it should be
possible for your KEXT to work with a third-party plumber.

The functionality in a network interface is utilized by both the interface driver and the protocol stacks, as
shown in Figure 7-1 (page 39).

Figure 7-1 Network Interfaces in the Networking Stack
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Network Interface Callbacks

Your network interface should define the following callbacks, which are called by protocols and drivers:

 ■ ifnet_add_proto_func, which is called whenever a protocol is attached to the interface.

 ■ ifnet_check_multi, which is called when a multicast address is added to an interface. This allows the
interface to reject invalid multicast addresses before they are added to the interface.

 ■ ifnet_del_proto_func, which is called when a protocol is detached from the interface.

 ■ ifnet_demux_func, which is called with a raw packet from the interface, and returns the protocol
family value of the protocol that should process the packet. It can do this using either the demux
descriptors registered with ifnet_add_proto_func or hard-coded logic. If the packet does not match
any protocol, the function should return ENOENT.

 ■ ifnet_detached_func, which is called when your interface is detached.

 ■ ifnet_event_func, which is called when an event occurs on a particular interface.

 ■ ifnet_framer_func, which is called with outgoing packets before sending them to outgoing interface
filters, and is expected to wrap the packet with a stack frame appropriate to the interface type.

 ■ ifnet_ioctl_func, which is called whenever an ioctl is received for the interface. The network interface
is expected to pass these on to the I/O Kit driver if it is necessary and appropriate to do so. All undefined
ioctls are reserved for future Apple use. You should use kern_control if you need to add additional
control mechanisms.

 ■ ifnet_output_func, which is called with a packet that is ready to be sent out the wire. The network
interface is expected to transmit the packet and free the mbuf associated with it. For network interfaces
backed by I/O Kit drivers, this callback generally calls a function in the I/O Kit driver that handles both
of these tasks.

 ■ ifnet_set_bpf_tap, which is called by the stack to set the BPF tap function that is installed on the
interface. This callback is optional, but recommended; if you do not add this function, BPF cannot be
used with your interface.

Note:  To support BPF, in addition to defining an ifnet_set_bpf_tap callback, your KEXT must also
call bpfattach after attaching the interface to the stack.

Good examples of many of these functions can be found in bsd/net/ether_if_module.c in the xnu
(kernel) source tree.

Installing and Removing Network Interfaces

The following functions are typically called (in the following order) to support the dynamic insertion and
removal of network interfaces:

1. ifnet_allocate, which allocates an interface structure.

2. ifnet_attach, which attaches an interface to the global interface list.
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3. bpfattach, which enables BPF support on an interface (optional).

4. ifnet_detach, which removes an interface from the global interface list.

5. ifnet_release, which releases a reference to an interface structure. If the reference count reaches
zero (0), the structure will be freed. This release matches the ifnet_allocate call earlier, and should
be called after calling ifnet_detach.

The related function ifnet_reference can be used (generally by other KEXTs) to increase the reference
count of an interface structure. These calls must be balanced by an equal number of calls to ifnet_release.

Protocol Plumbers

Protocol plumbers, as mentioned previously, are responsible for attaching a protocol to a network interface.
When a protocol needs to attach to an interface, it calls a function that looks up the plumber designated for
that protocol and interface type, then calls that plumber’s plumb handler.

Protocol plumbers define the following callbacks, which are called by protocols:

 ■ proto_plumb_handler, which is called to attach a protocol to an interface. This typically consists of a
call to the interface’s ifnet_attach_protocol callback.

 ■ proto_unplumb_handler, which is called to detach a protocol from an interface. The unplumb handler
should call the ifnet_detach_protocol function, but may do other cleanup such as freeing any
storage allocated in the proto_plumb_handler callback.

Note:  The protocol unplumb handler is optional. If it is NULL, the stack will directly call
ifnet_detach_protocol to unplumb the protocol. The plumber only needs to specify an unplumb handler
if it needs to do additional cleanup.

When attaching a protocol to an interface, the protocol plumber typically fills in the following fields in the
ifnet_attach_proto_param structure, many of which may be defined as part of the protocol itself. This
mechanism provides the opportunity for the protocol plumber to intercept these calls and take
interface-specific actions where needed.

 ■ proto_media_detached (optional), which is used to notify the protocol that it is being detached.

 ■ proto_media_event (optional), which is called to notify a protocol about interface-specific events.

 ■ proto_media_input (required), which is used to deliver an inbound packet to the protocol for
processing.

 ■ proto_media_ioctl (optional), which is typically the protocol’s ioctl handling function.

 ■ proto_media_preout (required), which is called just before a packet is transmitted. This allows the
protocol to specify a media-specific frame type and destination.

 ■ proto_media_resolve_multi (optional), which is used to obtain a link layer address for a given
protocol layer multicast address. This is only necessary if your interface supports multicast.

 ■ proto_media_send_arp (optional), which is used to obtain the link layer address corresponding to a
given protocol layer unicast address. This is necessary for all non-point-to-point interfaces.
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Examples of these functions can be found in bsd/net/ether_inet_pr_module.c in the xnu (kernel)
source tree.

Sending Data

The following steps describe the process of sending a packet, using Ethernet as the example medium:

1. The ip_output routine in the IP protocol stack calls ifnet_output.

2. The ifnet_output function calls the protocol plumber’s proto_media_preout function. In the case
of IP, this function calls inet_arp_lookup.

3. If the ARP cache does not contain an entry for the IP address, inet_arp_lookup then calls the protocol
plumber’s proto_media_send_arp callback to resolve the target IP address into a media access control
(MAC) address.

4. When the proto_media_preout callback returns, the ifnet_output function calls the network
interface’s ifnet_framer_func function. This framing function prepends interface-specific frame data
to the packet.

5. If any interface filters are present, their iff_output_func callbacks are called consecutively.

6. The ifnet_output function calls the network interface’s ifnet_output_func callback, which transmits
the packet and frees the mbuf.

Receiving Data

The following steps describe the process of receiving a packet:

1. The hardware driver or its support code calls ifnet_inputwith pointers to its ifnet structure (ifnet_t)
and mbuf chain (mbuf_t).

2. The packet is queued. Processing resumes on a different thread.

3. The ifnet_input function calls the network interface’s ifnet_demux_func function for the interface.

4. The demultiplexing function identifies the frame and returns a protocol_family_t value to indicate
which protocol should handle the packet.

5. The ifnet_input function calls the attached interface filters (if any) sequentially.

6. Any packets not matching an attached protocol are dropped, as are any promiscuous packets.

7. The ifnet_input function calls the protocol plumber’s proto_media_input function. The plumber
is specific to a given protocol/interface combination.

Note:  The Ethernet-specific module for IP receives the frame and delivers the packet to the protocol's
proto_input routine.
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The document KPI Reference describes the functions that NKEs can call and describes a few NKE-specific data
types. They are organized by header file. This chapter includes a few additional APIs that may be useful when
writing an NKE.

 ■ “Kernel Utilities” (page 43) lists some kernel utilities that NKEs can call.

 ■ kpi_interface.h includes functions for manipulating network interfaces, including packet injection,
attaching/detaching protocols, attaching/detaching interfaces, and so on.

 ■ kpi_interfacefilter.h includes functions for filtering at the raw packet level, just above the network
interface layer. These functions are appropriate for an interface filter.

 ■ kpi_ipfilter.h includes functions for attaching a packet filter for IPv4 or IPv6 packets. These functions
are appropriate for a KEXT that filters IP traffic.

 ■ kpi_mbuf.h includes functions for manipulating mbuf data structures. These are used heavily for passing
packets and packet fragments around throughout the protocol stack.

 ■ kpi_protocol.h includes functions for packet injection. It also includes functions to register
“plumbers”—handlers that deal with requests for attaching a protocol to an interface (and detaching,
and so on).

 ■ kpi_socket.h includes functions for manipulating a socket, including packet send/receive and flag
manipulation.

 ■ kpi_socketfilter.h includes functions and data type definitions for creating a socket filter.

Kernel Utilities

NKEs can call a number of kernel utility functions including the following:

 ■ “_MALLOC” (page 44)

 ■ “_FREE” (page 44)

 ■ “printf” (page 44)

 ■ “proc_exiting” (page 45)

 ■ “proc_is64bit” (page 45)

 ■ “proc_rele” (page 45)

 ■ “proc_self” (page 45)

 ■ “proc_suser” (page 45)

 ■ “msleep” (page 45)

 ■ “wakeup” (page 46)
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 ■ “wakeup_one” (page 46)

This list does not attempt to be exhaustive, but highlights many of the more frequently-used utility functions.

_MALLOC

Defined in: <sys/malloc.h>

Allocates kernel memory.

    void *_MALLOC(size_t size, int type, int flags);

_MALLOC is much like the user-space malloc function, but it has additional parameters that require some
explanation.

The types argument is a number representing the type of data that will be stored in the argument. This is
used primarily for accounting purposes. The known types are described in <sys/malloc.h>.

The flags argument consists of some combination of M_WAITOK, M_NOWAIT, and M_ZERO.

The flag M_NOWAIT causes _MALLOC to immediately return a null pointer if no space is available rather than
waiting for space to become available. While this is appropriate for time-sensitive tasks that can be retried,
it is not always what you want.

The more traditional (and default) behavior is M_WAITOK, which indicates that it is safe to wait for space to
become available. If your code is in a critical path for performance, you should probably use M_NOWAIT if
possible, and depend on the networking stack to retry after resources become available.

Finally, the flag M_ZERO requests that the allocator should zero the resulting allocation before returning it.

_FREE

Defined in: <sys/malloc.h>

Frees memory allocated with _MALLOC

    void _FREE(void *addr, int type);

The type flag passed to _FREE must be the same as the flag passed to the corresponding call to _MALLOC.

printf

Defined in: <libkern/libkern.h>

Print text to the console.

    void printf(const char *format, ... );

Identical to printf in user space. It is not safe to call printf from within an interrupt context. This should
generally not be an issue, as you should avoid calling NKE functions from within an I/O Kit driver’s filter
routine as a matter of course, but it is worth noting.
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proc_exiting

Defined in: <sys/proc.h>

Returns 1 if a process is exiting, else 0.

    int proc_exiting(proc_t);

proc_is64bit

Defined in: <sys/proc.h>

Returns 1 if a process is a 64-bit executable, else 0.

    int proc_is64bit(proc_t);

proc_rele

Defined in: <sys/proc.h>

Releases a reference to a process entry.

    int proc_rele(proc_t);

proc_self

Defined in: <sys/proc.h>

Returns a reference to the running process. This must be released with “proc_rele” (page 45).

    proc_t proc_self(void);

proc_suser

Defined in: <sys/proc.h>

Checks to see if a process is running as the super-user (root).

    int proc_suser(struct proc *p);

Note:  There are many other proc_* functions available. These are described in <sys/proc.h>. The ones
here are just a few of the more commonly used functions in network-related KEXTs.

msleep

Defined in: <sys/proc.h>
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Sleep until an event is posted with “wakeup” (page 46) or until a timeout occurs. This is commonly combined
with a timeout value to bound the wait.

    int msleep(void *chan, lck_mtx_t *mtx, int pri, const char *wmesg, struct 
timespec *ts);

The timeout value is a standard timespec (defined in <sys/time.h>, and is measured in seconds and
nanoseconds. To sleep until woken, you should pass a NULL value for ts.

Note:  For compatibility reasons, an alternate form, msleep1, is provided, in which the last argument is a
64-bit deadline in Mach abstime format. This form can be substituted in place of the tsleep function used
in pre-KPI network kernel extensions by using clock_interval_to_deadline to obtain a mach abstime
deadline from the time interval.

The parameter mtx is a mutex (defined in a processor-specific include, but included with <sys/lock.h>)
that will be released prior to sleeping. (The mutex must be locked prior to calling msleep.) The mutex will
also be reacquired upon wake unless the PDROP flag is set in the priority value.

Note:  If the PDROP flag is specified, msleep returns with the mutex unlocked regardless of whether it actually
blocks or not.

The parameter chan should be a unique identifier specific to a given wait event. Usually such an event is
associated with the change in a variable, in which case the address of that variable makes a good value for
chan.

The parameter pri is the desired priority on wake (defined in <sys/param.h>). After another thread has
called “wakeup” (page 46) on the desired event (specified by the value of chan), your code will begin
executing at the specified priority. If the PCATCH flag is set on pri, signal handlers will be tried before and
after the sleep.

Returns 0 if awakened with wakeup, EWOULDBLOCK on timeout expiry, and ERESTART or EINTR if PCATCH
is set and a signal occurred, depending on whether the SA_RESTART flag is set on the signal.

wakeup

Defined in: <sys/proc.h>

Wakes all threads sleeping on a given channel through a call to “msleep” (page 45).

    void wakeup(void *chan);

wakeup_one

Defined in: <sys/proc.h>

Wakes the first thread sleeping on a given channel through a call to “msleep” (page 45).

    void wakeup_one(void *chan);
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domain  A complete protocol family.

driver layer  I/O Kit Drivers for various networking
types.

extension  A general term for an object module that
can be dynamically added to a running system; often
used as a synonym for kernel extension.

global socket filter  A socket filter that is
automatically enabled for sockets of the type
specified.

ifnet structure  A data structure containing function
pointers and data related to a particular network
interface.

in-band  Communication on a socket or interface that
contains actual data destined for the endpoint (for
example, send and recv calls). See also: out-of-band.

interface filter  A filter that attached to a particular
interface. An interface filter alters in-band and
out-of-band communication specific to a given
interface.

interface layer  A layer above the driver layer
containing interface KEXTs, interface filters, and
protocol plumbers.

interface KEXT  A network kernel extension that
provides routines specific to a particular family of
interfaces, such as ARP equivalence routines.

IP filter  A filter that alters IP traffic each time it enters
the protocol stack. By its very nature, an IP filter can
only filter in-band communication.

KEXT  Short for kernel extension; a plug-in for the
Mac OS X kernel (xnu).

KPI  Short for kernel programming interface; a group
of opaque data types and accessor functions designed
to maintain binary compatibility across OS releases.

mbuf  A data structure containing data about a
network packet.

network kernel extension (NKE)  1) The architecture
that allows modules to be added to the Mac OS X
networking subsystem while the system is running.
2) A module that can be added to a running system.

out-of-band  Communication on a socket or interface
that relates to the operation of the socket or interface
rather than data destined for the endpoint (for
example, ioctl and getsockopt calls). See also:
in-band.

plug-in  A general term for an object module that
can be dynamically added to a running system.

programmatic socket filter  A socket filter that is
enabled only under program control by calling
setsockopt on a specific socket.

protocol plumber  A network kernel extension that
routes data between an interface and a network
protocol stack.

protocol stack  A layer of the kernel network
architecture containing the core functionality for a
protocol family such as TCP/IP.

protosw structure  A data structure containing
function pointers and data associated with a protocol
family.

socket structure  A data structure containing data
associated with a network socket.
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socket filter  A filter that is associated with a
particular socket or class of sockets, filtering in-band
and out-of-band operations on the socket. A socket
filter resides between a socket and the protocol layer.
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This table describes the changes to Network Kernel Extensions Programming Guide.

NotesDate

Changed links from KPI Reference to Kernel Framework Reference.2009-08-14

Fixed an error in a code listing related to the return value of the socket function.2009-03-02

Added additional details about msleep function.2008-04-08

Added art to mbuf chapter.2007-05-03

Added socket KPI conceptual material.2007-04-03

Fixed a minor error in a code example.2006-10-03

Added additional note clarifying the relationship between
CTL_FLAG_REG_SOCK_STREAM and SOCK_STREAM.

2005-08-11

Fixed minor typographical errors.2005-06-04

Updated for Mac OS X 10.4 and KPI interfaces.2005-04-29

Initial republication (for Mac OS X 10.3 and prior)2004-04-22
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