
CFDictionary Reference
Data Management: Data Types & Collections

2007-10-31

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, and
iPhone are trademarks of Apple Inc., registered
in the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

CFDictionary Reference 5

Overview 5
Functions by Task 6

Creating a dictionary 6
Examining a dictionary 6
Applying a function to a dictionary 6
Getting the CFDictionary type ID 6

Functions 7
CFDictionaryApplyFunction 7
CFDictionaryContainsKey 7
CFDictionaryContainsValue 8
CFDictionaryCreate 9
CFDictionaryCreateCopy 10
CFDictionaryGetCount 11
CFDictionaryGetCountOfKey 11
CFDictionaryGetCountOfValue 12
CFDictionaryGetKeysAndValues 12
CFDictionaryGetTypeID 13
CFDictionaryGetValue 14
CFDictionaryGetValueIfPresent 14

Callbacks 15
CFDictionaryApplierFunction 15
CFDictionaryCopyDescriptionCallBack 16
CFDictionaryEqualCallBack 17
CFDictionaryHashCallBack 17
CFDictionaryReleaseCallBack 18
CFDictionaryRetainCallBack 18

Data Types 19
CFDictionaryKeyCallBacks 19
CFDictionaryRef 20
CFDictionaryValueCallBacks 20

Constants 21
Predefined Callback Structures 21

Document Revision History 23

3
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

4
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Derived From: CFPropertyList Reference : CFType Reference

Framework: CoreFoundation/CoreFoundation.h

Declared in CFDictionary.h

Companion guides Collections Programming Topics for Core Foundation
Property List Programming Topics for Core Foundation

Overview

CFDictionary and its derived mutable type, CFMutableDictionary Reference, manage associations of key-value
pairs. CFDictionary creates static dictionaries where you set the key-value pairs when first creating a dictionary
and cannot modify them afterward; CFMutableDictionary creates dynamic dictionaries where you can add
or delete key-value pairs at any time, and the dictionary automatically allocates memory as needed.

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by the equal callback). Internally, a dictionary uses a hash
table to organize its storage and to provide rapid access to a value given the corresponding key.

Keys for a CFDictionary may be of any C type, however note that if you want to convert a CFPropertyList to
XML, any dictionary’s keys must be CFString objects.

You create static dictionaries using either the CFDictionaryCreate (page 9) or
CFDictionaryCreateCopy (page 10) function. Key-value pairs are passed as parameters to
CFDictionaryCreate (page 9). When adding key-value pairs to a dictionary, the keys and values are not
copied—they are retained so they are not invalidated before the dictionary is deallocated.

CFDictionary provides functions for querying the values of a dictionary. The function
CFDictionaryGetCount (page 11) returns the number of key-value pairs in a dictionary; the
CFDictionaryContainsValue (page 8) function checks if a value is in a dictionary; and
CFDictionaryGetKeysAndValues (page 12) returns a C array containing all the values and a C array
containing all the keys in a dictionary.

The CFDictionaryApplyFunction (page 7) function lets you apply a function to all key-value pairs in a
dictionary.

CFDictionary is “toll-free bridged” with its Cocoa Foundation counterpart, NSDictionary. This means that
the Core Foundation type is interchangeable in function or method calls with the bridged Foundation object.
Therefore, in a method where you see an NSDictionary * parameter, you can pass in a CFDictionaryRef,
and in a function where you see a CFDictionaryRef parameter, you can pass in an NSDictionary instance.
This also applies to concrete subclasses of NSDictionary. See Interchangeable Data Types for more information
on toll-free bridging.

Overview 5
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Functions by Task

Creating a dictionary

CFDictionaryCreate (page 9)
Creates an immutable dictionary containing the specified key-value pairs.

CFDictionaryCreateCopy (page 10)
Creates and returns a new immutable dictionary with the key-value pairs of another dictionary.

Examining a dictionary

CFDictionaryContainsKey (page 7)
Returns a Boolean value that indicates whether a given key is in a dictionary.

CFDictionaryContainsValue (page 8)
Returns a Boolean value that indicates whether a given value is in a dictionary.

CFDictionaryGetCount (page 11)
Returns the number of key-value pairs in a dictionary.

CFDictionaryGetCountOfKey (page 11)
Returns the number of times a key occurs in a dictionary.

CFDictionaryGetCountOfValue (page 12)
Counts the number of times a given value occurs in the dictionary.

CFDictionaryGetKeysAndValues (page 12)
Fills two buffers with the keys and values from a dictionary.

CFDictionaryGetValue (page 14)
Returns the value associated with a given key.

CFDictionaryGetValueIfPresent (page 14)
Returns a Boolean value that indicates whether a given value for a given key is in a dictionary, and
returns that value indirectly if it exists.

Applying a function to a dictionary

CFDictionaryApplyFunction (page 7)
Calls a function once for each key-value pair in a dictionary.

Getting the CFDictionary type ID

CFDictionaryGetTypeID (page 13)
Returns the type identifier for the CFDictionary opaque type.

6 Functions by Task
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Functions

CFDictionaryApplyFunction
Calls a function once for each key-value pair in a dictionary.

void CFDictionaryApplyFunction (
 CFDictionaryRef theDict,
 CFDictionaryApplierFunction applier,
 void *context
);

Parameters
theDict

The dictionary to operate upon.

applier
The callback function to call once for each key-value pair in theDict. If this parameter is not a pointer
to a function of the correct prototype, the behavior is undefined. If there are keys or values which the
applier function does not expect or cannot properly apply to, the behavior is undefined.

context
A pointer-sized program-defined value, which is passed as the third parameter to the applier function,
but is otherwise unused by this function. The value must be appropriate for the applier function.

Discussion
If this function iterates over a mutable collection, it is unsafe for the applier function to change the contents
of the collection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
ColorSyncDevices
IOPrintSuperClasses
MoreSCF

Declared In
CFDictionary.h

CFDictionaryContainsKey
Returns a Boolean value that indicates whether a given key is in a dictionary.

Boolean CFDictionaryContainsKey (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary to examine.

Functions 7
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

key
The key for which to find matches in theDict. The key hash and equal callbacks provided when the
dictionary was created, are used to compare. If the hash callback is NULL, key is treated as a pointer
and converted to an integer. If the equal callback is NULL, pointer equality (in C, ==) is used. If key,
or any of the keys in the dictionary, is not understood by the equal callback, the behavior is undefined.

Return Value
true if key is in the dictionary, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Utilities
MoreSCF
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryContainsValue
Returns a Boolean value that indicates whether a given value is in a dictionary.

Boolean CFDictionaryContainsValue (
 CFDictionaryRef theDict,
 const void *value
);

Parameters
theDict

The dictionary to examine.

value
The value for which to find matches in theDict. The value equal callback provided when the dictionary
was created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If
value, or any other value in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Return Value
true if value is in the dictionary, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ProfileSystem

Declared In
CFDictionary.h

8 Functions
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

CFDictionaryCreate
Creates an immutable dictionary containing the specified key-value pairs.

CFDictionaryRef CFDictionaryCreate (
 CFAllocatorRef allocator,
 const void **keys,
 const void **values,
 CFIndex numValues,
 const CFDictionaryKeyCallBacks *keyCallBacks,
 const CFDictionaryValueCallBacks *valueCallBacks
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

keys
A C array of the pointer-sized keys to be in the new dictionary. This value may be NULL if the
numValues parameter is 0. This C array is not changed or freed by this function. The value must be
a valid pointer to a C array of at least numValues pointers.

values
A C array of the pointer-sized values to be in the new dictionary. This value may be NULL if the
numValues parameter is 0. This C array is not changed or freed by this function. The value must be
a valid pointer to a C array of at least numValues elements.

numValues
The number of key-value pairs to copy from the keys and values C arrays into the new dictionary.
This number will be the count of the dictionary; it must be non-negative and less than or equal to
the actual number of keys or values.

keyCallBacks
A pointer to a CFDictionaryKeyCallBacks (page 19) structure initialized with the callbacks to
use to retain, release, describe, and compare keys in the dictionary. A copy of the contents of the
callbacks structure is made, so that a pointer to a structure on the stack can be passed in or can be
reused for multiple collection creations.

This value may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had
been passed in. Otherwise, if any of the fields are not valid pointers to functions of the correct type,
or this parameter is not a valid pointer to a CFDictionaryKeyCallBacks (page 19) structure, the
behavior is undefined. If any of the keys put into the collection is not one understood by one of the
callback functions the behavior when that callback function is used is undefined.

If the collection will contain CFType objects only, then pass a pointer to
kCFTypeDictionaryKeyCallBacks (page 22) as this parameter to use the default callback functions.

Functions 9
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

valueCallBacks
A pointer to a CFDictionaryValueCallBacks (page 20) structure initialized with the callbacks to
use to retain, release, describe, and compare values in the dictionary. A copy of the contents of the
callbacks structure is made, so that a pointer to a structure on the stack can be passed in or can be
reused for multiple collection creations.

This value may be NULL, which is treated as if a valid structure of version 0 with all fields NULL had
been passed in. Otherwise, if any of the fields are not valid pointers to functions of the correct type,
or this parameter is not a valid pointer to a CFDictionaryValueCallBacks structure, the behavior
is undefined. If any value put into the collection is not one understood by one of the callback functions
the behavior when that callback function is used is undefined.

If the collection will contain CFType objects only, then pass a pointer to
kCFTypeDictionaryValueCallBacks (page 22) as this parameter to use the default callback
functions.

Return Value
A new dictionary, or NULL if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BetterAuthorizationSample
BSDLLCTest
MoreSCF
QTMetaData
Quartz2DBasics

Declared In
CFDictionary.h

CFDictionaryCreateCopy
Creates and returns a new immutable dictionary with the key-value pairs of another dictionary.

CFDictionaryRef CFDictionaryCreateCopy (
 CFAllocatorRef allocator,
 CFDictionaryRef theDict
);

Parameters
allocator

The allocator to use to allocate memory for the new dictionary. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theDict
The dictionary to copy. The keys and values from the dictionary are copied as pointers into the new
dictionary. However, the keys and values are also retained by the new dictionary. The count of the
new dictionary is the same as the count of theDict. The new dictionary uses the same callbacks as
theDict.

Return Value
A new dictionary that contains the same key-value pairs as theDict, or NULL if there was a problem creating
the object. Ownership follows the Create Rule.

10 Functions
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetCount
Returns the number of key-value pairs in a dictionary.

CFIndex CFDictionaryGetCount (
 CFDictionaryRef theDict
);

Parameters
theDict

The dictionary to examine.

Return Value
The number of number of key-value pairs in theDict.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
DockBrowser
FSMegaInfo
MoreSCF
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryGetCountOfKey
Returns the number of times a key occurs in a dictionary.

CFIndex CFDictionaryGetCountOfKey (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary to examine.

key
The key for which to find matches in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, the key is treated as a
pointer and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used.
If key, or any of the keys in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Functions 11
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Return Value
Returns 1 if a matching key is used by the dictionary, otherwise 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetCountOfValue
Counts the number of times a given value occurs in the dictionary.

CFIndex CFDictionaryGetCountOfValue (
 CFDictionaryRef theDict,
 const void *value
);

Parameters
theDict

The dictionary to examine.

value
The value for which to find matches in theDict. The value equal callback provided when the dictionary
was created is used to compare. If the equal callback was NULL, pointer equality (in C, ==) is used. If
value, or any other value in the dictionary, is not understood by the equal callback, the behavior is
undefined.

Return Value
The number of times the value occurs in theDict.

Availability
Available in CarbonLib v1.0 and later.
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryGetKeysAndValues
Fills two buffers with the keys and values from a dictionary.

void CFDictionaryGetKeysAndValues (
 CFDictionaryRef theDict,
 const void **keys,
 const void **values
);

Parameters
theDict

The dictionary to examine.

12 Functions
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

keys
A C array of pointer-sized values that, on return, is filled with keys from the theDict. The keys and
values C arrays are parallel to each other (that is, the items at the same indices form a key-value pair
from the dictionary). This value must be a valid pointer to a C array of the appropriate type and size
(that is, a size equal to the count of theDict), or NULL if the keys are not required. If the keys are
Core Foundation objects, ownership follows the Get Rule.

values
A C array of pointer-sized values that, on return, is filled with values from the theDict. The keys and
values C arrays are parallel to each other (that is, the items at the same indices form a key-value pair
from the dictionary). This value must be a valid pointer to a C array of the appropriate type and size
(that is, a size equal to the count of theDict), or NULL if the values are not required. If the values are
Core Foundation objects, ownership follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
DockBrowser
FSMegaInfo
MoreSCF
SeeMyFriends

Declared In
CFDictionary.h

CFDictionaryGetTypeID
Returns the type identifier for the CFDictionary opaque type.

CFTypeID CFDictionaryGetTypeID (
 void
);

Return Value
The type identifier for the CFDictionary opaque type.

Discussion
CFMutableDictionary objects have the same type identifier as CFDictionary objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Calibrator
HID Config Save
HID Utilities
MoreSCF

Declared In
CFDictionary.h

Functions 13
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

CFDictionaryGetValue
Returns the value associated with a given key.

const void * CFDictionaryGetValue (
 CFDictionaryRef theDict,
 const void *key
);

Parameters
theDict

The dictionary examine.

key
The key for which to find a match in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, the key is treated as a
pointer and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used.
If key, or any of the keys in theDict, is not understood by the equal callback, the behavior is
undefined.

Return Value
The value associated with key in theDict, or NULL if no key-value pair matching key exists. Since NULL is
also a valid value in some dictionaries, use CFDictionaryGetValueIfPresent (page 14) to distinguish
between a value that is not found, and a NULL value. If the value is a Core Foundation object, ownership
follows the Get Rule.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
audioburntest
bulkerase
databurntest
GLUT
MoreSCF

Declared In
CFDictionary.h

CFDictionaryGetValueIfPresent
Returns a Boolean value that indicates whether a given value for a given key is in a dictionary, and returns
that value indirectly if it exists.

Boolean CFDictionaryGetValueIfPresent (
 CFDictionaryRef theDict,
 const void *key,
 const void **value
);

Parameters
theDict

The dictionary to examine.

14 Functions
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

key
The key for which to find a match in theDict. The key hash and equal callbacks provided when the
dictionary was created are used to compare. If the hash callback was NULL, key is treated as a pointer
and converted to an integer. If the equal callback was NULL, pointer equality (in C, ==) is used. If key,
or any of the keys in theDict, is not understood by the equal callback, the behavior is undefined.

value
A pointer to memory which, on return, is filled with the pointer-sized value if a matching key is found.
If no key match is found, the contents of the storage pointed to by this parameter are undefined. This
value may be NULL, in which case the value from the dictionary is not returned (but the return value
of this function still indicates whether or not the key-value pair was present). If the value is a Core
Foundation object, ownership follows the Get Rule.

Return Value
true if a matching key was found, otherwise false.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Dumper
HID Utilities
HID Utilities Source

Declared In
CFDictionary.h

Callbacks

CFDictionaryApplierFunction
Prototype of a callback function that may be applied to every key-value pair in a dictionary.

typedef void (*CFDictionaryApplierFunction) (
 const void *key,
 const void *value,
 void *context
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 const void *key,
 const void *value,
 void *context
);

Callbacks 15
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Parameters
key

The key associated with the current key-value pair.

value
The value associated with the current key-value pair.

context
The program-defined context parameter given to the apply function.

Discussion
This callback is passed to the CFDictionaryApplyFunction (page 7) function which iterates over the
key-value pairs in a dictionary and applies the behavior defined in the applier function to each key-value pair
in a dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryCopyDescriptionCallBack
Prototype of a callback function used to get a description of a value or key in a dictionary.

typedef CFStringRef (*CFDictionaryCopyDescriptionCallBack)(
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

CFStringRef MyCallback (
 const void *value
);

Parameters
value

The value to be described.

Return Value
A text description of value.

Discussion
This callback is passed to CFDictionaryCreate (page 9) in a CFDictionaryKeyCallBacks (page 19)
structure or CFDictionaryValueCallBacks (page 20). This callback is used by the CFCopyDescription
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

16 Callbacks
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

CFDictionaryEqualCallBack
Prototype of a callback function used to determine if two values or keys in a dictionary are equal.

typedef Boolean (*CFDictionaryEqualCallBack) (
 const void *value1,
 const void *value2
);

If you name your function MyCallBack, you would declare it like this:

Boolean MyCallBack (
 const void *value1,
 const void *value2
);

Parameters
value1

A value in the dictionary.

value2
Another value in the dictionary.

Discussion
This callback is passed to CFDictionaryCreate (page 9) in a CFDictionaryKeyCallBacks (page 19)
and CFDictionaryValueCallBacks (page 20) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryHashCallBack
Prototype of a callback function invoked to compute a hash code for a key. Hash codes are used when
key-value pairs are accessed, added, or removed from a collection.

typedef CFHashCode (*CFDictionaryHashCallBack) (
 const void *value
);

If you name your function MyDictionaryHashCallBack, you would declare it like this:

CFHashCode MyDictionaryHashCallBack (
 const void *value
);

Parameters
value

The value used to compute the hash code.

Return Value
An integer that can be used as a table address in a hash table structure.

Callbacks 17
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

Discussion
This callback is passed to CFDictionaryCreate (page 9) in a CFDictionaryKeyCallBacks (page 19)
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryReleaseCallBack
Prototype of a callback function used to release a key-value pair before it’s removed from a dictionary.

typedef void (*CFDictionaryReleaseCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

void MyCallBack (
 CFAllocatorRef allocator,
 const void *value
);

Parameters
allocator

The dictionary’s allocator.

value
The value being removed from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryRetainCallBack
Prototype of a callback function used to retain a value or key being added to a dictionary.

typedef const void *(*CFDictionaryRetainCallBack) (
 CFAllocatorRef allocator,
 const void *value
);

If you name your function MyCallBack, you would declare it like this:

const void *MyCallBack (
 CFAllocatorRef allocator,
 const void *value

18 Callbacks
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

);

Parameters
allocator

The dictionary’s allocator.

value
The value being added to the dictionary.

Return Value
The value or key to store in the dictionary, which is usually the value parameter passed to this callback, but
may be a different value if a different value should be stored in the collection.

Discussion
This callback is passed to CFDictionaryCreate (page 9) in a CFDictionaryKeyCallBacks (page 19)
and CFDictionaryValueCallBacks (page 20) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

Data Types

CFDictionaryKeyCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the keys in a dictionary.

struct CFDictionaryKeyCallBacks {
 CFIndex version;
 CFDictionaryRetainCallBack retain;
 CFDictionaryReleaseCallBack release;
 CFDictionaryCopyDescriptionCallBack copyDescription;
 CFDictionaryEqualCallBack equal;
 CFDictionaryHashCallBack hash;
};
typedef struct CFDictionaryKeyCallBacks CFDictionaryKeyCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

retain
The callback used to retain each key as they are added to the collection. This callback returns the
value to use as the key in the dictionary, which is usually the value parameter passed to this callback,
but may be a different value if a different value should be used as the key. If NULL, keys are not
retained. See CFDictionaryRetainCallBack (page 18) for a descriptions of this function’s
parameters.

Data Types 19
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

release
The callback used to release keys as they are removed from the dictionary. If NULL, keys are not
released. See CFDictionaryReleaseCallBack (page 18) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each key in the dictionary. If NULL,
the collection will create a simple description of each key. See
CFDictionaryCopyDescriptionCallBack (page 16) for a description of this callback.

equal
The callback used to compare keys in the dictionary for equality. If NULL, the collection will use pointer
equality to compare keys in the collection. See CFDictionaryEqualCallBack (page 17) for a
description of this callback.

hash
The callback used to compute a hash code for keys as they are used to access, add, or remove values
in the dictionary. If NULL, the collection computes a hash code by converting the pointer value to an
integer. See CFDictionaryHashCallBack (page 17) for a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryRef
A reference to an immutable dictionary object.

typedef const struct __CFDictionary *CFDictionaryRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

CFDictionaryValueCallBacks
This structure contains the callbacks used to retain, release, describe, and compare the values in a dictionary.

struct CFDictionaryValueCallBacks {
 CFIndex version;
 CFDictionaryRetainCallBack retain;
 CFDictionaryReleaseCallBack release;
 CFDictionaryCopyDescriptionCallBack copyDescription;
 CFDictionaryEqualCallBack equal;
};
typedef struct CFDictionaryValueCallBacks CFDictionaryValueCallBacks;

Fields
version

The version number of this structure. If not one of the defined version numbers for this opaque type,
the behavior is undefined. The current version of this structure is 0.

20 Data Types
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

retain
The callback used to retain each value as they are added to the collection. This callback returns the
value to use as the value in the dictionary, which is usually the value parameter passed to this callback,
but may be a different value if a different value should be used as the value. If NULL, values are not
retained. See CFDictionaryRetainCallBack (page 18) for a descriptions of this function’s
parameters.

release
The callback used to release values as they are removed from the dictionary. If NULL, values are not
released. See CFDictionaryReleaseCallBack (page 18) for a description of this callback.

copyDescription
The callback used to create a descriptive string representation of each value in the dictionary. If NULL,
the collection will create a simple description of each value. See
CFDictionaryCopyDescriptionCallBack (page 16) for a description of this callback.

equal
The callback used to compare values in the dictionary for equality. If NULL, the collection will use
pointer equality to compare values in the collection. See CFDictionaryEqualCallBack (page 17)
for a description of this callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CFDictionary.h

Constants

Predefined Callback Structures
CFDictionary provides some predefined callbacks for your convenience.

Constants 21
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

const CFDictionaryKeyCallBacks kCFCopyStringDictionaryKeyCallBacks;
const CFDictionaryKeyCallBacks kCFTypeDictionaryKeyCallBacks;
const CFDictionaryValueCallBacks kCFTypeDictionaryValueCallBacks;

Constants
kCFCopyStringDictionaryKeyCallBacks

Predefined CFDictionaryKeyCallBacks (page 19) structure containing a set of callbacks appropriate
for use when the keys of a CFDictionary are all CFString objects, which may be mutable and need to
be copied in order to serve as constant keys for the values in the dictionary.

You typically use a pointer to this constant when creating a new dictionary.

Important: For performance reasons, the default kCFCopyStringDictionaryKeyCallBacks behavior
uses CFEqual which does not normalize the strings. This means that, for example, it does not consider
CFStrings to be equal when they are the same but one is in pre-composed form (say, originating from a
UTF-16 text file) and the other in decomposed form (say, originating from a file name). In cases where you
use strings from different sources, you may want to pre-normalize the keys or else use a different set of
functions to perform the comparison.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

kCFTypeDictionaryKeyCallBacks
Predefined CFDictionaryKeyCallBacks (page 19) structure containing a set of callbacks appropriate
for use when the keys of a CFDictionary are all CFType-derived objects.

The retain callback is CFRetain, the release callback is CFRelease, the copy callback is
CFCopyDescription, the equal callback is CFEqual. Therefore, if you use a pointer to this constant
when creating the dictionary, keys are automatically retained when added to the collection, and
released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

kCFTypeDictionaryValueCallBacks
Predefined CFDictionaryValueCallBacks (page 20) structure containing a set of callbacks
appropriate for use when the values in a CFDictionary are all CFType-derived objects.

The retain callback is CFRetain, the release callback is CFRelease, the copy callback is
CFCopyDescription, and the equal callback is CFEqual. Therefore, if you use a pointer to this
constant when creating the dictionary, values are automatically retained when added to the collection,
and released when removed from the collection.

Available in Mac OS X v10.0 and later.

Declared in CFDictionary.h.

22 Constants
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

CFDictionary Reference

This table describes the changes to CFDictionary Reference.

NotesDate

Corrected minor typographical errors.2007-10-31

Clarified comparison used by kCFCopyStringDictionaryKeyCallBacks.2007-01-08

Made corrections in Companion Documents list.2005-12-06

Corrected minor typographical errors.2005-11-09

Corrected reversals of "key" and "value" in definitions of CFDictionaryKeyCallBacks
and CFDictionaryValueCallBacks.

2005-10-04

Corrected minor typographical errors. Clarified use of strings for keys when
generating XML.

2005-08-11

Moved Introduction to new Introduction page.2005-04-29

Clarification of use of predefined callback structures.2004-10-05

Correction to declaration of CFDictionaryGetKeysAndValues (page 12).2004-08-31

Correction to declaration of return type of
CFDictionaryCopyDescriptionCallBack example.

2004-04-22

Enhanced description of all the kCFType*Callbacks and added link to
Carbon-Cocoa integration document and fixed errors.

2003-08-01

First version of this document.2003-01-01

23
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2007-10-31 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	CFDictionary Reference
	Contents
	CFDictionary Reference
	Overview
	Functions by Task
	Creating a dictionary
	Examining a dictionary
	Applying a function to a dictionary
	Getting the CFDictionary type ID

	Functions
	CFDictionaryApplyFunction
	CFDictionaryContainsKey
	CFDictionaryContainsValue
	CFDictionaryCreate
	CFDictionaryCreateCopy
	CFDictionaryGetCount
	CFDictionaryGetCountOfKey
	CFDictionaryGetCountOfValue
	CFDictionaryGetKeysAndValues
	CFDictionaryGetTypeID
	CFDictionaryGetValue
	CFDictionaryGetValueIfPresent

	Callbacks
	CFDictionaryApplierFunction
	CFDictionaryCopyDescriptionCallBack
	CFDictionaryEqualCallBack
	CFDictionaryHashCallBack
	CFDictionaryReleaseCallBack
	CFDictionaryRetainCallBack

	Data Types
	CFDictionaryKeyCallBacks
	CFDictionaryRef
	CFDictionaryValueCallBacks

	Constants
	Predefined Callback Structures

	Revision History

