
Locales Programming Guide
Data Management: Dates, Times, & Numbers

2008-10-15

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Locales 7

Organization of This Document 7

Locale Concepts 9

What is a Locale? 9
Why Are Locales Necessary? 9
Locale Naming Conventions 10
Locale Hierarchies 11
Interaction Between Locales and Preferences 11

Working With Core Foundation Locales 13

Creating a Locale Object 13
Locale for the Current User 14
Lifetime of Locale Objects 14
Using a Locale Object 15

Document Revision History 17

3
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

4
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Tables

Locale Concepts 9

Table 1 Components of a locale: language, country and variant 10

5
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Locales encapsulate information about linguistic, cultural, and technological conventions and standards.
Examples of information encapsulated by a locale include the symbol used for the decimal separator in
numbers and the way dates are formatted. Locales are typically used to provide, format, and interpret
information about and according to the user’s customs and preferences. They are frequently used in
conjunction with formatters (see Data Formatting Guide for Core Foundation). Although you can use many
locales, you usually use the one associated with the current user.

The operating system supplies data for dozens of different locales, regardless of which languages are installed.

Organization of This Document

The following articles explain what locales are, how they work, and common tasks you might perform with
them:

 ■ “Locale Concepts” (page 9) describes what locales are, why they are useful, and how they are identified.
It also introduces the relationship between locales and user preferences.

 ■ “Working With Core Foundation Locales” (page 13) explains how to create locale objects in Core
Foundation, how to get the current user’s locale, and how to use locale objects in conjunction with other
objects. It also introduces aspects of the lifetime of a locale object.

Organization of This Document 7
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Locales

8 Organization of This Document
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Locales

Some computational tasks require information about the current user context to be able to process
data—particularly when formatting output for presentation to the user or when interpreting input. A locale
object provides a repository for that information. An operation that requires a locale object to perform its
task is called locale-sensitive.

What is a Locale?

A locale is not a language; it’s a set of conventions for handling written language text and various units (for
example, date and time formats, currency used, and the decimal separator).

Conceptually, a locale identifies a specific user community—a group of users who have similar cultural and
linguistic expectations for human-computer interaction (and the kinds of data they process). A locale’s
identifier is a label for a given set of settings. For example, “en” (representing “English”) is an identifier for
a linguistic (and to some extent cultural) locale that includes (among others) Australia, Great Britain, and the
United States. There are also specific regional locales for Australian English, British English, U.S. English, and
so on.

Practically, a locale is a set of default settings for a given identifier: A given locale object is simply a collection
of settings. In Core Foundation, locales are represented by instances of CFLocaleRef. In Cocoa, with Mac OS
X version 10.4 and later, locales are represented by instances of NSLocale.

In Mac OS X the locale preference need not be the same as the language preference—they are set
independently. Users choose their locale in System Preferences > International, using the Region pop-up
menu in the Formats pane. You can programmatically retrieve the array of language preferences from System
Preferences using the key AppleLanguages. You retrieve the locale preference using the key AppleLocale.

Note that it is also possible for users to specify their own preferences, which override the system-defined
defaults for the chosen locale (see “Interaction Between Locales and Preferences” (page 11)).

Why Are Locales Necessary?

When you display data to a user it should be formatted according to the conventions of the user’s native
country, region, or culture. Conversely, when users enter data, they may do so according to their own customs
or preferences. Locale objects are used to provide information required to localize the presentation or
interpretation of data. This information can include decimal separators, date formats, and units of
measurement, as well as language and region information.

What is a Locale? 9
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Locale Concepts

For example, by convention in the United States “7/4/76” represents the Bicentennial of the Declaration of
Independence. However, in Great Britain, it represents the “7th of April, 1976”; in Thailand using the Thai
Traditional Calendar it might represent “April 7th, 2519”; and in France it represents “7 avril 1976”. To take a
more subtle example, in the United States“12.125” represents the decimal number twelve and one eighth,
whereas in Germany it represents twelve thousand one hundred and twenty-five.

Locale Naming Conventions

A locale’s identifier is based on the naming convention defined by the International Components for Unicode
(ICU). See http://icu.sourceforge.net/userguide/locale.html for information on their convention. The identifier
consists of up to three pieces of ordered information: a language code, a region code, and a variant code.

The language code is based on the ISO 639-x/IETF BCP 47 standard. ISO 639-1 defines two-character
codes, such as “en” and “fr”, for the world’s most commonly used languages. If a two-letter ISO 639-1
code is not available, then ISO 639-2 three-letter identifiers are accepted as well, for example “haw” for
Hawaiian. For more details, see http://www.loc.gov/standards/iso639-2/php/English_list.php.
The region code is defined by ISO 3166-1 (see, for example, http://www.iso.org/iso/coun-
try_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm). The region code is
given in capital letters and appended, after an underscore, after the language code, for example “en_US”,
“en_GB”, and “fr_FR”.
The variant code is arbitrary and may have any number of keywords (which may be application-specific),
each separated by an underscore. Developers are discouraged from using variant codes, as the format
may change in the future.

Table 1 provides further examples.

Table 1 Components of a locale: language, country and variant

DefinitionVariantCountryLanguageLocale ID

Spanish, PeruPEeses_PE

Spanish, SpainESeses_ES

Spanish, Spain prior to Euro supportPREEUROESeses_ES_PREEURO

Kalaallisut, GreenlandGLklkl_GL

Locale names such as “English”, “French”, and “Japanese” are deprecated in Mac OS X and are supported
solely for backward compatibility. The Script Manager and all its concepts are deprecated. CFLocale never
uses old-style Script Manager codes (except for one compatibility function,
CFLocaleCreateCanonicalLocaleIdentifierFromScriptManagerCodes).

Note that you should typically have no reason to use locale identifiers directly in your code.

10 Locale Naming Conventions
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Locale Concepts

http://icu.sourceforge.net/userguide/locale.html
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm

Locale Hierarchies

Locales are arranged in a hierarchy. At the root is the system locale, which provides default values for all
settings. Below the root hierarchy are language locales. These encapsulate settings for language groups,
such as English, German and Chinese (using identifiers “en”, “de”, and “zh”). Normal locales specify a language
in a particular region (for example “en_GB”, “de_AT”, and “zh_SG”).

When you look up a value in a locale, the receiver itself will be searched first for a value specific to that locale.
If the value is not found in that locale, its parent is searched, and so on, up to the root locale.

Interaction Between Locales and Preferences

It is common to think of locales as providing information which is shared by a community of users. Every
individual, however, may have their own preferences. To interpret input data from the current user, or to
format data to display to the current user, you should use the user’s locale. You access the logical “user”
locale for the current user using CFLocaleCopyCurrent (see “Locale for the Current User” (page 14)). This
returns a locale object which represents the settings for the current user’s chosen system locale overlaid with
any custom settings the user has specified in System Preferences.

There are four separate settings in International Preferences that involve language. The first three are set in
the Languages tab, and the last is set in the Formats tab.

1. Primary language: affects user interface, used for other places where a *language* (not locale) preference
is operative (e.g., Safari)

2. Collation (sort) order. This is set by default to match the primary language, but it can be overridden by
the user. It only affects collation (localized string comparison).

3. Text break. This is set by default to match the primary language, but it can be overridden by the user. It
only affects text boundary analysis (words, lines, and so on).

4. Region (Locale). This is set in Setup Assistant to combine the primary language at install time and the
country specified in Setup Assistant. It can be changed by the user. If it doesn't match the primary
language, the user gets a warning in the Languages tab.

Note that only the setting in the Formats tab affects CFLocale properties. The primary language has no influence
on CFLocale properties—it only affects the user interface, not regional settings.

If a user should be able to specify their own settings for an application, the application can store those in
the Preferences system (using the appropriate key). If the user updates their preferences (internally or
externally to the application), these changes must be propagated through the application by synchronizing
preferences and re-fetching Locale objects (see “Lifetime of Locale Objects” (page 14)).

Locale Hierarchies 11
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Locale Concepts

12 Interaction Between Locales and Preferences
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Locale Concepts

In Core Foundation, locales are represented by instances of CFLocale. You generally use the locale object for
the current user, rather than for a specific locale, and typically in conjunction with other objects, usually
formatters. Locale objects are currently immutable. It is important to understand the interaction between
locales and the Preferences system.

Creating a Locale Object

Typically you want to format or interpret information for the current user. You generally therefore use the
user’s locale, which you access with CFLocaleCopyCurrent (see “Locale for the Current User” (page 14)).
Sometimes, however, you may need to display information formatted for a particular locale, independently
of the user’s preference.

You can create a locale object for a specific locale with CFLocaleCreate by supplying the suitable identifier
(see “Locale Naming Conventions” (page 10)).

CFStringRef localeIdent = CFSTR("fr_FR");
CFLocaleRef localeRef = CFLocaleCreate(kCFAllocatorDefault, localeIdent);

To ensure that you have the appropriate representation for a locale’s identifier, you should use
CFLocaleCreateCanonicalLocaleIdentifierFromString to create the canonical form—this function
is especially useful for dealing with legacy information.

CFStringRef localeIdent = CFSTR("French");
CFStringRef stringRef =
 CFLocaleCreateCanonicalLocaleIdentifierFromString(kCFAllocatorDefault,
 localeIdent);
CFLocaleRef localeRef = CFLocaleCreate(kCFAllocatorDefault, stringRef);

There is no guarantee that information exists for the locale you specify. The following example creates a valid
locale object (for the Thai language, country US). Mac OS X does not, however, provide specific data for this
locale, so it will fall back first to “th” (Thai language), then to the root locale (see “Locale Hierarchies” (page
11)).

CFStringRef localeIdent = CFSTR("th_US");
CFLocaleRef localeRef = CFLocaleCreate(kCFAllocatorDefault, localeIdent);

The system default settings are available from the root locale using CFLocaleGetSystem. This function
provides default values for all settings for all locales (see “Locale Hierarchies” (page 11)).

Creating a Locale Object 13
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Working With Core Foundation Locales

Locale for the Current User

Although a locale specifies defaults for a given language or region, individual users may specify their own
settings, which override those for their chosen locale. Mac OS X provides locale objects that represent the
settings for the current user’s chosen system locale overlaid with any custom settings the user has specified.
You access the logical user locale for the current user using CFLocaleCopyCurrent.

Even though settings for a user’s locale may differ from those of the system defaults, the identifier for the
two may be the same. For example, a user may choose British English as their language preference but specify
custom date and time formatters. The following code sample illustrates a case where even though the
formatters for the user and system locales are different, the locales’ identifiers are the same.

systemLocaleRef = CFLocaleCreate(kCFAllocatorDefault, CFSTR("en_GB"));
// created "default" localeRef for "en_GB"
dateFormatter = CFDateFormatterCreate(kCFAllocatorDefault, systemLocaleRef,
kCFDateFormatterLongStyle, kCFDateFormatterMediumStyle);
CFShow(CFDateFormatterGetFormat(dateFormatter));
// output "d MMMM yyyy HH:mm:ss"
userLocaleRef = CFLocaleCopyCurrent();
CFShow(CFLocaleGetIdentifier(userLocaleRef));
// output "en_GB"
dateFormatter = CFDateFormatterCreate
 (kCFAllocatorDefault, userLocaleRef, kCFDateFormatterLongStyle,
kCFDateFormatterMediumStyle);
CFShow(CFDateFormatterGetFormat(dateFormatter));
// output "MMM’ ‘d’, ‘yyy h’:’mm’:’ss’ ‘a"

If you create a locale object for a given region, you get the defaults for that region even if the users has
chosen that region as his or her default and provided his or her own preferences.

Lifetime of Locale Objects

Locale objects represent snapshots of settings at a particular time. For system default locale settings, values
may change with different releases of the operating system. For a user’s locale, users may at any point change
their language preference, modify their preferred date format, or alter their measurement units.

Locale objects are currently immutable; in future versions of the operating system this may not be true. You
should ensure that when you require an immutable locale object, you make an immutable copy of an existing
locale object to use for as long as necessary.

The object you get back from CFLocaleCopyCurrent does not change when the user changes their
Preferences settings. Moreover, the object itself may be cached by the runtime system, so successive calls
of CFLocaleCopyCurrent may return the same object, even if a user has changed preference settings. If
you want to ensure that your locale settings are consistent with user preferences, you must synchronize
preferences and get a new locale object with CFLocaleCopyCurrent.

How often an application should synchronize preferences and refetch a locale object depends on the
granularity of the operation in which it’s used and on how responsive you want your application to be to
changes in its environment. For example, a graphical application that displays rulers on screen should update

14 Locale for the Current User
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Working With Core Foundation Locales

the ruler units as often as is appropriate. In a long-running report, however, it may be appropriate to cache
the locale at the beginning of the procedure and use that throughout to ensure that the date format is
consistent.

Using a Locale Object

You typically use locales in conjunction with other objects such as formatters, as shown in the following
example.

userLocaleRef = CFLocaleCopyCurrent();
CFNumberFormatterRef numberFormatter =
 CFNumberFormatterCreate(kCFAllocatorDefault, userLocaleRef,
kCFNumberFormatterDecimalStyle);

You can also retrieve information such as decimal separators, date formats and units of measurement from
a locale object:

userLocaleRef = CFLocaleCopyCurrent();
stringRef = CFLocaleGetValue(userlocaleRef, kCFLocaleDecimalSeparator);

To retrieve information such as the array of names of the days of the week, you can use use a formatter:

CFLocaleRef locale = CFLocaleCopyCurrent();
CFDateFormatterRef formatter =
 CFDateFormatterCreate (NULL, locale, kCFDateFormatterMediumStyle,
kCFDateFormatterMediumStyle);
CFArrayRef weekdaySymbols =
 CFDateFormatterCopyProperty (formatter, kCFDateFormatterWeekdaySymbols);

Using a Locale Object 15
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Working With Core Foundation Locales

16 Using a Locale Object
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Working With Core Foundation Locales

This table describes the changes to Locales Programming Guide.

NotesDate

Corrected link to example of ISO 3166-1 country codes.2008-10-15

Updated a code example showing how to retrieve weekday symbols.2008-07-11

Corrected typographical errors.2007-03-06

Updated for Mac OS X v10.4.2005-04-29

Minor clarifications and corrections, including updated reference to ISO 639
standard.

2004-08-31

First version of Locales.2003-09-25

17
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

18
2008-10-15 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Locales Programming Guide
	Contents
	Tables
	Introduction
	Locale Concepts
	What is a Locale?
	Why Are Locales Necessary?
	Locale Naming Conventions
	Locale Hierarchies
	Interaction Between Locales and Preferences

	Working With Core Foundation Locales
	Creating a Locale Object
	Locale for the Current User
	Lifetime of Locale Objects
	Using a Locale Object

	Revision History

