
SBApplication Class Reference
Interapplication Communication

2007-05-29

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iCal, iChat,
iTunes, Mac, Mac OS, and Objective-C are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

SBApplication Class Reference 5

Overview 5
Subclassing Notes 6

Tasks 6
Getting a Scriptable Application Instance 6
Initializing a Scriptable Application Object 6
Creating a Scripting Class 6
Controlling the Application 6
Getting Class Names and Codes 7
Managing the Delegate 7

Class Methods 7
applicationWithBundleIdentifier: 7
applicationWithProcessIdentifier: 8
applicationWithURL: 8

Instance Methods 9
activate 9
classForScriptingClass: 9
delegate 10
initWithBundleIdentifier: 10
initWithProcessIdentifier: 11
initWithURL: 12
isRunning 12
launchFlags 12
sendMode 13
setDelegate: 13
setLaunchFlags: 14
setSendMode: 14
setTimeout: 14
timeout 15

Appendix A Deprecated SBApplication Methods 17

Available in Mac OS X v10.5 through Mac OS X v10.5 17
classNamesForCodes 17
codesForPropertyNames 17

Document Revision History 19

3
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from SBObject : NSObject

Conforms to NSCoding
NSCoding (SBObject)
NSObject (NSObject)

Framework /System/Library/Frameworks/ScriptingBridge.framework

Availability Available in Mac OS X v10.5 and later

Declared in SBApplication.h

Related sample code iChatStatusFromApplication
SBSetFinderComment
SBSystemPrefs
ScriptingBridgeFinder
ScriptingBridgeiCal

Overview

The SBApplication class provides a mechanism enabling an Objective-C program to send Apple events
to a scriptable application and receive Apple events in response. It thereby makes it possible for that program
to control the application and exchange data with it. Scripting Bridge works by bridging data types between
Apple event descriptors and Cocoa objects.

Although SBApplication includes methods that manually send and process Apple events, you should
never have to call these methods directly. Instead, subclasses of SBApplication implement
application-specific methods that handle the sending of Apple events automatically.

For example, if you wanted to get the current iTunes track, you can simply use the currentTrack method
of the dynamically defined subclass for the iTunes application—which handles the details of sending the
Apple event for you—rather than figuring out the more complicated, low-level alternative:

[iTunes propertyWithCode:'pTrk'];

If you do need to send Apple events manually, consider using the NSAppleEventDescriptor class.

Overview 5
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Subclassing Notes

You rarely instantiate SBApplication objects directly. Instead, you get the shared instance of a
application-specific subclass typically by calling one of the applicationWith... class methods, using a
bundle identifier, process identifier, or URL to identify the application.

Tasks

Getting a Scriptable Application Instance

+ applicationWithBundleIdentifier: (page 7)
Returns the shared instance representing the target application specified by its bundle identifier.

+ applicationWithProcessIdentifier: (page 8)
Returns the shared instance representing a target application specified by its process identifier.

+ applicationWithURL: (page 8)
Returns the shared instance representing a target application specified by the given URL.

Initializing a Scriptable Application Object

– initWithBundleIdentifier: (page 10)
Returns an instance of an SBApplication subclass that represents the target application identified
by the given bundle identifier.

– initWithProcessIdentifier: (page 11)
Returns an instance of an SBApplication subclass that represents the target application identified
by the given process identifier.

– initWithURL: (page 12)
Returns an instance of an SBApplication subclass that represents the target application identified
by the given URL.

Creating a Scripting Class

– classForScriptingClass: (page 9)
Returns a class object that represents a particular class in the target application.

Controlling the Application

– activate (page 9)
Moves the target application to the foreground immediately.

– isRunning (page 12)
Returns whether the target application represented by the receiver is running.

– launchFlags (page 12)
Returns the launch flags for the application represented by the receiver.

6 Tasks
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

– setLaunchFlags: (page 14)
Returns the launch flags for the application represented by the receiver.

– sendMode (page 13)
Returns the mode for sending Apple events to the target application.

– setSendMode: (page 14)
Sets the mode for sending Apple events to the target application.

– timeout (page 15)
Returns the period the application will wait to receive reply Apple events.

– setTimeout: (page 14)
Sets the maximum time the application will wait to receive reply Apple events.

Getting Class Names and Codes

– classNamesForCodes (page 17) Available in Mac OS X v10.5 through Mac OS X v10.5
Returns a dictionary mapping four-character class codes to the names of their corresponding
Objective-C classes.

– codesForPropertyNames (page 17) Available in Mac OS X v10.5 through Mac OS X v10.5
Returns a dictionary mapping property keys to their corresponding four-character codes.

Managing the Delegate

– delegate (page 10)
Returns the error-handling delegate of the receiver.

– setDelegate: (page 13)
Returns the error-handling delegate of the receiver.

Class Methods

applicationWithBundleIdentifier:
Returns the shared instance representing the target application specified by its bundle identifier.

+ (id)applicationWithBundleIdentifier:(NSString *)ident

Parameters
ident

A bundle identifier specifying an application that is OSA-compliant.

Return Value
An instance of a SBApplication subclass that represents the target application whose bundle identifier is
ident. Returns nil if no such application can be found or if the application does not have a scripting interface.

Discussion
For applications that declare themselves to have a dynamic scripting interface, this method will launch the
application if it is not already running.

Class Methods 7
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithBundleIdentifier: (page 10)

Related Sample Code
SBSendEmail
SBSetFinderComment
SBSystemPrefs
ScriptingBridgeFinder
ScriptingBridgeiCal

Declared In
SBApplication.h

applicationWithProcessIdentifier:
Returns the shared instance representing a target application specified by its process identifier.

+ (id)applicationWithProcessIdentifier:(pid_t)pid

Parameters
pid

The BSD process ID of a OSA-compliant application. Often you can get the process ID of a process
using the processIdentifier method of NSTask.

Return Value
An instance of an SBApplication subclass that represents the target application whose process identifier
is pid. Returns nil if no such application can be found or if the application does not have a scripting interface.

Discussion
You should avoid using this method unless you know nothing about a target application but its process ID.
In most cases, it is better to use classForApplicationWithBundleIdentifier: (page 7), which will
dynamically locate the application's path at runtime, or classForApplicationWithURL: (page 8), which
is not dependent on the target application being open at the time the method is called.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithProcessIdentifier: (page 11)

Declared In
SBApplication.h

applicationWithURL:
Returns the shared instance representing a target application specified by the given URL.

+ (id)applicationWithURL:(NSURL *)url

8 Class Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Parameters
url

The Universal Resource Locator (URL) locating an OSA-compliant application.

Return Value
An SBApplication subclass from which to generate a shared instance of the target application whose URL
is url. Returns nil if no such application can be found or if the application does not have a scripting interface.

Discussion
For applications that declare themselves to have a dynamic scripting interface, this method will launch the
application if it is not already running. This approach to initializing SBApplication objects should be used
only if you know for certain the URL of the target application. In most cases, it is better to use
classForApplicationWithBundleIdentifier: (page 7) which dynamically locates the target application
at runtime.

This method currently supports file URLs (file:) and remote application URLs (eppc:). It checks whether a
file exists at the specified path, but it does not check whether an application identified via eppc: exists.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithURL: (page 12)

Declared In
SBApplication.h

Instance Methods

activate
Moves the target application to the foreground immediately.

- (void)activate

Discussion
If the target application is not already running, this method launches it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

classForScriptingClass:
Returns a class object that represents a particular class in the target application.

- (Class)classForScriptingClass:(NSString *)className

Instance Methods 9
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Parameters
className

The name of the scripting class.

Return Value
A Class object representing the scripting class.

Discussion
You invoke this method on an instance of a scriptable application. Once you have the class object, you may
allocate an instance of the class and appropriately the raw instance. Or you may use it in a call to
isKindOfClass: to determine the class type of an object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

delegate
Returns the error-handling delegate of the receiver.

- (id)delegate

Return Value
The object acting as error-handling delegate of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDelegate: (page 13)

Declared In
SBApplication.h

initWithBundleIdentifier:
Returns an instance of an SBApplication subclass that represents the target application identified by the
given bundle identifier.

- (id)initWithBundleIdentifier:(NSString *)ident

Parameters
ident

A bundle identifier specifying an application that is OSA-compliant.

Return Value
An initialized shared instance of an SBApplication subclass that represents a target application with the
bundle identifier of ident. Returns nil if no such application can be found or if the application does not
have a scripting interface.

10 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Discussion
If you must initialize an SBApplication object explictly, you should use this initializer if possible; unlike
initWithProcessIdentifier: (page 11) and initWithURL: (page 12), this method is not dependent
on changeable factors such as the target application's path or process ID. Even so, you should rarely have to
initialize an SBApplication object yourself; instead, you should initialize an application-specific subclass
such as iTunesApplication.

Note that this method does not check whether an application with the given bundle identifier actually exists.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithBundleIdentifier: (page 7)

Declared In
SBApplication.h

initWithProcessIdentifier:
Returns an instance of an SBApplication subclass that represents the target application identified by the
given process identifier.

- (id)initWithProcessIdentifier:(pid_t)pid

Parameters
pid

A BSD process ID specifying an application that is OSA-compliant. Often you can get the process ID
of a process using the processIdentifier method of NSTask.

Return Value
An initialized SBApplication that you can use to communicate with the target application specified by the
process ID. Returns nil if no such application can be found or if the application does not have a scripting
interface.

Discussion
You should avoid using this method unless you know nothing about an external application but its PID. In
most cases, it is better to use initWithBundleIdentifier: (page 10), which will dynamically locate the
external application's path at runtime, or initWithURL: (page 12), which is not dependent on the external
application being open at the time the method is called.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithProcessIdentifier: (page 8)

Declared In
SBApplication.h

Instance Methods 11
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

initWithURL:
Returns an instance of an SBApplication subclass that represents the target application identified by the
given URL.

- (id)initWithURL:(NSURL *)url

Parameters
url

A Universal Resource Locator (URL) specifying an application that is OSA-compliant.

Return Value
An initialized SBApplication that you can use to communicate with the target application specified by the
process ID. Returns nil if an application could not be found or if the application does not have a scripting
interface.

Discussion
This approach to initializing SBApplication objects should be used only if you know for certain the URL
of the target application. In most cases, it is better to use
classForApplicationWithBundleIdentifier: (page 7) which dynamically locates the target application
at runtime. Even so, you should rarely have to initialize an SBApplication yourself.

This method currently supports file URLs (file:) and remote application URLs (eppc:). It checks whether a
file exists at the specified path, but it does not check whether an application identified via eppc: exists.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ applicationWithURL: (page 8)

Declared In
SBApplication.h

isRunning
Returns whether the target application represented by the receiver is running.

- (BOOL)isRunning

Return Value
YES if the application is running, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SBApplication.h

launchFlags
Returns the launch flags for the application represented by the receiver.

- (LSLaunchFlags)launchFlags

12 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Return Value
A mask specifying the launch flags that are used when the target application is launched. For more information,
see Launch Services Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLaunchFlags: (page 14)

Declared In
SBApplication.h

sendMode
Returns the mode for sending Apple events to the target application.

- (AESendMode)sendMode

Return Value
A mask specifying the mode for sending Apple events to the target application. For more information, see
Apple Event Manager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSendMode: (page 14)

Declared In
SBApplication.h

setDelegate:
Returns the error-handling delegate of the receiver.

- (void)setDelegate:(id)delegate

Parameters
delegate

The object acting as delegate of the receiver.

Discussion
The delegate should implement the eventDidFail:withError:method of the SBApplicationDelegate
informal protocol.

Availability
Available in Mac OS X v10.5 and later.

See Also
– delegate (page 10)

Declared In
SBApplication.h

Instance Methods 13
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

setLaunchFlags:
Returns the launch flags for the application represented by the receiver.

- (void)setLaunchFlags:(LSLaunchFlags)flags

Parameters
flags

A mask specifying the launch flags that are used when the target application is launched. For more
information, see Launch Services Reference.

Discussion
The default SBApplication launch flags are kLSLaunchDontAddToRecents (so the target application is
not added to the Recent Items menu), kLSLaunchDontSwitch (so the target application launches in the
background), and kLSLaunchAndHide (so the target application is hidden as soon as it is launched).

Availability
Available in Mac OS X v10.5 and later.

See Also
– launchFlags (page 12)

Declared In
SBApplication.h

setSendMode:
Sets the mode for sending Apple events to the target application.

- (void)setSendMode:(AESendMode)sendMode

Parameters
sendMode

A mask specifying the mode for sending Apple events to the target application. For a list of valid
modes, see Apple Event Manager Reference.

Discussion
The default send mode is kAEWaitReply. If the send mode is something other than kAEWaitReply, the
receiver might not correctly handle reply events from the target application.

Availability
Available in Mac OS X v10.5 and later.

See Also
– sendMode (page 13)

Declared In
SBApplication.h

setTimeout:
Sets the maximum time the application will wait to receive reply Apple events.

- (void)setTimeout:(long)timeout

14 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

Parameters
timeout

The time in ticks that the receiver will wait to receive a reply Apple event from the target application
before giving up.

Discussion
The default timeout value is kAEDefaultTimeout, which is about a minute. If you want the receiver to wait
indefinitely for reply Apple events, use kNoTimeOut. For more information, see Apple EventManager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– timeout (page 15)

Declared In
SBApplication.h

timeout
Returns the period the application will wait to receive reply Apple events.

- (long)timeout

Return Value
The time in ticks that the receiver will wait to receive a reply Apple event from the target application before
giving up. For more information, see Apple Event Manager Reference.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTimeout: (page 14)

Declared In
SBApplication.h

Instance Methods 15
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

16 Instance Methods
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

SBApplication Class Reference

A method identified as deprecated has been superseded and may become unsupported in the future.

Available in Mac OS X v10.5 through Mac OS X v10.5

classNamesForCodes
Returns a dictionary mapping four-character class codes to the names of their corresponding Objective-C
classes. (Available in Mac OS X v10.5 through Mac OS X v10.5.)

- (NSDictionary *)classNamesForCodes

Return Value
A dictionary whose keys are four-character class codes of the external application (as NSNumber objects),
and whose values are the names of the corresponding SBObject subclasses.

Discussion
The default implementation returns an empty dictionary. Application-specific subclasses return dictionaries
tailored to the types of objects they support.

You should never call this method directly.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
SBApplication.h

codesForPropertyNames
Returns a dictionary mapping property keys to their corresponding four-character codes. (Available in Mac
OS X v10.5 through Mac OS X v10.5.)

- (NSDictionary *)codesForPropertyNames

Return Value
A dictionary whose keys are the keys of properties of the external application, and whose values are the
corresponding four-character codes (as NSNumber objects).

Discussion
The default implementation returns an empty dictionary. Application-specific subclasses return dictionaries
tailored to the types of objects they support.

You should never call this method directly.

Available in Mac OS X v10.5 through Mac OS X v10.5 17
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated SBApplication Methods

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
SBApplication.h

18 Available in Mac OS X v10.5 through Mac OS X v10.5
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated SBApplication Methods

This table describes the changes to SBApplication Class Reference.

NotesDate

New document that describes the automatically defined class through which
Cocoa applications can communicate with scriptable applications using
Objective-C.

2007-05-29

19
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

20
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	SBApplication Class Reference
	Contents
	SBApplication Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting a Scriptable Application Instance
	Initializing a Scriptable Application Object
	Creating a Scripting Class
	Controlling the Application
	Getting Class Names and Codes
	Managing the Delegate

	Class Methods
	applicationWithBundleIdentifier:
	applicationWithProcessIdentifier:
	applicationWithURL:

	Instance Methods
	activate
	classForScriptingClass:
	delegate
	initWithBundleIdentifier:
	initWithProcessIdentifier:
	initWithURL:
	isRunning
	launchFlags
	sendMode
	setDelegate:
	setLaunchFlags:
	setSendMode:
	setTimeout:
	timeout

	Appendix A: Deprecated SBApplication Methods
	Available in Mac OS X v10.5 through Mac OS X v10.5
	classNamesForCodes
	codesForPropertyNames

	Revision History

