
QCPlugIn Class Reference
Graphics & Animation: 2D Drawing

2008-04-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, and Quartz are trademarks of Apple
Inc., registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

QCPlugIn Class Reference 5

Overview 5
Tasks 5

Defining the Characteristics of a Custom Patch 5
Executing a Custom Patch 6
Performing Custom Tasks During Execution 6
Defining Patch and Property Port Attributes 6
Defining Internal Settings 6
Supporting Saving and Retrieving Internal Settings 6
Adding Ports Dynamically 6
Getting and Setting Port Values 7
Loading Bundle and Custom Patches Manually 7
Ordering Property Ports 7

Class Methods 7
attributes 7
attributesForPropertyPortWithKey: 8
executionMode 9
loadPlugInAtPath: 9
plugInKeys 10
registerPlugInClass: 11
sortedPropertyPortKeys 11
timeMode 11

Instance Methods 12
addInputPortWithType:forKey:withAttributes: 12
addOutputPortWithType:forKey:withAttributes: 12
createViewController 13
didValueForInputKeyChange: 14
disableExecution: 14
enableExecution: 15
execute:atTime:withArguments: 15
removeInputPortForKey: 16
removeOutputPortForKey: 16
serializedValueForKey: 17
setSerializedValue:forKey: 17
setValue:forOutputKey: 18
startExecution: 18
stopExecution: 19
valueForInputKey: 19

Constants 20
Patch Attributes 20
Input and Output Port Attributes 20

3
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Port Input and Output Types 22
Pixel Formats 23
Execution Arguments 24
Execution Modes 24
Time Modes 25

Document Revision History 27

4
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework

Availability Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h
QCPlugInViewController.h

Companion guides Quartz Composer Custom Patch Programming Guide
Quartz Composer Programming Guide

Related sample code Quartz Composer ImageExporter

Overview

The QCPlugIn class provides the base class to subclass for writing custom Quartz Composer patches. You
implement a custom patch by subclassing QCPlugIn, overriding the appropriate methods, packaging the
code as an NSBundle object, and installing the bundle in the appropriate location. A bundle can contain
more than one subclass of QCPlugIn, allowing you to provide a suite of custom patches in one bundle.
Quartz Composer Custom Patch Programming Guide provides detailed instructions on how to create and
package a custom patch. QCPlugIn Class Reference supplements the information in the programming guide.

The methods related to the executing the custom patch (called when the Quartz Composer engine is rendering)
are passed an opaque object that conforms to the QCPlugInContext Protocol protocol. This object
represents the execution context of the QCPlugIn object. You should not retain the execution context or
use it outside of the scope of the execution method that it is passed to.

Tasks

Defining the Characteristics of a Custom Patch

+ executionMode (page 9)
Returns the execution mode of the custom patch.

+ timeMode (page 11)
Returns the time mode for the custom patch.

Overview 5
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Executing a Custom Patch

– execute:atTime:withArguments: (page 15)
Performs the processing or rendering tasks appropriate for the custom patch.

Performing Custom Tasks During Execution

– startExecution: (page 18)
Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.

– enableExecution: (page 15)
Allows you to perform custom tasks when the execution of the QCPlugIn object is resumed.

– disableExecution: (page 14)
Allows you to perform custom tasks when the execution of the QCPlugIn object is paused.

– stopExecution: (page 19)
Allows you to perform custom tasks when the QCPlugIn object stops executing.

Defining Patch and Property Port Attributes

+ attributes (page 7)
Returns a dictionary that contains strings for the user interface that describe the custom patch.

+ attributesForPropertyPortWithKey: (page 8)
Returns a dictionary that contains strings for the user interface that describe the optional attributes
for ports created from properties.

Defining Internal Settings

– createViewController (page 13)
Creates and returns a view controller for the Settings pane of a custom patch.

+ plugInKeys (page 10)
Returns the keys for the internal settings of a custom patch.

Supporting Saving and Retrieving Internal Settings

– serializedValueForKey: (page 17)
Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.

– setSerializedValue:forKey: (page 17)
Provides custom deserialization for patch internal settings that were previously serialized using the
method serializedValueForKey: (page 17).

Adding Ports Dynamically

– addInputPortWithType:forKey:withAttributes: (page 12)
Adds an input port of the specified type and associates a key and attributes with the port.

6 Tasks
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

– removeInputPortForKey: (page 16)
Removes the input port for a given key.

– addOutputPortWithType:forKey:withAttributes: (page 12)
Adds an output port of the specified type and associates a key and attributes with the port.

– removeOutputPortForKey: (page 16)
Removes the output port for a given key.

Getting and Setting Port Values

– didValueForInputKeyChange: (page 14)
Returns whether the input port value changed since the last execution of the custom patch.

– valueForInputKey: (page 19)
Returns the current value for an input port.

– setValue:forOutputKey: (page 18)
Sets the value of an output port.

Loading Bundle and Custom Patches Manually

+ loadPlugInAtPath: (page 9)
Loads a Quartz Composer plug-in bundle from the specified path.

+ registerPlugInClass: (page 11)
Registers a QCPlugIn subclass.

Ordering Property Ports

+ sortedPropertyPortKeys (page 11)
Returns and array of property port keys in the order you want them to appear in the user interface.

Class Methods

attributes
Returns a dictionary that contains strings for the user interface that describe the custom patch.

+ (NSDictionary*) attributes

Return Value
The dictionary can contain one or more of these keys along with the appropriate string:
QCPlugInAttributeNameKey (page 20), QCPlugInAttributeDescriptionKey (page 20), and
QQCPlugInAttributeCopyrightKey (page 20).

Class Methods 7
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
It’s recommended that you implement this method to enhance the experience of those who use your custom
patch. The attribute name string that you provide is displayed in the Quartz Composer editor window when
the custom patch name is selected in the Patch Creator (see figure). The attribute description key is displayed
in the Information pane of the inspector for the custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributesForPropertyPortWithKey: (page 8)

Related Sample Code
Quartz Composer ImageExporter

Declared In
QCPlugIn.h

attributesForPropertyPortWithKey:
Returns a dictionary that contains strings for the user interface that describe the optional attributes for ports
created from properties.

+ (NSDictionary*) attributesForPropertyPortWithKey:(NSString*)key

Parameters
key

The name of the property.

8 Class Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Return Value
A dictionary that contains key-value pairs for the port’s attributes. The keys must be one or more of the
constants defined in “Input and Output Port Attributes” (page 20).

Discussion
It’s recommended that you implement this method to enhance the experience of those who use your custom
patch. The attributes appear in a help tag when the user hovers a pointer over the property port on your
custom patch. At a minimum, you should provide a user-readable name for the port. It might also be helpful
to provide default, minimum, and maximum values for the port.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ attributes (page 7)

Declared In
QCPlugIn.h

executionMode
Returns the execution mode of the custom patch.

+ (QCPlugInExecutionMode) executionMode

Return Value
The execution mode of the custom patch. See “Execution Modes” (page 24) for the constants you can
return.

Discussion
You must implement this method to define whether your custom patch is a provider, a processor, or a
consumer.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Quartz Composer ImageExporter

Declared In
QCPlugIn.h

loadPlugInAtPath:
Loads a Quartz Composer plug-in bundle from the specified path.

+ (BOOL) loadPlugInAtPath:(NSString*)path

Parameters
path

The location of the bundle.

Return Value
YES if successful.

Class Methods 9
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
Call this method only if you need to load a plug-in bundle from a nonstandard location. Typically you don’t
need to call this method because Quartz Composer automatically loads bundles that you install in one of
the following locations:

 ■ /Library/Graphics/Quartz Composer Plug-Ins

 ■ ~/Library/Graphics/Quartz Composer Plug-Ins

This method does nothing if the bundle is already loaded. (This method does not load in all environments.
Web Kit, for example, cannot load custom patches.)

The bundle can contain more than one QCPlugIn subclass. After the bundle is loaded, each QCPlugIn
subclass appears as a patch in the Quartz Composer patch library.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

plugInKeys
Returns the keys for the internal settings of a custom patch.

+ (NSArray*) plugInKeys

Return Value
An array of keys used for key-value coding (KVC) of the internal settings.

Discussion
You must override this method if your patch provides a Settings pane. This keys are used for automatic
serialization of the internal settings and are also used by the QCPlugInViewController instance for the
Settings pane. The implementation is straightforward; the keys are strings that represent the instance variables
used for the Settings pane. For example, the plugInKeys method for these instance variables:

@property(ivar, byref) NSColor * systemColor;
@property(ivar, byref) NSConfiguration * systemConfiguration;

are:

+ (NSArray*) plugInKeys
{
 return [NSArray arrayWithObjects: @"systemColor",
 @"systemConfiguration",
 nil];
}

Availability
Available in Mac OS X v10.5 and later.

See Also
– createViewController (page 13)

10 Class Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Declared In
QCPlugIn.h

registerPlugInClass:
Registers a QCPlugIn subclass.

+ (void) registerPlugInClass:(Class)aClass

Parameters
aClass

The QCPlugIn subclass.

Discussion
You call this method only if the code for your custom patch is mixed with your application code, and you
plan only to use the custom patch from within your application.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

sortedPropertyPortKeys
Returns and array of property port keys in the order you want them to appear in the user interface.

+ (NSArray*) sortedPropertyPortKeys;

Return Value
The property port keys in the order you want them to appear in the user interface.

Discussion
Override this method to specify an optional ordering for property based ports in the user interface.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

timeMode
Returns the time mode for the custom patch.

+ (QCPlugInTimeMode) timeMode

Return Value
The time mode of the custom patch. See “Time Modes” (page 25) for the constants you can return.

Discussion
You must implement this method to define whether you custom patch depends on time, doesn’t depend
on time, or needs time to idle.

Class Methods 11
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Quartz Composer ImageExporter

Declared In
QCPlugIn.h

Instance Methods

addInputPortWithType:forKey:withAttributes:
Adds an input port of the specified type and associates a key and attributes with the port.

- (void) addInputPortWithType:(NSString*)type forKey:(NSString*)key
withAttributes:(NSDictionary*)attributes

Parameters
type

The port type. See “Port Input and Output Types” (page 22).

key
The key to associate with the port.

attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 20).
Although the dictionary is optional, it’s recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 8).) Pass nil if you do not want to provide
attributes.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method or if there's already an input or output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeInputPortForKey: (page 16)

Declared In
QCPlugIn.h

addOutputPortWithType:forKey:withAttributes:
Adds an output port of the specified type and associates a key and attributes with the port.

- (void) addOutputPortWithType:(NSString*)type forKey:(NSString*)key
withAttributes:(NSDictionary*)attributes

12 Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Parameters
type

The port type. See “Port Input and Output Types” (page 22).

key
The key to associate with the port.

attributes
A dictionary of attributes for the port. See “Input and Output Port Attributes” (page 20).
Although the dictionary is optional, it’s recommended that provide attributes to enhance the experience
of those who use your custom patch. The attributes appear in a help tag when the user hovers a
pointer over the property port on your custom patch. (See
attributesForPropertyPortWithKey: (page 8).) Pass nil if you do not want to provide
attributes.

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method or if there is already an output port with that key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeOutputPortForKey: (page 16)

Declared In
QCPlugIn.h

createViewController
Creates and returns a view controller for the Settings pane of a custom patch.

- (QCPlugInViewController*) createViewController

Return Value
A view controller for the custom patch. Quartz Composer releases the controller when it is no longer needed.
If necessary, you can return a subclass of QCPlugInViewController, but this it not typically done.

Discussion
This extension to the QCPlugInViewController class provides user-interface support for the Settings pane
of the inspector for a custom patch. You must override this method if your custom patch provides a Settings
pane. The QCPlugInViewController object acts as a controller for Cocoa bindings between the custom
patch instance (the model) and the NSView that contains the controls. It loads the nib file from the bundle.

The implementation is straightforward. You allocate a QCPlugInViewController object, initialize it, and
provide the name of the nib file that contains the user interface for the Settings pane.

Note that this method follows the Core Foundation “create” rule. See the ownership policy in Memory
Management Programming Guide for Core Foundation.

For example, if the nib file name that contains the settings pane is MySettingsPane.nib, the implementation
is:

- (QCPlugInViewController *) createViewController
{
 return [[QCPlugInViewController alloc] initWithPlugIn:self

Instance Methods 13
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

 viewNibName:@"MySettingsPane"];
}

Availability
Available in Mac OS X v10.5 and later.

See Also
+ plugInKeys (page 10)

Declared In
QCPlugInViewController.h

didValueForInputKeyChange:
Returns whether the input port value changed since the last execution of the custom patch.

- (BOOL) didValueForInputKeyChange:(NSString*)key

Parameters
key

The key for the input port whose value you want to check.

Return Value
YES if the value on the input port changed since the last time the execute:atTime:withArguments: (page
15) method was called; always returns NO if called outside of the execute:atTime:withArguments:
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– valueForInputKey: (page 19)

Declared In
QCPlugIn.h

disableExecution:
Allows you to perform custom tasks when the execution of the QCPlugIn object is paused.

- (void) disableExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results are no longer being pulled from the custom
patch. You can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

14 Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

See Also
– enableExecution: (page 15)

Declared In
QCPlugIn.h

enableExecution:
Allows you to perform custom tasks when the execution of the QCPlugIn object is resumed.

- (void) enableExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when results start to be pulled from the custom patch. You
can optionally override this execution method to perform custom tasks at that time.

Availability
Available in Mac OS X v10.5 and later.

See Also
– disableExecution: (page 14)

Declared In
QCPlugIn.h

execute:atTime:withArguments:
Performs the processing or rendering tasks appropriate for the custom patch.

- (BOOL) execute:(id<QCPlugInContext>)context atTime:(NSTimeInterval)time
withArguments:(NSDictionary*)arguments

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

time
The execution interval.

arguments
A dictionary of arguments that can be used during execution. See “Execution Arguments” (page
24).

Return Value
NO indicates the custom patch was not able to execute successfully. In this case, the Quartz Composer engine
stops rendering the current frame.

Instance Methods 15
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
The Quartz Composer engine calls this method each time your custom patch needs to execute. You must
implement this method. The method should perform whatever tasks are appropriate for the custom patch,
such as:

 ■ reading values from the input ports

 ■ computing output values

 ■ updating the values on the output ports

 ■ rendering to the execution context

For example implementations of this method, see Quartz Composer Custom Patch Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

removeInputPortForKey:
Removes the input port for a given key.

- (void) removeInputPortForKey:(NSString*)key

Parameters
key

The key associated with the port that you want to remove.

Discussion
This method throws an exception if from within the execute:atTime:withArguments: (page 15) method,
if there is not an input port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addInputPortWithType:forKey:withAttributes: (page 12)

Declared In
QCPlugIn.h

removeOutputPortForKey:
Removes the output port for a given key.

- (void) removeOutputPortForKey:(NSString*)key

Parameters
key

The key associated with the port that you want to remove.

16 Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
This method throws an exception if called from within the execute:atTime:withArguments: (page 15)
method, if there is not an output port with that key, or if the port is created from a property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addOutputPortWithType:forKey:withAttributes: (page 12)

Declared In
QCPlugIn.h

serializedValueForKey:
Provides custom serialization for patch internal settings that do not comply to the NSCoding protocol.

- (id) serializedValueForKey:(NSString*)key

Parameters
key

The key for the value to retrieve.

Return Value
Either nil or a value that’s compliant with property lists: NSString, NSNumber, NSDate, NSData, NSArray,
or NSDictionary.

Discussion
If your patch has internal settings that do not conform to the NSCoding protocol, you must implement this
method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSerializedValue:forKey: (page 17)

Declared In
QCPlugIn.h

setSerializedValue:forKey:
Provides custom deserialization for patch internal settings that were previously serialized using the method
serializedValueForKey: (page 17).

- (void) setSerializedValue:(id)serializedValue forKey:(NSString*)key

Parameters
serializedValue

The value to deserialize.

key
The key for the value to deserialize.

Instance Methods 17
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
If your patch has internal settings that do not conform to the NSCoding protocol, you must implement this
method. After you deserialize the value, you need to call [self set:value forKey:key] to set the
corresponding internal setting of the custom patch instance to the deserialized value.

Availability
Available in Mac OS X v10.5 and later.

Declared In
QCPlugIn.h

setValue:forOutputKey:
Sets the value of an output port.

- (BOOL) setValue:(id)value forOutputKey:(NSString*)key

Parameters
key

The key associated with the output port whose value you want to set.

Return Value
YES if successful; NO if called outside of the execute:atTime:withArguments: (page 15) method.

Discussion
You call this method from within your execute:atTime:withArguments: (page 15) method to set the
output values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
– valueForInputKey: (page 19)
– didValueForInputKeyChange: (page 14)

Declared In
QCPlugIn.h

startExecution:
Allows you to perform custom setup tasks before the Quartz Composer engine starts rendering.

- (BOOL) startExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Return Value
NO indicates a fatal error occurred and prevents the Quartz Composer engine from starting.

18 Instance Methods
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
The Quartz Composer engine calls this method when your custom patch starts to render. You can optionally
override this execution method to perform setup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stopExecution: (page 19)

Declared In
QCPlugIn.h

stopExecution:
Allows you to perform custom tasks when the QCPlugIn object stops executing.

- (void) stopExecution:(id<QCPlugInContext>)context

Parameters
context

An opaque object , conforming to the QCPlugInContext Protocol protocol, that represents the
execution context of the QCPlugIn object. Do not retain this object or use it outside of the scope of
this method.

Discussion
The Quartz Composer engine calls this method when it stops executing. You can optionally override this
execution method to perform cleanup tasks.

Availability
Available in Mac OS X v10.5 and later.

See Also
– startExecution: (page 18)

Declared In
QCPlugIn.h

valueForInputKey:
Returns the current value for an input port.

- (id) valueForInputKey:(NSString*)key

Parameters
key

The key for the input port you want to check.

Return Value
The value associated with the key or nil if called outside of the execute:atTime:withArguments: (page
15) method.

Instance Methods 19
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

Discussion
You call this method from within your execute:atTime:withArguments: (page 15) method to retrieve
the input values of your custom patch.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setValue:forOutputKey: (page 18)
– didValueForInputKeyChange: (page 14)

Declared In
QCPlugIn.h

Constants

Patch Attributes
Attributes for custom patches.

extern NSString* const QCPlugInAttributeNameKey;
extern NSString* const QCPlugInAttributeDescriptionKey;
extern NSString* const QCPlugInAttributeCopyrightKey;

Constants
QCPlugInAttributeNameKey

The key for the custom patch name. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInAttributeDescriptionKey
The key for the custom patch description. The associated value is an NSString object.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QQCPlugInAttributeCopyrightKey
The key for the custom patch copyright information. The associated value is an NSString object.

Declared In
QCPlugIn.h

Input and Output Port Attributes
Attributes for input and output ports.

20 Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

extern NSString* const QCPortAttributeTypeKey;
extern NSString* const QCPortAttributeNameKey;
extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMinimumValueKey;
extern NSString* const QCPortAttributeMaximumValueKey;
extern NSString* const QCPortAttributeDefaultValueKey;
extern NSString* const QCPortAttributeMenuItemsKey;

Constants
QCPortAttributeTypeKey

The key for the port type. The associated value can be of any of the following constants:
QCPortTypeBoolean (page 22), QCPortTypeIndex (page 22), QCPortTypeNumber (page 22),
QCPortTypeString (page 23), QCPortTypeColor (page 23), QCPortTypeImage (page 23), or
QCPortTypeStructure (page 23).

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeNameKey
The key for the port name. The associated value is an NSString object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeMinimumValueKey
The key for the port minimum value. The associated value is an NSNumber object that specifies the
minimum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeMaximumValueKey
The key for the port maximum value. The associated value is an NSNumber object that specifies the
maximum numerical value accepted by the port.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortAttributeDefaultValueKey
The key for the port default value. You can use this key only for value ports (Boolean, Index, Number,
Color and String).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Constants 21
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

QCPortAttributeMenuItemsKey
The key for the menu items. The associated value is an array of strings that are displayed in the user
interface as a pop-up menu when the user double-clicks a port, as shown for the Blending input port

of the Billboard patch. You can use this key only for an index port.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Port Input and Output Types
Data types for input and output ports.

extern NSString* const QCPortTypeBoolean;
extern NSString* const QCPortTypeIndex;
extern NSString* const QCPortTypeNumber;
extern NSString* const QCPortTypeString;
extern NSString* const QCPortTypeColor;
extern NSString* const QCPortTypeImage;
extern NSString* const QCPortTypeStructure;

Constants
QCPortTypeBoolean

The port type for a Boolean value. The associated value can be an NSNumber object or any object
that responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeIndex
The port type for an index value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeNumber
The port type for a number value. The associated value can be an NSNumber object or any object that
responds to the -intValue, -floatValue, or -doubleValue methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

22 Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

QCPortTypeString
The port type for a string. The associated value can be an NSString object or any object that responds
to the -stringValue or -description methods.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeColor
The port type for a color value. The associated value must be an NSColor object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeImage
The port type for an image. The associated value can be an NSImage object or a CIImage object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

QCPortTypeStructure
The port type for an array, dictionary, or other structure, such as an NSArray or NSDictionary object.

Available in Mac OS X v10.4 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Pixel Formats
Supported image pixel formats.

extern NSString* const QCPlugInPixelFormatARGB8;
extern NSString* const QCPlugInPixelFormatBGRA8;
extern NSString* const QCPlugInPixelFormatRGBAf;
extern NSString* const QCPlugInPixelFormatI8;
extern NSString* const QCPlugInPixelFormatIf;

Constants
QCPlugInPixelFormatARGB8

An ARGB8 format. The alpha component is stored in the most significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on PowerPC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatBGRA8
A BGRA8 format. The alpha component is stored in the least significant bits of each pixel. Each pixel
component is 8 bits. For best performance, use this format on Intel-PC-based Macintosh computers,
as it represents of the order of the data in memory.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Constants 23
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

QCPlugInPixelFormatRGBAf
An RGBAf format. Pixel components are represented as floating-point values.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatI8
An I8 format. Intensity information is represented as an 8-bit value.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInPixelFormatIf
An If format. Intensity information is represented as a floating-point value.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Execution Arguments
Arguments to the method execute:atTime:withArguments: (page 15).

extern NSString* const QCPlugInExecutionArgumentEventKey;
extern NSString* const QCPlugInExecutionArgumentMouseLocationKey;

Constants
QCPlugInExecutionArgumentEventKey

The current NSEvent if available.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

QCPlugInExecutionArgumentMouseLocationKey
The current location of the mouse (as an NSPoint object stored in an NSValue object) in normalized
coordinates relative to the OpenGL context viewport ([0,1]x[0,1] with the origin (0,0) at the lower-left
corner).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Execution Modes
Execution modes for custom patches.

24 Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

typedef enum {
 kQCPlugInExecutionModeProvider = 1,
 kQCPlugInExecutionModeProcessor,
 kQCPlugInExecutionModeConsumer
} QCPlugInExecutionMode;

Constants
kQCPlugInExecutionModeProvider

A provider execution mode. The custom patch executes on demand—that is, whenever data is
requested of it, but at most once per frame.

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInExecutionModeProcessor
A processor execution mode. The custom patch executes whenever its inputs change or if the time
change (assuming it's time-dependent).

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInExecutionModeConsumer
A consumer execution mode. The custom patch always executes assuming the value of its Enable
input port is true. (The Enable port is automatically added by the system.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

Time Modes
Time modes for custom patches.

typedef enum {
 kQCPlugInTimeModeNone = 0,
 kQCPlugInTimeModeIdle,
 kQCPlugInTimeModeTimeBase
} QCPlugInTimeMode;

Constants
kQCPlugInTimeModeNone

No time dependency. The custom patch does not depend on time at all. (It does not use the time
parameter of the execute:atTime:withArguments: method.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

kQCPlugInTimeModeIdle
An idle time dependency. The custom patch does not depend on time but needs the system to execute
it periodically. For example if the custom patch connects to a piece of hardware, to ensure that it
pulls data from the hardware, you would set the custom patch time dependency to idle time mode.
This time mode is typically used with providers.]]

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Constants 25
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

kQCPlugInTimeModeTimeBase
A time base dependency. The custom patch does depend on time explicitly and has a time base
defined by the system. (It uses the time parameter of the execute:atTime:withArguments:
method.)

Available in Mac OS X v10.5 and later.

Declared in QCPlugIn.h.

Declared In
QCPlugIn.h

26 Constants
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

QCPlugIn Class Reference

This table describes the changes to QCPlugIn Class Reference.

NotesDate

Added information about the memory management model used for the create
function.

2008-04-08

New document that describes the class used to write custom patches for Quartz
Composer.

2007-06-26

27
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	QCPlugIn Class Reference
	Contents
	QCPlugIn Class Reference
	Overview
	Tasks
	Defining the Characteristics of a Custom Patch
	Executing a Custom Patch
	Performing Custom Tasks During Execution
	Defining Patch and Property Port Attributes
	Defining Internal Settings
	Supporting Saving and Retrieving Internal Settings
	Adding Ports Dynamically
	Getting and Setting Port Values
	Loading Bundle and Custom Patches Manually
	Ordering Property Ports

	Class Methods
	attributes
	attributesForPropertyPortWithKey:
	executionMode
	loadPlugInAtPath:
	plugInKeys
	registerPlugInClass:
	sortedPropertyPortKeys
	timeMode

	Instance Methods
	addInputPortWithType:forKey:withAttributes:
	addOutputPortWithType:forKey:withAttributes:
	createViewController
	didValueForInputKeyChange:
	disableExecution:
	enableExecution:
	execute:atTime:withArguments:
	removeInputPortForKey:
	removeOutputPortForKey:
	serializedValueForKey:
	setSerializedValue:forKey:
	setValue:forOutputKey:
	startExecution:
	stopExecution:
	valueForInputKey:

	Constants
	Patch Attributes
	Input and Output Port Attributes
	Port Input and Output Types
	Pixel Formats
	Execution Arguments
	Execution Modes
	Time Modes

	Revision History

