
NSManagedObjectContext Class Reference
Data Management

2010-04-21

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, and
Mac OS are trademarks of Apple Inc., registered
in the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSManagedObjectContext Class Reference 5

Overview 5
Life-cycle Management 5
Persistent Store Coordinator 6
Subclassing Notes 6

Tasks 6
Registering and Fetching Objects 6
Managed Object Management 6
Merging Changes from Another Context 7
Undo Management 7
Locking 8
Delete Propagation 8
Retaining Registered Objects 8
Managing the Persistent Store Coordinator 8
Managing the Staleness Interval 8
Managing the Merge Policy 9

Instance Methods 9
assignObject:toPersistentStore: 9
countForFetchRequest:error: 10
deletedObjects 10
deleteObject: 11
detectConflictsForObject: 11
executeFetchRequest:error: 12
existingObjectWithID:error: 13
hasChanges 13
insertedObjects 14
insertObject: 15
lock 15
mergeChangesFromContextDidSaveNotification: 16
mergePolicy 16
objectRegisteredForID: 16
objectWithID: 17
obtainPermanentIDsForObjects:error: 17
persistentStoreCoordinator 18
processPendingChanges 19
propagatesDeletesAtEndOfEvent 19
redo 19
refreshObject:mergeChanges: 20
registeredObjects 21
reset 21
retainsRegisteredObjects 22

3
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

rollback 22
save: 22
setMergePolicy: 23
setPersistentStoreCoordinator: 23
setPropagatesDeletesAtEndOfEvent: 24
setRetainsRegisteredObjects: 24
setStalenessInterval: 25
setUndoManager: 25
stalenessInterval 26
tryLock 27
undo 27
undoManager 27
unlock 28
updatedObjects 28

Constants 29
NSManagedObjectContext Change Notification User Info Keys 29
Merge Policies 30

Notifications 31
NSManagedObjectContextObjectsDidChangeNotification 31
NSManagedObjectContextDidSaveNotification 32
NSManagedObjectContextWillSaveNotification 32

Document Revision History 33

4
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSCoding
NSLocking
NSObject (NSObject)

Framework /System/Library/Frameworks/CoreData.framework

Availability Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h

Companion guides Core Data Programming Guide
Core Data Utility Tutorial
Core Data Snippets
Predicate Programming Guide

Related sample code AbstractTree
Core Data HTML Store
CoreRecipes
Departments and Employees
Image Kit with Core Data

Overview

An instance of NSManagedObjectContext represents a single “object space” or scratch pad in an application.
Its primary responsibility is to manage a collection of managed objects. These objects form a group of related
model objects that represent an internally consistent view of one or more persistent stores. A single managed
object instance exists in one and only one context, but multiple copies of an object can exist in different
contexts. Thus object uniquing is scoped to a particular context.

Life-cycle Management

The context is a powerful object with a central role in the life-cycle of managed objects, with responsibilities
from life-cycle management (including faulting) to validation, inverse relationship handling, and undo/redo.
Through a context you can retrieve or “fetch” objects from a persistent store, make changes to those objects,
and then either discard the changes or—again through the context—commit them back to the persistent
store. The context is responsible for watching for changes in its objects and maintains an undo manager so
you can have finer-grained control over undo and redo. You can insert new objects and delete ones you
have fetched, and commit these modifications to the persistent store.

Overview 5
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Persistent Store Coordinator

A context always has a “parent” persistent store coordinator which provides the model and dispatches
requests to the various persistent stores containing the data. Without a coordinator, a context is not fully
functional. The context’s coordinator provides the managed object model and handles persistency. All objects
fetched from an external store are registered in a context together with a global identifier (an instance of
NSManagedObjectID) that’s used to uniquely identify each object to the external store.

Subclassing Notes

You are strongly discouraged from subclassing NSManagedObjectContext. The change tracking and undo
management mechanisms are highly optimized and hence intricate and delicate. Interposing your own
additional logic that might impact processPendingChanges can have unforeseen consequences. In
situations such as store migration, Core Data will create instances of NSManagedObjectContext for its own
use. Under these circumstances, you cannot rely on any features of your custom subclass. Any
NSManagedObject subclass must always be fully compatible with NSManagedObjectContext (as opposed
to any subclass of NSManagedObjectContext).

Tasks

Registering and Fetching Objects

– executeFetchRequest:error: (page 12)
Returns an array of objects that meet the criteria specified by a given fetch request.

– countForFetchRequest:error: (page 10)
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

– objectRegisteredForID: (page 16)
Returns the object for a specified ID, if the object is registered with the receiver.

– objectWithID: (page 17)
Returns the object for a specified ID.

– existingObjectWithID:error: (page 13)
Returns the object for the specified ID.

– registeredObjects (page 21)
Returns the set of objects registered with the receiver.

Managed Object Management

– insertObject: (page 15)
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

– deleteObject: (page 11)
Specifies an object that should be removed from its persistent store when changes are committed.

6 Tasks
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– assignObject:toPersistentStore: (page 9)
Specifies the store in which a newly-inserted object will be saved.

– obtainPermanentIDsForObjects:error: (page 17)
Converts to permanent IDs the object IDs of the objects in a given array.

– detectConflictsForObject: (page 11)
Marks an object for conflict detection.

– refreshObject:mergeChanges: (page 20)
Updates the persistent properties of a managed object to use the latest values from the persistent
store.

– processPendingChanges (page 19)
Forces the receiver to process changes to the object graph.

– insertedObjects (page 14)
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent
store.

– updatedObjects (page 28)
Returns the set of objects registered with the receiver that have uncommitted changes.

– deletedObjects (page 10)
Returns the set of objects that will be removed from their persistent store during the next save
operation.

Merging Changes from Another Context

– mergeChangesFromContextDidSaveNotification: (page 16)
Merges the changes specified in a given notification.

Undo Management

– undoManager (page 27)
Returns the undo manager of the receiver.

– setUndoManager: (page 25)
Sets the undo manager of the receiver.

– undo (page 27)
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted
changes applied to objects in the object graph.

– redo (page 19)
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation
applied to objects in the object graph.

– reset (page 21)
Returns the receiver to its base state.

– rollback (page 22)
Removes everything from the undo stack, discards all insertions and deletions, and restores updated
objects to their last committed values.

– save: (page 22)
Attempts to commit unsaved changes to registered objects to their persistent store.

Tasks 7
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– hasChanges (page 13)
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

Locking

– lock (page 15)
Attempts to acquire a lock on the receiver.

– unlock (page 28)
Relinquishes a previously acquired lock.

– tryLock (page 27)
Attempts to acquire a lock.

Delete Propagation

– propagatesDeletesAtEndOfEvent (page 19)
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in
which a change was made.

– setPropagatesDeletesAtEndOfEvent: (page 24)
Sets whether the context propagates deletes to related objects at the end of the event.

Retaining Registered Objects

– retainsRegisteredObjects (page 22)
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon
registration.

– setRetainsRegisteredObjects: (page 24)
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending
save (those that are inserted, updated, deleted, or locked).

Managing the Persistent Store Coordinator

– persistentStoreCoordinator (page 18)
Returns the persistent store coordinator of the receiver.

– setPersistentStoreCoordinator: (page 23)
Sets the persistent store coordinator of the receiver.

Managing the Staleness Interval

– stalenessInterval (page 26)
Returns the maximum length of time that may have elapsed since the store previously fetched data
before fulfilling a fault issues a new fetch rather than using the previously-fetched data.

8 Tasks
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– setStalenessInterval: (page 25)
Sets the maximum length of time that may have elapsed since the store previously fetched data
before fulfilling a fault issues a new fetch rather than using the previously-fetched data.

Managing the Merge Policy

– mergePolicy (page 16)
Returns the merge policy of the receiver.

– setMergePolicy: (page 23)
Sets the merge policy of the receiver.

Instance Methods

assignObject:toPersistentStore:
Specifies the store in which a newly-inserted object will be saved.

- (void)assignObject:(id)object toPersistentStore:(NSPersistentStore *)store

Parameters
object

A managed object.

store
A persistent store.

Discussion
You can obtain a store from the persistent store coordinator, using for example persistentStoreForURL:.

Special Considerations

It is only necessary to use this method if the receiver’s persistent store coordinator manages multiple writable
stores that have object’s entity in their configuration. Maintaining configurations in the managed object
model can eliminate the need for invoking this method directly in many situations. If the receiver’s persistent
store coordinator manages only a single writable store, or if only one store has object’s entity in its model,
object will automatically be assigned to that store.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertObject: (page 15)
– persistentStoreCoordinator (page 18)

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

Instance Methods 9
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

countForFetchRequest:error:
Returns the number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error:.

- (NSUInteger)countForFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

Return Value
The number of objects a given fetch request would have returned if it had been passed to
executeFetchRequest:error: (page 12).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

deletedObjects
Returns the set of objects that will be removed from their persistent store during the next save operation.

- (NSSet *)deletedObjects

Return Value
The set of objects that will be removed from their persistent store during the next save operation.

Discussion
The returned set does not necessarily include all the objects that have been deleted (using
deleteObject: (page 11))—if an object has been inserted and deleted without an intervening save
operation, it is not included in the set.

A managed object context does not post key-value observing notifications when the return value of
deletedObjects changes. A context does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 31) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 32) notification and a
NSManagedObjectContextDidSaveNotification (page 32) notification before and after changes are
committed respectively (although again the set of deleted objects given for a
NSManagedObjectContextDidSaveNotification (page 32) does not include objects that were inserted
and deleted without an intervening save operation—that is, they had never been saved to a persistent store).

Availability
Available in Mac OS X v10.4 and later.

See Also
– deleteObject: (page 11)
– insertedObjects (page 14)
– registeredObjects (page 21)

10 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– updatedObjects (page 28)
– isDeleted (NSManagedObject)

Declared In
NSManagedObjectContext.h

deleteObject:
Specifies an object that should be removed from its persistent store when changes are committed.

- (void)deleteObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
When changes are committed, objectwill be removed from the uniquing tables. If object has not yet been
saved to a persistent store, it is simply removed from the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 10)
– isDeleted (NSManagedObject)

Related Sample Code
Core Data HTML Store
CoreRecipes
Departments and Employees
QTMetadataEditor
StickiesWithCoreData

Declared In
NSManagedObjectContext.h

detectConflictsForObject:
Marks an object for conflict detection.

- (void)detectConflictsForObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
If on the next invocation of save: (page 22) object has been modified in its persistent store, the save fails.
This allows optimistic locking for unchanged objects. Conflict detection is always performed on changed or
deleted objects.

Instance Methods 11
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

executeFetchRequest:error:
Returns an array of objects that meet the criteria specified by a given fetch request.

- (NSArray *)executeFetchRequest:(NSFetchRequest *)request error:(NSError **)error

Parameters
request

A fetch request that specifies the search criteria for the fetch.

error
If there is a problem executing the fetch, upon return contains an instance of NSError that describes
the problem.

Return Value
An array of objects that meet the criteria specified by request fetched from the receiver and from the
persistent stores associated with the receiver’s persistent store coordinator. If an error occurs, returns nil.
If no objects match the criteria specified by request, returns an empty array.

Discussion
Returned objects are registered with the receiver.

The following points are important to consider:

 ■ If the fetch request has no predicate, then all instances of the specified entity are retrieved, modulo other
criteria below.

 ■ An object that meets the criteria specified by request (it is an instance of the entity specified by the
request, and it matches the request’s predicate if there is one) and that has been inserted into a context
but which is not yet saved to a persistent store, is retrieved if the fetch request is executed on that
context.

 ■ If an object in a context has been modified, a predicate is evaluated against its modified state, not against
the current state in the persistent store. Therefore, if an object in a context has been modified such that
it meets the fetch request’s criteria, the request retrieves it even if changes have not been saved to the
store and the values in the store are such that it does not meet the criteria. Conversely, if an object in a
context has been modified such that it does not match the fetch request, the fetch request will not
retrieve it even if the version in the store does match.

 ■ If an object has been deleted from the context, the fetch request does not retrieve it even if that deletion
has not been saved to a store.

Objects that have been realized (populated, faults fired, “read from”, and so on) as well as pending updated,
inserted, or deleted, are never changed by a fetch operation without developer intervention. If you fetch
some objects, work with them, and then execute a new fetch that includes a superset of those objects, you
do not get new instances or update data for the existing objects—you get the existing objects with their
current in-memory state.

Availability
Available in Mac OS X v10.4 and later.

12 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Related Sample Code
Core Data HTML Store
CoreRecipes
Departments and Employees
QTMetadataEditor

Declared In
NSManagedObjectContext.h

existingObjectWithID:error:
Returns the object for the specified ID.

- (NSManagedObject *)existingObjectWithID:(NSManagedObjectID *)objectIDerror:(NSError
 **)error

Parameters
objectID

The object ID for the requested object.

error
If there is a problem in retrieving the object specified by objectID, upon return contains an error
that describes the problem.

Return Value
The object specified by objectID. If the object cannot be fetched, or does not exist, or cannot be faulted,
it returns nil.

Discussion
If there is a managed object with the given ID already registered in the context, that object is returned directly;
otherwise the corresponding object is faulted into the context.

This method might perform I/O if the data is uncached.

Unlike objectWithID: (page 17), this method never returns a fault.

Availability
Available in Mac OS X v10.6 and later.

See Also
– objectWithID: (page 17)
– objectRegisteredForID: (page 16)

Declared In
NSManagedObjectContext.h

hasChanges
Returns a Boolean value that indicates whether the receiver has uncommitted changes.

- (BOOL)hasChanges

Instance Methods 13
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Return Value
YES if the receiver has uncommitted changes, otherwise NO.

Discussion
On Mac OS X v10.6 and later, this property is key-value observing compliant (see Key-Value Observing
Programming Guide).

Prior to Mac OS X v10.6, this property is not key-value observing compliant—for example, if you are using
Cocoa bindings, you cannot bind to the hasChanges property of a managed object context.

Special Considerations

If you are observing this property using key-value observing (KVO) you should not touch the context or its
objects within your implementation of observeValueForKeyPath:ofObject:change:context: for this
notification. (This is because of the intricacy of the locations of the KVO notifications—for example, the
context may be in the middle of an undo operation, or repairing a merge conflict.) If you need to send
messages to the context of change any of its managed objects as a result of a change to the value of
hasChanges, you must do so after the call stack unwinds (typically using
performSelector:withObject:afterDelay: or a similar method).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

insertedObjects
Returns the set of objects that have been inserted into the receiver but not yet saved in a persistent store.

- (NSSet *)insertedObjects

Return Value
The set of objects that have been inserted into the receiver but not yet saved in a persistent store.

Discussion
A managed object context does not post key-value observing notifications when the return value of
insertedObjects changes—it does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 31) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 32) and a
NSManagedObjectContextDidSaveNotification (page 32) notification before and after changes are
committed respectively.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 10)
– insertObject: (page 15)
– registeredObjects (page 21)
– updatedObjects (page 28)

Declared In
NSManagedObjectContext.h

14 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

insertObject:
Registers an object to be inserted in the receiver’s persistent store the next time changes are saved.

- (void)insertObject:(NSManagedObject *)object

Parameters
object

A managed object.

Discussion
The managed object (object) is registered in the receiver with a temporary global ID. It is assigned a
permanent global ID when changes are committed. If the current transaction is rolled back (for example, if
the receiver is sent a rollback (page 22) message) before a save operation, the object is unregistered from
the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertedObjects (page 14)

Declared In
NSManagedObjectContext.h

lock
Attempts to acquire a lock on the receiver.

- (void)lock

Discussion
This method blocks a thread’s execution until the lock can be acquired. An application protects a critical
section of code by requiring a thread to acquire a lock before executing the code. Once the critical section
is past, the thread relinquishes the lock by invoking unlock (page 28).

Sending this message to a managed object context helps the framework to understand the scope of a
transaction in a multi-threaded environment. It is preferable to use the NSManagedObjectContext’s
implementation of NSLocking instead using of a separate mutex object.

If you lock (or successfully tryLock) a managed object context, the thread in which the lock call is made
must have a retain until it invokes unlock. If you do not properly retain a context in a multi-threaded
environment, this will result in deadlock.

Availability
Available in Mac OS X v10.4 and later.

See Also
– tryLock (page 27)
– unlock (page 28)

Declared In
NSManagedObjectContext.h

Instance Methods 15
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

mergeChangesFromContextDidSaveNotification:
Merges the changes specified in a given notification.

- (void)mergeChangesFromContextDidSaveNotification:(NSNotification *)notification

Parameters
notification

An instance of an NSManagedObjectContextWillSaveNotification (page 32) notification
posted by another context.

Discussion
This method refreshes any objects which have been updated in the other context, faults in any newly-inserted
objects, and invokes deleteObject: (page 11): on those which have been deleted.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

mergePolicy
Returns the merge policy of the receiver.

- (id)mergePolicy

Return Value
The receiver’s merge policy.

Discussion
The default is NSErrorMergePolicy.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

objectRegisteredForID:
Returns the object for a specified ID, if the object is registered with the receiver.

- (NSManagedObject *)objectRegisteredForID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID if it is registered with the receiver, otherwise nil.

Availability
Available in Mac OS X v10.4 and later.

16 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

See Also
– objectWithID: (page 17)
– existingObjectWithID:error: (page 13)

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

objectWithID:
Returns the object for a specified ID.

- (NSManagedObject *)objectWithID:(NSManagedObjectID *)objectID

Parameters
objectID

An object ID.

Return Value
The object for the specified ID.

Discussion
If the object is not registered in the context, it may be fetched or returned as a fault. This method always
returns an object. The data in the persistent store represented by objectID is assumed to exist—if it does
not, the returned object throws an exception when you access any property (that is, when the fault is fired).
The benefit of this behavior is that it allows you to create and use faults, then create the underlying rows
later or in a separate context.

Availability
Available in Mac OS X v10.4 and later.

See Also
– objectRegisteredForID: (page 16)
– existingObjectWithID:error: (page 13)
– managedObjectIDForURIRepresentation:

– URIRepresentation

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

obtainPermanentIDsForObjects:error:
Converts to permanent IDs the object IDs of the objects in a given array.

- (BOOL)obtainPermanentIDsForObjects:(NSArray *)objects error:(NSError **)error

Instance Methods 17
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Parameters
objects

An array of managed objects.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if permanent IDs are obtained for all the objects in objects, otherwise NO.

Discussion
This method converts the object ID of each managed object in objects to a permanent ID. Although the
object will have a permanent ID, it will still respond positively to isInserted until it is saved. Any object
that already has a permanent ID is ignored.

Any object not already assigned to a store is assigned based on the same rules Core Data uses for assignment
during a save operation (first writable store supporting the entity, and appropriate for the instance and its
related items).

Special Considerations

This method results in a transaction with the underlying store which changes the file’s modification date.

This results an additional consideration if you invoke this method on the managed object context associated
with an instance of NSPersistentDocument. Instances of NSDocument need to know that they are in sync
with the underlying content. To avoid problems, after invoking this method you must therefore update the
document’s modification date (using setFileModificationDate:).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSManagedObjectContext.h

persistentStoreCoordinator
Returns the persistent store coordinator of the receiver.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

Return Value
The persistent store coordinator of the receiver.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes
Departments and Employees

Declared In
NSManagedObjectContext.h

18 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

processPendingChanges
Forces the receiver to process changes to the object graph.

- (void)processPendingChanges

Discussion
This method causes changes to registered managed objects to be recorded with the undo manager.

In AppKit-based applications, this method is invoked automatically at least once during the event loop (at
the end of the loop)—it may be called more often than that if the framework needs to coalesce your changes
before doing something else. You can also invoke it manually to coalesce any pending unprocessed changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– redo (page 19)
– undo (page 27)
– undoManager (page ?)

Related Sample Code
CoreRecipes
Departments and Employees

Declared In
NSManagedObjectContext.h

propagatesDeletesAtEndOfEvent
Returns a Boolean that indicates whether the receiver propagates deletes at the end of the event in which
a change was made.

- (BOOL)propagatesDeletesAtEndOfEvent

Return Value
YES if the receiver propagates deletes at the end of the event in which a change was made, NO if it propagates
deletes only immediately before saving changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPropagatesDeletesAtEndOfEvent: (page 24)

Declared In
NSManagedObjectContext.h

redo
Sends an redo message to the receiver’s undo manager, asking it to reverse the latest undo operation applied
to objects in the object graph.

Instance Methods 19
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

- (void)redo

Availability
Available in Mac OS X v10.4 and later.

See Also
– undo (page 27)
– processPendingChanges (page 19)

Declared In
NSManagedObjectContext.h

refreshObject:mergeChanges:
Updates the persistent properties of a managed object to use the latest values from the persistent store.

- (void)refreshObject:(NSManagedObject *)object mergeChanges:(BOOL)flag

Parameters
object

A managed object.

flag
A Boolean value.

If flag is NO, then object is turned into a fault and any pending changes are lost. The object remains
a fault until it is accessed again, at which time its property values will be reloaded from the store or
last cached state.

If flag is YES, then object’s property values are reloaded from the values from the store or the last
cached state then any changes that were made (in the local context) are re-applied over those (now
newly updated) values. (If flag is YES the merge of the values into object will always succeed—in
this case there is therefore no such thing as a “merge conflict” or a merge that is not possible.)

Discussion
If the staleness interval (see stalenessInterval (page 26)) has not been exceeded, any available cached
data is reused instead of executing a new fetch. If flag is YES, this method does not affect any transient
properties; if flag is NO, transient properties are released.

You typically use this method to ensure data freshness if more than one managed object context may use
the same persistent store simultaneously, in particular if you get an optimistic locking failure when attempting
to save.

It is important to note that turning object into a fault (flag is NO) also causes related managed objects
(that is, those to which object has a reference) to be released, so you can also use this method to trim a
portion of your object graph you want to constrain memory usage.

Availability
Available in Mac OS X v10.4 and later.

See Also
– detectConflictsForObject: (page 11)
– reset (page 21)
– setStalenessInterval: (page 25)

20 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Related Sample Code
CoreRecipes

Declared In
NSManagedObjectContext.h

registeredObjects
Returns the set of objects registered with the receiver.

- (NSSet *)registeredObjects

Return Value
The set of objects registered with the receiver.

Discussion
A managed object context does not post key-value observing notifications when the return value of
registeredObjects changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 10)
– insertedObjects (page 14)
– updatedObjects (page 28)

Declared In
NSManagedObjectContext.h

reset
Returns the receiver to its base state.

- (void)reset

Discussion
All the receiver's managed objects are “forgotten.” If you use this method, you should ensure that you also
discard references to any managed objects fetched using the receiver, since they will be invalid afterwards.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rollback (page 22)
– setStalenessInterval: (page 25)
– undo (page 27)

Related Sample Code
QTMetadataEditor

Instance Methods 21
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Declared In
NSManagedObjectContext.h

retainsRegisteredObjects
Returns a Boolean that indicates whether the receiver sends a retain message to objects upon registration.

- (BOOL)retainsRegisteredObjects

Return Value
YES if the receiver sends a retain message to objects upon registration, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setRetainsRegisteredObjects: (page 24)

Declared In
NSManagedObjectContext.h

rollback
Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values.

- (void)rollback

Discussion
This method does not refetch data from the persistent store or stores.

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 21)
– setStalenessInterval: (page 25)
– undo (page 27)
– processPendingChanges (page 19)

Declared In
NSManagedObjectContext.h

save:
Attempts to commit unsaved changes to registered objects to their persistent store.

- (BOOL)save:(NSError **)error

22 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Parameters
error

A pointer to an NSError object. You do not need to create an NSError object. The save operation
aborts after the first failure if you pass NULL.

Return Value
YES if the save succeeds, otherwise NO.

Discussion
If there were multiple errors (for example several edited objects had validation failures) the description of
NSError returned indicates that there were multiple errors, and its userInfo dictionary contains the key
NSDetailedErrors. The value associated with the NSDetailedErrors key is an array that contains the
individual NSError objects.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes
StickiesWithCoreData

Declared In
NSManagedObjectContext.h

setMergePolicy:
Sets the merge policy of the receiver.

- (void)setMergePolicy:(id)mergePolicy

Parameters
mergePolicy

The merge policy of the receiver. For possible values, see “Merge Policies” (page 30).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

setPersistentStoreCoordinator:
Sets the persistent store coordinator of the receiver.

- (void)setPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator

Parameters
coordinator

The persistent store coordinator of the receiver.

Discussion
The coordinator provides the managed object model and handles persistency. Note that multiple contexts
can share a coordinator.

Instance Methods 23
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

This method raises an exception if coordinator is nil. If you want to “disconnect" a context from its
persistent store coordinator, you should simply release all references to the context and allow it to be
deallocated normally.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Core Data HTML Store
CoreRecipes

Declared In
NSManagedObjectContext.h

setPropagatesDeletesAtEndOfEvent:
Sets whether the context propagates deletes to related objects at the end of the event.

- (void)setPropagatesDeletesAtEndOfEvent:(BOOL)flag

Parameters
Flag

A Boolean value that indicates whether the context propagates deletes to related objects at the end
of the event (YES) or not (NO).

Discussion
The default is YES. If the value is NO, then deletes are propagated during a save operation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– propagatesDeletesAtEndOfEvent (page 19)

Declared In
NSManagedObjectContext.h

setRetainsRegisteredObjects:
Sets whether or not the receiver retains all registered objects, or only objects necessary for a pending save
(those that are inserted, updated, deleted, or locked).

- (void)setRetainsRegisteredObjects:(BOOL)flag

Parameters
flag

A Boolean value.

If flag is NO, then registered objects are retained only when they are inserted, updated, deleted, or
locked.

If flag is YES, then all registered objects are retained.

Discussion
The default is NO.

24 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– retainsRegisteredObjects (page 22)

Declared In
NSManagedObjectContext.h

setStalenessInterval:
Sets the maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

- (void)setStalenessInterval:(NSTimeInterval)expiration

Parameters
expiration

The maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

A negative value represents an infinite value; 0.0 represents “no staleness acceptable”.

Discussion
The staleness interval controls whether fulfilling a fault uses data previously fetched by the application, or
issues a new fetch (see also refreshObject:mergeChanges: (page 20)). The staleness interval does not
affect objects currently in use (that is, it is not used to automatically update property values from a persistent
store after a certain period of time).

The expiration value is applied on a per object basis. It is the relative time until cached data (snapshots)
should be considered stale. For example, a value of 300.0 informs the context to utilize cached information
for no more than 5 minutes after an object was originally fetched.

Note that the staleness interval is a hint and may not be supported by all persistent store types. It is not used
by XML and binary stores, since these stores maintain all current values in memory.

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 21)
– rollback (page 22)
– stalenessInterval (page 26)
– undo (page 27)
– refreshObject:mergeChanges: (page 20)

Declared In
NSManagedObjectContext.h

setUndoManager:
Sets the undo manager of the receiver.

Instance Methods 25
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

- (void)setUndoManager:(NSUndoManager *)undoManager

Parameters
undoManager

The undo manager of the receiver.

Discussion
You can set the undo manager to nil to disable undo support. This provides a performance benefit if you
do not want to support undo for a particular context, for example in a large import process—see Core Data
Programming Guide.

If a context does not have an undo manager, you can enable undo support by setting one. You may also
replace a context’s undo manager if you want to integrate the context’s undo operations with another undo
manager in your application.

Important: On Mac OS X, a context provides an undo manager by default; on iOS, the undo manager is nil
by default.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

stalenessInterval
Returns the maximum length of time that may have elapsed since the store previously fetched data before
fulfilling a fault issues a new fetch rather than using the previously-fetched data.

- (NSTimeInterval)stalenessInterval

Return Value
The maximum length of time that may have elapsed since the store previously fetched data before fulfilling
a fault issues a new fetch rather than using the previously-fetched data.

Discussion
The default is infinite staleness, represented by an interval of -1 (although any negative value represents an
infinite value); 0.0 represents “no staleness acceptable”.

For a full discussion, see setStalenessInterval: (page 25).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setStalenessInterval: (page 25)

Declared In
NSManagedObjectContext.h

26 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

tryLock
Attempts to acquire a lock.

- (BOOL)tryLock

Return Value
YES if a lock was acquired, NO otherwise.

Discussion
This method returns immediately after the attempt to acquire a lock.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lock (page 15)
– unlock (page 28)

Declared In
NSManagedObjectContext.h

undo
Sends an undo message to the receiver’s undo manager, asking it to reverse the latest uncommitted changes
applied to objects in the object graph.

- (void)undo

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 21)
– rollback (page 22)
– undoManager (page ?)
– processPendingChanges (page 19)

Declared In
NSManagedObjectContext.h

undoManager
Returns the undo manager of the receiver.

- (NSUndoManager *)undoManager

Return Value
The undo manager of the receiver.

Discussion
For a discussion, see setUndoManager: (page ?).

Instance Methods 27
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Important: On Mac OS X, a context provides an undo manager by default; on iOS, the undo manager is nil
by default.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Departments and Employees

Declared In
NSManagedObjectContext.h

unlock
Relinquishes a previously acquired lock.

- (void)unlock

Availability
Available in Mac OS X v10.4 and later.

See Also
– lock (page 15)
– tryLock (page 27)

Declared In
NSManagedObjectContext.h

updatedObjects
Returns the set of objects registered with the receiver that have uncommitted changes.

- (NSSet *)updatedObjects

Return Value
The set of objects registered with the receiver that have uncommitted changes.

Discussion
A managed object context does not post key-value observing notifications when the return value of
updatedObjects changes. A context does, however, post a
NSManagedObjectContextObjectsDidChangeNotification (page 31) notification when a change is
made, and a NSManagedObjectContextWillSaveNotification (page 32) notification and a
NSManagedObjectContextDidSaveNotification (page 32) notification before and after changes are
committed respectively.

Availability
Available in Mac OS X v10.4 and later.

See Also
– deletedObjects (page 10)
– insertedObjects (page 14)

28 Instance Methods
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

– registeredObjects (page 21)

Declared In
NSManagedObjectContext.h

Constants

NSManagedObjectContext Change Notification User Info Keys
Core Data uses these string constants as keys in the user info dictionary in
aNSManagedObjectContextObjectsDidChangeNotification (page 31) notification.

NSString * const NSInsertedObjectsKey;
NSString * const NSUpdatedObjectsKey;
NSString * const NSDeletedObjectsKey;
NSString * const NSRefreshedObjectsKey;
NSString * const NSInvalidatedObjectsKey;
NSString * const NSInvalidatedAllObjectsKey;

Constants
NSInsertedObjectsKey

Key for the set of objects that were inserted into the context.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSUpdatedObjectsKey
Key for the set of objects that were updated.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSDeletedObjectsKey
Key for the set of objects that were marked for deletion during the previous event.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSRefreshedObjectsKey
Key for the set of objects that were refreshed.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedObjectsKey
Key for the set of objects that were invalidated.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

NSInvalidatedAllObjectsKey
Key that specifies that all objects in the context have been invalidated.

Available in Mac OS X v10.5 and later.

Declared in NSManagedObjectContext.h.

Constants 29
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Declared In
NSManagedObjectContext.h

Merge Policies
Merge policy constants define the way conflicts are handled during a save operation.

id NSErrorMergePolicy;
id NSMergeByPropertyStoreTrumpMergePolicy;
id NSMergeByPropertyObjectTrumpMergePolicy;
id NSOverwriteMergePolicy;
id NSRollbackMergePolicy;

Constants
NSErrorMergePolicy

This policy causes a save to fail if there are any merge conflicts.

In the case of failure, the save method returns with an error with a userInfo dictionary that contains
the key @"conflictList"; the corresponding value is an array of conflict records.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyStoreTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to external changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the external changes trump the in-memory ones.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSMergeByPropertyObjectTrumpMergePolicy
This policy merges conflicts between the persistent store’s version of the object and the current
in-memory version, giving priority to in-memory changes.

The merge occurs by individual property. For properties that have been changed in both the external
source and in memory, the in-memory changes trump the external ones.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSOverwriteMergePolicy
This policy overwrites state in the persistent store for the changed objects in conflict.

Changed objects’ current state is forced upon the persistent store.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

NSRollbackMergePolicy
This policy discards in-memory state changes for objects in conflict.

The persistent store’s version of the objects’ state is used.

Available in Mac OS X v10.4 and later.

Declared in NSManagedObjectContext.h.

30 Constants
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Discussion
The default policy is the NSErrorMergePolicy. It is the only policy that requires action to correct any
conflicts; the other policies make a save go through silently by making changes following their rules.

Declared In
NSManagedObjectContext.h

The following constants, defined in CoreDataErrors.h, relate to errors returned following validation failures
or problems encountered during a save operation.

Key for the object that failed to validate for a validation
error.

NSValidationObjectErrorKey

The key for stores prompting an error.NSAffectedStoresErrorKey

The key for objects prompting an error.NSAffectedObjectsErrorKey

Each conflict record in the @"conflictList" array in the userInfo dictionary for an error from the
NSErrorMergePolicy is a dictionary containing some of the keys described in the following table. Of the
cachedRow, databaseRow, and snapshot keys, only two will be present depending on whether the conflict
is between the managed object context and the persistent store coordinator (snapshot and cachedRow)
or between the persistent store coordinator and the persistent store (cachedRow and databaseRow).

DescriptionConstant

The managed object that could not be saved.@"object"

A dictionary of key-value pairs for the properties that represents the managed object
context’s last saved state for this managed object.

@"snapshot"

A dictionary of key-value pairs for the properties that represents the persistent store's
last saved state for this managed object.

@"cachedRow"

A dictionary of key-value pairs for the properties that represents the database's current
state for this managed object.

@"databaseRow"

An NSNumber object whose value is latest version number of this managed object.@"newVersion"

As NSNumber object whose value is the version number that this managed object
context last saved for this managed object.

@"oldVersion"

Notifications

NSManagedObjectContextObjectsDidChangeNotification
Posted when values of properties of objects contained in a managed object context are changed.

The notification is posted during processPendingChanges (page 19), after the changes have been processed,
but before it is safe to call save: (page 22) again (if you try, you will generate an infinite loop).

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Notifications 31
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

Note that this notification is posted only when managed objects are changed; it is not posted when managed
objects are added to a context as the result of a fetch.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

NSManagedObjectContextDidSaveNotification
Posted whenever a managed object context completes a save operation.

The notification object is the managed object context. The userInfo dictionary contains the following keys:
NSInsertedObjectsKey, NSUpdatedObjectsKey, and NSDeletedObjectsKey.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSManagedObjectContext.h

NSManagedObjectContextWillSaveNotification
Posted whenever a managed object context is about to perform a save operation.

The notification object is the managed object context. There is no userInfo dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSManagedObjectContext.h

32 Notifications
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

NSManagedObjectContext Class Reference

This table describes the changes to NSManagedObjectContext Class Reference.

NotesDate

Corrected description of NSManagedObjectContextWillSaveNotification (there
is no user info dictionary).

2010-04-21

Corrected descriptions of save notifications.2009-10-06

Corrected definition of stalenessInterval.2009-08-12

Enhanced discussion of undo manager.2009-05-04

Updated for iOS 3.0.2009-02-25

Updated for Mac OS X v10.5.2007-07-19

Clarified description of NSManagedObjectContextObjectsDidChangeNotification.2007-03-06

Noted that hasChanges is not KVO-compliant, and enhanced discussion of
setPersistentStoreCoordinator:.

2007-01-08

Clarified effect of refreshObject:mergeChanges:.2006-11-07

First publication of this content as a separate document.2006-05-23

33
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2010-04-21 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSManagedObjectContext Class Reference
	Contents
	NSManagedObjectContext Class Reference
	Overview
	Life-cycle Management
	Persistent Store Coordinator
	Subclassing Notes

	Tasks
	Registering and Fetching Objects
	Managed Object Management
	Merging Changes from Another Context
	Undo Management
	Locking
	Delete Propagation
	Retaining Registered Objects
	Managing the Persistent Store Coordinator
	Managing the Staleness Interval
	Managing the Merge Policy

	Instance Methods
	assignObject:toPersistentStore:
	countForFetchRequest:error:
	deletedObjects
	deleteObject:
	detectConflictsForObject:
	executeFetchRequest:error:
	existingObjectWithID:error:
	hasChanges
	insertedObjects
	insertObject:
	lock
	mergeChangesFromContextDidSaveNotification:
	mergePolicy
	objectRegisteredForID:
	objectWithID:
	obtainPermanentIDsForObjects:error:
	persistentStoreCoordinator
	processPendingChanges
	propagatesDeletesAtEndOfEvent
	redo
	refreshObject:mergeChanges:
	registeredObjects
	reset
	retainsRegisteredObjects
	rollback
	save:
	setMergePolicy:
	setPersistentStoreCoordinator:
	setPropagatesDeletesAtEndOfEvent:
	setRetainsRegisteredObjects:
	setStalenessInterval:
	setUndoManager:
	stalenessInterval
	tryLock
	undo
	undoManager
	unlock
	updatedObjects

	Constants
	NSManagedObjectContext Change Notification User Info Keys
	Merge Policies

	Notifications
	NSManagedObjectContextObjectsDidChangeNotification
	NSManagedObjectContextDidSaveNotification
	NSManagedObjectContextWillSaveNotification

	Revision History

